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Abstract The giant protein titin is the third most abun-

dant protein of vertebrate striated muscle. The titin mole-

cule is[1 lm long and spans half the sarcomere, from the

Z-disk to the M-line, and has important roles in sarcomere

assembly, elasticity and intracellular signaling. In the

A-band of the sarcomere titin is attached to the thick fila-

ments and mainly consists immunoglobulin-like and

fibronectin type III-like domains. These are mostly arran-

ged in long-range patterns or ‘super-repeats’. The large

super-repeats each contain 11 domains and are repeated 11

times, thus forming nearly half the titin molecule. Through

interactions with myosin and C-protein, they are involved

in thick filament assembly. The importance of titin in

muscle assembly is highlighted by the effect of mutations

in the A-band portion, which are the commonest cause of

dilated cardiomyopathy, affecting *1 in 250 (Herman

et al. in N Engl J Med 366:619–628, 2012). Here we report

backbone 15N, 13C and 1H chemical shift and 13Cb
assignments for the A59–A60 domain tandem from the

titin A59–A69 large super-repeat, completed using triple

resonance NMR. Since, some regions of the backbone

remained unassigned in A60 domain of the complete A59–

A60 tandem, a construct containing a single A60 domain,

A60sd, was also studied using the same methods. Consid-

erably improved assignment coverage was achieved using

A60sd due to its lower mass and improved molecular

tumbling rate; these assignments also allowed the analysis

of inter-domain interactions using chemical shift mapping

against A59–A60.

Keywords Muscle protein � Titin A-band � Large super-

repeat unit � Fibronectin type III domain tandem

Biological and medical context

Titin, a major component of vertebrate striated muscle

sarcomeres, is the largest known polypeptide, with iso-

forms up to nearly 4 MDa (Tskhovrebova and Trinick

2003). This is mostly folded into a string of about 300

immunoglobulin (Ig) and fibronectin (Fn, type III)-like

domains, both of which have b-sandwich folds of 7–8

strands and about 100 amino acids. The filamentous mol-

ecule spans from the Z-discs at the ends of the sarcomere

(N-terminus) to the M-line in its middle (C-terminus), a

distance of *1 lm. In the A-band titin is integral with

thick filaments and is thought to control exact filament

assembly (Whiting et al. 1989) via interactions with

myosin, C-protein and other filament components. In the

C-zone of the A-band the Ig and Fn domains are arranged

in repeating patterns called large super-repeats: Ig–Fn–Fn–

Fn–Ig–Fn–Fn–Fn–Ig–Fn–Fn (Labeit et al. 1992). Thus

domains at the same positions in different super-repeats are

most similar. This pattern is repeated 11 times, making 121

domains in total and forming nearly half the molecule.

Next generation sequencing has recently shown that

A-band titin is of great importance in heart disease.

Mutations throughout this region are the commonest cause
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of the important disease dilated cardiomyopathy, which

affects 1 in 250 in the population and is a major cause of

death (Herman et al. 2012).

Our long-term aim is to determine the structure and

dynamical properties of the A59–A69 large super-repeat

unit using overlapping two and three domain constructs

(Tskhovrebova et al. 2010; Czajlik et al. 2012). By infer-

ence, this should allow modeling of the entire large super-

repeat region spanning 0.5 lm. Here we report chemical

shift assignments of the backbones of the A59–A60 fibro-

nectin type III (Fn3) double and A60sd single domain

constructs using triple resonance NMR. Assignments of

backbone resonances in these molecules provide a basis for

understanding inter-domain flexibility, domain-domain

interactions and the formation of higher oligomer in the

system, based on homology models and chemical shift

based backbone folds using residual dipolar couplings,

paramagnetic relaxation enhancements, 1H–15N relaxation

data and chemical shift perturbations, without the need for

full sidechain assignment.

Methods and experiments

The A59–A60 domain tandem and A60sd single domain

were cloned into the pET 15b_A170 and PET19b vectors,

respectively. They were over-expressed as a N-terminal

His6-tagged fusion protein in Escherichia coli strain

BL21(DE3). A59–A60 was uniformly 15N, 13C and
2H-labeled and A60sd was uniformly enriched in 15N and
13C. Cells were grown at 37 �C in D2O-M9 minimal medium

containing 15NH4Cl (1 g/L) and either [100 %-D7 and

100 %-13C] glucose (4 g/L) or [100 %-13C] glucose (4 g/L)

as the sole nitrogen and carbon sources. For induction of

expression, 1 mM IPTG was added when the cells reached an

OD600 of 0.7, after which they were left shaking at 37 �C for

an additional 15 h. The cells were then disrupted by soni-

cation in a 50 mM TRIS buffer (pH 7.9) containing 6 M

guanidinium chloride, 0.5 M NaCl and 15 mM DTT and

harvested by centrifugation. Finally the proteins were puri-

fied from the supernatant using Ni–NTA resin and eluted

with 50 mM EDTA (pH 6.2). Typically 5 mg protein was

purified from 1 l of A59–A60 culture. For A60sd yields were

much higher, *15 mg/l of culture. Purity and isotope

enrichment were checked by SDS-PAGE and mass

spectrometry.

NMR samples of both purified proteins (*1 mM) were

prepared in 0.5 M NaCl, 50 mM MES, 10 mM DTT and

0.01 % azide, pH 6.5. Data were recorded at 293 K on

Varian INOVA 600 and 750 MHz spectrometers equipped

with 1H,13C,15N triple resonance probes with z-axis pulsed

field gradients; the 750 MHz spectrometer was equipped

with a cryogenic probe. Sequence specific backbone

assignments were obtained from 2D 15N HSQC-TROSY,

3D HNCA, HN(CO)CA, HN(CA)CB, HN(COCA)CB,

HNCO and HN(CA)CO spectra. Data was processed using

NMRPipe (Delaglio et al. 1995) and spectra were analyzed

using CCPNMR analysis 1.0 (Vranken et al. 2005). Chem-

ical shift referencing was carried out using DSS (2,2-

dimethyl-2-sila-pentane-5-sulfonic acid). Measurements of

{1H}–15N heteronuclear nOes Heteronuclear (Farrow et al.

1994) were used at a 15N frequency of 60.78 MHz with a

proton saturation sequence using a 120� pulse applied every

5 ms over 3 s during the 5-s relaxation delay. Values for the

{1H}–15N nOes were determined from the ratio of peak

intensities with and without proton saturation. 1D TRACT

experiments (Lee et al. 2006) were acquired and relaxation

rates for the a and b spin states averaged over the amide

spectrum were analysed by an in-house python script to give

a lower limit for the rotational correlation time.

Assignments and data deposition

Figure 1A shows the 15N–1H HSQC-TROSY spectrum of

A59–A60 illustrating the quality of the data and breadth of

assignment. The resonances are well dispersed indicating

the folded state of the protein. Excluding the resonances of

N-terminal His6-tag and 4 Pro amino acids from the very

beginning of the domain (labelled -24 to 0), backbone

assignment of A59 from A59 to A60 proved nearly com-

plete [90.5 % (76/84) 1HN/15N, 95.5 % (86/90) 13Ca,

87.9 % (73/83) 13Cb, 88.9 % (80/90) 13C’]. In contrast,

assignment of A60 in A59–A60 was not as exhaustive:

80.0 % (76/95) for 1HN/15N, 86.4 % (89/103) for 13Ca,

67.7 % (65/96) for 13Cb, and 73.8 % (76/103) for 13C’.

Furthermore, while in A59 most of the unassigned reso-

nances were found in loop regions, in A60 resonances from

three spatially separate regions from the first, third and

seventh b-strands were totally missing (103Pro, 104Glu,

105Val; 135Lys, 136Arg, 137Asp and 187Thr, 188Glu,

189Thr, 190Ile). In order to increase the assignment rate

and to help study the interaction between the domains, A60

was expressed alone (A60sd). The completeness of the

assignments for A60sd [excluding the N-terminal His6-tag

and trailing N terminal residues (25 residues labelled -24

to 0) and the C-terminal trailing residues (residues labelled

Fig. 1 A Two-dimensional 1H–15N HSQC-TROSY spectrum of

A59–A60 tandem at 750-MHz 1H frequency. B Two-dimensional
1H–15N HSQC-TROSY spectrum of A60sd at 750-MHz 1H fre-

quency. Data were acquired at 293 K using a uniformly 15N, 13C, (2D

for A59–A60) labelled protein sample (*1 mM) dissolved in 0.5 M

NaCl, 50 mM MES, 10 mM DTT (pH 6.5). Note all N-terminal tag

residues are labeled with negative numbers, while residues in A60sd

and A59–A60 are labeled as consecutive positive numbers from the

start of the A59 sequence
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199–205)] proved much better than for A59–A60 (Fig. 1B)

with coverage of: 94.7 % (90/95) for 1HN/15N, 98.1 %

(101/103) for 13Ca, 72.9 % (70/96) for 13Cb, and 93.2 %

(96/103) for 13C’. Thus, the source of the missing assign-

ments in the A59–A60 may reasonably be attributed to T2

broadening due to local chemical exchange and the cor-

relation time of the full tandem.

Consensus analysis of secondary structure based on CSI

(Wishart and Sykes 1994) and TALOS? (Shen et al. 2009),

indicate the presence of thirteen b-strand regions (Fig. 2):

A59-b1 (7–11), A59-b2 (15–19), A59-b3 (33–38), A59-b5

(57–61), A59-b6 (68–76), A59-b7(91–94), A60-b1

(106–109), A60-b2 (112–117), A60-b3 (130–135), A60-b4

(143–145), A60-b5 (155–159), A60-b6 (166–175), A60-b7

(190–191). The secondary structure elements observed are

in good agreement with those for two Fn3 domains, with

the exception that the position of A59-b4 could not be

clearly identified from the observed chemical shifts.

Interestingly the very short b-sheet observed for A60-b7 is

not consistent with the secondary structure of the b7 strand

from the NMR of the domain A71 (Goll et al. 1998, 1BPV)

which is situated at the same position in the next super-

repeat unit as the A60. However, it is completely consistent

with the sequence dependant secondary structure predicted

by PSIPRED (Buchan et al. 2010; Jones 1999).

In order to prove that the secondary structure of the

C-terminal domain of A59–A60 and A60sd are the same,

their Ca chemical shifts were compared. The Ca chemical

shifts for A60 from the A59–A60 tandem and A60sd were

highly correlated (R2 = 0.99) and, excluding changes at the

termini where different flanking residues were present, only

small shift changes were observed (Fig. 3A), with the
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Fig. 2 13Ca chemical shift deviations of the A60 single domain

compared to sequence dependent random coil values (DdCa-

dCaRC = dobserved-drandom coil; random coil values were based

on those from Wishart et al. 1995). For those shifts where no

assignments were available for the A59–A60 tandem those from

A60sd were used (open bars). Regions identified as being in a b-sheet

conformation based on CSI and TALOS? are indicated by a grey

ground. No a-helical secondary structure was identified. The position

of the putative b-sheet A59-b4, which is predicted by PSIPRED, and

the canonical Fn3 fold are shown with a dashed border
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Fig. 3 A Ca chemical shift differences between the A60 domain of

A59–A60 and A60sd For clarity the data for residue 198 (Dppm

Ca = 3.26 ppm, labelled *) was truncated on the y axis. B Bottom, a

graph of the shift metric D for all residues in A60 domain.

D = [(d15N)2 ? (5 9 d1H)2]0.5 where d15N and d1H are the chemical
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values of D[ 0.5 ppm (shown by a dashed line). Residues 97 and

198, labeled * and ** respectively, have D values of 2.28 and 4.53
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largest being 0.57 ppm indicating very little change in

overall secondary structure. However, consistent differ-

ences in chemical shifts (dCa C 0.3 ppm) are observed for

the loops regions between b-strands A60-b2 and A60-b3, as

well as between b-strands A60-b6 and A60-b7. This sug-

gests that there is an inter-domain interaction. In order to

examine the interaction between A59 and A60 further, the

changes in chemical shift between the 1H–15N HSQC

spectra of the C-terminal domain of A59–A60 and A60sd

were calculated (Fig. 3B) using the chemical shift distance

metric D = [(d15 N)2 ? (5 9 d1H)2]0.5. Aside from the

termini, only the loop regions between b-strands A60-b2

and A60-b3, A60-b4 and A60-b5, as well as a number of

residues in b- sheets A60-b6 and b7, show a D[ 0.5 ppm,

indicating that their environment has changed significantly.

As these regions are localized to the N-terminal face of A60

(assuming a Fn3 fold) this suggests that there are distinct

interactions between A59 and A60. Three further strands of

evidence support a lack of flexibility between the two

domains. Firstly from the observed secondary structure the

linker between the b-sheets A59-b6 and A60-b1 is extre-

mely short (residues 95–100). Secondly the observed cor-

relation time of 21 ns for A59–A60 which was measured

using a TRACT experiment is consistent with that expected

for a rigid double domain construct with small amounts of a

higher oligomer present (Tskhovrebova and Trinick 2003).

Finally {1H}–15N heteronuclear nOe measurements show

that the linker region has nOes intensities covering a range

from 0.77 ± 0.03 to 0.78 ± 0.03, which are in agreement

with the observed nOes for the secondary structure elements

in the same system which have an average value of

0.76 ± 0.05 over secondary structure elements. Overall

these results clearly point to the conclusion that the A59–

A60 double domain has an inflexible linker and a structured

domain–domain interface. This observation therefore has

important implications for the overall flexibility, structure

and biological role of the large super repeat in titin and its

role in myosin assembly.

Backbone 1H, 13C and 15N resonance assignments of

titin A59–A60 tandem and A60sd single domain have been

submitted to the BMRB (http://www.bmrb.wisc.edu) under

accession numbers 19010 and 19011, respectively.
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