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CAPSULE 
Background: Altering the co-polymerization of 
proteins into amyloid fibrils provides an 
opportunity for manipulating fibril assembly  
Results: NMR and kinetic analysis showed that an 
RNA aptamer distinguishes between two highly 
similar co-aggregating proteins  
Conclusion: RNA aptamers are specific and 
discriminatory probes able to modulate amyloid 
formation 
Significance: Aptamers can be used as tools to 
differentiate amyloid precursors that are closely 
related and alter assembly 
 
ABSTRACT  
Whilst amyloid fibrils assembled in vitro 
commonly involve a single protein, fibrils 
formed in vivo can contain multiple protein 
sequences. The amyloidogenic protein human 
β2-microglobulin (hβ2m) can co-polymerize 
with its N-terminally truncated variant (ΔN6) 
in vitro to form hetero-polymeric fibrils that 
differ from their homo-polymeric counterparts. 
Discrimination between the different assembly 
precursors; for example by binding of a 
biomolecule to one species in a mixture of 
conformers, offers an opportunity to alter the 
course of co-assembly and the properties of the 
fibrils formed. Here, using hβ2m and its 
amyloidogenic counterpart, ΔΝ6, we describe 
selection of a 2ˊF-modified RNA aptamer able 
to distinguish between these very similar 
proteins. SELEX with a N30 RNA pool yielded 
an aptamer (B6) that binds hβ2m with an EC50 
of ~200 nM. NMR spectroscopy was used to 
assign the 1H-15N HSQC spectrum of the B6-
hβ2m complex, revealing that the aptamer 
binds to the face of hβ2m containing the A, B, E 
and D β-strands. By contrast, binding of B6 to 
∆N6 is weak and less specific. Kinetic analysis 
of the effect of B6 on co-polymerization of hβ2m 
and ΔN6 revealed that the aptamer alters the 
kinetics of co-polymerization of the two 
proteins. The results reveal the potential of 
RNA aptamers as tools for elucidating the 
mechanisms of co-assembly in amyloid 
formation and as reagents able to discriminate 
between very similar protein conformers with 
different amyloid propensity. 

 

 

INTRODUCTION   

Despite the array of different proteins and 
peptides with distinct amino acid sequences that 
are known to be able to assemble into amyloid 
fibrils in vitro and/or in vivo (1), the precise 
molecular mechanism(s) by which these different 
proteins/peptides self-assemble into amyloid 
fibrils, and how the assembly process results in 
disease remain unclear (2). Amyloid formation 
commences with the generation of aggregation-
prone monomeric precursors. These species can be 
unfolded/disordered, partially structured or even 
native-like (3) and their structural properties, even 
though potentially similar to their non-
amyloidogenic counterparts, dictate the fate of 
amyloid assembly (4). This is exemplified by the 
observation that the same amino acid sequence can 
form conformationally distinct amyloid structures 
in vitro by varying the temperature, altering the 
agitation conditions, adding co-solvents, metal 
ions or other molecules, or even changing the 
surface properties of the incubation vessel 
(reviewed in (5)). An extra level of complexity is 
added by the ability of different protein/peptide 
precursors to co-polymerize, resulting in new fibril 
polymorphs with different amyloid architectures, 
stabilities and/or different kinetics of assembly 
than those formed by each protein alone (4, 6, 7). 
Indeed, there are multiple examples of 
amyloidogenic proteins that are able to co-
polymerize, such as islet amyloid polypeptide 
(IAPP) and Aβ (6, 8), tau and α-synuclein (9) and 
insulin and transthyretin (10). Although the 
importance of identifying and characterizing 
rarely-populated amyloidogenic precursors is 
widely appreciated (3), this remains a significant 
challenge because of the transient nature and 
heterogeneity of assembly intermediates (11). The 
development of reagents able to discriminate 
aggregation-prone species among a pool of 
structurally similar molecules is crucial to 
deciphering the mechanisms of protein assembly 
into amyloid and to inform the design of 
therapeutic/diagnostic strategies able to target 
individual amyloid precursors (12).  

  
Human β2-microglobulin (hβ2m) is a small protein 
that forms amyloid deposits in collagen-rich 
osteoarticular sites, resulting in the disorder 
dialysis-related amyloidosis (DRA) (13, 14). 
Despite the propensity of hβ2m to form amyloid 
fibrils in vivo, conditions that destabilize the native 
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structure of hβ2m such as low pH (15), the 
presence of SDS (16), or other co-solvents or 
metal ions (17, 18), are required for fibril 
formation on an experimentally tractable timescale 
in vitro. Removal of the N-terminal six residues 
from hβ2m (the sequence IQRTPK), creating the 
variant ΔΝ6, disrupts the thermodynamic and 
kinetic stability of hβ2m and, as a result, ΔN6 can 
self-assemble into amyloid fibrils rapidly and 
spontaneously without the need to add detergents, 
metal ions or other reagents (19, 20). ΔN6 retains 
a native-like structure, displaying a backbone 
RMSD of only ~1.5 Å compared with hβ2m (19), 
and contains a non-native trans X-Pro32 (Figures 
1A, B) which has been shown to be vital for fibril 
formation (21, 22). Isomerization of the X-Pro32 
bond results in structural reorganization of the side 
chains in the apical region of hβ2m resulting in a 
protein with different surface hydrophobicity and 
electrostatic properties (19). Crucially, ΔN6 can 
promote the aggregation of hβ2m even when added 
in trace amounts (19), resulting in co-
polymerization of both proteins into hetero-
polymeric amyloid fibrils (4). This interaction 
allows amyloid formation of hβ2m to be 
investigated in the absence of additives at 
physiologically relevant pH values (4).  

The design of molecules able to bind hβ2m or its 
amyloidogenic counterpart, ∆N6, would offer an 
opportunity to increase understanding of the 
interaction between these co-assembling 
monomers and explore the aggregation pathway 
that leads to their co-polymerization into amyloid 
fibrils. However, such a task is hindered by the 
high sequence and structural homology (Figure 
1A) of the two proteins and their dynamic nature 
(19). In this study, we used in vitro selection to 
identify an RNA aptamer able to bind hβ2m 
preferentially to ∆N6 and to alter fibril co-
assembly. Nucleic acid aptamer selection has been 
used previously to generate RNA aptamers able to 
discriminate monomeric PrPSC and recombinant 
PrPC (23, 24), and to bind to Aβ monomers rather 
than fibrils (25-27). Oligomers of amyloidogenic 
proteins have also been used as targets: 
DNA/RNA aptamers have been raised against 
oligomers of α-synuclein (28) and Αβ40 (29) 
respectively.  

Previously, we used SELEX to isolate RNA 
aptamers against fibrillar hβ2m that were counter-
selected against the low pH, partially unfolded, 

hβ2m monomer from which these fibrils were 
formed (30). Here, we extend this approach using 
SELEX to isolate 2ˊfluoro-modified RNA 
aptamers against native monomeric hβ2m. The 
selected aptamer discriminates in its binding to 
hβ2m or ∆N6 at pH 6.2, conditions in which both 
proteins are folded, but only ∆N6 is able to 
assemble spontaneously into amyloid fibrils (19). 
The hβ2m specific aptamer was minimized to a 44 
nucleotide long fragment and its binding interface, 
affinity and specificity for hβ2m determined. The 
aptamer binds tightly and specifically to the β-
sheet of hβ2m containing the A, B, E, D β-strands, 
but only weakly and less specifically to ΔN6. 
Addition of the aptamer to a mixture of hβ2m and 
ΔN6 under conditions (pH 6.2) that promote co-
assembly (4) disfavors the interaction between the 
two proteins early in assembly, making hβ2m to 
remain soluble for longer. The results reveal the 
ability of RNA aptamers to discriminate and bind 
to a specific protein conformer within a complex 
mixture of structurally similar co-polymerizing 
species, altering the course of amyloid assembly.  

 
EXPERIMENTAL PROCEDURES 

Protein preparation - hβ2m and ΔN6 were 
expressed and purified as previously described 
(19). For NMR experiments 15N and 13C labeled 
hβ2m and ΔN6 were prepared as described in (31). 

Biotinylation and immobilization of hβ2m - 
Monomeric hβ2m (∼1 mg) was biotinylated 
(EZLink™ Sulfo-NHS-LC-LC-biotin, Pierce 
Biotechnologies) at pH 7 using a 20-fold molar 
excess of biotin over the total protein 
concentration, according to the manufacturer's 
protocol. The biotinylated monomer was then 
immobilized on 1 μm streptavidin-coated 
microspheres (Dynabeads™, Life Technologies) 
using the manufacturer’s protocol. 
 
In vitro selection - A Biomek 2000 laboratory 
automation work station (Beckman Coulter) was 
used to perform 12 rounds of in vitro selections 
with an N30 library of 2ˊF-modified pyrimidine 
RNA, encompassing ∼1015 potential sequences, 
and transcribed using the Y639F/H784A variant of 
T7 RNA polymerase (32), using minor 
modifications of the protocols described 
previously (30). Selections were carried out in 50 
mM MES buffer containing 120 mM NaCl, pH 
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6.2. Negative selections were carried out at each 
round of SELEX using streptavidin Dynabeads 
coated with Tris-inactivated linker. Stringency was 
increased after round 5 by decreasing the number 
of beads containing monomeric hβ2m by half and 
increasing the number of washes from 10 to 13. 
The reverse transcriptase-PCR products were 
analyzed by native PAGE after each group of 5 
rounds of selection to confirm the isolation of 
products for the next round of selection. Individual 
aptamer clones were produced by in vitro 
transcription using 10 mM final concentrations of 
each nucleotide triphosphate using 2ˊF CTP and 
2ˊF UTP for production of modified RNAs. RNA 
concentrations were determined using the 
following extinction coefficients: B6 - 1026.3 
mM-1 cm-1; B6 minimised (B6min) - 553.2 mM-

1cm-1 and B9 - 1054.2 mM-1 cm-1.  
 
Synthesis of minimised B6 - B6min (5ˊ-GGG AAU 
UCU GAG CUA CUC CCU UUU GGG CCC 
GGC UAU GAU UCC CG-3ˊ) was synthesized 
with and without 2ˊF-modified pyrimidine 
nucleotides (named 2ˊF B6min and 2ˊOH B6min, 
respectively) on an ABI 394 RNA synthesiser at a 
1 µM scale using the protocols described 
previously (33). The phosphoramidites used for 
synthesis of 2ˊF B6min were as follows: N-
benzoyl-protected adenosine, N-
dimethylformamidinyl-protected guanosine (dmf-
rG), N-acetyl-protected-2ˊ-fluoro deoxycytidine 
and 2ˊ-fluoro-deoxyuridine. For synthesis of 2ˊOH 
B6min N-acetyl-protected-2ˊ-fluoro deoxycytidine 
and 2ˊ-fluoro-deoxyuridine were replaced with N-
acetyl-protected-cytidine and uridine 
phosphoramidites (Link Technologies Ltd.). 
Cyanoethyl-(N,Nˊ-diisopropyl) and t-
butyldimethylsilyl (TBDMS) groups were present 
on the 3ˊ and 2ˊ hydroxyl groups. Treatment with 
ammonia-saturated methanol at room temperature 
for 24 h was used to remove protecting groups and 
to cleave RNA from controlled-pore glass (CPG) 
resin. Methanol was removed under vacuum and 
the RNA pellet re-suspended in anhydrous DMSO. 
One volume of triethylamine trihydrofluoride was 
added and incubated at room temperature to 
remove TBDMS, the deprotected RNA was 
precipitated with butan-1-ol and resuspended in 
diethylpyrocarbonate-treated water (Severn 
Biotech) before being purified by reverse-phase 
HPLC at 55 °C (34). RNA fractions were 
collected, lyophilized and desalted into 18.2 mΩ 
H2O. The RNA was analyzed on a 10% (w/v) 

denaturing polyacrylamide urea gel stained with 
ethidium bromide. The RNA was synthesized 
using dmf-rG CPG to avoid incorporation of a 
pyrimidine with a ribose sugar at the 3ˊ end. This 
additional guanosine has no effect on the 
secondary structure of 2ˊF B6min or 2ˊOH B6min 
as predicted by Mfold (35). 

Surface Plasmon Resonance (SPR) - A 
BIAcore3000 instrument was used with a 
streptavidin-coated gold sensorchip (BIAcore SA 
chip). A flow-rate of 10 μl min-1 was used with a 
running buffer of 50 mM MES, 120 mM NaCl, pH 
6.2. 50 μl of 50 μg ml-1 of biotinylated monomer 
was injected over separate flow-cells so that ~200 
RU of protein was immobilized. RNAs were 
dialyzed into running buffer before injection 
across the surface to minimize bulk refractive 
index effects. Flow-cells were regenerated using a 
20 μl wash of 5 M NaCl. All sensorgrams were 
corrected by subtracting the signals of an 
equivalent injection across an underivatized flow-
cell. Data were analyzed using the manufacturer's 
software (BIAevaluation). 

Intrinsic fluorescence quenching - The 
fluorescence of tryptophan residues in 1 µM hβ2m 
or ∆N6 was excited at 290 nm and fluorescence 
emission was measured between 300 and 390 nm 
in the presence of increasing concentrations of  
2ˊF B6min or 2ˊOH B6min in 50 mM MES buffer 
containing 120 mM NaCl pH 6.2 at 25 °C. Due to 
the large extinction coefficient of the RNA 
aptamer at 260 nm (553.2 mM−1 cm−1) the 
absorbance of the hβ2m/aptamer solution at 290 
nm was measured after each addition of aptamer to 
ensure that the absorbance of the solution was 
below 0.05 au at 290 nm so that inner filter effects 
do not contribute to the data (36). Fluorescence 
emission was measured using a Photon 
Technology International QM-1 
spectrofluorimeter (PTI) using 10 nm slit-widths. 
The data for binding of 2ˊF B6min to hβ2m were 
normalized to a value of 0 in the absence of 
aptamer and a fluorescence signal of 1 obtained 
upon saturation. The data were then fitted to the 
following logistic equation to extract the half 
maximal effective concentration (EC50) using in-
house scripts: 

𝑓(𝑥) = 𝑚𝑖𝑛 +
𝑚𝑎𝑥 −𝑚𝑖𝑛

1 + �𝑥 𝐸𝐶50� �
−𝐻𝑖𝑙𝑙 
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where max, min represents the maximum and 
minimum fluorescence signals, Hill is the Hill 
coefficient, f(x) is the fluorescence units and x is 
the concentration of the aptamer in nM. For 2ˊF 
B6min to ΔΝ6 and 2OH B6min to hβ2m no change 
in fluorescence was observed over the 
concentration range studied. 

NMR spectroscopy - Samples of 13C-15N-labeled 
protein (60 µM) in 50 mM MES buffer containing 
120 mM NaCl, pH 6.2, 0.02% (w/v) sodium azide, 
0.1 mM EDTA, 90% (v/v) H2O/10% (v/v) D2O 
were used for NMR experiments. Synthetic 2ˊF 
B6min or 2ˊOH B6min was added into the protein 
solution from a concentrated stock (typically 200 
µM). Working at a concentration of 60 µM 
necessitated the use of a sensitivity optimized 
strategy for obtaining assignments. This was 
achieved using a reduced dimensionality approach 
based on Hadamard encoding (37). Sequential 
assignments were obtained from analysis of 
Hadamard encoded 2D H(N-H2) CA and H(N-
H2)(CO)CA experiments where a 2 step Hadamard 
matrix is introduced on 15N to subdivide the peaks 
into two subspectra where most signals can be 
addressed from their 1H shift alone and the 
dimensionality can be reduced to 2 to maximize 
sensitivity. Spectra were recorded at 25 °C on a 
Varian Inova 750 MHz spectrometer equipped 
with a cryogenic probe and were processed using 
NMRPipe and analyzed using CCPN analysis 
(38). To calculate the intensity profiles shown in 
Figure 7, peak intensities were normalized to the 
number of scans and the protein concentration 
used for each experiment. Intensity profiles were 
calculated as the ratio of the normalized peak 
intensity of each resonance in the apo spectrum 
(I0) versus the normalized intensity at the same 
position but in the aptamer-bound spectrum (I). 
Therefore, the loss of native signal plotted in 
Figure 7 does not require full assignment of the 
aptamer-bound spectrum. 

Assembly of amyloid fibrils - 40 µM hβ2m and 40 
µM ΔN6 in the presence or absence of two molar 
equivalents of 2ˊF B6min were co-incubated in 50 
mM MES buffer containing 120 mM NaCl, pH 
6.2, 0.02% (w/w) sodium azide at 600 rpm, 37 °C 
in a Thriller Thermoshaker incubator (Peqlab). 
Each sample (100 µl) was incubated in 0.5 ml 
plastic Eppendorf tubes. Aliquots of 8 µl were 
removed at different time points during incubation 
and immediately centrifuged at 14,000 g for 20 

min. The supernatant was separated from the pellet 
and both supernatant and pellet were frozen at -20 
°C for subsequent analysis by SDS-PAGE. 

SDS-PAGE - The effect of 2ˊF B6min on fibril 
formation was monitored using 15% 
polyacrylamide Tris-Tricine gels. Samples of the 
supernatant and pellet were thawed and the pellet 
resuspended in 8 µl of 50 mM MES buffer 
containing 120 mM NaCl, pH 6.2. Both the 
supernatant and resuspended pellet were added 1:1 
to loading buffer (50 mM Tris-HCl, pH 6.8, 100 
mM DTT, 2% (w/v) SDS, 0.1% (w/v) 
bromophenol blue, 10% (v/v) glycerol) and boiled 
for 5 min before loading 15 µl into the gel. Gels 
were stained with Coomassie Instant Blue 
(Expedeon) and imaged by SnapGene software 
(Syngene). 

Electron microscopy - At the end of fibril 
assembly, 10 μl of sample were applied to a 
carbon-coated grid. The grid was then carefully 
dried with filter paper before it was negatively 
stained by the addition of 10 µl of 4% (w/v) uranyl 
acetate as described in (39). Micrographs were 
recorded on a Philips CM10 or a JEOL JEM-1400 
electron microscope.  

 

RESULTS- 

Selection of hβ2m-specific 2ˊF-RNA aptamers 

Co-incubation of ∆N6 and hβ2m results in the two 
proteins polymerizing into hetero-polymeric 
amyloid-like fibrils that are morphologically and 
thermodynamically distinct compared with fibrils 
formed by ∆N6 or hβ2m alone (4). In order to 
control the co-assembly of these proteins we 
attempted to select RNA aptamers capable of 
discriminating between natively folded hβ2m and 
ΔN6 at pH 6.2 (Figure 1A). Hβ2m was 
biotinylated (predominantly at the N-terminus and 
on Lys7 and/or Lys92) and immobilized as a target 
on streptavidin-coated magnetic beads, as 
described previously (30). The initial SELEX 
protocol used an N30 2ˊF-pyrimidine substituted 
RNA library, in order to create aptamers resistant 
to nucleases (25, 32), and included counter-
selection against ΔN6 monomers immobilized as 
for hβ2m, as well as long-straight and worm-like 
amyloid fibrils formed from hβ2m at acidic pH 
(40). This protocol resulted in the removal of most 
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of the aptamers from the selected pool, consistent 
with the different protein conformers having many 
epitopes in common. We therefore abandoned 
counter-selections, except against biotin linker-
blocked streptavidin beads alone. In addition, in 
the final round of SELEX, aptamers bound to 
bead-immobilized hβ2m were competed off the 
beads using non-biotinylated hβ2m in solution, in 
order to ensure that the selected aptamer pool 
contained ligands for native epitopes, SELEX was 
carried out at pH 6.2 as this is both optimal for 
hβ2m/∆N6 co-polymerization (hβ2m does not self-
assemble spontaneously on a relevant timescale at 
this pH, whilst ∆N6 assembles rapidly) (4) and is 
physiologically relevant for amyloid deposition in 
patients with DRA (41, 42). In total, 12 SELEX 
rounds were performed, with rounds 6-12 having 
increased stringency (Experimental Procedures). 
From the final pool 11 RNA clones were 
sequenced and aligned using the program AliBee 
(43). These were then clustered using the 
phylogenetic software Clustal Omega (44) (Figure 
2A).  

Isolation of 2ˊF B6 and characterization of the 
binding affinity to hβ2m 

Two aptamers, B6 and B9, contained the most 
frequently occurring sequence motifs within the 
sequenced clones and showed some motif 
similarities (Figures 2A and 2B). In order to 
identify which aptamer to utilize for further 
studies an initial binding assay was employed 
using SPR. Biotinylated hβ2m, ∆N6 or the non-
amyloidogenic murine β2m (mβ2m) (45) were 
immobilized on separate flowcells and aptamer 
binding monitored at pH 6.2. 2ˊF B6 binds to 
hβ2m with an apparent affinity of ~500 nM (red 
trace in Figure 2C), but did not bind ∆N6 (dark 
green trace) or mβ2m (light green trace). In 
contrast, binding of 2’F B9 was so weak that a Kd 
could not be determined (data not shown). The 
secondary structure of B6, computed via Mfold to 
be a stable stem-loop (ΔG° ~ -16 kcal/mol) (35) 
(Figure 3A), was confirmed using enzymatic 
solution structure probing (Figure 3B). This 
analysis suggests that the selected region consists 
of an extended base-paired stem-loop interrupted 
by several single-stranded bulges with a terminal 
loop consisting of a poly-U tetraloop (highlighted 
in red in Figures 2B and 3A). Note, both Mfold 
and enzymatic probing were of transcripts 
containing natural pyrimidines. B9 is predicted to 

have several equivalently stable structures that are 
all identical in the selected region, which forms a 
structure very similar to that of B6 around one of 
the bulges (Figure 3C). B9 differs radically at the 
terminal loop, however, which is composed of six 
purine nucleotides. It appears that the loop is the 
motif that provides much of the binding energy for 
the interaction of B6 with hβ2m. Further 
characterization was therefore restricted to B6 and 
its derivatives.  

A truncated 44 nucleotide version of the 110 
nucleotide full-length B6 was produced 
encompassing nucleotides 22 to 59 with 2ˊOH 
(termed 2ˊOH B6min) (Figure 3D) or 2ˊF 
pyrimidines (termed 2ˊF B6min) (Figure 3E), i.e. 
all of the selected region defining the stem-loop 
with some stabilizing additional base-pairs. We 
examined the solution binding of 2ˊF B6min to 
native hβ2m and ∆N6 using fluorescence 
spectroscopy. Hβ2m has two tryptophan residues: 
Trp60, which lies in the DE loop (Figure 1A) and 
is solvent exposed, and Trp95, which lies towards 
the C-terminus of the 100-residue protein and is 
buried. Tryptophan fluorescence of hβ2m can be 
used to probe changes in conformation or 
chemical environment upon aptamer binding, with 
Trp95 reporting on alterations within the 
hydrophobic core (46), whilst Trp60 is sensitive to 
ligand binding (at least in proximity to this 
residue) at the protein surface. The fluorescence 
emission spectrum of monomeric hβ2m (1 µM) 
was monitored upon titration with 2ˊF B6min. The 
results showed a decrease in tryptophan emission 
intensity (with little change in λmax), consistent 
with binding of 2ˊF B6min to the protein surface 
adjacent to Trp60. Fitting the normalized intensity 
of Trp fluorescence versus the concentration of 
2ˊF B6min added (Figure 4A) (Experimental 
Procedures) yielded a Hill slope of 0.99 ± 0.06, 
suggesting a specific one-site binding event, with 
an EC50 of 223 ± 10 nM. Similar assays using 
2ˊOH B6min showed no binding to hβ2m (Figure 
4B), indicating that the 2ˊF modifications to the 
pyrimidines are required for tight binding, 
consistent with the contribution of the polyU 
tetraloop to affinity. The fluorescence assay also 
showed no binding of 2ˊF B6min to ΔN6 
monomers (Figure 4C), consistent with the SPR 
data with full-length aptamers. These results 
indicate, therefore, that 2ˊF B6min is capable of 
discriminating between hβ2m and ΔN6. 2ˊ-fluoro-
ribose is known to prefer different sugar pucker 
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conformations compared with unmodified residues 
(O4ˊ-endo versus C3ˊ-endo, respectively (47)). 
This could alter the conformation of the tetra-loop 
and hence its interaction with the protein. 

Determining the binding interface of B6min with 
natively folded hβ2m using NMR 

To determine whether binding of 2ˊF B6 to hβ2m 
induces conformational changes in the protein and 
to map the binding site in residue-specific detail, 
2ˊF B6min was titrated into 15N, 13C labeled hβ2m 
at 0, 0.25, 0.5, 1.0 and 2.0 molar equivalents at pH 
6.2 and 1H-15N HSQC spectra were recorded. The 
1H-15N HSQC spectrum of the 2:1 mixture of 2ˊF 
B6min and hβ2m is shown in Figures 5A and 5B. 
Addition of 2ˊF B6min results in the appearance of 
new peaks in the spectrum and the loss of 
resonances assigned to native apo-hβ2m indicating 
that the complex is in slow exchange with the apo-
protein, as expected for a high affinity complex. 
The chemical shift changes involve some, but not 
all, resonances, indicative of binding of the 
aptamer to a specific surface. The 1H-15N HSQC 
spectrum of the hβ2m-2ˊF B6min complex was 
assigned using a combination of 2D and 3D NMR 
techniques (Experimental Procedures) (Figure 
6A). The low sample concentration (60 µM) and 
relatively large size of the complex (25.6 kDa) 
made assignment challenging. Of the 88 main-
chain resonances in the 1H-15N HSQC spectrum of 
hβ2m, 55 were successfully assigned. The assigned 
spectrum of the 2ˊF B6min-hβ2m complex was 
then used to map the binding site for 2ˊF B6min 
on the surface of the protein. Residues with the 
largest chemical shift differences upon aptamer 
binding are located on the face of hβ2m that 
contains the A, B, E, and D β-strands (Figures 6B 
and 6C). A significant number of residues in this 
region could not be assigned unambiguously in the 
spectrum of the complex, suggesting that they 
experience large chemical shift differences upon 
aptamer binding, or are not detected due to 
exchange line broadening (Figures 6B and 6C). 
The titration was also performed using 2ˊOH 
B6min (Figures 5C and 5D). No changes in the 
chemical shifts of hβ2m were observed, even at the 
2:1 aptamer: hβ2m molar ratio, confirming that the 
presence of 2ˊF modified pyrimidines is vital for 
high affinity binding. To investigate whether 2ˊF 
B6min is able to recognize ΔΝ6, 2 molar 
equivalents of the aptamer were added to 60 μΜ 
15N-labeled ΔΝ6 and binding again assessed by 
monitoring changes in chemical shifts (Figures 5E 

and 5F). In this sample the large changes in 
chemical shifts observed previously in the hβ2m-
2ˊF B6min complex (Figures 5A and 5B) were not 
detected (e.g. compare residues Lys41 and Ala79 
in Figures 5B and 5F). For some resonances, small 
changes in chemical shift were observed, however, 
in those cases the chemical shifts did not saturate, 
even in the presence of a 2-fold molar excess of 
2ˊF B6 (e.g. residues Ser20 and Cys80 (Figure 
5F)). The results thus confirm a significantly lower 
affinity of this aptamer for ∆N6.  

To obtain more detailed information about the 
position of the 2ˊF B6min binding site on the 
surface of hβ2m the intensity of each resonance 
was determined in the presence of a 2-fold molar 
excess of aptamer and compared with the intensity 
of its apo counterpart. The results of this analysis 
are shown in Figure 7A. Resonances arising from 
residues in the A, B, E, D β-strands, the AB and 
DE loops, residues 3-6 in the N-terminal region 
and the C-terminal 6 residues (red in Figure 7A) 
lose >80% of their intensity in the spectrum of the 
complex. These residues form a contiguous 
surface on hβ2m (Figure 7A) and include the N-
terminal 6 residues of hβ2m that are lacking in 
∆N6 and confer increased affinity, consistent with 
these residues forming part of the interface 
between the RNA and the protein. Consistent with 
this, there is little or no change in intensity for 
residues that lie in the CC’ loop, F and G β-strands 
on the opposite face of hβ2m (grey in Figure 7A). 
By contrast with these results, addition of a 2-fold 
molar excess of 2ˊOH B6min to hβ2m has no 
significant effect on the intensities of the 
resonances of native hβ2m (Figure 7B), consistent 
with its lack of binding.  

A similar analysis was performed to assess the 
possible interaction between 2ˊF B6min and ΔΝ6. 
As expected based on the fluorescence titration 
results shown in Figure 4C, little change in 
intensity was observed for the vast majority of 
residues in this sample (compare Figures 7A and 
7C), consistent with weak binding to ∆N6. 
Furthermore, the residues that do show a 
difference in resonance intensity differ from those 
involved in the 2ˊF B6min-hβ2m interface. For 
example, while resonances belonging to residues 
in the AB loop, the E strand and the C-terminal 6 
residues of native hβ2m diminish in intensity by 
>80% upon interaction with 2ˊF B6min, these 
resonances are largely unaffected (retaining > 60% 
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average intensity) when ΔΝ6 is incubated with the 
aptamer. Moreover, the residues in ∆N6 showing 
the largest decrease in intensity upon addition of 
2ˊF B6min (red in Figure 7C) are spread 
throughout the structure of the protein, suggesting 
that binding of 2ˊF B6min to ΔΝ6 is less specific 
than the 2ˊF B6-hβ2m interaction. These 
differences in binding presumably explain the 
insensitivity of tryptophan fluorescence observed 
upon addition of 2ˊF B6min to ΔΝ6. 

The 2ˊF B6min-hβ2m interface defined by these 
experiments (Figures 8A-C) includes a large 
number of aromatic side-chains (Y10, F22, Y26, 
F56, Y63, Y66 and Y67, green in Figure 8C), as 
often found in protein:RNA complexes (48). The 
residues involved in the binding interface might 
also be expected to be positively charged, but 
there appears to be an equal balance of positively 
charged residues (R3, K6, H13, K19, K48, H51, 
K94 (blue in Figure 8C)) and negatively charged 
side-chains (E16, D38, E50, D53, D59, E69, D98 
(pink in Figure 8C)). Analysis of the NMR data 
shows that residues 3-6 are clearly part of the 
binding site. This sequence is absent in ΔΝ6, 
which binds very poorly, and contains two positive 
charges (R3 and K6), but no negative charges. 
This region is therefore a candidate for a favorable 
electrostatic interaction with the aptamer. Indeed, 
mβ2m which does not bind this aptamer (Figure 
2C), has a Gln substituted for Lys at residue 6 (the 
N-terminal sequence of mβ2m is IQKTPQ), 
implying that Lys6 is a likely key recognition 
element for hβ2m.  

2ˊF B6min alters the co-assembly of ΔN6 and 
hβ2m 

The NMR and fluorescence data presented above 
indicate that 2ˊF B6min binds tightly to hβ2m, but 
only weakly and non-specifically to ΔN6. At pH 
6.2 hβ2m does not self-assemble into amyloid 
fibrils in vitro over a timescale of several weeks at 
a concentration of 40 µM, even using significant 
agitation (13, 49, 50). In contrast, ΔN6 rapidly and 
quantitatively forms fibrils under these conditions 
(19, 49). When the two proteins are incubated 
together at this pH they co-polymerize, forming 
hetero-polymeric fibrils with distinct structural 
properties compared with either of their homo-
polymeric counterparts (4). To determine whether 
2ˊF B6min is able to affect the co-aggregation of 
hβ2m and ∆N6 (due to preferential binding of the 

aptamer to one of the fibrillating monomers), the 
two proteins were mixed (each at a concentration 
of 40 µM) in the presence or absence of a 2-fold 
molar excess of 2ˊF B6min (160μΜ) at pH 6.2. 
Assembly was monitored by separating soluble 
and insoluble material by centrifugation and 
subsequent analysis of each fraction by SDS 
PAGE (Experimental Procedures) (Figure 9). In 
parallel, a sample of the assembly products were 
monitored using transmission EM (TEM) to 
confirm whether amyloid fibrils were produced. 
The results of these experiments showed that in 
the absence of 2ˊF B6min each protein remains in 
the soluble fraction up to the 24 h time point, after 
which time insoluble material containing both 
proteins forms (Figure 9A). After 166 h of 
incubation both proteins are also found in the 
pellet presumably due to their co-polymerization 
into fibrils (4). By contrast, in the presence of 2ˊF 
B6min aggregation occurs more rapidly, with >90 
% of ∆N6 and ~ 40% of hβ2m forming fibrillar 
material after 24 h. TEM images of the samples 
after 166 h confirmed that the insoluble material in 
the pellets contains amyloid fibrils (Figure 9A, B), 
although the precise location of each protein 
within each fibril (i.e. the extent to which co-
polymerization occurred) could not be ascertained 
from these experiments. Presumably, the 
interaction between soluble ΔN6 and hβ2m is 
inhibited by 2ˊF B6min, leading to rapid 
polymerization of ∆N6 which in part co-
polymerizes with hβ2m.  

DISCUSSION 

In order to derive a structural mechanism of 
amyloid formation the identity and structure of all 
assembling components must be defined and how 
these species interact and form the cross-β 
structure of amyloid determined. Here, RNA 
SELEX has been used to generate a specific, high-
affinity aptamer (2ˊF B6) against monomeric 
hβ2m. Importantly, despite only subtle differences 
in the structures of monomeric hβ2m and its N-
terminal truncation variant ΔN6 at pH 6.2 (Figure 
1A, B), 2ˊF B6 is able to discriminate between 
these structures, showing tight and highly specific 
binding to the β-sheet containing the A, B, E, D 
strands of hβ2m. By contrast, weak, non-specific 
binding is observed to ∆N6 that is detectable only 
at the high protein and RNA concentrations used 
for NMR (60 µM protein). The discrimination 
between hβ2m and ΔN6 by 2ˊF B6 can be 
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explained, at least in part, by the presence of Lys6 
in the binding interface. However, given that the 
binding interface appears to involve an extended 
region spanning the A, B, E and D β-strands, other 
residues must also contribute to affinity. Indeed, 
differences in the organization of residues on the 
surfaces of hβ2m and ΔN6 that result from the 
isomerization of the X-Pro32 peptide bond from 
the native cis isomer in hβ2m to the trans isomer in 
ΔN6 (19), and/or the decreased stability (13) and 
increased conformational dynamics of ΔN6 
compared with hβ2m (19), may also contribute to 
2ˊF B6 discriminating between these otherwise 
similar structures. For example, although the 
structure of the backbone is highly conserved 
between hβ2m and ∆N6 (Figure 1B), the 
orientation of the side-chains of aromatic residues 
involved in the aptamer binding interface differs 
significantly (Figure 10A). Furthermore, the 
organization of hydrophobic and charged residues 
on the surface formed by the A, B, E, D β-strands 
in hβ2m differs significantly from ∆N6 (Figure 
10B). Accordingly, the apical region of this 
surface in hβ2m is more highly positively charged 
than its equivalent in ∆N6 (this region contains the 
N-terminal six amino acids, including Lys6) 
(Figure 10B). In addition, the organization of 
negatively charged residues (involving the AB 
loop, the EF loop and the C-terminus) also differs 
between the two proteins (Figure 10B). In total, 
therefore, the balance between electrostatic and 
hydrophobic residues, crucial for nucleic acid 
binding (51), is distinct in hβ2m and ΔΝ6, partly 
due to the removal of the N-terminal six amino 
acids, and partly due to differences in solvent 
exposure of hydrophobic residues in the DE and 
BC loops in the two proteins that occur as a 
consequence of X-Pro32 isomerization.  

The role of ΔN6 in DRA is not currently 
understood. Whilst ΔN6 is present in the amyloid 
deposits found in patients with DRA (52), it 
remains unknown whether the N-terminal 
truncation of hβ2m occurs pre- or post- fibril 
formation. Additionally, the interaction between 
hβ2m and ∆N6 in vitro is complex, with ∆N6 
possessing the ability to convert monomeric hβ2m 
into an amyloidogenic conformation (4, 19, 53) 
and to act as a fibrillar seed able to be elongated 
with hβ2m monomers (19, 49). The aptamer 
selected here may be useful as an analytical probe 
to derive greater clarity in understanding the early 
stages of hβ2m and ∆N6 co-assembly into 

amyloid. Given the complexity of amyloid 
formation, where self-assembly can be initiated by 
one or more rare conformers that may differ subtly 
in structure, and that different oligomeric species 
may exhibit profoundly different cytotoxicity (54, 
55), RNA aptamers offer unique potentials as 
reagents for the analysis of, and interference with, 
amyloid formation. 

The specific and tight binding of 2ˊF B6 to hβ2m 
alters the course of amyloid assembly in mixtures 
of hβ2m and ΔN6 at pH 6.2. Thus, aptamer 
binding to hβ2m disfavors the incorporation of 
hβ2m into amyloid fibrils during co-assembly with 
ΔN6 and results in more rapid fibril formation. In 
the presence of the aptamer hβ2m molecules will 
become incorporated into fibrils only after aptamer 
dissociation, possibly by cross-seeding with 
preformed ΔN6 fibrils (4, 49). Alternatively, ∆N6 
may promote conversion of hβ2m to an 
amyloidogenic conformation once 2ˊF B6min 
dissociates (4, 19, 53), pulling the equilibrium 
towards co-assembly into fibrils. Given that 
amyloid formation is under kinetic control, the 
development of aptamers able to bind their targets 
with slow off-rates (even for the same apparent 
Kd) would provide an effective strategy to control 
assembly. Such aptamers could be isolated by 
increasing the length of time of the elution steps in 
SELEX as stringency is increased. Alternatively, 
coupling of the RNA aptamer to molecule with 
known affinity to the target could provide a route 
to achieving this goal by exploiting avidity effects. 
Doxycycline, a small molecule tetracycline 
analogue, has been shown to modulate the 
formation of hβ2m fibrils in vitro (56), to reduce 
articular pain and improve movement in DRA 
patients (57) and to correct a locomotory defect in 
C.elegans expressing hβ2m (58). Analysis of the 
hβ2m-doxycycline complex using NMR suggests 
that the highest affinity binding site (IC50 ~50 μΜ 
(56)) involves residues that lie in the C-terminal 
region of strand A, the N-terminal region of strand 
B and the central residues of the AB loop (56). A 
second, lower affinity, binding site involves the N-
terminal region and residues in the BC and DE 
loops. An intriguing possibility, therefore, would 
be to create an aptamer linked to doxycycline such 
that the relatively tight and specific binding of 2ˊF 
B6 can be exploited to enhance binding of 
doxycycline to its target interface. Creation of 
such bipartite molecules have been shown to be a 
highly effective strategy, not just for enhancing the 
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effectiveness of RNA aptamers as delivery 
vehicles (59-61), but in many other applications 
(62-64).  
  
In conclusion, the biophysical and biochemical 
studies presented here demonstrate that RNA 
aptamers can be highly specific and discriminatory 
probes, modulating co-polymerization reactions 
and controlling the course of amyloid assembly. 
How the 2ˊF B6-hβ2m complex changes as fibril 
formation proceeds and the effect of the aptamer 
on hetero-polymorphic fibril structure and stability 
will require further studies, for example, by 
exploiting the powers of solid-state NMR to 
analyze fibril structures (65, 66). Further 
characterization and modification of 2ˊF B6 will 
potentially allow the affinity of the aptamer for 
hβ2m to be increased, and selection of aptamers 
specific for ∆N6 will also allow detailed 
biophysical analysis of the role of ∆N6 in hβ2m-

∆N6 co-polymerization. Understanding this 
process further may shed light on the molecular 
mechanisms of fibril formation and how the 
protein precursors of hetero-polymeric assemblies 
can be modulated to tailor the extent, rate, and 
structure of amyloid fibrils. 
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FIGURES AND FIGURE LEGENDS 

 

Figure 1. Comparison of the structures of hβ2m and ΔΝ6. (Α) The structure of hβ2m (grey ribbon, 
PDB code: 2XKS (19)) and ∆N6 (red cartoon, PDB code: 2XKU (19)). The two β-sheets of the proteins 
comprising the A, B, E and D β-strands and the C, F and G β-strands are shown. Pro32 is shown in space 
fill. (B) Per-residue RMSD chart for the backbone atoms of hβ2m and ΔΝ6 (overall backbone RMSD 
~1.5Å). The positions od the β-strands in these proteins are shown on top as grey (hβ2m) and red (ΔΝ6) 
ribbons.  
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Figure 2. Aptamer selection. (A) The relationship of B6 to the 10 other sequences from the SELEX 
pool. (B) Sequences of aptamers B6 and B9. The selected regions are shown in red and their common 
sequence motifs are underlined. (C) SPR traces generated upon incubation of 1 µM 2’F B6 (50 mM MES 
buffer, 120 mM NaCl, pH 6.2) over flow-cells immobilized with hβ2m (red), ∆N6 (dark green) or murine 
β2m (light green).  
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Figure 3. Secondary structures of the B6 and B9 aptamers. (A) The Mfold secondary structure 
prediction of the full length B6 aptamer with the nucleotides within the green box showing the region 
truncated to create the B6min aptamer sequence. Nucleotides circled in red define the random region. (B) 
Enzymatic solution structure probing of the full length B6 transcript with the random region highlighted 
in red. Cleavage sites by the G-specific RNase T1 (green arrows), U and C-specific RNase A (blue 
arrows) and single-stranded RNA specific S1 nuclease (purple arrows) are shown. (C) The Mfold of the 
full length B9 aptamer with the selected region highlighted as in (A). The dotted red boxes in (A) and (C) 
showed the conserved sequences and secondary structure elements of both aptamers.. (D) Secondary 
structure of 2ˊOH B6min and (E) 2ˊF B6min stem-loops. These have additional 5ˊ-GGG and 3ˊ-CCCG 
sequences added to increase their folded stability. 2ˊF pyrimidines are circled in green in (E). 
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Figure 4. Binding of 2ˊOH B6min and 2ˊF B6min to
 
hβ2m and ∆N6 measured using intrinsic 

tryptophan fluorescence. (A) Normalized tryptophan fluorescence of hβ2m (1 µM) upon addition of 2ˊF 
B6min (0 - 1.7 µM). The data are fitted to a logistic equation (solid line). The data are normalized 
between 0 (no aptamer) and 1 (the fluorescence signal in the presence of 1.7 μΜ aptamer) (Experimental 
Procedures). (B) Titration of hβ2m (1 µM) with 2ˊOH B6min. (C) Titration of ∆N6 (1 µM) with 2ˊF 
B6min. No fluorescence change was observed over the concentrations of aptamer added in (B) and (C). 
These data were normalized between 0 (no aptamer) and 1 (the fluorescence signal when 1.7 μΜ of 2ˊF 
B6min was added to hβ2m. All experiments were performed in 50 mM MES buffer, 120 mM NaCl, pH 
6.2.   
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Figure 5. Chemical shift changes upon the addition of aptamers to hβ2m and ∆N6. (A) The 1H-15N 
HSQC spectrum of 15N, 13C-labeled hβ2m (60 µM) alone (grey) or in the presence of two molar 
equivalents of 2ˊF B6min (magenta). (B) Expansion of the region boxed in (A). (C) The 1H-15N HSQC 
spectrum of 15N, 13C-labeled hβ2m (60 µM) alone (grey) or in the presence of two molar equivalents of 
2ˊOH B6min (orange). (D) Expansion of the region boxed in (C). (E) The 1H-15N HSQC spectrum of 15N, 
13C-labeled ∆N6 (60 µM) alone (red) or in the presence of two molar equivalents of 2ˊF B6min (green). 
(F) Expansion of the region boxed in (E). Chemical shift changes in (B), (D) and (F) are annotated with 
arrows. All spectra were obtained at 25 ºC, pH 6.2. 
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Figure 6. Chemical shift changes upon binding of 2ˊF B6min to hβ2m. (A) Zoomed in regions of the 
2D HNCA spectrum of 13C, 15N-hβ2m with 2 molar equivalents of 2ˊF B6min. The assignment walk on 
the Cα’s is shown for the four residues. (B) Chemical shifts changes of hβ2m upon interaction with 2ˊF 
B6min. Total chemical shift change was calculated as 

 

(5*1H)2 +(15N)2 . Residues for which assignments 
were not possible as a consequence of exchange broadening or large chemical shift perturbation are given 
an arbitrary value of 5 ppm and are shown in red. The dashed line represents two standard deviations of 
the mean over the entire data set. (C) The structure of hβ2m coloured according to the measured chemical 
shift changes shown in (B).  
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Figure 7. 2ˊF B6 distinguishes between two highly similar proteins. (A) Plot of the loss of signal 
intensity of resonances in native hβ2m upon binding to a 2-fold molar excess of 2ˊF B6min using data 
shown in Figure 5A. Profiles were calculated as the ratio of the peak intensity in the presence (I) or 
absence (Io) of a 2-fold molar excess of aptamer. Intensity profiles were normalized to residues 40-45 that 
are not involved in the interface. Residues with a ratio of <0.2 are colored red, those showing a ratio 
between 0.2 and 0.4 are colored yellow, and those with no significant decrease in intensity are colored 
grey. The structure of hβ2m drawn as a surface representation is shown on the right color-coded using the 
same scale. Residues with no assignments (na) are shown in blue. (B) As in (A), but for the interaction of 
2ˊOH B6min and hβ2m. (C) As in (A), but for the interaction of 2ˊF Β6min with ΔΝ6. The secondary 
structure elements of the proteins are show as ribbons on top of the panels.  
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Figure 8. Mapping the 2ˊF B6min-hβ2m binding site. (A) The residues in hβ2m that show the largest 
decrease in intensity upon interaction with 2ˊF B6min are shown in red on the structure of hβ2m (grey 
cartoon) and predominantly involve residues in the A, B, E, D β-strands of hβ2m. By contrast, the C, F, G 
β-strands show relatively little change in intensity (bottom). (B) Surface representation of hβ2m 
highlighting the interface residues (red). (C) The 2ˊF B6min-hβ2m binding interface involves 7 aromatic 
residues (light green), 7 positively charged residues (blue) and 7 negatively charged residues (pink). 
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Figure 9. 2ˊF B6min affects hβ2m-∆N6 co-polymerization into fibrils. (A) The course of aggregation 
of mixtures of hβ2m and ∆N6 (each 40 µM) in the absence of a 2-molar excess of aptamer determined by 
SDS PAGE. The morphology of the aggregates formed after 166 h is shown by TEM. (B), as for (A) but 
in the presence of a 2-fold molar excess of 2ˊF B6min. (S), supernatant; (P), pellet. Incubation was 
performed in 50 mM MES, 120 mM NaCl pH 6.2 with 600 rpm agitation at 37 °C. The scale bars on the 
TEM images represent 500 nm. For the inset TEM images the scale bars are 200 nm.  
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Figure 10. Structural differences between hβ2m and ΔΝ6 in the aptamer binding  surface. (A) The 
aromatic residues located in the interface between 2ˊF B6min and hβ2m (see Figure 8) are highlighted as 
sticks on hβ2m (black ribbon) and ΔΝ6 (red ribbon). Zoom-in expansions of four residues are shown 
alongside. (B) The structure of hβ2m (left) and ΔΝ6 (right) shown as a surface representation colored by 
its electrostatic potential (blue positive, red negative). The N-terminal region is highlighted in a circle and 
the DE loop region is annotated with a black arc.  
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