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Abstract

Any-angle path planning algorithms are a popular topic of research in the

fields of robotics and video games with a key focus in finding true shortest

paths. Most online grid-constrained path-planning algorithms find sub-

optimal solutions that present as unrealistic paths, a shortcoming which

the any-angle class of algorithms attempt to address. While they do pro-

vide improvements in finding shorter paths, it generally comes in the form

of a trade-off, by sacrificing runtime performance. The lack of a robust

solution, that does not compromise on any of the desirable properties –

online, reduced search-space, low runtime, short paths – of an any-angle

path-planning algorithm, is a prime motivator for the current research.

A novel any-angle algorithm for 2-dimensional uniform-cost octile grids

is introduced that operates purely online and reduces the search-space

and runtime without sacrificing path-length. The methodology presents

an atypical any-angle path-planning algorithm which employs a best first-

search that races individual paths towards a target with a free-space as-

sumption. The paths exhibit bug-like properties in that they either move

towards a target or wall-follow, but are allowed to terminate early. Wall-

following determines points on the boundary that are candidate heading

changes in the path. At each step, the path is analysed and pruned in or-

der to maintain its tautness at all times. Together with a purely heuristic

cost based on the assumption of free-space between heading changes, the

algorithm drives the search towards expanding the most promising path

first. Once a path has reached the goal, it checks the free-space assump-

tion between its heading changes and updates its cost accordingly. The

shortest-path is determined when the cost estimate of any remaining paths

is longer than the solution path.

The proposed algorithm is shown experimentally to be competitive on a

number of performance metrics with state-of-the-art any-angle algorithms.

It also presents desirable properties that allow it to have a reduced search-

space and make it suitable for providing multiple solutions.
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Chapter 1

Introduction

This chapter discusses the motivation of developing path-planning algo-

rithms, and the basis on which this work has been implemented - in partic-

ular, the concepts of navigation, path-planning and map discretisation.

1.1 Introduction and overview

Artificial intelligence, in its various forms, offers solutions for solving prob-

lems traditionally associated with human or animal cognition, such as natu-

ral language processing, vision, playing games or bipedal walking, to name

a few. While the impact of these advancements on society as a whole

are subject to debate, the driving forces behind them are pushing smart

technologies towards wide-spread adoption and acceptance. Addressing the

numerous challenges of having intelligent agents such as autonomous robots

and smart wheelchairs interacting and integrating seamlessly with natural

and human-made environments implies an increase in the complexity of

hardware and software technologies. To that end, scientists and engineers

take inspiration from various aspects of nature, in everything from artificial

neural networks [1] and genetic algorithms [2] to using slime mould [3] as

1



1.1. Introduction and overview 2

a tool for redrawing more efficient routes around congested cities.

The interdisciplinary field of robotics has garnered attention due to numer-

ous technological advances over the recent decades. As technology gradu-

ally permeates all aspects of human society and the reliance on automation

and artificial intelligence solutions becomes commonplace, the distinction

between human and machine gets blurred. A commonality of robotics is

that of producing behaviours resembling those found in nature. Fields of

study such as bio-inspired robots and soft-robotics take lessons from na-

ture and incorporate observed designs, ideas and behaviours to address

specific engineering challenges. A key interest among these challenges is

the problem of path-planning. As an essential component of navigation in

developing autonomous agents and video games, it has received abundant

attention.

Path-planning algorithms are generally fast. However, constraints imposed

by specific environments can apply restrictions to the time available to

reach an optimal solution. For games with a large number of agents, for

example, the number of active agents that can perform path planning si-

multaneously is impacted and can prove too resource intensive. Performing

fast searches is important [4] for a number of reasons: the problem of path-

planning is only one component of the navigation hierarchy that integrates

into a overarching system with other components competing for resources

(e.g. high-end video games) or, for robotics applications, sharing limited

resources that impact on system performance and time-management and

are dependent of portable energy sources (e.g. planetary rover with solar

panel charging).

The current work focuses on one specific aspect of the path-planning prob-

lem, namely online any-angle path-planning in known 2D environments. In

the context of path-planning, a purely online algorithm does not require
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any preprocessing of the search-space. In essence, there is no further in-

formation presented to the algorithm at run-time with the exception of

the occupancy map of the environment. Path-panning on known 2D en-

vironments is applicable to both ground based robots with range sensing

capabilities and AI gaming characters. As such, there is interest in improv-

ing on the state-of-the-art.

The algorithms presented perform single source path-planning on 2D uni-

form cost octile grids and operates on a number of assumptions, namely

that the treating the search agent as a point object with no holonomic

constrains, meaning that it can travel in any direction, unrestricted.

The thesis introduces a novel best-first search algorithm for finding any-

angle paths on grid-constrained graphs. The proposed algorithm is shown

experimentally to be competitive on a number of performance metrics with

current state-of-the-art any-angle algorithms. It also presents desirable

properties that allow it to have a reduced search-space and make it suitable

for providing any-time solutions and multiple paths.

For the purpose of this research, certain assumptions can be made regarding

the hypothetical agent solving the path-finding problem in question:

• it is treated as a point object with zero width and no kinematic

constraints

• it can observe its immediate environment

• it is perfectly holonomic, being able to move in any direction

• it only requires freedom of movement in a 2D plane

• it can orient itself in the direction of a desired goal and move in said

direction

• has perfect knowledge of the map topology and/or perfect memory

of the environment it has previously explored
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• it can transverse the environment only when no obstacle blocks its

direction of travel.

1.2 Motivation

Let us consider two simple, everyday path-planning scenarios that a person

would face under the umbrella of real-world navigation problems. The first

problem implies the trivial task of moving inside the home, e.g. going from

living-room to kitchen. For the second problem we consider driving from

one city to another. Conceptually, both of these tasks imply solving a path-

planning problem. In practice, however, getting from Paris to London by

car or train is, in essence, a different challenge than walking from the living-

room sofa to a cupboard in the kitchen, for example. To solve the former

problem, one can adopt a simple level of abstraction, as the transport

infrastructure confines the movement of a vehicle through the pre-existing

road network (e.g. restriction to lanes, direction of roads etc.). As such,

the road system may be interpreted as a graph, having a city as a vertex

(i.e. node) and roads as edges connecting cities together. A real-world

GPS-based driving assistant application (e.g. SatNav, Google Maps) would

require higher level information to adequately represent the road network

as a weighted, directed graph. Such a representation is necessary to reflect

the direction of travel (e.g. dual-carriage vs. one-way roads), or traffic

conditions and restrictions (e.g. number of lanes, road works, accidents

and/or congestion, speed restrictions, toll charge).

A graph can be used to abstract the indoor environment in the latter

scenario as well, for example, with a room represented by a vertex and

a door representing an edge in the graph. For such a problem domain,

the level of abstraction is too great as it looses information regarding the
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free-space within a room.

Two very well established approaches to path-finding are the determin-

istic solution (graph search with heuristics) and the reactive one, based

on environment sensor sampling. Deterministic approaches offer the opti-

mum solution but are penalised by map scalability, while the reactive ones

are scale independent but do not guarantee a minimum cost path [5], [6].

However, the two aforementioned approaches generally operate on different

problem domains, i.e. deterministic solutions require complete information

about the search-space before converging to the optimal solution, while re-

active algorithms generally have little or no prior knowledge about their

environment. The problems are referred to in the literature as path-finding

in known environments (deterministic) vs. unknown environments (reac-

tive).

Generally, with the possible exception of some bug algorithms (e.g. Tangent-

Bug), the behaviours of path-finding algorithms do not resemble behaviours

that a human would adopt. Humans are highly capable of searching and

solving the shortest path problems given an accurate means of calculating a

desired metric (e.g. distance, time, energy expenditure, heading changes).

It is trivially obvious that a human would also use a heuristic estimation if

given incomplete information, or when relying on egocentric/external cues

(e.g. biological clock, time of day, tiredness).

Some voices in the AI community argue that the emphasis on shortest

path solutions may be misguided, as one would likely desire to introduce

(or account for) some level of noise and inefficiency when emulating the

real-world. Following a discussion on the power of inadmissible heuristics,

Christer Ericson’s AI blog article make the point as quoted:

“. . . much too much effort is spent in games in finding the shortest paths!

[. . . ] In our everyday lives we rarely, if ever, take a shortest path. Instead,
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we often optimize for search effort, taking a path we’re familiar with (which

we’ve chunked or otherwise memorized so as to require no search). Well,

the same applies to games and the A* algorithm.”[7]

Human navigation is the concept in which humans visualise routes in their

head to get from start to destination, using a variety of navigational strate-

gies. The simplest of this form would be to identify a reference point, and

adjust route path as the landmark gets closer or further away through sen-

sory feedback. This has been considered to be an approximation, due to

human error – the inability to accurately generate a cognitive map. There

are several parameters which humans take into account - such as shortest

distance, least time, first noticed route as explored by [8].

Research from the Imagery Lab at the Harvard Medical School examines

human navigation [9]. Generally, people use measures of distance or time

of travel and absolute directional terms, i.e. cardinal points, in order to

visualize the best route when navigating. These strategies are considered

part of an allocentric navigation strategy, which is characterised by an

object-to-object representational system. Information about the location

of an object or its parts is encoded with respect to other objects. Comple-

mentary to this strategy, in an egocentric navigation strategy an individual

relies on more local landmarks and personal directions (left/right) to visu-

alize a route when navigating.

A complete layout for a cognitive engine based on human or animal spa-

tial cognition remains an open question. Nonetheless, some of the ideas

presented in this work attempt to crystallize, in part, some of the prin-

ciples that could underline the strategies for reasoning on the geometric

representations of spatial layouts. Inspiration can be drawn from an in-

trospective look on spatial reasoning and navigation behaviours, as well as

other path-planning methodologies available in the literature. In order to



1.3. Path planning and navigation 7

set the foundations for an any-angle path-planning algorithm, we consider

a number of thought experiments aimed at identifying reasoning strategies

of a human-like agent navigating towards a destination. Looking at the

problem through the prism of human behaviour, a number of questions

arise. Most notably, we wish to ask: How does a human attempt to solve a

shortest path problem in a realistic environment? If a cognitive plan can be

identified from such thought experiments, what insights could be used to

outline a path-planning methodology? How well would such an algorithm

fare against existing algorithms?

1.3 Path planning and navigation

The problem of searching for shortest paths finds applications in diverse

areas [10], such as package routing in data networks (e.g. RIP - Routing

Information Protocol, OSPF - Open Shortest Path First), route planning

and guidance (e.g. Google Maps), traffic congestion management, video

games, to name a few. While conceptually broad, the focus of this work

is on finding shortest paths in 2-dimensional environments, as it applies to

the field of robotic navigation.

Navigation is the process of ascertaining one’s position, planning a route

and following the route towards a desired destination. Looking briefly at

navigation in animals, natural selection has provided biological agents with

diverse solutions to tackle various challenges of navigation. Throughout the

evolutionary process within the animal kingdom, the problem of navigation

has been of paramount importance for the purposes of survival, in the vital

challenges of finding food and water, avoiding predators, returning to a

nest.

An abundant variety of sensing organs has evolved in the animal kingdom
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that tackle these trials, in forms such as olfaction for detection of chemical

markers (e.g. recognition of siblings, detection of potential mates, territo-

rial boundary marking, insect chemical trails), echolocation (e.g. dolphins,

bats), detection of electric fields (e.g. sharks, platypus), magneto-reception

for detecting the Earth’s magnetic field (e.g. homing pigeons), infra-red

sensing (e.g. snakes, vampire bats), as well as presenting diverse means

of locomotion to seek out sources of energy or avoid predation and other

harmful environments, and proprioception for perceiving movement and

spatial orientation within the body. Human navigation has had its own

revolution, as we moved away from relying solely on our senses and found

solutions within technological fields, from compasses and star maps, to

radar navigation and GPS systems in modern times.

In the fields of robotics and video game development, navigating has also

presented a challenge. For the purpose of robotic navigation, the prob-

lem can be broken down into several sub-problems: localisation (knowing

where one is), obstacle avoidance (detecting and avoiding objects in the

immediate environment), mapping (storing information in memory about

the environment), path planning (constructing a plan from one’s current

location to a destination) and exploration (discovering one’s environment).

Among the key aspects from this list, this work will focus on the problem

of path-planning, which has garnered attention due to a wide set of chal-

lenges and a complex problem domain. Generally speaking, path planning

consists of finding a path between a given start location and a given goal

location if such a path exists. This task implies a level of knowledge about

one’s relative or absolute location. For an intelligent agent navigating an

environment, decision-making rules would seek to minimise the energy ex-

penditure required in planning and navigation.
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1.4 Map discretisation and notations

An intelligent agent (robotic platform) operates in a continuous environ-

ment, typically a Cartesian plane as is represented by (x, y) ∈ IR2. We

assume a holonomic ground robot in a 2-dimensional flat environment.

The set of valid poses the robot can find itself in is known as its free space.

Invalid states correspond to obstacles or poses the robot cannot occupy.

This allows partitioning robot configuration into two classes: free space -

Cfree and occupied space - IR2 −Cfree. Given this configuration, the prob-

lem of path-planning can be described as identifying the set of valid states

belonging to Cfree that get the agent from one configuration to another.

An intelligent robot would also require a means of perception (i.e. sensors)

to sample the environment. With local measurements of Cfree, it would

require the ability to localise (determine where it is in the environment),

and constructing a representation of Cfree - mapping, based on sensor in-

puts. Performing simultaneous localisation and mapping (i.e. SLAM [11]

[12], [13], [14]) implies determining its pose and Cfree without knowing ei-

ther, by sampling the environment. For the path planning task, however,

the existence of a map is assumed implicitly. Given a known continuous

environment, an effective discrete representation is required for storing, ma-

nipulating and querying the free space. This involves map discretisation, or

spatial decomposition, by which the continuous environment is discretely

sampled to represent space itself, rather than having to discriminate or

identify individual obstacles [15].

Discretising a path allows a continuous path to be realised in a 2-D graph-

ical format. Grid paths are created from simple iterated geometric shapes.

Within a two-dimensional representation the three most popular types of

grid paths are square, triangular and hexagonal. The most common being

the square type. They are considered the easier grid shape to use for two
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Figure 1.1: Path approximations on grid geometries – true shortest path
(thick line) vs grid-constrained path (thin line with heading change) [16]

reasons, one being the ability to map coordinates into a Cartesian format,

and the axes of the of which will hence be orthogonal. Hexagonal paths

present a decreased path-length distortion in comparison to square grids

but are not as simple to manipulate. The path-length distortion for paths

on a square grid is increased in comparison with a continuous path – the

shortest path on the graph is not the shortest path [4]. Figure 1.1 shows ap-

proximated paths using square tiles, hex tiles, and octal tiles in comparison

to actual optimal path (i.e. linear distance).

A structure G = (V,E) describes a graph that comprises of vertices or

nodes, belonging to a set V , and of edges that belong to set E, such that

an element of E is defined by an arc {v1, v2} ⊂ E, with the two component

vertices v1 ∈ V and v2 ∈ V . The graph structure G = (V,E) is comprised

of discrete samples of the continuous environment IR2 such that the totality

of free regions in G bound by edges in E describe Cfree (the free space),

while the non-free regions in G bound by edges in E describe IR2 − Cfree

(the occupied space). A graph can be traversed by travelling from node to

node along edges.

Many types of graphs can be adopted. For example, a directed graph is
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one that limits the direction of travel along an edge. If no such restrictions

apply, the graph is considered undirected. In a weighted graph, values

are associated with edges. The “weights” reflect the cost of traversing the

graph through the respective edge.

A grid induces a graph where each node corresponds to a cell and an edge

connects nodes of cells that neighbour each other. Four-point connectivity

will only have edges to the north, south, east, and west, whereas eight-

point connectivity will have edges to all cells surrounding the current cell.

For our purposes, the implementations presented in this work assume an

undirected, un-weighted 8-connectivity grid graph (Figure 1.3).

The algorithms presented in this work operate on an un-weighted 8-connectivity

grid graph G(V,E) with vertices indexed as a 1-dimensional array, and de-

scribed by the relationships:

sx,y ≡ si (1.1)

x = i mod W (1.2)

y = b i
W
c (1.3)

i = W ∗ y + x (1.4)

where, si ∈ V , x and y represent the Cartesian coordinates of the node s

and W represents the discrete width of the map (number of tiles per row

for a square-grid tessellation).
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Figure 1.2: Von Neumann neighbourhood (4-connectivity)
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Figure 1.3: Moore neighbourhood (8-connectivity)

1.4.1 Heuristics

Generally, path-planning algorithms require a means of estimating the dis-

tance between two locations. For this purpose, one employs heuristic esti-

mations based on knowledge and/or assumptions about the environment.

For addressing the shortest path problem two properties of heuristic func-

tions are considered.
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Admissible heuristics

An admissible heuristic cannot overestimate the cost of reaching a goal.

For a heuristic h(s) to be admissible it must respect the inequality:

h(s) ≤ h∗(s), ∀s ∈ V (1.5)

where h(s) is the estimated cost of travelling from s to the goal and h∗(s)

is the actual cost of travel.

Consistent heuristics

A heuristic function is said to be consistent, if its estimate is always less

than or equal to the estimated distance from any neighbouring node to the

goal, plus the step cost of reaching that neighbour. A consistent heuristic

is also considered admissible, meaning that it never overestimates the cost

of reaching the goal. Formally, for every node s and each successor s′ of s,

the estimated cost of reaching the goal from s is no greater than the step

cost of getting to s′ plus the estimated cost of reaching the goal from s′:

h(s) ≤ g(s, s′) + h(s′) (1.6)

where h(sgoal) = 0, h is the heuristic function, s is a node in the graph, s′

is any descendant of s (parent(s′) = s), g(s, s′) is the cost of reaching node

s′ from s, and sgoal is the goal node.

Distance metrics

The choice of heuristic is also dependent of the freedom of movement [17] on

the graph: For square grids that allow 4 directions of movement (e.g. sliding
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puzzle games) with neighbours belonging to the Von Neumann neighbour-

hood illustrated in Figure 1.2, the Manhattan distance is sufficient:

DManhattan(p1, p2) := |x2 − x1|+ |y2 − y1| (1.7)

On an octile square grid that allows 8 directions of movement (e.g. chess)

with neighbours belonging to the Moore neighbourhood illustrated in Fig-

ure 1.3, the heuristic of choice is the Chebyshev distance (or Diagonal

distance):

DChebyshev(p1, p2) := max(|x2 − x1|, |y2 − y1|) (1.8)

A special case of the Chebyshev distance is the Octile distance. For square

grids that allows 8 directions of movement and have a diagonal step cost

of D2 =
√

2 and an orthogonal step cost of D = 1 the Octile distance is

used instead:

DOctile(p1, p2) := Dmax(|x2−x1|, |y2−y1|)+(D2−D) min(|x2−x1|, |y2−y1|)

(1.9)

The consistent heuristic for square grids which allow any direction of move-

ment (e.g. any-angle paths) is the Euclidean distance:

DEuclidian(p1, p2) :=
√

(xstart − xend)2 + (ystart − yend)2 (1.10)

On Euclidean graphs the straight-line Euclidean distance, is both admissi-

ble and consistent [4].
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1.5 Contribution

The contribution presented in this work addresses the problem of online

any-angle path-planning on 2D octile grids with uniform cost.

The methodology presents an atypical any-angle path-planning algorithm

which uses a best first-search strategy to race individual paths towards a

target with a free-space assumption. The paths exhibit bug-like properties

in that they either move towards a target or wall-follow, but are allowed

to terminate early. The algorithm operates purely online with no pre-

processing of the map, and is competitive with state-of-the-art alternative

algorithms.

Wall-following determines points on the obstacle’s boundary that are can-

didate heading changes in the path. The path is analysed and pruned in

order to maintain its tautness at each step. Together with a purely heuris-

tic cost based on the assumption of free-space between heading changes,

the algorithm drives the search towards expanding the most promising path

first. Once a path has reached the goal, it checks the free-space assumption

between its heading changes and updates its cost accordingly. The short-

est path is determined when the cost estimate of any remaining paths is

greater than the solution path.

Paths propagate towards the goal through free space in a straight line using

a novel adaptation of Breshenman’s line algorithm for 1D-indexed grids.

The algorithm performs a line-of-sight search between two points and, if

an obstacle is encountered, returns the intersections points situated on the

boards of the obstacle. These points are then fed to the wall-following

algorithm.

For the purpose of emulating a wall-following behaviour on 2D octile grids,

we introduce a novel and elegant contour tracing algorithm, which is used
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by paths to explore the free-space around an object.

The algorithm presents some desirable properties that allow it to have a

reduced search-space, and as a best-first search algorithm it allows for any-

time solutions. It can also be adapted to provide multiple solutions with

an increase in run-time.

1.6 Chapter Summary

The chapter introduces the field of path-planning within the broader con-

cept of navigation. We describe the problem domain and the motivation

for having undertaken the current research, and present an overview of map

discretisation for 2-dimensional ground-planes into occupancy grids.

Common heuristic functions used in path-planning on occupancy grids

are introduced. They allow informed path-search algorithms to judge the

preferable course of action when searching for a connected route through

the free-space between a start point to a destination point.

Finally, we introduce our contribution in the form of a best-first search

algorithm that propagates individual bug-like paths towards a goal with

a free-space assumption and optimises the paths that have made it to the

target.



Chapter 2

Path planning methodologies

This chapter introduces path-finding methodologies from the

literature that are relevant to the research presented in this

work. Three classes of path-finding solutions are of interest,

namely, bug algorithms, grid-constrained algorithms and any-

angle algorithms.

2.1 Introduction

The current chapter introduces some path-finding methodologies from the

literature that are relevant to the research presented in this work. The

focus is on three classes of algorithms: bug algorithms, grid-constrained

path-finding algorithms and any-angle path-finding algorithms.

A number of existing methodologies for path-planning are based on varia-

tions of the A* algorithm. Because of the success of A*, it has been widely

adopted by developers in the fields of robotics and video games. When

applied to path planning on grid maps, however, the solution can result

in unrealistic looking paths, with paths being restricted to orthogonal or

17
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45◦ orientations. Additionally, shortest path solutions only have heading

changes at the corners of obstacles, but A* can have arbitrary heading

changes other than those at the corners of obstacles. The A* algorithm is

based on Dijkstra’s algorithm for graph transversal, but because A* was

originally designed for weighted graph transversal, and is arguably one of

the most popular general-purpose graph search algorithms when there’s a

way to estimate the distance to the goal [18]. The majority of path-finding

algorithms are variations on Dijkstra’s graph search algorithm and A* (e.g.

HPA [19], DHPA* & SHPA* [20], Best-first search [21], D* [22], IDA* [23]).

Generally, path-planning algorithms use heuristic cost functions to deter-

mine the order in which the algorithm visits nodes in the search-space. A*

uses a knowledge-plus-heuristics cost function composed from the sum of

a past path-cost function (distance from the starting node to the current

node) and a future path-cost function (a heuristic estimate of the distance

from the current node to the goal). These solutions fall under the cat-

egory of grid-constrained algorithms and thus have shortcomings such as

unnecessary heading changes resulting in unrealistic looking paths.

A good path-planning algorithm aims to have a number of properties:

Correctness - if a solution is found, there exists a path π ∈ Cfree that

connects the start and goal nodes.

Completeness - the algorithm can correctly answer whether or not a

solution exists.

Optimality - if a solution is found, the identified path is the shortest path

from start to goal, given the constrains of the algorithm;
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Until recently, the existence of an on-line, optimal, any-angle path finding

algorithm was an open-ended question. Courtesy of Harabor et al. the

affirmative answer came in the form of Anya, an online, optimal, any-angle

algorithm [24], [25]. Anya does not require any pre-processing of the map

and performs searches an order of magnitude faster relative to A* on grid-

maps. A generalised version of Anya, called Polyanya [26], extends the

original functionality of Anya to navigation meshes.

The main focus of our work is on purely-online algorithms which does

not require any pre-processing of the topology prior to a search. While

algorithms that perform off-line pre-processing of the map beforehand have

good on-line performance ([27], [28], [29]), they have certain undesired

properties which limits their uses and effectiveness. Before any search,

the search graph must be pre-computed during an off-line pre-processing

step. Another limitation is that, if the search space changes at any point,

the search graph is invalidated and must be reconstructed off-line, which

can be prohibitively resource intensive. For example, Sub-2, an any-angle

variant of Subgoal Graphs (2-level), while dominating purely online any-

angle algorithms (e.g. Theta* family, Field A*, Block A*), can require up

to 35 seconds of preprocessing time [29].

Using graph algorithms on uniform grids may not scale very well, when

map topologies contain relatively few obstacles and a large amount of free

space. Some, like Jump-Point-Search, have attempted to address these

problems [30].

With the exception of Anya [24] and Polyanya [26], to the author’s knowl-

edge, no other online, optimal, any-angle algorithms exists at the time of

this writing.
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2.2 Bug algorithms

Bug algorithms are a class of path-finding methodologies for navigating

unknown environments ([31], [32], [33], [34], [35], [36], [34], [37], [38], [39],

[40], [6], [41], [42]). Generally, bug algorithms are employed by robotic

agents, making them dependent on the hardware setup of the robot [43].

Bugs are a class of reactive simple automata that perform goal seeking be-

haviours in the presence of non-drivable areas. These algorithms operate

by alternating between two behaviours: wall-following (tracing the bound-

ary of an obstacle until a condition is met) and motion-to-goal (travelling

towards a target until it is reached or the bug encounters an obstacle) [44].

Bug algorithms are among the earliest and simplest planners and have the

benefit of having provable guarantees.

Sensors are a quintessential component of a robot running a bug algorithm.

Sensors such as tactile, range, imaging cameras are used to to detect its im-

mediate environment [45]. Odometry information or other external signals

(e.g. RFID, GPS, landmarks) are also required to establish the direction

of travel, and/or estimate the distance to a goal. The robot also requires

the capacity for memory (or possibly marking its position with a token),

in order to determine if a location had been previously visited [46]. These

agents can be susceptible to errors because of imperfect sensor information,

cumulative errors in odometry due to wheel slippage or slow data rates etc.

Bug algorithms in general operate under the assumption of perfect infor-

mation and error-free sensor data.

Operating without a map, fundamentally limits a robot’s behaviour, as it

cannot see the “big picture” and therefore takes paths that are locally but

not globally optimal [44].

The following sections summarise some of the more popular bug algorithms
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that present relevant parallels (Chapter 3) to some behaviours of the novel

methodology introduced in this work.

2.2.1 Bug-1 Algorithm

Developed by Lumelsky and Stepanov, the Bug-1 algorithm [31] involves

a mobile robot navigation strategy in unknown environments. The robot’s

behaviour relies of tactile sensors to detect obstacles. An example scenario

is provided by Figure 2.1. It starts from a given start position and moves

towards a goal, unless it encounters an obstacle. The point of intersection is

memorised and labelled, after which it proceeds to trace the obstacle on the

left-hand side. During the wall-following procedure it determines and labels

the leave point by calculating the distances between the current position

and that of the target. The leave point is the point on the obstacle’s

boundary that is closest to the goal. When the robot revisits the point of

intersection, it tests if the target can be reached by checking if the robot

can move towards the target at the memorised leave point. If this check

fails, the target is unreachable. Otherwise, the robot chooses the wall-

following direction of minimal distance between the intersection and leave

points. After reaching the leave point a second time, it reverts back to

moving towards the target. This cycle repeats until a solution is found or

the algorithm determines that the target is unreachable.

In essence, Bug-1 searches each obstacle’s boundary for a point closest to

the goal. If the robot determines that the target is reachable, it can infer

that by leaving at the memorised leave point, it will never re-encounter the

obstacle.
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Figure 2.1: Bug-1 Algorithm [47]

2.2.2 Bug-2 Algorithm

Lumelsky and Stepanov present a second, less conservative bug algorithm

in the form of Bug-2. As an augmentation to Bug-1, the Bug-2 algorithm

[31] is a greedy algorithm that can leave an obstacle’s boundary earlier

than Bug1. It does so by making use of the M-line, an imaginary line that

connects the start and target points. A mobile robot running the Bug-2

algorithm initiates a move towards the goal, following the M-line, until

it either reaches the target, in which case it terminates, or, it encounters

an obstacle. If the latter happens, the point of intersection is memorised

and labelled, after which it proceeds to trace the obstacle on the left-hand

side. Wall following continues until it finds the initial M-line again. Oth-

erwise, if the robot makes it back around to the intersection point without

encountering the M-line, it infers that the target is unreachable. If the

point identified on the M-line, however, is closer to the target than any

other point (i.e. current distance to target is less then previous shortest

distance - initially d = Distance(Pintersection, Ptarget)) and the robot is able

to move towards the target, the position is labelled as a leave point and

memorised, after which it cycles back and resumes following the M-line.

Otherwise, if the robot cannot move towards the target, it continues the
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wall-following procedure and d is updated to reflect the new shortest dis-

tance: d = Distance(Pcurrent, Ptarget).

Figure 2.2: Bug-2 Algorithm [47]

Bug-2 is a greedy algorithm that performs better on topologies with simple

obstacles. In contrast, Bug-1 performs an exhaustive search, always tracing

the full contour of an obstacle before deciding on the leave point. Both Bug-

1 and Bug-2 can outperform each other depending on the topology of the

environment [15].

2.2.3 Tangent Bug Algorithm

An alternative approach to Bug-2 was proposed by Kamon, Rivlin and

Rimon. Their algorithm, TangentBug [36] uses 360 degree distance sensors

to build a local tangent graph of a robot’s immediate surroundings and uses

it to minimize the path length by movement towards a “locally optimal

direction”. The local minimum is defined as the smallest value within a

set of points, which may or may not be a global minimum. In the case of

the Tangent Bug, this would be a obstacle in the path, as detected by the

sensors.

The underlying concept of the TangentBug algorithm (Figure 2.3) is de-

scribed as follows: A ‘motion–to–goal’ behavioural pattern is followed as
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long as the path, unless an obstacle is detected by the sensors. If a local

minimum (obstacle) is detected by the sensors, the algorithm would then

switch to a line following behaviour. During this period, the minimal dis-

tance between current position at the sensed boundary, and goal node is

calculated repeatedly. Once this value is less than the distance between any

further obstacles (or distance to goal if no further obstacles), the algorithm

would return to the motion–to–goal behaviour.

Figure 2.3: Tangent Bug Algorithm [36]

2.2.4 MBPP - Multi-Bug Path Planning

A 2016 paper [48] presents a multi-bug path planning algorithm reminis-

cent of ABUG [6]. The “Multi Bug Path Planning” (MBPP) algorithm

presented in [48] operates under a free-space assumption, with an initial

bug moving from a start node towards the goal node. If the bug encounters

an obstacle, it generates a new bug, and they proceed along the obstacle

walls in opposite directions. The same bug generation is employed for any

new obstacle encountered, until the target node is reached by all live bugs.

MBPP thus evaluates the resulting paths and chooses the best route. Each

bug follows the wall of the obstacle until it encounters the M-line (imag-

inary line between the start and goal nodes). It then leaves the obstacle

edge and reverts to moving towards the goal. During the wall following

procedure a line-of-sight check is continuously being performed between
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the current position on the wall and the last state in the path. A visual

representation of MBPP solving a spiral scenario can be seen in Figure

2.4. The experimental results presented by Bhanu Chander et al. [48]

show an improvement in comparison to paths generated by A* with Post-

Smoothing. To the author’s knowledge, no large-scale experimental results

have been presented as of this writing (such as maps from the Moving AI

Lab database).

Figure 2.4: Multi Bug Path Planning on Spiral example [48]

The paper describes MBPP as an offline bug algorithm for known environ-

ments. The principle of operation of MBPP along with other algorithms

(e.g. TangentBug [36], Theta* [4], HCTNav [5]) share some similarities

with the methodology presented in the current work, which are discussed

in detail in Chapter 4. Our proposed methodology races paths towards the

goal (in a motion-to-goal behaviour similar to that of TangentBug), split-

ting them when an obstacle is encountered, which is reminiscent of the bugs

generated by MBPP and the path-splitting behaviour of HCTNav. Both

MBPP and Theta* perform continuous line-of-sight checks while exploring

the search space. However, our methodology differs from these algorithms

in that it only performs line-of-sight sparingly, in two manners: when op-

timizing a path that has already reached the goal or when moving towards
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the goal through free space. In addition, unlike MBPP, our algorithm does

not require for all paths to terminate before the solution is reached.
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2.3 Grid constrained algorithms

For 8-connected regular grids, a grid-constrained path is a sequence of cell

corners where consecutive pairs of cell corners must belong to the same grid

cell. Formally, given a node si ∈ G(V,E) belonging to a grid-constrained

path, the node belongs to the Moore neighbourhood of the parent node:

si ∈ M(parent(si)). For example, grid-constrained A* with an consistent

heuristic finds the shortest path composed of edges bound to the grid, but

not a true-shortest path, such as would be identified by A* on visibility

graphs.
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Figure 2.5: Grid-constrained path found by A*: heading change occurs at
B4; {sstart, B4, C5, sstop} is not taut around D4 obstacle

The grid-constrained algorithms described in this work operate on 8-neighbour

grids.

2.3.1 Dijkstra’s algorithm

Dijkstra’s algorithm, published in 1959 and named after its creator, Dutch

computer scientist Edsger Dijkstra, can be applied on a weighted graph

[49]. Dijkstra’s algorithm finds a shortest path tree from a single source
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node, by building a set of nodes that have minimum distance from the

source.

Most grid-constrained path-planning algorithms are variations on Dijk-

stra’s algorithm. The algorithm maintains two structures: – a closed list,

in essence, a set which contains all the nodes that have been expanded

(‘explored’) – an open list, which is a set that contains the nodes of the

search space that are not in the closed list (‘unexplored’).

For each node in the search space, Dijkstra’s algorithm maintains two val-

ues: a g score which represents the length of the shortest path from the

start node to the currently expanded node, s, and a reference to the parent

of node s, parent(s), so that the start node can be traced back after the

end node has been reached. The parents of any s ∈ S form a search tree

that root at the start node. The cost function of each node is simply the

distance travelled from the start node:

g(s) = g(parent(s)) +D(parent(s), s) =
n∑

i=start

D(si, parent(si)) (2.1)

where g represents the cost of reaching a specific node n represents the

index of node s and D represents the distance between two nodes.

Dijkstra’s algorithm works by visiting nodes in the graph starting with the

starting node sstart. Similar to a ripple in a pond, it propagates from the

starting node and expands each node until it reaches the goal. A visited

node is only ever expanded once. The algorithm repeatedly examines the

closest node not yet examined, adding its vertices to the set of vertices to

be examined. It expands outwards from the starting point until it reaches

the goal. Dijkstra’s algorithm is guaranteed to find a shortest path from

the starting point to the goal, for any graph with non-negative step costs.

For a finite search space, Dijkstra’s algorithm terminates in one of two
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cases. It either detects that the end node has been reached, in which case

it reconstructs the path by following the parents of each node from sgoal to

sstart, or it exhaustively expands all connected nodes in the search space

until the open list becomes empty. The only requirement for the algorithm

to be correct, complete and optimal is that the lengths of all edges in the

graph are non-negative, and thus it can be used to search any Euclidean

graph.

2.3.2 A* algorithm

Developed by Peter Hart, Nils Nilsson and Bertram Raphael, the A∗ algo-

rithm [18] is the result of pioneering research on “Shakey the robot” de-

veloped at the Stanford Research Institute. Designed as a informed search

variation on Dijkstra′s algorithm, A∗ reduces the search runtime with-

out impacting the length of the resulting path. It does this by employing

a focused search so that the goal can be found with a shorter runtime

and generally with fewer node expansions. In order to accomplish this,

the algorithm makes use of a knowledge-plus-heuristics cost function that

records a score for each node that it explores. This score is comprised of

two components: the cost of travel (known) and an estimation of the cost

of reaching the goal (heuristic cost). The cost function f associated with

a node s ∈ G(V,E) is computed by:

f(s) = g(s) + h(s) (2.2)

where g represents the cost of travel from the start node to s, and h rep-

resents an estimate of distance from s to the goal node. The value of g is

described by Equation 2.1. In contrast to A∗, Dijkstra′s algorithm only

preserves information about the cost of travelling from the start node to s,

that is to say, a node’s g value, making Dijkstra′s algorithm an uniformed
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search-algorithm.

The choice of selecting a heuristic function for A∗ can impact the behaviour

of the algorithm [17]. When considering the heuristic function in Equation

2.2, the algorithm’s behaviour can be altered if the h score function is set

to 0. As such, only the g is taken into consideration, and in essence, A∗

denatures into Dijkstra′s algorithm, which is still guaranteed to find the

shortest grid-constrained path. On the other hand, if h is always lower

or equal to the cost of moving from s to the goal, which implied having a

consistent heuristic, A∗ is guaranteed to find a shortest path. The lower the

h score, however, the more node need to be expanded, in turn increasing the

runtime of the algorithm. A∗ can also be made to run faster by providing

a non-admissible heuristic (i.e. one that violates 1.5). If one relaxes the h

score so that it sometimes overestimates the cost of moving from the current

node to the goal, A∗ is no longer guaranteed to find a shortest path, but this

can prove a reasonable trade-off as it can reduce the algorithm’s runtime.

In special cases, if h(s) is exactly equal to the cost of moving from s to the

goal, then A∗ will only follow the best path and never deviate, making it

very fast. The choice of heuristic can be a useful tool in trading run-time

performance for longer paths.

The only requirement for A∗ to be complete, correct and optimal is that the

lengths of all the edges in the graph are non-negative and that the h-values

are admissible. On Euclidean graphs the straight-line Euclidean distance,

is both admissible and consistent [50]. In our implementation, A∗ is imple-

mented with the completeness, correctness and optimality properties and

uses the Manhattan distance heuristic.

The pseudo-code for the A∗ algorithm is presented in Algorithm 1. The

methodology employed by the A∗ algorithm is similar to that of Dijkstra,

except that the cost function that it computes during the expansion process
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is different: Dijkstra′s algorithm, chooses the next node based on the

smallest g score, while A∗ chooses the node with the smallest f score.

Algorithm 1 A*

1: function Main(sstart, sgoal)
2: g(sstart)← 0
3: opem← ∅
4: opem.Insert(sstart, g(sstart) + h(sstart))
5: closed← ∅
6: while open 6= ∅ do
7: s← open.Pop()
8: if s = sgoal then
9: return “path found”

10: closed← closed ∪ s
11: foreach s′ ∈ nghbrvis(s) do
12: if s /∈ closed then
13: if s /∈ open then
14: parent(s′)← NULL
15: g(s′)←∞
16: UpdateVertex(s, s′)

17: return “no path found”

18:

19: function UpdateVertex(s, s′)
20: gold ← g(s′)
21: ComputeCost(s, s′)
22: if g(s′) < gold then
23: if s′ ∈ open then
24: open.Remove(s′)

25: open.Insert(s′, g(s′) + h(s′))

26:

27: function ComputeCost(s, s′)
28: if g(s) + c(s, s′) < g(s′) then
29: parent(s′)← s
30: g(s′)← g(s) + c(s, s′)

The A∗ algorithm is arguably one of the most popular online path-planning

and graph traversal solutions, due in part to its simplicity but also because

of its optimality guaranty.

As long as the h-values provide accurate estimates of the lengths of shortest

paths from a vertex to the goal vertex, the expansion equation computed

by A∗ is more informed than the one computed by Dijkstra′s algorithm.
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Thus, an A∗ search is able to avoid examining a larger number of paths

in the graph than a Dijkstra search, which often results in shorter run-

times. As A∗ is a essentially a graph algorithm, it can run on any graph

representation. When run on visibility graphs A∗ indeed finds true shortest

paths, as true shortest paths have heading changes only at the corners

of blocked grid cells. However, A∗ on visibility graphs can be slow, as

shown experimentally by [50]. Running A∗ on visibility graphs requires pre-

computing of a map’s visibility graph, a procedure that can be exceedingly

expensive and which is done off-line, in a preprocessing stage [50]. On

octile graphs, however, the paths found by A∗ are artificially constrained

to be formed by edges of the octile graph. Paths found by A∗ on octile

graphs are not true shortest paths and are unrealistic looking since they

either deviate substantially from the true shortest paths or have excessive

heading changes, which provides the motivation for smoothing them.

Because of its simplicity and versatility along with its optimality guaran-

tee, the A∗ algorithm has garnered widespread adoption. A number of

existing methodologies for path-planning are based on variations of the A∗

algorithm.

When applied to path planning on grid maps (octile graphs), however, the

solutions found can result in unrealistic looking paths due to unnecessary

heading changes. For evaluation purposes, the A∗ variant operating on

octile graphs has been chosen. Optimizations to the A∗ algorithm have

attempted to address A∗’s limitations. In terms of performance, a notable

mention, the Jump-Point-Search algorithm [51] works by reducing symme-

tries in the in the search space. It accomplishes this by means of graph

pruning, thus being able to “jump over” nodes in a straight line without

expanding them. Although it can potentially reduce the running time by

an order of magnitude, it still produces unrealistic looking paths. Theta*
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and Light-Theta* are two any-angle algorithms that build on top of the

A∗ algorithm in an attempt to improve on the issue of unrealistic looking

paths. The algorithms accomplish this by propagating information along

grid edges. The most relevant of the above mentioned algorithms are de-

scribed in more detail in the following sections.

2.4 Any angle algorithms

Any-angle path-planning algorithms are a class of path-finding algorithms

that search for paths between two nodes in the free-space by propagating

information along graph edges, similar to grid-constrained algorithms, but

without restricting the paths to be formed by graph edges. A consequence

is that a given node can have as a parent any other node as long as there is a

line-of-sight between them: ∀s ∈ G(V,E) and ∀s′ ∈ G(V,E) : parent(s) =

s′ if LineOfSight(s, s′) is true. Two vertices are defined as having line-of-

sight if the segment connecting them does not pass through the interior of

any occupied grid cells nor between any orthogonally or diagonally adjacent

pair of occupied grid cells (i.e. any pair of occupied cells that share one or

two vertices).

1 2 3 4 5 6 7 8 9

A

B

C

D

E

sstart

sstop

Blocked cell Vertex

Figure 2.6: Any-angle path: heading change occurs only at C5
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Generally, any-angle solutions place vertices at the corners of the grid cells,

rather than their centres.

Line-of-sight

Performing line-of-sight checks between nodes in a grid-graph enables any-

angle algorithms to partially uncouple the path’s topology from that of the

grid-constrained exploration of the free-space. The path is partially uncou-

pled because the vertices forming an any-angle solution are still bound to

the graph. Performing a line-of-sight on a 2D regular grid is equivalent to

drawing a line plot on a raster display. For this purpose, an extremely pop-

ular line drawing algorithm is introduced, which has been used extensively

in computer graphics.

Bresenham’s line algorithm [52], developed at IBM in 1962 by Jack Elton

Bresenham, is an incremental error algorithm and one of the earliest al-

gorithms developed in the field of computer graphics. It can be used to

determine the points of a raster which most closely approximate a straight

line between two given points. The effectiveness of Bresenham’s algorithm,

is that it can be implemented using cheap operations [53] for modern ar-

chitectures: integer addition, subtraction and bit shifting. The line-of-

sight algorithm (Algorithm 2) is used by a number of algorithms such as

A∗ with post− smoothing and the Theta∗ family.

The line-of-sight algorithm presented in Algorithm 2 is a functionally equiv-

alent re-factored variant of Bresenham’s line algorithm presented by Nash

et al. in [4]. The main distinction is that the implementation of Algorithm

2 operates on a grid-map with vertices indexed on a 1-dimensional array (as

described by Equation 1.1), and it restricts a path from crossing between

diagonally adjacent occupied cells for all path-planning algorithms.
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In order to control for potential variations in performance metrics due to

different implementations of the line-of-sight algorithm in the literature,

all path-planning algorithms presented in this work which require line-of-

sight checks make use of the same implementation presented in Algorithm

(2). The one exception is the novel path-planning methodology presented

in Chapter 3, which requires a more complex variant of the line-of-sight

algorithm, but which is directly derived from Algorithm (2). This varia-

tion of Bresenham’s line algorithm is described and discussed separately

in more detail in Section 3.2. The line-of-sight is led by a driving axis

going from sstart to sstop. The driving axis always advances by stepmajor,

determined based on the maxim displacement between the projections of

the two nodes on the orthogonal axes. No displacement on one of the axes

implies orthogonal movement which routes execution onto the “if” branch

at Line 19. The “else” branch at Line 26 handles non-orthogonal move-

ments, by accumulating the error in slope. The line advances on the minor

axis (non-driving axis) if the error exceeds the slope, and the error is re-

set. Sometimes, moving on the minor axis results in no error (Line 32).

This occurs in situations where the path passes through the vertex exactly,

without affecting neighbouring cells, thus, the vertex needs to be checked

to verify it is not a double corner (Line 34). The main while loop termi-

nates early for any grid-cells that would block the line-of-sight, otherwise

the algorithm returns true, in which case nodes sstart and sstop have a direct

line-of-sight with each other.
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Algorithm 2 Line of Sight - 1D indexed grid variant

1: function LineOfSight(sstart, sstop)

2: ∆x ← (sstop mod W)− (sstart mod W) . W - map width

3: ∆y ← (sstop/W)− (sstart/W)

4: stepx ← (∆x < 0 =⇒ −1) ∧ (∆x ≥ 0 =⇒ 1)

5: stepy ← (∆y < 0 =⇒ −W) ∧ (∆y ≥ 0 =⇒ W) . horizontal

offset for quadrants I and IV relative to sstop
6: step′x ← (∆x < 0 =⇒ −1) ∧ (∆x ≥ 0 =⇒ 0) . vertical offset for

quadrants I and II relative to sstop
7: step′y ← (∆y < 0 =⇒ −W) ∧ (∆y ≥ 0 =⇒ 0)

8: snext ← sstart . current node with offset in line of sight expansion

9: s′next ← snext + step′y + step′x
10: ∆x ← |∆x|
11: ∆y ← |∆y| . driving axis always increments

12: stepmajor ← (∆x ≥ ∆y =⇒ stepx) ∧ (∆x < ∆y =⇒ stepy)

. secondary axis increments with slope progression

13: stepminor ← (∆x ≥ ∆y =⇒ stepy) ∧ (∆x < ∆y =⇒ stepx)

14: ∆max ← max{∆x,∆y}
15: ∆min ← min{∆x,∆y}
16: error ← 0 . secondary axis increments with slope progression

17: while snext 6= sstop do

18: is free← isFree(s′next)

19: if ∆min = 0 then . only moving horizontally or vertically

20: if isDoubleCorner(s′next) then

21: return false

22: if ¬ is free then

. can’t pass between 2 blocked cell tiles

23: nbr ← s′next − stepminor

24: if ¬ isFree(nbr) ∨ ¬isFree(s′next − stepmajor) then

. previous cell not free, and neighbour not free

25: return false

26: else . non-orthogonal line of sight expansion

27: error ← error + ∆min

28: if error ≥ ∆max then . moving on minor axis

29: if ¬is free then

30: return false

31: error ← error −∆max

32: if error = 0 then . moving diagonally

33: sdiagonal ← s′next + (stepminor + stepmajor + W + 1)/2

. vertex defined by diagonally adjacent cells (see Equation 3.13)
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Line of Sight - 1D indexed grid variant: Continued

34: if isDoubleCorner(sdiagonal) then

35: return false

36: snext ← snext + stepminor

37: s′next ← s′next + stepminor

38: if error = 0 then

39: is free← isFree(s′next)

40: if error 6= 0 then . on driving axis

41: if ¬is free then

42: return false

43: snext ← snext + stepmajor . moving on driving axis

44: s′next ← s′next + stepmajor

45: return true . sstart and sstop have line of sight
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2.4.1 A* with post-smoothing

To mitigate the shortcomings of the grid-constrained A∗ algorithm, Thorpe

et al. [54] introduce a smoothing technique to reduce the number of nodes

and shorten the path solution.

Grid-constrained algorithms have some shortcomings when searching on

octile grids. The drawback of A∗ is that it can only ever move either in

straight lines or at 45◦ degree angles and a node’s parent can only be an

immediate neighbour. This means that a node can only belong to its par-

ent’s Moore neighbourhood 1.3, meaning that any node is orthogonally or

diagonally adjacent to its parent. This behaviour of A∗ produces unrealistic

looking paths. In the context of gaming, it can diminish the user experi-

ence and in the context of robotics, it would increase energy consumption

because of following longer paths or preventing conservation of momen-

tum. A simple way to address this issue is by path smoothing. A∗ can be

transformed into an any-angle path-finding algorithm by applying a post-

smoothing procedure after the grid-constrained, shortest-path solution has

been reached by A∗. Algorithm 2 describes how the post-processing step

can be applied to a path returned by the A∗ algorithm to “smooth” and

therefore shorten the path. The post-smoothing procedure involves per-

forming a a line-of-sight check (e.g. using the Bresenham line algorithm

2) between pairs of nodes in the path. If two nodes in the path have a

line-of-sight, the nodes that connect them can be pruned from the path.

In other words, for a path P , the parent of a node si ∈ P can be any node

sj ∈ P with j < i− 1 as long as LineOfSight(si, sj) is true.
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Algorithm 2 A* Post-Smoothing [4]

1: function PostSmoothPath([s0, . . . , sn]) . s0 ≡ sstart; sn ≡ sgoal
2: k ← 0

3: tk ← s0

4: foreach i ∈ 1, . . . , n− 1 do

5: if ¬ LineOfSight(tk, si+1) then

6: k ← k + 1

7: tk ← si

8: k ← k + 1

9: tk ← sn
10: return [t0, . . . , tk]

2.4.2 Theta* Algorithm

The Basic Theta∗ algorithm is an any-angle path-planning variation of A∗

that produces near-optimal solutions [55] with a running time comparable

to that of A∗ on 8-directional grids. However, one disadvantage is that it

can often find non-taut paths that make unnecessary turns, It also operates

slower that other algorithms because it performs line-of-sight checks on-top

of a full A∗ search.

Theta∗ [56] operates in a similar fashion to A∗ which it interleaves with

path smoothing. When expanding a vertex, it checks for a successor with a

direct line-of-sight to the parent of the vertex. If such is the case, it bypasses

the vertex, and instead connects the successor to the parent and, similar

to A∗, assigns a cost score (distance travelled), to the node accordingly.

The main difference between A∗ and Theta* algorithms is the change in

the cost computing function. The implementation of the Theta* variant of

the cost function is presented in Algorithm 3. Theta*, given a node s and

it’s immediate neighbour s′, when s′ has line-of-sight to the parent of node

s, the parent becomes a direct parent for node s′ (see Line 4 in Algorithm

3).
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Algorithm 3 Theta* [4]

1: function ComputeCost(s, s′)

2: if LineOfSight(parent(s), s′) then

3: if g(parent(s)) + c(parent(s), s′) < g(s′) then

4: parent(s′)← parent(s)

5: g(s′)← g(parent(s)) + c(parent(s), s′)

6: else

7: if g(s) + c(s, s′) < g(s′) then

8: parent(s′)← s

9: g(s′)← g(s) + c(s, s′)

BasicTheta∗ is not optimal, meaning that it is not guaranteed to find true

shortest paths. As explained in [4], this is due to the fact that the parent

of a vertex, s, has to be either a visible neighbour or the parent of a visible

neighbour of s. BasicTheta∗ can also have unnecessary heading changes

that do not correspond to the corners of blocked cells, a property that holds

true for all shortest paths.

In a variation of the algorithm, named StrictTheta∗ [57], Shunhao Oh et al.

demonstrate that by restricting the search space of Theta* to taut paths,

the algorithm can, in most cases, find shorter paths. They accomplish

this by introducing a tautness check between a vertex, its parent and its

grandparent. Non-taut paths incur an additional penalty in their cost. A

second variation of StrictTheta∗, RecursiveStrictTheta∗ [57], extends the

tautness check beyond the grandparent, recursively checking for tautness

until the first ancestor with a line-of-sight to the explored to the vertex. The

two StrictTheta∗ variants show a good improvement over Theta* in finding

taut paths, that are closer to optimal. As mentioned in their work, Shunhao

Oh et al. [57] make an argument for online path-planning algorithms: “In

practice, slight sub-optimalities in the found path is often not an issue, but

non-taut paths would contribute to the perceived irrationality of the agent,

as the agent takes paths with clearly better alternatives. A good grid-based
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any-angle path-finding algorithm is fast, can compute near-optimal paths,

and is online.”

2.4.3 Lazy Theta* Algorithm

A variation on the Basic Theta* algorithm, Lazy Theta* aims to reduce

the number of visibility checks. Basic Theta* is overly ambitious in per-

forming line-of-sight checks even when it doesn’t have to. When expanding

a vertex s, it performs a visibility check for each unexpanded neighbour of

s regardless of those vertices ever being expanded.

Nash et al. argue for the reduction of line of sight checks by delaying

them until necessary. Lazy Theta* delays visibility checks by assuming

that s has line-of-sight from parent(s). When the algorithm expands s, it

checks for a line-of-sight between s and its parent. If not, it updates the

its g-score by using the g-score of its predecessors and proceeds to expand

s. Whenever a line of sight test fails, a costly clean-up step is required

to undo the effect of an incorrect assumption. Lazy Theta* attempts to

refine Theta* by finding similar paths despite performing fewer line of sight

tests. The paths returned by Lazy Theta* are not always the same as those

returned by Theta* since the edge relaxation occurs at a different point in

the iteration [58].

An additional variant, Lazy Theta* with Optimizations can find longer

paths with a decrease in runtime. It does so by using weighted h-values

with weights greater than one (similar to Weighted A* [59]): h(s) = w ∗

c(s, sgoal). This variation can reduce runtime without a significant increase

in path lengths while performing two orders of magnitude fewer line-of-sight

checks and more than one order of magnitude fewer vertex expansions [4].

The pseudo-code for Lazy Theta* is presented in Algorithm 4.
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Algorithm 4 Lazy Theta* [4]

1: function Main(sstart, sgoal)

2: g(sstart)← 0

3: parent(sstart)← sstart
4: opem← ∅
5: opem.Insert(sstart, g(sstart) + h(sstart))

6: closed← ∅
7: while open 6= ∅ do

8: s← open.Pop()

9: SetVertex(s)

10: if s = sgoal then

11: return “path found”

12: closed← closed
⋃
s

13: foreach s′ ∈ nghbrvis(s) do

14: if s /∈ closed then

15: if s /∈ open then

16: parent(s′)← NULL

17: g(s′)←∞
18: UpdateVertex(s, s′)

19: return “no path found”

20:

21: function SetVertex(s)

22: if ¬ LineOfSight(parent(s), s) then

23: parent(s)← argmins′∈nghbrvis(s)∩closed(g(s′) + c(s′, s))

24: g(s)← mins′∈nghbrvis(s)∩closed(g(s′) + c(s′, s))

25:

26: function ComputeCost(s, s′)

27: if g(parent(s)) + c(parent(s), s′) < g(s′) then

28: parent(s′)← parent(s)

29: g(s′)← g(parent(s)) + c(parent(s), s′)

2.4.4 Anya

One of the most notable additions to the any-angle path-finding family, is

an optimal any-angle path-planning algorithm named Anya [24],[25]. Its

optimality guarantee and any-angle property offer it the status of being

the first online optimal any-angle algorithm. Unlike most shortest-path

algorithms, Anya does not search over individual nodes in the grid. Rather,
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it constructs 2-dimensional visibility cones consisting of a root (i.e. node

in the graph) and an interval (i.e. horizontal bound region delimited by

bounds visible from the root). Each visibility region takes the form of a

tuple (I, r), where r represents a root (a vertex corresponding to an outer

corner of an obstacle) and I represents an interval describing all the points

along a row of the grid-map visible from the root in question. To direct

the search, Anya estimates, by means of a heuristic, the shortest distance

from a root r to the goal node that passes through the interval I. Anya

performs the search by expanding rows from r and generating intervals in

which, if a turning point is found, it becomes a new root to be considered

for expansion. The algorithm terminates when an interval containing the

goal node is expanded. The path is reconstructed similar to A* (and related

algorithms), by following the parents of interval roots from the goal to the

start node.
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Figure 2.7: Screen-shot of an expansion of the Anya search tree, with red
lines representing the interval of a row, the black circles mark interval
roots, and the light blue lines the visibility cone of each interval; green line
- shortest path solution; blue & green cells - start & stop respectively

In Figure 2.7, an example of a visibility cone is marked by a dark green

triangle towards the bottom of the image. The interval of a tuple (I, r) is

represented by a red line (the longer bottom cathetus of the marked triangle

in our example). Each interval lies between its left and right bounds,

delimited by bright blue lines (the short cathetus and the hypotenuse of

the green triangle in Figure 2.7). The interval lines intersect each other in

the tuple’s root, r. In our figure, where the green triangle touches the lower

left vertex (marked by the black) a new root r is created with its parent as

the start node (dark blue square).

Uras and Koenig observe in their analysis [29] that Anya “is the algorithm

with the highest variance in runtime between different types of maps”. As

Anya expands over intervals rather than grid cells, it can transverse over
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open spaces with ease. Harabor et al. provide an open-source implemen-

tation of Anya, publicly available on the code repository “Bitbucket” at

[60].

Uras and Koenig note that for maps such as those found in the “Dragon

Age: Origins” database, for example, that have many tight corridors,

Anya’s performance is degraded, as it requires many more interval ex-

pansions before reaching the goal. In their analysis, Anya came out as

the slowest algorithm on random maps and on the “Dragon Age: Origins”

database. It is to be noted, however, that the implementation used by [29]

differs from the one provided by Harabor et al. [60].

Using their own implementation of Anya, Harabor et al. experimentally

show Anya to outperform four purely online algorithms [25]. The four

algorithms in question are A* [18], Theta* [55], Lazy Theta* [50] and Field

D* [22].

In their implementation, which uses a bit-packed map representation (i.e.

array of integers in which the binary representation of the integer reflects

a cell’s occupancy), traversing a row becomes a very cheap operation, re-

quiring bit-shift operations, which avoids checking individual cells for oc-

cupancy (e.g. an integer consisting of 32 bits with value 0 representing a

free-space interval). Furthermore, the cost of performing lookups for grid

map occupancy is minimal as the search can be aided by modern micro-

processors capable of caching the occupancy map for faster lookup times.

As such, even though Anya may cover a large search space, as seen in 2.8,

it can do so with little impact on performance.

The performance increase of the Anya algorithm relative to A* makes Anya

a good candidate for evaluation as a fast, online, optimal, any-angle path-

planning algorithm. However, in a real-world scenario, it could prove pro-

hibitively costly for a robotic platform (restricted by battery, wear and
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tear, sensors, etc.) to perform a search in an equivalent manner to the

method employed by the Anya algorithm. This is due to large search-space

coverage in environments with large open spaces or ones that do not have

a solution (Figure 2.8).

Figure 2.8: Screen-shot of Anya performing an exhaustive search (explored
cells shown in red) for a scenario with no solution (map AR0700SR - Bal-
dur’s Gate – modified to isolate goal)
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2.5 Additional algorithms

2.5.1 Dubins Curves

This method was first proven by Lester Dubins in 1957. The Dubins

path refers to the shortest curve which connects two points a in a two-

dimensional Euclidean plane. It showed that the shortest path would con-

sist of straight line segments (S) and/or maximum curvature (C) [61].

Figure 2.9: The family CSC paths of four combinations. Case (a) RSR,
Case (b) LSL, Case (c) LSR, Case (d) RSL [62]

There are considered to be two families of curves, which are a combina-

tion of the straight and curved lines: CCC and CSC. The CCC family

contains curves in the formation of LRL and RLR, where L and R denote

left turn arc and right turn arc respectively. The family CSC contains

four combinations: LSL, LSR, RSR, RSL, where S denotes the straight

segment [62], this is shown in 2.9.

2.5.2 Artificial Potential Fields

Artifical potential field (APF) is a well-known path planning algorithm

methodology. It has the core concept to replicate the characteristics of
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electostatic potential. In particular, due to its ’mathematical elegance and

simplicity’ it has been particularly favoured due to its effectiveness in real-

time obstacle avoidance [63]. Under the influence of the repulsive potential

fields and the attractive potential field, the robot goes from a high to low

(i.e. the global minimum) potential field, along the negative gradient, and

would also be repellent to any obstacles (i.e the local maximum). APF

is known to be suitable for online and offline path generation due to its

reactive nature [64]. The APF methodology is depicted in 2.10.

Figure 2.10: Electric potential field, showing some of the gradient lines.
This diagram features a positive charge at the security circle, and a negative
charge at goal. [64]

There are several disadvantages with using the APF methodology, though

there have been improvements to the original algorithm in order to coun-

teract some of these issues incurred, [65], [66].

1. While the robotic system is further away from the goal point, the

attractive force is great. Therefore, this may lead to the robot to

come too close to any obstacles.

2. Goals Non-Reachable with Obstacle Nearby (GNRON), [67].
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3. When the potential field between the repulsive and attractive forces

are almost equal or equal in nature, the potential force of the system is

zero, and hence it would cause a trap at the local minima, or oscillate

[68],[69].

2.6 Chapter Summary

This chapter introduced path-finding methodologies in detail. These method-

ologies have a number of properties - correctness, completeness and opti-

mality. There are various classes of path planning algorithms, including –

Bug algorithms, Grid constrained algorithms and any angle algorithms.

Bug algorithms are a class of path-finding methodologies for navigating

unknown environments and operate by alternating between two behaviours

– wall–following and motion-to-goal. Grid–constrained algorithms such as

grid–constrained A∗ find the shortest path composed of edges bound by

the grid. Additional methodologies include Dubins curves and Artificial

potential fields.

Finally, any angle algorithms are a class, most relevant to this work, which

search for paths between two nodes in the free-space by propagating in-

formation along graph edges, similar to grid–constrained algorithms, but

without restricting the paths which are formed by graph edges.



Chapter 3

Ray Path Finder: Path

construction

This chapter introduces a number of algorithms developed with the purpose

of aiding searches for the path-finding methodology described in Chapter 4

- An Any-angle path planner. Algorithms for performing line-of-sight and

contour tracing are introduced and a number of different concepts, such as

path direction, sidedness, pruning and redundancy, are explored in depth.

3.1 Introduction

The novel path-planning algorithm introduced in Chapters 3 & 4 operates

under the free-space assumption, in the sense that it optimistically assumes

that there are no obstacles between a start and goal node, nor between any

two nodes that it identifies as part of a path. The principle of operation of

the overarching path-planning method is simple to understand. The search

is initiated by performing a line-of-sight towards the goal, until an obstacle

is encountered. Afterwards, the search is propagated through two diverging

paths travelling in opposite directions along the edges of the encountered

50
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obstacle until it is determined that the paths can leave the boundary and

resume moving in a straight line towards the goal. Once a path has reached

a goal, the algorithm checks if the path that arrived to the target has line-of-

sight between its nodes, and if not, repeats the same procedure mentioned

earlier. The underlining algorithm that is conducive to the shortest path

solution is described in greater detail in Chapter 4.

We introduce the notion of “path state” as a means of keeping track of the

different stages a path goes through during its life-cycle. A path can have

6 possible states, as depicted in Figure 3.1.

RAY CAST

HIT

WALL

GOAL

FOUND

FOLLOW

WALL

UNREACH-

ABLE

CLEARED

Figure 3.1: Path states with possible transitions

Each path being explored can be thought of as an independent state-

machine (not unlike a bug algorithm) which stores the state specific to

the desired behaviour a path should adopt, given its immediate environ-

ment e.g. travelling in a straight line if there are no obstructions in the
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direction of travel, following an obstacle’s wall after having intersected its

boundary, terminating if unreachable.

All classes of paths that terminate early (e.g. redundant, looping, locked-in,

locked-out) are bundled under the umbrella term of unreachable. Through-

out the life-cycle of each path, the state machine is updated accordingly,

depending on the desired behaviour. Figure 3.1 illustrates the possible

transitions of paths from one state to another.

A number of functions are necessary for the path-finding algorithm to ex-

hibit the behaviour mentioned. All of the algorithms operate on a 2D grid-

map with uniform cost representing a binary space-state (1-for occupied;

0-for unoccupied). Firstly, moving towards a target involves performing a

line-of-sight and identifying the point of intersection if encountering an ob-

stacle (Section 3.2). Secondly, following the obstacle’s wall implies tracing

the contour of the obstacle (Section 3.3). The algorithms that assume the

role of constructing a path identify corners at points of interest around an

obstacle’s edges (Section 3.4), while those for maintaining a path’s tautness

imply pruning nodes from the path (Section 3.6). A path also maintains

a sense of direction (Section 3.5) that helps it decide when to leave the

obstacle boundary so as to avoid deadlock. Lastly, the search aims to en-

sure termination and avoid redundancy in paths (Sections 3.7 & 3.8). The

following sections detail these features.
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3.2 Line of sight with intersection

A path is defined as clear or unblocked if any two subsequent vertices within

the path have line-of-sight between them. Any two vertices of a grid graph

are defined as having line-of-sight if the segment connecting them does

not pass through the interior of any occupied grid cells nor between any

orthogonally or diagonally adjacent pair of occupied grid cells (i.e. any

pair of occupied cells that share one or two vertices). We refer to a vertex

shared by exactly two diagonally adjacent occupied cells as a double corner

(Figure 3.2).

1 2 3 4 5 6 7 8 9

A

B

C

D

E

s1 s2

Blocked cell Double-corner vertex

Figure 3.2: Line of Sight: s1 and s2 – examples of double corner vertices

A vertex shared by exactly three occupied cells is referred to as an inner

corner, while a vertex described by exactly three unoccupied cells and one

occupied cell is referred to as an outer corner (Figure 3.3). A true shortest-

path solution would only be comprised of outer corners.
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s1 s2

s3 s4

s5 s6

s7 s8

Blocked cell Vertices

Figure 3.3: Line of Sight: s1, s2, s3 & s4– examples of outer corner vertices;
s5, s6, s7 & s8– examples of inner corner vertices;

While, for simplicity, other any-angle algorithms (e.g. A* Post Smooth-

ing, Theta*, Lazy-Theta*) do not explicitly disallow paths through double

corners by default, RPF enforces this limitation for both “wall following”

and “line-of-sight” behaviours. This restriction is consistent with the maps

from the “Moving AI Lab” database [70] that we use for experimental

evaluation.

Performing a line-of-sight on a 2D regular grid is equivalent to drawing

a line plot on a raster display. A variation of Bresenham line drawing

algorithm (Algorithm 2) is used for this purpose.

As described in Algorithm 2, Theta* performs a line-of-sight check af-

ter a node has been expanded, in order to update its parent if a line of

sight exists between it and its neighbour’s parent, and as such, the line

of sight algorithm requires returning a simple yes-or-no answer. The Bre-

senham algorithm employed by Theta* [71] and Lazy Theta* [50] allows a

straight line to pass between diagonally adjacent blocked grid cells [4], for

the purpose of simplicity. For these algorithms, cutting corners through
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walls is prevented by ignoring double-corner vertices when expanding a

node’s neighbours, before the line-of-sight check is to be executed. This

is unfortunately not the case for the RPF algorithm, as it does not use

the Bresenham algorithm as a “string-pulling” technique, but rather in-

corporates the line-of-sight into the search-space expansion procedure. As

such, it is more similar in principle to the “ray-casting” technique used in

computer graphics for determining intersections with objects for rendering

purposes. RPF’s behaviour is different from the Theta* family of path-

finding algorithms, as it uses Bresenham’s algorithm to directly perform

node expansion.

The variation on Bresenham’s algorithm utilised by RPF requires two addi-

tional properties. It must actively not allow straight lines to pass between

diagonally adjacent occupied grid cells, and, if no line-of-sight exists be-

tween the two nodes, it must provide the point of intersection with the

obstacle in its path. This implies returning the the indices of two cells, the

occupied and unoccupied cells that define the intersection. For instance,

the examples illustrated in Figures 3.4 and 3.5 do indeed have a line-of-

sight between the two nodes, as at least one edge is shared with a free

cell and there exist no double-corners between sstart and sstop. For figure

3.5, the cells D2 through D8 are unoccupied, while for 3.4, the cells from

C2 through C5 and cells D5 through D8 are unoccupied and also the pair

(C5, D5) prevent a double corner.
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Figure 3.4: Line of Sight: Valid line-of-sight Example 1
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Figure 3.5: Line of Sight: Valid line-of-sight Example 2

For the configuration in Figure 3.4, the sstart vertex at C2 has a line of

sight to vertex sstop at C9. If the grid cell corresponding to vertex C5 were

occupied, it would break the line of sight as vertex C5 would become a

double corner. Similarly, if the grid cell corresponding to vertex D5 were

occupied, it would again break line of sight as vertex C6 would become a

double corner.

The complete line-of-sight method is presented in Algorithm 5. To exem-

plify the behaviour of the RPF variant of the line-of-sight algorithm, let
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us first consider the simple scenario described in Figure 3.6, with vertex

C2 as the the starting node (labelled as sstart) and vertex C8 as the goal

node (labelled as sstop). The obstacle is represented by the blocked grid

cells corresponding to vertices D5 and C5 respectively. The line-of-sight be-

tween sstart and sstop is broken by the obstacle, as the line segment crosses

between the two orthogonally adjacent occupied cells forming the obstacle.

As the grid cells of sstart and sstop are horizontal in our example, the dif-

ference in their y coordinate components is 0, which is assigned to ∆min at

Line 15. For this configuration, the algorithm only follows the orthogonal

exploration branch at Line 22. The occupancy check first fails with C5 at

Line 40. The occupancy of the grid cell at D5 decides if an obstacle was

encountered. To obtain the index of D5, one subtracts the step value for

the minor axis (i.e. the y axis for horizontal travel) from the current cell

index (Line 41).

In Figure 3.6, the start node at C2 does not have line-of-sight to vertex sstop

at C8, as it intersects an obstacle at C5. In Algorithm 5, the occupancy

tests at Lines 40 and 43 fail, while Line 44 passes, executing Lines 48 – 50.

Thus spre intersect becomes C4 and sintersect becomes C5 and the algorithm

exits.
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Imaginary line-of-sight Blocked cell Vertex

Figure 3.6: Example of line-of-sight intersecting obstacle
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Observing the configuration in Figure 3.7, the sstart vertex at C2 does

not have line of sight to vertex sstop at C8, as it intersects an obstacle

at C5, similar to Figure 3.6. In this scenario, C4 is occupied, meaning that

the occupancy test at Line 44 fails, resulting in spre intersect = D4 and

sintersect = D5 through the execution of Lines 45 – 47.

1 2 3 4 5 6 7 8 9

A

B

C

D

E
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Imaginary line-of-sight Blocked cell Inner-corner vertex

Figure 3.7: Line of Sight: Intersecting inner-corner

Double corner special cases are handled separately. Figures 3.8 & 3.9

are both handled by Line 24 in Algorithm 5, the difference being that

stepmajor < 0 (stepminor ≡ 0 for orthogonal movement).
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Figure 3.8: Line of Sight: Double Corner vertex with Free Cell
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Figure 3.9: Line of Sight: Double Corner vertex with Free Cell – Negative
step

Figures 3.10 & 3.11 present a double corner with an occupied cell and are

both handled by Line 32 in Algorithm 5. The difference between them is

that stepmajor < 0 for Figure 3.11 (stepminor ≡ 0 for orthogonal movement).
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Figure 3.10: Line of Sight: Double Corner occupied vertex
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Figure 3.11: Line of Sight: Double Corner occupied vertex – Negative Step
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Figure 3.12: Line of Sight: Double Corner Vertex with free cell and Occu-
pied previous step

The scenarios presented are identical for nodes in a vertical configuration.

The algorithms imposes two restrictions on the global start and goal vertices

of a search scenario, namely that their corresponding grid-cell (vertex at

upper left corner of the observed cell) must be unoccupied (consistent with

the map database used for evaluation [70]). An additional restriction is

imposed such that neither start nor goal can be double-corners.

The sstart and sstop vertices passed to the LineOfSight function should not
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be confused with the global start and goal vertices passed to the Ray Path

Finder algorithm. For the LineOfSight function, the parameters sstart

and sstop can take the values of either the global start and global goal (i.e.

initial inputs of the find-path problem) vertices or they can take values of

vertices belonging to a path. It is to be noted that the algorithm is only

used to perform line-of-sight checks between vertices of a valid path. This

implies that any vertices that are passed to the LineOfSight function are

valid corners on the grid map, and as such, certain inconsistent scenarios

will never occur, and are not addressed by the algorithm. A vertex is only

ever added to a path if it is a valid corner on the corresponding 2D grid map

(3.4), meaning that neither sstart nor sstop can be double corners. Also, for

any vertex belonging to a path, the 4 grid cells describing (sharing) the ver-

tex have a 3-unoccupied/1-occupied configuration (see Figure 3.30), with

the exception of the global start and goal vertices which can be surrounded

by an arbitrary number of unoccupied cells (between 1 and 4).

Figures 3.13, 3.14, 3.15 & 3.16 illustrate the 4 possible cases of encountering

a double corner while travelling diagonally and which are handled by Lines

60 - 62 in Algorithm 5.
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Figure 3.13: Line of Sight: Double corner with free vertex – diagonal step
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Figure 3.14: Line of Sight: Double corner with free vertex – negative diag-
onal step
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Figure 3.15: Line of Sight: Double corner vertex with occupied cell – diag-
onal step
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Figure 3.16: Line of Sight: Double corner vertex with occupied cell – neg-
ative diagonal step

A special case for the line-of-sight algorithm that requires to be handled

separately is illustrated in Figure 3.17. The exception arises when the cell

corresponding to a corner vertex is occupied and thus breaks the line of sight

to a target. As an example, let us consider the vertex sstart at D4, which

corresponds to an occupied grid cell, and any of the 3 vertices sstop1(B5),

sstop2(B6) or sstop3(C6) that are obscured from view. For this configuration,

spre intersect is initialised to the occupied D4 node (Line 18 in Algorithm

5) and the loop terminates early at Line 56. The condition at Line 78

identifies this scenario and spre intersect is allowed to step backward (Line 79)

and retrieve the E3 cell as a pre-intersection point. This is allowed because

sstart is a corner vertex, which implies that it must have 3 unoccupied cells

describing it (i.e. tiles E3, E4 and D3).



3.2. Line of sight with intersection 64

1 2 3 4 5 6 7 8 9

A

B

C

D

E

sstop1 sstop2

sstop3

sstart

Imaginary line-of-sight Blocked cell

Figure 3.17: Line of Sight: Corner vertex with occupied cell and targets in
quadrant four

The red highlighted tiles in Figure 3.18 exemplify the nodes that Algorithm

5 expands while moving at a 45◦ angle from sstart at tile 391 to sstop at tile

205. Although the path (marked in green) passes directly through the

vertices of the tiles 360, 329, 298, 267 and 236, the tiles have to be checked

for occupancy, to ensure they are not double corners.

Figure 3.18: Expanded cells for diagonal Line of Sight (Screenshot from
RPF application)
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Figure 3.19: Line of Sight: Through double corner free cell – no intersection

The screen capture in Figure 3.20 illustrates the expanded cells for a valid

line-of-sight with a single blocked obstacle at cell 201. Notice that the only

extra cell that needs to be expanded is the one above the blocked cell. As

169, the neighbouring tile of the occupied tile 201 (expanded at Line 41)

is free (Line 43), the algorithm continues as normal until reaching sstop at

tile 205.

Figure 3.20: Expanded cells for horizontal Line of Sight with obstacle
(Screenshot from RPF application)

The screen captures in Figures 3.21 & 3.22 illustrate the special cases of

the line-of-sight being blocked by double corners while moving horizontally

(Line 23). The red dot marks the vertex of the free cell spre intersect, and

the purple dot marks the vertex of the occupied cell sintersect. For Figure

3.21, Line 23 is true, as tile 201 is a double corner and, being an occupied
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cell, the else branch at Line 35 stores spre intersect = 200 and sintersect = 201

and exits the loop. For Figure 3.22, the algorithm follows the same path

and yields spre intersect = 202 and sintersect = 201.

Figure 3.21: Double corner intersection (red–vertex of pre-intersection,
purple–vertex of intersection) (Screenshot from RPF application)

Figure 3.22: Double corner intersection – with negative step (red–vertex
of pre-intersection, purple–vertex of intersection) (Screenshot from RPF
application)
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Algorithm 5 Line of Sight - Ray Path Finder

1: function LineOfSight(sstart, sstop,W)
2: ∆x ← (sstop mod W)− (sstart mod W)
3: ∆y ← (sstop\W)− (sstart\W)
4: stepx ← (∆x < 0 =⇒ −1) ∧ (∆x ≥ 0 =⇒ 1)
5: stepy ← (∆y < 0 =⇒ −W) ∧ (∆y ≥ 0 =⇒ W)

. horizontal offset for quadrants I and IV relative to sstop
6: step′x ← (∆x < 0 =⇒ −1) ∧ (∆x ≥ 0 =⇒ 0)

. vertical offset for quadrants I and II relative to sstop
7: step′y ← (∆y < 0 =⇒ −W) ∧ (∆y ≥ 0 =⇒ 0)

. current node in line of sight exploration
8: snext ← sstart

. current node with offset in line of sight expansion
9: s′next ← snext + step′y + step′x

10: ∆x ← |∆x|
11: ∆y ← |∆y|

. driving axis always increments
12: stepmajor ← (∆x ≥ ∆y =⇒ stepx) ∧ (∆x < ∆y =⇒ stepy)

. secondary axis increments with slope progression
13: stepminor ← (∆x ≥ ∆y =⇒ stepy) ∧ (∆x < ∆y =⇒ stepx)
14: (∆max ≥ max{∆x,∆y}
15: (∆min ≥ min{∆x,∆y}
16: error ← 0
17: is edge← false . track orthogonal move on edge of blocked tile
18: spre intersect ← sstart . index of cell tile prior to intersection
19: sintersect ← 0 . index of cell tile at intersection
20: while snext 6= sstop do
21: is free← isFree(s′next)
22: if ∆min = 0 then . only moving horizontally or vertically
23: if isDoubleCorner(s′next) then
24: if is free then
25: if is edge then
26: spre intersect ← s′next − stepmajor − stepminor

27: sintersect ← s′next − stepminor

28: else
29: spre intersect ← s′next
30: sintersect ← s′next + stepmajor

31: else
32: if is edge then
33: spre intersect ← s′next − stepminor

34: sintersect ← s′next + stepmajor − stepminor

35: else
36: spre intersect ← s′next − stepmajor

37: sintersect ← s′next
38: break
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Line of Sight - Ray Path Finder: Continued

39: is edge← false
40: if ¬ is free then
41: nbr ← s′next − stepminor

42: is edge← true
43: if ¬ isFree(nbr) then

. can’t pass between 2 blocked tiles
44: if ¬isFree(s′next − stepmajor) then

. if previous cell not free, then neighbour’s pre-
vious cell is free

45: spre intersect ← nbr − stepmajor

46: sintersect ← nbr
47: break
48: spre intersect ← s′next − stepmajor

49: sintersect ← s′next
50: break
51: else

. non-orthogonal line of sight expansion
52: error ← error + ∆min

53: if error ≥ ∆max then . moving on minor axis
54: if ¬is free then
55: sintersect ← s′next
56: break
57: error ← error −∆max

58: if error = 0 then . moving diagonally
. vertex defined by diagonally adjacent cells (see

Equation 3.13)
59: sdiagonal ← s′next + (stepminor + stepmajor + W + 1)/2
60: if isDoubleCorner(sdiagonal) then
61: spre intersect ← s′next
62: sintersect ← s′next + stepminor

63: break
64: spre intersect ← s′next
65: snext ← snext + stepminor

66: s′next ← s′next + stepminor

67: if error = 0 then
68: is free← isFree(s′next)

69: if error 6= 0 then . on driving axis
70: if ¬is free then
71: sintersect ← s′next
72: break
73: else
74: spre intersect ← s′next
75: snext ← snext + stepmajor . moving on driving axis
76: s′next ← s′next + stepmajor
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Line of Sight - Ray Path Finder: Continued

77: if sintersect > 0 then
78: if spre intersect = sstart ∧ ¬ isFree(sstart) then

. line of sight blocked by vertex’s own tile, i.e. goal in
quadrant IV

79: spre intersect ← spre intersect − stepmajor

80: return (spre intersect, sintersect)

81: return NULL . sstart and sstop have line of sight

3.3 Contour tracing

Wall following behaviours have been adopted in path-finding solutions such

as bug algorithms and maze solving strategies. The proposed path-planning

algorithm also makes use of a wall following behaviour. The implementa-

tion detailed in this work operates on 2-dimensional grid-maps, represented

by a 2D occupancy matrix that encodes a cell as block or unblocked.

On a grid-map representation, wall following is functionally equivalent to

contour-tracing, a widely used segmentation technique in image analysis.

For this reason, we introduce a simple contour-tracing algorithm. We as-

sume as known two grid-cells (one occupied and one unoccupied) that repre-

sent the starting position on an obstacle’s boundary from which to perform

the contour tracing. The proposed technique is introduced independently

of the RPF and, as such, we assume the tracing performs a full transversal

of the contour. In practice, the RPF algorithm handles the stopping crite-

ria as it rarely performs a full trace of the obstacle (generally not required

if target is outside its convex hull) but can also allow the trace to extend

beyond closing the contour (i.e. the trace is allowed to continue and the

stopping criteria is left to the discretion of the higher-level main function

in the RPF algorithm – Algorithm 9 discussed in 4.3). For a generic stand-

alone implementation of the proposed contour trace algorithm, a sufficient

stopping criteria would be revisiting the two initial input cells.
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Given a cell P and its Moore neighbourhood M(P ) (Figure 3.23), we con-

sider the cell above P to have index 0 in M , as it coincides with the cardinal

North direction (i.e. M0(P ) ≡ PNorth). All other cells in the Moore neigh-

bourhood have indices incrementing in clockwise and counter-clockwise di-

rections based of the side that is considered. The indices for the left and

right sided Moore neighbourhoods are symmetric along the North−South

axis and have the following relationship:

indexside = (8− indexopposite side) mod 8 (3.1)

where indexopposite side ∈ {0, . . . , 7} =⇒ indexside ∈ {0, . . . , 7}.

W − 1 W W + 1

−1 P 1

−W − 1 −W −W + 1

Figure 3.23: Indices relative to cell P in Moore-neighbourhood on 1-D
indexed grid
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Algorithm 4 Ray Path Finder: Contour tracing

1: function TryNextNeighbour(swall, side)

2: direction← (direction+ 1) mod 8 . next direction

3: stry ← swall+ getStep(direction, side)

4: if stry = ∅ then

5: return ∅ . path has gone off map

6: if IsFree(stry) then

7: sfree ← stry . move to newest free node

8: else

9: swall ← stry . move to newest occupied node

10: direction← getIndex(sfree − swall, side)

11:

12: function getStep(direction, side)

13: if side = RIGHT then

14: direction = (8− direction) mod 8

. W – width of the map

15: STEP = {−W, −W + 1, 1, W + 1, W, W − 1, −1, −W − 1}
16: return STEP[direction]

17:

18: function getIndex(step, side) . function is the reverse of

GetStep()

19: switch step do

20: case −W : . North

21: index← 0

22: case −W + 1 : . North-East

23: index← 1

24: case 1 : . East

25: index← 2

26: case W + 1 : . South-East

27: index← 3

28: case W : . South

29: index← 4

30: case W − 1 : . South-West

31: index← 5

32: case −1 : . West

33: index← 6

34: case −W − 1 : . North-West

35: index← 7

36: if side = RIGHT then

37: index = (8− index) mod 8

38: return index
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The proposed contour-tracing technique is a variation on the Moore tracing

algorithm [72]. Similar to the Moore neighbourhood algorithm (see Figure

3.24), the proposed solution iterates over the neighbours in the Moore

neighbourhood of an occupied cell, until in encounters another occupied

cell, after which it moves to the newly found cell and repeats the procedure

until it closes the contour of the object, i.e. returning to its initial position.

1 2 3 4 5 6 7 8 9 10
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D

E

F

G

H

I

J

K

Blocked Cell Contour-trace path

Start point Contour-tracing steps

Figure 3.24: Contour tracing result of the Moore Neighbourhood Tracing
algorithm

A contour tracing algorithm published by Seo et al. in 2016 [73] presents a

similar functional behaviour to our proposed method (see Figure 3.25) but

with a different underlining principle and a more complex algorithm. The
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former algorithm has a higher complexity as it needs to treat individual

patterns separately. While the contour traces generated by both algorithms

have the fewest number of operations on unoccupied cells, the algorithm

developed by Seo et al. has a higher number of operations on blocked cells.

This difference occurs for certain cases in which their algorithm revisits

blocked cells.

1 2 3 4 5 6 7 8 9 10
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F
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J

K

Blocked Cell Contour-trace path

Start point Contour-tracing steps

Figure 3.25: Contour tracing result using methodology presented by Seo et
al.

Figure 3.26 illustrates a comparative example of the proposed algorithm’s

contour tracing behaviour relative to the Moore-neighbourhood algorithm

(Figure 3.24) and the one proposed by Seo et al. (Figure 3.25).



3.3. Contour tracing 74

1 2 3 4 5 6 7 8 9 10

A

B

C

D

E

F

G

H

I

J

K

Blocked Cell Contour-trace path
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Figure 3.26: Result of left-sided contour tracing using proposed algorithm

A notable observation is that, as opposed to the contour tracing algorithm

by Seo et al., the proposed method does not trace inner corner tiles, as this

is beyond the needs of the path-planning algorithm. Inner corner tiles are

blocked cells which share a vertex with two other blocked cells and one free

cell, with the free cell being diagonally opposite to the inner corner. The

tiles at G4, F2 and E4 (Figure 3.26) are examples of inner corners ignored by

the proposed Algorithm 4. The proposed algorithm can, however, be easily

extended to account for inner corners as well. This would be accomplished

by performing one additional occupancy check after the blocked cell on

the contour has been explored. This step could be extended further, which
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would allow the algorithm to account for inner cavities as well, if the cavities

are 1 cell distance from the outer contour of the object. If the additional

step does not detect an inner corner, but a free cell, it can either be the

entrance to a cavity (e.g. if E4 were a free cell it would represent a cavity in

the object) or, as in the case of H8, a cell belonging to the outer edge of the

object. As such, care must be taken in order to prevent infinite loops. To

avoid this situation, the algorithm could be allowed to terminate normally,

i.e. tracing the outer edge of the object, while remembering any diagonally

free cells along with their corner pair. If, in the trace of the contour, the

free cells are encountered again, such as would be the case for H8, they

are ignored. Otherwise, the remaining cells would indicate the existence of

cavities inside the object which can be explored similarly, until the starting

block cell is re-entered.

For the purposes of path-planning, the initial strategy is adopted as the

RPF algorithm does not allow diagonal crossing. As such, we can safely

ignore inner corners and cavities. The proposed contour tracing algorithm

presented in Algorithm 4 operates on a 1D indexed grid-map, and moves

along grid-cells (which can be though of as pixels in binary images) rather

than vertices. The solution proposed in this work traces the contour of an

object with the fewest number of steps necessary to touch the entirety of

the contour. This is because it keeps track of both the last blocked and

unblocked cell in the contour trace, thus inferring the direction by which

the blocked cell has been entered and always moving to the immediate

next cell in the Moore neighbourhood. The algorithm is very simple to

understand and implement. It is efficient because it avoids unnecessary

cell re-entries. With the exception of closing the contour of an object when

the algorithm reaches the starting pair of free-blocked cells, (〈F1, F2〉 in

our example), the only time the algorithm revisits a cell is in the case of

diagonally adjacent blocked cells, for instance H7, I8, D7 and C8 in our
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example. An exception for when a free cell may be revisited would be if

the object has a concave corridor more than 1 cell long but only 1 cell wide

(i.e. blocked cells belonging to the same object sharing opposing edges of

a free cell).

The variable direction, with direction ∈ {0, 1, 2, 3, 4, 5, 6, 7}, represents

the index of the position of sfree relative to swall and is calculated as the

displacement between cardinal North and the cardinal direction indicated

by −−−−−→swallsfree.

Figure 3.27 illustrates the process of our proposed contour-tracing algo-

rithm. Each sub-figure representing the tracing of free-space in the Moore

neighbourhood of an obstructed cell and the transition to the next oc-

cupied cell on the obstacle’s contour. To exemplify the behaviour of the

algorithm, let us consider the configuration illustrated in 3.27a, where grey

cells represent the occupied cells of an object and white cells the free space

around it. For our example, we initiate the contour trace starting with the

top left-hand corner. The cell marked by X with a red cross-hatch pattern

represents the initial and current occupied cell, represented by swall in Al-

gorithm 4. The unoccupied cell with a blue cross-hatch pattern represents

the initial and current free cell adjacent to X and presented in Algorithm

4 by sfree. The contour-tracing is performed following the object’s edge on

the left-hand side as viewed in the direction of −−−−−→sfreeswall. The difference

between sfree and swall is −W − 1, which, in the left-sided Moore neigh-

bourhood, corresponds to index 7. This initial index is stored in direction

and the algorithm may proceed with contour tracing. With the first call to

the function, direction advances by 1 to become 8 and takes the remainder

of dividing by 8 (the number of neighbours) to give index 0. It retrieves

the step by which to advance, in this case direction0 = −W and add it

to swall to retrieve the next neighbour. The resulting cell is stored in stry
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and because it corresponds to a free cell in the map it is stored in sfree

and the function returns. On the next call, direction advances from 0 to 1

(represented in sub-figure 3.27b by the blue outlines). As before, the value

is stored in sfree. On the third call, direction becomes 3 with a step of 1.

The cell at index swall + 1 is an occupied cell which is then stored in swall.

At this step, the algorithm calculates the new direction between sfree and

swall; sfree − swall = −W which corresponds to index 0. Sub-figure 3.27c

shows the new positions of sfree(blue cross-hatch with new direction = 0)

and swall (red cross-hatch marked by X). This procedure repeats, with sfree

advancing through all the free cells around X in sequence, until encounter-

ing an occupied cell, in which case swall advances. Because direction keeps

track of the direction between each new swall and the sfree node from which

it was entered, the algorithm minimises the number of times a free cell is

visited. The number of visits to occupied cells is also minimised, as the

occupied cell is never re-entered from the same side. In sub-figures 3.27e

and 3.27g the occupied cell is revisited, as it is not an outer corner yet two

of its edges are part of the object boundary. It is trivially evident that,

for any configuration where two occupied cells share only one vertex, the

algorithm would revisit at least one of the occupied cells.
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Figure 3.27: Scanning steps for left-sided contour-tracing
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Of particular use for RPF’s needs is the ability of the contour tracing algo-

rithm to trace an object’s edge in both left-sided and right-side directions,

which can be achieved very easily. Tracing in the opposite direction requires

two minor modifications (Lines 14 & 37) that change a left-sided Moore

neighbourhood to a right-sided one. This involves performing a check on

the variable side that indicates the desired side for tracing and if true, in-

verting direction and index by using equation (3.1). Figure 3.28 illustrates

the right-sided contour-tracing steps performed by the algorithm. For the

right-sided approach, the algorithm rotates around the occupied cell X in a

counter-clockwise direction, while exploring all of the same cells in reverse

order.
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Figure 3.28: Scanning steps for right-sided contour-tracing
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3.4 Path corners

Sidedness plays more than one key role with respect to a path’s behaviour.

Awareness on the part of the algorithm of the notion of path sidedness is

required in order to identify path corners and also to preserve path taut-

ness during the path pruning phase. A path’s sidedness simply represents

the side being considered relative to the path’s direction of travel (i.e. first

person view), colloquially left and right. The sidedness of a path is deter-

mined by the sidedness of its parent path (the path from which it branches

off) at the point of intersection with an obstacle. As such, any child path

always has opposite sidedness to that of its parent. For the initial input,

the sidedness of the “root” path can be chosen at random, and is preserved

for the entire life-cycle of the path. When an obstacle is encountered and

the path bifurcates along the edge of the obstacle, the child path splits

from the parent, following the obstacle on the opposite side.

In evaluating sidedness, the cross product is used to determine the sign of

the acute angle defined by three points P1 = (x1, y1), P2 = (x2, y2) and

P3 = (x3, y3). This angle corresponds to the direction of the cross product

of the two coplanar vectors
−−→
P1P2 = −→u = 〈∆xu,∆yu〉 and

−−→
P1P3 = −→v =

〈∆xv,∆yv〉. Operating in two-dimensional space, we describe the cross

product through P1, P2 and P3:

−→u ×−→v =

∣∣∣∣∣∣∣
∆xu ∆yu

∆xv ∆yv

∣∣∣∣∣∣∣ = ∆xu∆yv −∆xv∆yu

−→u ×−→v = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) (3.2)

If the points are collinear, −→u ×−→v = 0 and P3 lies on line
−−→
P1P2. Otherwise,

the sign of the cross-product depends of the handedness of the coordinate

system, i.e. the sign of −→u ×−→v tells whether P3 lies to the left or to the right
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of
−−→
P1P2. For a “right-handed” coordinate system, a positive cross-product

implies that P3 lies on the left side of
−−→
P1P2 (Figure 3.29).

P1

P2

P3

> 0

< 0

Figure 3.29: Cross product of right-handed coordinate system relative to−−→
P1P2: the cross-product for all points in the blue region has positive values
while the cross-product of all the points in the red region has negative
values

The cross-product is used by RPF for a number of purposes, in determining

which nodes should be considered as heading changes for the path when

it alters its direction of travel, in maintaining path tautness by pruning

nodes from the path, and in deciding when a path can leave the edge of an

obstacle and resume moving towards the goal.

As described in 3.3, unlike operating with path nodes, the contour tracing

algorithm operates on grid-cells (tiles) rather than vertices. For this reason,

we wish to be able to transition from grid-cells to vertices, during the

contour tracing phase.
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C C + 1

C + W C + W + 1

(a) Lower right

C − 1 C

C + W − 1 C + W

(b) Lower left

C −W C −W + 1

C C + 1

(c) Upper right

C −W − 1 C −W

C − 1 C

(d) Upper left

Figure 3.30: Corner vertex cases: C - unoccupied corner node; grey cell -
occupied node diagonal to C; W - width of the map

Analysing Figure 3.30, we explore the four possible instances for a corner

vertex:

Case 3.30a: |C + W + 1− C| = W + 1

Case 3.30b: |C + W − 1− C| = W − 1

Case 3.30c: |C −W + 1− C| = W − 1

Case 3.30d: |C −W − 1− C| = W + 1

Let: |socc − sfree| = |∆s|

=⇒ |∆s| = W ± 1

=⇒ ||∆s| − w| = 1

(3.3)
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
x4 = x1 + W + 1

x4 = x2 + W

x4 = x3 + 1

(3.4)

(3.5)

(3.6)

3.4
=⇒ 2x4 = 2x1 + 2W + 2

2x4 = x1 + W + 1 + x1 + W + 1

3.4
=⇒ 2x4 = x4 + x1 + W + 1

x4 =
x1 + x4 + W + 1

2

(3.7)

3.5, 3.6
====⇒ 2x4 = x2 + W + x3 + 1

x4 =
x2 + x3 + W + 1

2

(3.8)

Case 3.30a:
3.7
=⇒ x4 =

2x1 + x4 − x1 + W + 1

2

x4 = x1 +
x4 − x1 + W + 1

2
(3.9)

Case 3.30b:
3.7
=⇒ x4 =

2x2 + x3 − x2 + W + 1

2

x4 = x2 +
x3 − x2 + W + 1

2
(3.10)

Case 3.30c:
3.8
=⇒ x4 =

2x3 + x2 − x3 + W + 1

2

x4 = x3 +
x2 − x3 + W + 1

2
(3.11)

Case 3.30d:
3.8
=⇒ x4 =

2x4 + x1 − x4 + W + 1

2

x4 = x4 +
x1 − x4 + W + 1

2
(3.12)

3.3,3.9,3.10,3.11,3.12
===========⇒ x4 = sfree +

∆s+ W + 1

2
(3.13)
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Algorithm 5 Ray Path Finder: Identify Outer-Corner Vertex

1: function GetVertexIfCorner(sfree, socc)

2: ∆s← socc − sfree . sfree- unoccupied; socc - occupied

3: if ||∆s| −W| = 1 then

. vertex of bottom right cell (Equation 3.13)

4: return sfree + ∆s+W+1
2

5: return -1 . the two grid-cells don’t describe a valid corner vertex

Considering Figure 3.31 as reference, we can explore how sidedness helps in

identifying heading changes during path exploration. Given sstart at (F2)

and sgoal at (F11), and the cul-de-sac obstacle with the depression facing

the start node, let us consider the two possible paths around the obstacle.

We will explore the left-bound path in the first instance.

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

I

J

K

sstart

sL1 sL2

sR1 sR2

sstop

Left-bound path Right-bound path Blocked cell

Figure 3.31: Cul-de-sac stage 1: both paths reach goal with equal cost
estimation
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The path begins from (F2) and encounters the obstacle at vertex (F8). The

path is split into two, a left-bound path and a right-bound path that trace

the obstacle in opposite directions. Using the processes described in Algo-

rithms 4 & 5, the left-bound path proceeds to trace the obstacle boundary

towards vertex (G8), and continuing through (I8), (I4) and (J4). Reaching

vertex (J5), the path can determine that the vertex at (J4) (marked by

sL1) is a potential heading change, as (J5) lies on the right-hand side of

−−−−−→sstartsL1. As such, a taut path from sstart needs to pass through (J4) in

order to reach (J5). Vertex (J4) is added to the left-bound path as sL1, and

the algorithm continues to trace the obstacle’s boundary. Reaching vertex

(I9), the path identifies (J9) as a potential heading change of the path and

adds it to the path as sL2, because (I9) lies on the right-hand side of −−−−→sL1sL2.

As (I9) lies of the right-hand side of −−−−→sL2sstop, the path is has a potential

line-of-sight to the goal node.

For the right-bound path, the process is symmetrical. Vertex (B4) (marked

as sR1) is found to be a potential heading change, as (B5) lies on the

left-hand side of −−−−−→sstartsR1. A taut path from sstart needs to pass through

(B4) in order to reach (B5). Continuing on the right-side of the obstacle,

the path reaches vertex (C9) and identifies (B9) as a potential heading

change of the path. The vertex is added to the path as sR2, because (C9)

lies on the left-hand side of −−−−→sR1sR2. With both paths having identified

their heading changes using cross-product and the path’s sidedness, the

remaining step is to check for visibility between the pairs of nodes of each

path. As all nodes are visible from their parents, the resulting paths are

identified as: sstart, sL1, sL2, sstop – left-bound path; sstart, sR1, sR2, sstop -

right-bound path. The two paths are illustrated in Figure 3.32.
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sstart
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sR1 sR2
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Final taut paths Blocked cell

Figure 3.32: Cul-de-sac stage 2: final left-bound and right-bound taut
paths of equal length

3.5 Path direction

Paths in RPF require a means of monitoring the direction of travel when

wall-following. This is necessary because unlike behaviours found in most

bug algorithms, the paths in the RPF algorithm do not circumvent the

obstacle in search for a point of shortest distance from which to leave the

wall, nor do they make use of the M-line to decide a leave point. Rather, a

path leaves an obstacle when it assumes that it is travelling on the convex

hull of the boundary and has a potential direct line-of-sight to the target.

The Pledge algorithm [74], named after John Pledge of Exeter, has a similar
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approach to the above described. This algorithm is designed to evade

obstacles, with an arbitrarily chosen path direction at the starting node.

Such an algorithm accounts for traps shaped in the upper-case letter “G”.

The original Pledge algorithm assumes a fixed arbitrary direction of travel

that it uses as the reference to perform wall following while summing the

angles of each corner. The condition for the Pledge algorithm to abandon

wall-following, is for the sum of the turns to be 0.

In contrast to the Pledge algorithm, the proposed method does not assume

a fixed direction of travel. Instead, it keeps track of two directions, that

of the path, and that of the goal. For simplicity of explanation, one can

visualise two clock hands, with one hand (the minute hand for example)

pointing in the direction in which the path is currently travelling, while the

other hand (hour hand) always points in the direction of the goal (as would

a compass needle for which the target represents North). When moving on

the edge of an obstacle, one must keep track of the number of times the

minute hand crosses over the hour hand along with the relative difference

between the two hands. A path may leave the wall-following behaviour and

resume travelling in a straight line towards a target, if the number of turns

performed away from the a goal is less then the number of turns performed

towards the goal.

Figure 3.33 serves as an example to illustrate the behaviour of the direc-

tion monitoring functionality. Considering node sstart at (Q11) travelling

towards sstop at (Q18), the algorithm explores the right-sided path. It inter-

sects the obstacle at (Q15) and updates the goal direction to indicate sstop

(i.e. goal pointed to by 0 in the indexed square). As the next free node

on the right-side of the boundary is (P14), the path direction (indicated by

downward arrow) gives the number of turns away from the goal. Moving

downwards, to (H14), the path direction remains the same but the orienta-
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tion of sgoal changes from East–bound to North − East–bound, thus the

turn count becomes 3. At (E9) the path is heading West–bound, with

a turn count of 5. At (O8), the path crosses over the goal direction (i.e.

it goes through 0 to complete a full rotation), heading East–bound once

more. However, the crossover is taken into account, thus, rather that hav-

ing a turn count of 1, the full rotation is added for a total turn count of

9.
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Figure 3.33: Direction Matrix rotations (0 always points towards sgoal;
arrow shows relative number of turns away from sgoal while following wall)

The path continues South–bound from (O11) until (K11) with a turn count

of 11, after which the path turns towards the goal at (K11) and (K12). As
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such, the turn count at (L12) becomes 7 as the path crosses over the goal

direction in the opposite direction to the path side (i.e. from right to left

for the right–bound path in our example). However, because the turn count

is greater than 0, the path is not allowed to leave the obstacle boundary

and head towards the goal. Keeping track of the path’s turn count avoids

creating a cyclical path that would intersect the same obstacle and creating

a loop. As the path is not allowed to stop following the wall, it arrives at

(Q4) with a turn count of 4 as the node is now horizontal to sgoal. Moving

South–bound towards (E3) the path is now 3 turns away from the goal.

Finally, reaching (D16), the path once more crosses over the goal direction,

reaching a turn count of −1. At this stage, the contour tracing subroutine

returns, the state changes from FOLLOW WALL to RAY CAST and the

path is allowed to leave the obstacle boundary and move in a straight line

towards the goal.

3.6 Path pruning

Directing the search towards finding the shortest path solution involves

presenting the estimated length for the path. The heuristic estimation for

the length of each path must preserve the admissibility property (Equation

1.5). As such, RPF can never overestimate the cost of reaching the goal

via the path in question, which implies preserving the path’s tautness. For

this purpose, a path requires the ability to prune any and all nodes that

do not respect the triangle inequality (Figure 3.34).
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Figure 3.34: Triangle inequality

When a new node is added to the path, if the two nodes prior to it do not

respect the triangle inequality, the path becomes suboptimal because the

heuristic estimation overestimates the cost of the path. A shortest path

must always be taut, and as such can only have heading changes around

obstacle corners. The need for pruning with each new corner addition arises

from the free-space assumption. The algorithm does not perform line-

of-sight checks between vertex pairs in a path, until a path has reached

the final target node. Because of this, the algorithm is not aware when

expanding towards the goal if there exists a line-of-sight between node

paths that break the triangle inequality.

Drawing a parallel to Theta*, the pruning procedure in RPF can be inter-

preted as updating the parent of a node. For Theta*, given a node s and

it’s immediate neighbour s′, when s′ has line-of-sight to parent of node s,

the node s’s parent becomes a direct parent for node s′ (see Line 4 in Al-

gorithm 3). This implies that a shortest path can bypass s when travelling

from parent(s) to s′, or in other words, s can be pruned from the path
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containing parent(s) and s′. This is also the case for RPF, with two key

differences, namely that s and s′ do not have to be immediate neighbours,

and that RPF does not perform a line-of-sight check, but rather it opti-

mistically assumes that a line of sight exists, postponing the line-of-sight

check until the end goal has been reached.

3.6.1 Backward pruning

Back-pruning maintains a path’s tautness, by pruning nodes that do not

respect the triangle inequality. Pruning nodes allows a path to provide con-

sistent heuristic length estimates. The forward pruning strategy is called

at each step when moving along an object’s boundary before and after a

path has reached the final destination node send. While not recursively im-

plemented, the back-pruning strategy is reminiscent of the Recursive Strict

Theta* algorithm (described in 2.4.2), with the distinction that, for RPF,

pruning only ever needs to be applied to corner nodes.
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Figure 3.35: Back-pruning scenario: stage 1

To exemplify the backward pruning strategy, let us consider the map con-

figuration illustrated in 3.35. For simplicity, we will only consider the path

that always follows an obstacle’s edge on the left-hand side. The algorithm

initiates the search from sstart at (D3) by ray casting towards sstop at (D11)

until in encounters an obstacle at (D5). As a leftward exploring path, if

follows the edge of the obstacle and identifies (E5) as a corner node. From

3.2, we determine (E5) to be on the right-hand side of
−−−→
E6D3, the vector

described by the next node on the edge and the last node in the path, in

this case sstart. We label (E5) as s1 and add it to the path. (E5) now

becomes the last node in the path, as we continue with edge following. In

the same manner, we discover (E6) as the next corner, label it as s2 and

add it to the path. As the path’s direction of travel has gone bellow 0, as
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Figure 3.36: Back-pruning scenario: stage 2

described in 3.5, we are now free to leave the edge of the obstacle and once

again ray-cast towards sstop. A new obstacle is encountered between D8

and E8 and the path proceeds with edge following towards the left. The

path encounters the node swall at (F8). The last node in the path, s2, now

lies on the right-hand side of −−−−→s1swall, and becomes a candidate for pruning.

Node s2 is removed from the path and s1 becomes the last (and only) node

in the path once again.

When swall moves to (G8), as observed in Figure 3.36, s1 becomes the next

candidate for pruning, as it lies on the right-hand side of −−−−−−→sstartswall. Node

s1 is pruned as the path proceeds with edge following. In the same manner

as before, two new nodes are identified, s′1 and s′2 and are placed in the

path.
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Figure 3.37: Back-pruning scenario: stage 3

Node s′2 is identified as the new jump-off point and the path leaves the edge

of the obstacle. The ray-cast encounters no obstacle between s′2 and sstop.

The path has now reached the end and its state is updated. In the next

phase (Figure 3.37), the path performs line of sight checks between subse-

quent nodes for this simple scenario determines that the path is cleared.

Its state is updated, and the it is moved from the open list to the cleared

list.

The pseudo-code for the back-pruning strategy can be seen in Algorithm 6.

The 1-D indices of the nodes are stored in the path along with the sidedness

of the path at the point of their expansion. This can be done efficiently

by adopting the convention that all left-bound nodes have negative value

and all right-bound nodes have positive value. The choice of sign is not
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important however, as long as it is consistent throughout, ensuring that left-

bound nodes have an opposite sign to right-bound nodes. The algorithm

looks at all previous nodes in the path (Line 5). If the node si lays on

the opposite side of −−−−−→si−1swall relative to the sidedness of the path, that

node is pruned from the path as the triangle inequality dictates there is a

shorter path to swall that does not pass through si. The condition at Line

8 allows for an early termination of the algorithm at the node before the

path has switched sides. For example, if going from a left-bound path to a

right-bound path, the node si will have an opposite sign (i.e. negative for

left-bound paths) to the current sign of the path (i.e. positive for right-

bound paths). If the condition at Line 8 is true, the algorithm is allowed

to terminate early, as no other nodes could be pruned.

To check that the path is taut (Line 10), the sidedness of si is tested using

Equation 3.2. If the condition is respected, then the triangle inequality

is preserved and the algorithm terminates as there is no need to look any

further. If the condition fails, however, the node is removed from the path,

and the algorithm moves to the previous node in the path.

Algorithm 6 Ray Path Finder: Path Back-Pruning

1: function backprune(swall)

2: if path.size < 2 then . path needs at least 2 nodes in the path

3: return

4: n← path.indexOf(sinterStart)

5: for i← n down to 2 do

6: si ← path.nodeAt(i) . si ≡ sinterStart
7: si−1 ← path.nodeAt(i− 1) . node before sinterStart
8: if sgn(si) 6= sgn(path.side) then . is si from opposite side?

9: return . path at inflection point; cannot prune beyond it

10: if sgn(−−−→siswall ×−−−−−→si−1swall) = sgn(path.side) then . checking

sidedness (Equation 3.2)

11: return . path is taut; no need to prune

12: path.remove(si) . si on opposite side of −−−−−→si−1swall; prune it

13: sinterStart ← si−1 . si−1 becomes new interior starting node

14: updateLength(path)
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3.6.2 Forward pruning

Similar to the back-pruning strategy, forward-pruning is employed to main-

tain a path’s tautness, by pruning nodes that do not respect the triangle

inequality. The forward pruning strategy is only used after a path has

reached the final destination node send. To exemplify the forward prun-

ing strategy, let us consider the map configuration illustrated in 3.38. For

the purpose of describing the procedure, we will only consider the path

that always follows an obstacle’s edge on the left-hand side, similar to the

example in 3.6.1.
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Figure 3.38: Forward-pruning scenario: Initial stage

The algorithm initiates the search from Sstart at (C2) towards Sstop at (C11)

by performing a a line of sight check. The ray-cast intersects an obstacle at

(C7) and updates its state to FOLLOW WALL. It proceeds by following
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the edge of the obstacle and identifies (F7) as a corner node, as (F7) is on

the right-hand side of
−−−→
F8C1, the vector described by the next node on the

edge and Sstart, the last node in the path. We label (F7) as s1 and add

it to the path. (F7) now becomes the last node in the path. Continuing

with edge following, we discover the next corner at (F10), (F10) is on the

right-hand side of
−−−→
E10F7, the vector described by the next node on the

edge and S1, the last node in the path. We label (F10) as s2 and add it to

the path. As the path’s direction of travel has gone bellow 0, as described

in 3.5, we are now free to leave the edge of the obstacle and once again

ray-cast towards sstop. As s2 has a line of sight to sstop, the path’s state is

updated to reflect that it has reached the goal.
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Figure 3.39: Node s1 on right side of left-bound −−−−→swalls2 is pruned from path

In the next phase (Figure 3.39), the path performs line of sight checks be-
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tween subsequent nodes beginning with the pair (sstart, s1). A new obstacle

is encountered between D4 and E4 and the path changes state to proceed

with edge following towards the left. We encounter the node swall at (G4)

which is of interest. The next node after sstart, s1, lies on the right-hand

side of −−−−→swalls2, the vector described the current node on the edge and s2,

the node after s1 which is currently considered for pruning. Node s1 is

removed from the path and s2 becomes the new goal as the next node after

sstart. As swall progresses on the edge of the obstacle, two new nodes are

identified. The first one at (H4), labelled s′1, becomes the new start (de-

scribed as sinterStart in Algorithm 9) and is inserted before the new goal s2.

Similarly, the next node on the edge, s′2 at (H7) becomes the new start and

is inserted before the new goal s2. After s2, the path’s direction of travel

relative to the new goal, goes bellow 0 and the path’s state is updated to

RAY CAST . The line of sight check between s′2 and s2 is successful and

the path’s state is once again updated to GOAL FOUND. The path once

more performs line of sight checks between subsequent nodes and deter-

mines that the path is clear (Figure 3.40), it removes the path from the

open list and inserts it into the cleared list.
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Figure 3.40: Forward-pruning scenario: Final stage

The pseudo-code for the back-pruning strategy can be seen in Algorithm

7. Forward pruning is called at each step when moving along an obstacle’s

boundary, but only for paths that had previously reached the final desti-

nation node send. The algorithm for forward pruning is similar to that of

backward pruning, with a few distinctions. Iteration of the elements hap-

pens from the current goal node, sinterStart, towards the end goal send. The

algorithm looks at the node si and the next node in the path, si+1 (Line

7) and performs the cross-product (Equation 3.2) to check if the path is

taut (Line 10). The cross-product indicates the sidedness of si, relative to

−−−−−−→swall, si+1 (as opposed to −−−−−−→si−1, swall for back-pruning). If the node si lays on

the opposite side of −−−−−−→swall, si+1, vertex si is pruned from the path, otherwise

the algorithm terminates, as the path is taut. In the same manner as for



3.7. Redundant paths 101

back-pruning, the condition at Line 8 allows for early termination of the

algorithm when the path has switched sides.

Algorithm 7 Ray Path Finder: Path Forward-Pruning

1: function forwardPrune(swall)
2: if sgoal /∈ path then
3: return . haven’t reached final goal; cannot forward prune

4: n← path.indexOf(sinterGoal)
5: for i← n to path.size− 1 do
6: si ← path.nodeAt(i) . si ≡ sinterGoal

7: si+1 ← path.nodeAt(i+ 1) . node after sinterGoal

8: if sgn(si) 6= sgn(path.side) then . is si from opposite side?
9: return . path at inflection point; cannot prune beyond it

10: if sgn(−−−→swallsi ×−−−−−→swallsi+1) = sgn(path.side) then . checking
sidedness (Equation 3.2)

11: return . path is taut; no need to prune

12: path.remove(si) . si on opposite side of −−−−−→swallsi+1; prune it
13: sinterStart ← si+1 . si+1 becomes new interior goal node

14: updateLength(path)

3.7 Redundant paths

A search-space that contains non-convex obstacles presents an additional

challenge for our algorithm. When the search encounters an object it fol-

lows the edge of its boundary until the jump-off condition is met, at which

point it leaves the edge of the object and resumes ray casting towards a

goal. If the path encounters another obstacle when performing the line of

sight query, there is no guarantee that the second intersection is with a

new obstacle or is in fact with the boundary of the same obstacle encoun-

tered previously. The solution to this problem is trivial: Let us consider

the example illustrated in figure 3.41 where (D3) and (D11) represent the

start and end point respectively, and the non-convex obstacle indicated by

grey cells. We consider the initial path, represented by blue arrows, to be

a left-sided path and label it as path1. As in our previous examples, the

algorithm initiates its search with a line-of-sight check and encounters an
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obstacle at (D5). The path now splits into two paths, path1 which proceeds

with following the obstacle on the left-hand side of the boundary and path2

(represented by green arrows) which follows it on the right-hand side. Dur-

ing the boundary following procedure, path1 encounters two corner points,

(E5) and (E6) which are added to path1 as s1 and s2 respectively. As s2 is a

jump-off point with a potential line-of-sight to sstop, path1 abandons follow-

ing the boundary and proceeds to travel in a straight line towards the goal.

At the next intersection with an obstacle, path1 once again splits into two

paths. The original path, path1 a left-sided path described by (sstart, s1, s2)

with s1 and s2 as left-sided nodes, and the new path, path3 (represented

by red arrows) a right-sided path containing the same nodes as path1, i.e.

(sstart, s1, s2) with s1 and s2 as left-sided nodes. At this junction, let us

consider what happens to the new path, path3. The path proceeds with fol-

lowing the object boundary on the right side until it arrives at (E6) which

it identifies as belonging to the path, as the node s2 which has an opposite

side to the current side of path3. This implies that the path is following the

boundary of a non-convex object and it has returned to the jump-off point

of it’s parent path, i.e. path1. If allowed to continue beyond this point,

path3 would eventually return to the initial point of intersection, (D5), and

continue exactly as path2, which would make path3 redundant. From this

we may conclude that any path which, after having switched sides, inter-

sects itself from the opposite while following a boundary is redundant, as

it would not be taut and because it would imply the existence of an early

taut path that would perform the same search as the redundant path.
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Figure 3.41: Redundant path example: path1 Left-bound path. path2 -
Right-bound path (green). path3 left–right-bound path path3 intersects
itself at s2 while following wall in opposite direction to its parent.

Lemma 3.1. If a path revisits a node that has not been pruned while wall

following in the opposite direction it had at the first visit of the node, the

path is deemed redundant, as it intersects the same obstacle.

Proof. If we let the path P continue on the obstacle boundary, beyond

the revisited node, it will arrive at the previous intersection point of its

parent with the obstacle. At this junction, a path P ′ had previously split

off, given the path bifurcation procedure, and already tracing in the same

direction as P . This implies that beyond the intersection, P would retrace

the search steps of P ′, making P ≡ P ′. Thus, P is a redundant path and

can be safely terminated early.
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3.8 Self-intersecting paths

Within a search-space that contains non-convex obstacles, there can be a

number of scenarios in which a path may intersect itself. The reasons for

these intersections can help in determining what is the appropriate solution

in dealing with these scenarios.

G-shaped obstacle

Considering the scenario presented in Figure 3.42, let us follow the right-

bound path’s expansion. The path moves in a straight line from sstart

(E5) towards sgoal at (E11) until in encounters an obstacle at E6. It begins

tracing the contour of the obstacle right-bound and discovers two vertex

corners, s1 at (D6) and s2 at D7 and adds them to the path. From s2 it

leave the obstacle’s edge towards sgoal but encounters the obstacle again.

The path reverts back to tracing the object boundary right-bound. As it

moves to C9, the triangle inequality is broken and s2 is pruned from the

path.
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Figure 3.42: Self-intersecting path in “G” shaped obstacle

Moving forward on the boundary, s1 is also pruned when the path reaches

C6. The path continues to trace the edge through C4, F4, F6 and ends up

in s1 (D6), which has been previously pruned. The path allows the vertex

to be re-added to the path. Similarly, D7 is re-added to the path, but now

the turn counter of the path does not allow the path to leave the edge of

the obstacle. It instead continues the contour trace north-bound, towards

G7. It identifies this vertex as a corner vertex and adds it to the path as

s3. Similarly, nodes s4 at (G3), s5 at (B3) and s6 at (B10) become part of

the path. At vertex (B10), the turn count again becomes negative which

allows the path to leave the obstacle’s edge and reach the goal from E11.
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Figure 3.43: Screen-shot of solution in nested G-shaped obstacles (blue –
left-bound wall-following; red – right-bound wall-following; yellow – ray-
casting)

The screen-shots in Figures 3.43 & 3.44 illustrate two instances of “G-

shaped” obstacles scenarios. Figure 3.44 presents a similar topology to

Figure 3.43, with the exception of two blocked cells that close off the cor-

ridor for the path found in Figure 3.43. In Figure 3.43, the successful path
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is the one that initiates a left-bound wall-trace after its initial encounter

with the smallest of the “G”-shaped obstacles, and afterwards alternates

between right-bound and left-bound heading-changes. Closing off the corri-

dor in Figure 3.44 creates the condition for a different path to be successful,

namely the path that performs two initial left-bound turns when encoun-

tering the same “G”-shaped obstacle twice, similar to the path illustrated

in Figure 3.42.

The unsuccessful (abandoned) paths in the figures that trace the walls

of the obstacles (marked by the blue and red lines) present with a large

coverage relative to length of the final paths identified. The reason for this

is related to the method used to calculate the heuristic cost of a path, which

computes the sum between the lengths of the segments forming a path, the

cost from the last node in the path to the current position and the distance

to the final goal. “Overhead” paths that follow the interior of a shape (i.e.

curb inward) prune the “corners” that they identify in order to maintain

path tautness, but in doing so, underestimate the value returned by the

heuristic cost function. This leads the algorithm to mistake these paths as

more favourable than they are in actuality, and prioritise their expansion

to the detriment of other paths. Underestimated path costs are explored

in more detail in Section 4.5 where the limitations of the algorithm are

discussed.
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Figure 3.44: Screen-shot of solution in nested G-shaped obstacles with
obstructed corridor (blue – left-bound wall-following; red – right-bound
wall-following; yellow – ray-casting)

Locked-in start node

Contrasting the “G”-shaped obstacle scenario with the one illustrated in

Figure 3.45, we can observe an instance of path intersection that would

result in an infinite loop if not terminated.
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Figure 3.45: Self-intersecting path in locked-in start scenario

The sstart node at (F6) is locked inside an obstacle’s shape, with the goal

situated outside of the shape, at (F12). Following the right-bound path

towards the goal, the obstacle is encountered at (F9) (marked by swall).

Wall following around the obstacle’s boundary traces the interior contour

of the obstacle through C9, C4, I4, I9 and passes through swall for a second

time, similar to the path in Figure 3.42. Unlike the “G”-shaped scenario,

however, the path continues to follow the same wall through C9, C4, I4, I9

and back to swall, increasing its turn count by 8 with every pass through

swall. If allowed to continue, the path gets stuck in an endless loop, as no

solution can be found. To remedy it, we can keep track of the number of

times the path has passed through swall and terminate it if it passes more
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than twice. We allow the path to pass twice through swall to accommodate

for the “G”-shaped obstacle in the previous scenario.

Lemma 3.2. If a path revisits a node while wall following in the same

direction it had at the first visit of the node, and the path is tracing along

the inner bounds of an obstacle, it is only allowed to revisit the node once,

after which the path is deemed unreachable.

Proof. Given a start node that is locked inside an obstacle, the resulting

paths will trace the inner boundary of the obstacle in an endless loop, and

thus no solution exists.

Remark 1. It should be noted that the revisited node would not belong

to the path, as it would have been pruned in order to maintain the path’s

tautness. The path is allowed to revisit the node once to allow it to escape

from a potential “G-shaped” obstacles (e.g. Figure 3.42).

Locked-in goal node

In the scenario presented in Figure 3.46 a solution does not exist. The end

node at F8, sgoal, is isolated within an obstacle with a hollow interior. We

will examine the attempt made by the right-bound path to reach the goal.

The search begins from node sstart at F2 towards sgoal and intersects the

obstacle at F4. The path begins to navigate along the obstacle’s edge on

the right-hand side. When it reaches B4 (marked by s1), it determines the

node to be a corner vertex and adds it to the path. The path continues to

trace along the obstacle boundary without its turn count going below 0.
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Figure 3.46: Self-intersecting path in locked-in goal scenario

The contour trace finds 3 more corner vertices in B11, J11, and J4, respec-

tively, and adds them to the path as s2, s3 and s4. From s4, the path heads

south-bound and encounters s1 once again. Because the path is taut, s1

has not been pruned from the path. Allowing the trace to continue would

result in a an endless loop in which the path would pass repeatedly through

the same vertices. The left-bound path fails in a similar fashion, as it would

intersect itself in s4. We can conclude that a path which intersects itself

creates a loop, and can be discarded as it would never reach the end goal.

Lemma 3.3. If a path revisits a node that has not been pruned while wall

following in the same direction it had at the first visit of the node, and the

path is tracing along the outer bounds of an obstacle, the path is deemed
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unreachable, as it intersects itself to form a loop around the obstacle.

Proof. If the path is allowed to continue beyond the revisited node, it

continues to retrace the outer bounds of the obstacle, revisiting all other

nodes identified in the first pass as being part of the path (or convex convex

hull of the obstacle). If not terminated, the path would perform this cycle

ad infinitum, never arriving at a solution.

Remark 2. It is allowed for a path that has reached the goal and is at-

tempting line-of-sight between each pair of nodes to revisit a node s in the

same direction if it had been pruned. This can happen if the free-space

assumption fails and the shortest path between nodes does pass through s.

3.9 Chapter Summary

This chapter introduced a number of algorithms developed with the pur-

pose of aiding searches for Ray Path Finder, the proposed path-planning

methodology.

The novel path-planning algorithm operates under a free-space assumption.

It optimistically assumes there are no obstacles between the start and goal

node, nor between any two nodes that it identified as part of the path. It

navigates towards a goal in a straight line and if it encounters an obstacle,

it follows along the obstacle’s boundary in both left and right directions,

until it is again able to travel in a straight.

A number of features are necessary for the path–finding algorithm to exhibit

the aforementioned behaviour. The notion of path state was introduced,

to inform on the condition of each path and to allow it to transition be-

tween states or to allow the driving algorithm to discard paths that have
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reached an impasse. A contour tracing solution was introduced which al-

lows avoiding passing through obstacles by moving around them, along

their walls. A line-of-sight algorithm with intersection retrieval is derived

in order to move a path in a straight line and determine when an obsta-

cle is intersected. Path–pruning strategies are introduced to maintain a

path’s tautness during expansion. Methods of identifying redundant and

self–intersecting paths are presented, to enable the algorithm to discard

such problem-paths. Path direction enables directing the search towards

the goal, and allow a path to infer when it should depart from the wall-

following behaviour. A key feature, path sidedness allows for identifying

nodes at obstacle corners that may become heading changes in a path, and

also to prune such nodes if they compromise the path’s tautness.

These features are essential for the main search algorithm, in which paths

are raced against each other and are selected for expansion in the order of

their heuristic lengths.



Chapter 4

Ray Path Finder: An

Any-angle path planner

In this chapter we introduce the novel path-planning solution that was devel-

oped – Ray Path Finder. We describe how the best-first strategy behind the

Ray Path Finder algorithm drives the main search forward across multiple

paths and how RPF exploits 2D geometric properties of the topology and

makes inferences about its search-space. We discuss the principle behind

the algorithm, its properties, and address its current limitations.

4.1 Introduction

For paths identified by grid-constrained path-finding algorithms, such as

A*, a node can only have a direct (immediate) neighbour as a parent.

Because of this, the paths found are artificially restricted to only move

orthogonally or diagonally along grid edges. Often in practice, after a

grid-constrained algorithm identifies a solution, smoothing techniques are

applied in a post-processing step in order to morph the path into a more

realistic looking one, with fewer heading changes. However, post-processing

114
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the paths found by traditional edge-constrained find-path algorithms is

not always able to improve paths [4]. In contrast, any-angle path-finding

algorithms nodes can have as a parent any other node with a direct line-

of-sight.

Any-angle path-planning algorithms generally find shorter paths, which

have fewer heading changes, and make a robot’s behaviour look more nat-

ural. For an any-angle algorithm to find the shortest path in a search-space,

it must identify a taut path that has the lowest traversal cost between start

and goal nodes. In the general sense, a path is considered taut if the path

wraps tightly around an obstacle (similar to a Dubins path – Section 2.5.1).

For an octile grid, a taut path also implies that all the heading changes

in a path are formed by vertices that represent outer corners (i.e. vertices

that have one occupied tile and three unoccupied ones as neighbours). A

shortest path on octile grids must share this property.

Searching only amongst taut paths is desirable over having to consider all

possible non-taut alternatives, which is what the proposed algorithm –Ray

Path Finder– aims to do. The RPF algorithm achieves this by operating

on a free-space assumption strategy. An initial path is directed to move

in a straight line towards the goal. This expansion policy makes use of

the variant of Bresenham’s line algorithm presented in Section 3.2, which

returns the points of intersection with an obstacle that breaks the line-of-

sight with the target. At the point of intersection, a new path is generated

and splits off from its parent path. The two paths trace the contour of an

obstacle using the novel contour tracing algorithm introduced in Section

3.3. The expansion of the paths is guided by a best-first-search strategy

which prioritises the path with the lowest heuristic length. Outer-corner

points are identified on the contour of an obstacle and added as nodes of

the path. When a path is allowed to move in the direction of the target
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again, it reverts to moving in a straight line. This process is performed

for all path until a path reaches the goal. For paths that reach the goal a

line-of-sight check is performed between its nodes to verify the free-space

assumption. If obstacles are encountered, the path is again split into two

and are expanded based on their updated heuristic lengths.

The problem of efficiency in a path-finding algorithm revolves around two

key aspects, runtime and path length [75]. Generally, there is a trade-off

between minimising the length of a path and minimising the runtime of the

algorithm, as the two goals are antithetical. Using a best-first search strat-

egy to prioritize the expansion of the most promising path, RPF wishes to

strike a balance between runtime and path length. The best-first search al-

gorithm expands the most promising paths first, allowing for the algorithm

to converge to a solution quickly. Subsequently the algorithm attempts

to shorten the paths that have reached the goal based on their heuristic

length, expanding the most promising one first. When a path has been

validated as having line-of-sight between all its subsequent node pairs, the

resulting path will have the shortest length.
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4.2 A recursive approach

In order to identify some of the issues that an efficient path-planner should

attempt to address, let us imagine a naive approach to an RPF variant

illustrated in Algorithm 8.

Algorithm 8 Naive Recursive Approach

1: function RecursiveRaySearch(sstart, sgoal, side)
2: pnext ←MoveInStraightLine(sstart, sgoal)
3: if pnext = sgoal then
4: return ′′path found′′

5: else
6: cornerleft ← FollowWallUntilCorner(LEFT )
7: cornerright ← FollowWallUntilCorner(RIGHT )

8: if ∃ cornerleft then
9: RecursiveRaySearch(sstart, cornerleft)

10: RecursiveRaySearch(cornerleft, sgoal)

11: if ∃ cornerright then
12: RecursiveRaySearch(sstart, cornerright)
13: RecursiveRaySearch(cornerright, sgoal)

14: return ′′no path found′′

The algorithm can be thought of as a series of paths racing towards a

goal, with each path behaving similar to individual bug algorithms. A

path travels towards a target until it encounters an obstacle, after which it

generates a clone of itself and they both perform wall-following in opposite

directions, one tracing the obstacle on the left-hand side and the other

on the right. Each bug traces the obstacle boundary until it identifies a

“corner”, after which two new searches are performed, one attempting to

travel from a start node to the corner node and from the corner node to a

target node. This process is repeated recursively until either a search fails

or a path is found between all node pairs in the recursive stack, in which

case a path solution exists between start and goal.

Given a finite distance between start and goal positions, and a goal isolated

inside an enclosure with finite bounds, no solution exists in attempting to
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reach the target (e.g. goal is inside a locked room). In a virtually infi-

nite search space, heuristic path-planning algorithms such as those in the

A* family, will exhaustively explore the connected nodes of the free space,

which negatively impact runtime. Bug algorithms avoid this drawback, as

termination conditions can stop the search of a bug after, for example, the

bug travels along the outer perimeter of an obstacle, creating a cycle in its

path. Bug algorithms that alternate wall-following directions may allow

more than one pass but eventually terminate because of the aforemen-

tioned condition. Ideally, a path-planning strategy would be able to take

advantage of desirable properties from both bug algorithms and heuristic

path-planning algorithms.

The approach presented in Algorithm 8 has many shortcomings and would

be very inefficient. From an implementation standpoint, the recursive na-

ture of the search algorithm would employ a large amount of resources for

an environment with a complex layout. Also, the algorithm would only be

able to handle simple object geometries, as it does not have a clear notion

of direction and does not guarantee termination. For example, a path could

get stuck in an endless loop inside a “G-shaped” obstacle.

The naive recursive implementation behaves like a depth-first search algo-

rithm [23]. An important drawback of depth-first search algorithms is the

risk of non-termination. Also, the algorithm does not make any attempt to

maintain path tautness, nor prioritise the most promising paths. Because

the search interweaves nodes in the path in a simple manner, if fails to

maintain path tautness. The reason for this is simple. Given three consec-

utive nodes s1, s2 and s3 identified by the search as belonging to a path,

and s1 not having a direct line-of-sight to s2, the recursive call to find a

path from s1 to s2 can identify a hypothetical node s′1 that has a direct

line-of-sight to s3. It such an instance, the taut path (s1, s′1, s3) would not
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pass through s2. For an algorithm to be optimal the tautness of each path

would need to be preserved throughout the search. Related to this issue,

assuming that the algorithm identifies s2 and afterwards identifies s3, if s1

has a line-of-sight to s3, allowing the algorithm to proceed would pollute

the search. Searching for paths between the node pairs (s1,s2) and (s1,s3)

would not be conducive to an optimal path as it would not need to pass

through s2.

Depth-first search solutions can suffer from a termination problem. Let

us consider a number of thought experiments. Given an infinite search

space, the naive algorithm presented here would exhibit this fault. A simple

thought experiment makes this evident. Consider a scenario in which a

wall blocks the line-of-sight between the start and stop nodes, and which is

bound at one end but extends infinitely in the opposite direction. For such

a configuration, Algorithm 8 could potentially run forever if attempting to

follow the wall in the unbound direction. The solution to the termination

problem is such that, rather than allowing a path to search exhaustively,

multiple paths can search alternatively in different directions, prioritising

based on the current best guess (heuristic estimation) of a path’s cost.

In essence, the solution is to manage the paths using a best-first search

expansion strategy.
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4.3 The Ray Path Finder Algorithm

The concept of Best-first search is one of the most studied topics in path-

planning and has been around for decades. Strategies for Best-first search

have been discussed in [21], [76], [77], [78] to name a few. In its most general

form, Best-first search is an informed graph search algorithm which uses

a heuristic cost function to expand the most promising nodes first. Best-

first search has the advantage that, if it reaches a dead-end node, the

algorithm continues to expand other nodes [79]. The A* algorithm is also,

in essence, a Best-first search algorithm, but it distinguishes itself by taking

into account the cost-distance already travelled in addition to its heuristic

estimate towards the goal [21].

Ray Path Finder, the proposed algorithm, employs a best-first search strat-

egy, but rather than applying it to grid nodes, it applies it to individual

paths. RPF selects the path which looks to be the most promising with re-

spect to its assumed length and explores it first. In essence, the algorithm

races multiple bug-like paths towards the final goal, until an obstacle in

encountered or the goal is reached. If an obstruction is detected, the path

splits in two, and they begin to trace the obstacle’s boundary in opposite

directions, until they are allowed to move in the direction of the final goal.

The order in which the racing paths are expanded is based on their pre-

sumed length and distance to the goal node, while operating under a free-

space assumption. A path is populated with nodes only found on obstacle

boundaries and which break the triangle inequality and, as such, would

undermine the free-space assumption between nodes. Until a path reaches

the final goal, the nodes are optimistically assumed to have line-of-sight,

with a heuristic cost function described by Equation 4.1:
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H(π) =
n−1∑
i=1

D(si, si+1) +D(sn, swall) +D(swall, sstop) (4.1)

where π is the path, sstop /∈ π and n = index Of (sinterStop).

After a path has reached the goal by moving around obstacle boundaries,

the algorithm re-evaluates the path’s free-space assumption by performing

line-of-sight checks between its pairs of consecutive nodes. The heuristic

cost function for paths that have reached the goal is described by Equation

4.2:

H(π) =
m−1∑
i=1

D(si, si+1)+D(sm, swall)+D(swall, sn)+

p−1∑
j=n

D(sj, sj+1) (4.2)

where π is the path, sstop ∈ π, m = index Of(sinterStart),

n = index Of(sinterStop) and p = index Of (sstop).

The pseudo-code for Ray Path Finder is presented in Algorithm 9. Let us

consider Figures 4.1, 4.2 & 4.3 as examples to illustrate the behaviour of

the algorithm.

In the initialisation phase, the main function of the algorithm creates a

path with a randomly chosen initial side, either left or right. The choice

of side is inconsequential, as any child path will have an opposite side to

its parent, thus having exhaustive coverage. For simplicity, the initial path

is selected as being left-bound and its state is set to RAY CAST , under

the assumption that the path can travel in a straight line towards the goal

(Line 6).

The main function acts as a best-first search algorithm, prioritising the

path that is so far assumed to be the shortest. It does this by employing

a priority queue which orders the paths in order of their assumed lengths,

from shortest to longest (Line 7). As the paths are expanded and gradually
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populated with nodes, their heuristic costs are updated, which modifies

their order in the queue.
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sgoal

Left-right-bound path Blocked cell

Figure 4.1: Spiral path example: Alternating directions (left-right-bound
first, right-bound second)

The initial path that was created is inserted into the queue, after which

the main loop is entered (Line 9). The while loop polls the priority queue,

extracting the most promising path, until all paths are exhausted. The

selected path is asked to perform an action based on the state in which

it finds itself, in our case, RAY CAST . Referencing Figure 4.1, the path

moves in a straight line from F2 until it encounters an obstacle at F4,

at which point its state changes to HIT WALL (Line 43) and the new

state is returned to be handled by the main function, by the switch case

statement. At this stage, a new path is created, which splits off in an

opposite direction (i.e. right-bound path in Figure 4.2), and which is also

placed in the queue (Line 27). After the paths have been split, their state is

changed to FOLLOW WALL, and the loop reiterates. In F4, the cost of
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both paths (left-bound path in Figure 4.1 and right-bound path in Figure

4.2) is equal and will remain as such, with the priority queue expanding

them alternatively until they reach J12 and B12, respectively, at which

point the left-bound path, being the shorter one, will gain an advantage.

While both paths can reach the goal and their constituent nodes have line-

of-sight between them, the right bound path’s heuristic cost estimate will

prove longer than that of the left-bound path and, as such, the path will

be taken out of the priority queue (Line 17).
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Figure 4.2: Spiral path example: Right-bound path

Switching our focus to the left-bound path (Figure 4.1), The wall following

procedure is performed until the path reaches I13, at which stage, the path’s

state is switched back to RAY CAST , and the path moves towards the

goal. It, however, encounters an obstacle at H12, at which point a new

path is created, with a right-bound direction (Line 27). The original left-

bound path, after wall-following through B12, B4, would intersect itself
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in J4, becoming UNREACHABLE and will be discarded by the main

loop (Line 24). As such, we continue instead with the new right-bound

path (blue line in Figure 4.1), which is conducive to a solution. At H12

the path traces the obstacle and identifies H6, D6 and D9 as corners and

adds them to the path, after which it reaches the goal and changes state

to GOAL FOUND. Similarly, the right-bound path (red dashed line in

Figure 4.2), added to the queue when the obstacle was encountered at F4.

Following the contour of the obstacle, it discovers nodes B4, B12, H12, H6,

D6, D9 and which point it has a clear line-of-sigh to the goal. Although

the path would have line-of-sight between all its node, because the left-

bound path in Figure 4.1 is shorter, it reaches the goal before the right-

bound one, and its final shortest length would be shorter than the heuristic

length of the right-bound path, Line 17 would remove the right-bound

path before it is cleared. The function invoked for each path in the main

which handles the state of each path (Line 33) delegates which subroutines

are required by the different states of the path. Consider Figure 4.3 as

reference. The figure presents a “G-shaped” obstacle with start node at

H5 and goal node at H9. The main loop of the algorithm initiates the

search by inserting a left-bound path to the queue, and, in the while-loop

calls the HandleNextState function on the path with a RAY CAST state.

The switch statement is entered and activates the test at Line 36. The line-

of-sight function (Algorithm 5) is invoked with parameters sinterStart, sgoal.

At this state, the only node in the path is the start node and, as such,

sinterStart ≡ sstart. For Figure 4.3, sinterStart = H5, and sgoal = H9. As

the nodes do not have a line-of-sight between them, the else branch is

activated and the state is set to HIT WALL (Line 39), and the function

returns control to the main. On the next call, the algorithm enters the

branch at Line 48, and updates swall and sfree, the parameters requires

for the wall following procedure with the points of intersection with the
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Figure 4.3: Left-bound and right-bound paths for start-node in G-shaped
object

obstacle returned by the LineOfSight function. The state is updated

to FOLLOW WALL, so that, at the next call to the function, Line 47

can invoke the wall following procedure on the path. For Figure 4.3, in

the first instance, let us assume that the grey cross-hatched cells at at

G8 and G9 are free. As such, the right–bound path (marked with a red

dashed line) is expanded before the left-bound one, traces the contour of

the obstacle, discovering the path nodes G5, F5, and finally, F8, after which

its state is changed to RAY CAST once more. As there exists a line-of-

sight to sgoal from F8, the test at Line 36 succeeds and Line 37 sets the

state to GOAL FOUND and the method returns. Because the goal has

now been found, the next call to the function activates the branch at Line
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40, which iterates over pairs of nodes in the path. For each node pair

(si, si+1), the line-of-sight procedure is invoked (Line 42), to check the

free-space assumption. If a line-of-sight test fails, the for-loop terminates

early, returning the state as HIT WALL. Because the right-bound path

in Figure 4.3 has line-of-sight between all its nodes, all iterations of the

for-loop succeed and the state is set to CLEARED (Line 45) and the

function returns normally, allowing for the removal of the path from the

queue, storing its final length. The longer left-bound path (blue line in

Figure 4.3), on its way to sgoal will at some point provide a heuristic length

that is longer than the stored final length of the right-bound path (Line

17), and will be removed from the queue as it would not be able to provide

a shorter solution.

The wall-following strategy at Line 53 traces along an obstacle’s boundary,

identifying potential heading changes, and adding it to the path. It does

this by repeatedly applying the contour-tracing function (Algorithm 4),

until a new free node is identified on the boundary. Let us consider the

case in which the cell-tiles at G8 and G9 in Figure 4.3 are not free. The

right–bound path would instead trace the obstacle’s wall from F5 East–

bound to F11, and North–bound onto K11, at which point it would leave the

map (Line 56), and the path’s state is set as UNREACHABLE. Thus,

the only other path left in the queue, the left-bound one (blue path in

Figure 4.3) is expanded and reaches the goal.

Lines 61 & 64 handle the cases for when a goal or inter-goal lie on the

obstacle’s edge and are encountered by the contour-tracing algorithm. Line

67 examines a path for redundancy (Section 3.7), making it unreachable if

it follows an obstacle’s boundary in the opposite direction than the one it

had when it first passed through sinterStart. Line 70 address self-intersecting

paths (Section 3.8) which are also unreachable. After the node that passes
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these tests, the algorithm is allowed to proceed and evaluate it as a possible

candidate in the path. If a corner node is identified (Line 73), it needs to

be added to the path. Its placement in the path depends on whether

the path had previously reached the final goal or not. For a path that had

previously reached the goal, and is in the process of verifying the free-space

assumption between its nodes, the newly identified corner is placed after the

inter-start node (Line 75). In other words, the free-space assumption was

wrong and the path does not have line-of-sight between the two consecutive

nodes under examination (i.e. sinterStart and sinterStart+1), in which case,

the newly identified corner lies on the obstacle boundary that breaks the

line-of-sight. For paths that are ray-casting towards the goal (i.e. from

sinterStart to sstop), the corner is simply appended at the end of the path

(Line 77). For both cases, the new corner now becomes the next node from

which the search continues (Line 78). After each change in the structure

of the path, the path is pruned in order to maintain its tautness (Line 79).

This procedure ensures that a path can, at any stage in the search, provide

the most optimistic score based on free-space assumption, to ensure an

admissible heuristic. This, in turn, allows for the most promising path to

be expanded first. Finally, if a path’s direction tracker (i.e. turn count –

Section 3.5) allows it to abandon following an obstacle’s boundary (Line

80), its state is changed to RAY CAST and the path can travel in a straight

line towards the goal (Line 36).
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Algorithm 9 Ray Path Finder

1: function Main(sstart, sgoal)

2: pathQueue← ∅ . paths are ordered from shortest to longest

length

3: clearedPathQueue← ∅
4: shortestLength←∞
5: state← RAYCAST

6: path← Path(sstart, sgoal, state, LEFT )

7: pathQueue.Insert(path)

8:

9: while pathQueue 6= ∅ do

10: path← pathQueue.Peek()

11: state← HandleNextState(path, state)

12:

13: switch state do

14: case GOAL FOUND :

15: UpdateLength(path)

16: case FOLLOW WALL :

17: if Lenght(path) > shortestLength then

18: pathQueue.Remove(path)

19: case CLEARED :

20: if Lenght(path) < shortestLength then

21: shortestLength← EucledianLenght(path)

22: pathQueue.Remove(path)

23: clearedPathQueue.Insert(path)

24: case UNREACHABLE :

25: pathQueue.Remove(path)

26: case HIT WALL :

27: pathQueue.Insert(path.SplitPath(path.side.opposite))

28:

29: if clearedPathQueue.isEmpty() then

30: return “no path found”

31: else

32: return clearedPathQueue.Pop() . retrieve shortest path from

front of the queue
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Ray Path Finder: Continued

33: function HandleNextState(path, state)

34: switch state do

35: case RAYCAST :

36: if LineOfSight(sinterStart, sgoal) then

37: state← GOAL FOUND

38: else

39: state← HIT WALL

40: case GOAL FOUND :

41: for i← 1 to path.size− 1 do

42: if ¬ LineOfSight(si, si+1) then

43: state← HIT WALL

44: return state

45: state← CLEARED . Path cleared; potential solution;

can be removed from list

46: case FOLLOW WALL :

47: path.FollowWall(path.side)

48: case HIT WALL :

49: swall ← sintersect
50: sfree ← spre intersect

51: state← FOLLOW WALL

52: return state
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Ray Path Finder: Continued

53: function FollowWall(path)

54: do

55: sfree ← TryNextNeighbour(swall, path.side)

56: if sfree = ∅ then

57: state← UNREACHABLE

58: return . Path out of bounds

59: while ¬ IsFree(sfree) . Find the next free neighbour on the wall

60:

61: if sfree = sgoal then

62: state← GOAL FOUND

63: return . Goal is on obstacle edge

64: else if sfree = si+1 then

65: state← GOAL FOUND

66: return . Internal goal on obstacle edge

67: else if sfree = sinterStart ∧ Side(sfree) 6= Side(sinterStart) then

68: state← UNREACHABLE

69: return . Redundant path: hit side of obstacle and backtracked

70: else if sfree ∈ path then

71: state← UNREACHABLE

72: return . Node already in path. Path is looping

73: else if IsCorner(sfree) then

74: if sstop ∈ path then . Path has already reached the end

75: path.InsertAfter(IndexOf(sinterStart), sfree)

76: else

77: path.AddLast(sfree)

78: sinterStart ← sfree
79: path.Prune(sinterStart)

80: if path.IsOnDirection() then

81: state← RAYCAST

82: return . Resume going in straight line

The extensive line-of-sight checks performed by algorithms such as Theta*

can have a cumulative effect of slowing down the search. While Breshen-

ham’s line algorithm is not an expensive one, given a large enough search-

space, it can still affect performance when compounded by the overhead of

the search-algorithm itself. We advocate for a minimal use of Breshenham’s

line algorithm, and operate with a free-space assumption instead. This re-

sults in two use-cases for the line-of-sight algorithm. If the first instance,
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before a path reaches the final goal, line-of-sight is only performed when

travelling in a straight line towards the final goal, and assuming free-space

when identifying heading changes on obstacle boundaries. In the second

instance, after a path has reached the final goal, line-of-sight is performed

between consecutive node pairs in the path. This verifies if the free-space

assumption between heading changes that the algorithm has made is cor-

rect. Those node pairs in the path for which a line-of-sight checks fails, are

handled performing a sub-search using the same wall-following strategy and

free-space assumption strategies.

Because the algorithm only performs line-of-sight checks between the last

node in the path and the final goal until the path has reached the final

goal there is no way to verify the assumption that there are no obstacles

between any two nodes of the path. Additional line-of-sight checks may

results in non-taut paths that would have to be considered for expansion,

but which would not necessarily be conducive to a solution. Such paths

would not only be unnecessary but, from an implementation point of view,

would also increase resource demands, and negatively impact performance.

The screen-shot of RPF in action, illustrated in Figure 4.4, presents how

the algorithm makes use of the line-of-sight algorithm. The yellow lines

represent the line-of-sight expansions that the algorithm performs for the

illustrated configuration. The only additional line-of-sight casts performed

are those between the final nodes of the path that has reached the goal

(masked by the green line in Figure 4.4), to assess if the path is clear. As

can be observed, in this instance only fifteen line-of-sight expansions are

sufficient for Ray Path Finder to arrive to a solution.
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Figure 4.4: Example of minimal line of sight checks

Left-bound paths Right-bound paths
Line-of-sight casts Final shortest path solution

Start node Goal node

4.4 Path updating

For specific topologies, an additional step is required to prevent a path

from erroneously leaving the edge. Consider the configuration presented

in Figure 4.5. Let us explore the right-bound path that travels from sstart

at H5 to sgoal at E13. The path encounters an obstacle at G8 and traces

the edge of the obstacle until if finds the corner node at F6. Nodes F6 and

F7 break line of sight with sstart. Thus, F6 is added to the path as s1. As

F7 is on the left side of −−−−→s1, sgoal and the number of turns is negative, the

path is allowed to leave the edge and travel in straight line towards sgoal.

It encounters another obstacle at cell F11. From this step, following the

left-bound path traditionally yields three more corner paths s2, s3 and s4

at K5, L5 and L12 respectively. The problem is evident, in that the path

does not have a line of sight between s1 and s2. Even if that were not the
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case, a path that would pass through sstart, s1, s2, · · · would not be taut.

Node s1 would also not be pruned from the path as it violates no criteria to

do so. One possible solution would be to purge s1 and allow the algorithm

to rediscover it when clearing the path, but this could prove inefficient and

wasteful. The solution found for this problem is to perform an additional

test that checks if the cell shared by the sinterStart node (s1 in our example)

breaks line-of-sight with the node on the opposite wall. When tracing the

obstacle on the left-side, the path arrives at G11 and the (G6) cell now

blocks the “potential” line-of-sight from s1. To address this, a variation on

the FollowWall function in Algorithm 9 is applied, which involves tracing

the contour of the obstacle from the sinterStart on the opposite side (right-

bound: marked in red in Figure 4.5) to the explored path (left-bound:

marked with blue). Similar to the original FollowWall, the wall-following

adds nodes to the path and stops when the updated path (red), under the

free-space assumption, is optimistic that the newly discovered corner node

has a line-of-sight to the node on the opposite wall. Applying this strategy

to the example in 4.5, path follows wall, on the opposite side, from s1 to

G9, identifies s′2 as the next valid corner and adds it to the path as a right-

bound corner. The normal path tracing resumes until K8, when the cell at

G8 now blocks the line-of-sight from the new sinterStart node (s′2). Tracing

starts from s′2 until s′3 is identified as a new corner node with possible line

of sight to K8. At this stage, there are no more issues and the algorithm is

allowed to continue normally, identifying s2, s3 and s4 as corners, resulting

in the path {sstart, s1, s
′
2, s
′
3, s2, s3, s4, sgoal}.
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Figure 4.5: Corner updating example: path crosses over at (F11); nodes
(F9) and (J9) are appended to the path before (K5) and (L5)



4.5. Limitations 135

4.5 Limitations

One important issue that remains unaddressed by the current implementa-

tion is that of underestimation of path heuristic lengths for certain topolo-

gies. This drawback impacts the performance of RPF, due to the algorithm

performing extensive searches along “inward” paths. These circumstances

can arise for paths that intersect an obstacle’s interior contour when the

search-space is bound by it. The class of problematic configurations can be

illustrated through a representative example in Figures 4.6 & 4.7. Firstly,

with Figure 4.6, we follow the path conducive to a solution and contrast

it with the “inward” path Figure 4.7. The nodes are labelled in the or-

der of their discovery. The left-handed path initiates travel from the start

node at D10 towards the target at J10, but encounters the inner bound-

ary at E10. Tracing the edge, it discovers two corner points, s1 and s2

which are appended to the path. After it leaves the wall at s2, it encoun-

ters the obstacle again. The right-bound path (coloured red) is dropped

as it is redundant, i.e. it intersects left-sided node s2 from the right side.

The left-bound path resumes wall-tracing, while first back-pruning s2, and,

afterwards, s1. It discovers node s3 at E4 and s4 at I4 after which it

can leave the wall and finds a line-of-sight to sstop. At this stage, the

path in question is {sstart, s3, s4, sstop}. The path has reached the goal,

and attempts to check if the first node pair (sstart, s3) is clear. Line-of-

sight to s3 is blocked by the cell at E7. Following the right-handed child

path, the nodes s5 and s6 are discovered. At this stage, the path becomes

{sstart, s5, s6, s3, s4, sstop}. In the previous to last steps, the left-handed

child path rediscovers s1, attempting to clear (sstart, s5), which it reinserts

into the path (according to Lemma 3.2). Lastly, when clearing (s6, s3), the

left-bound child path discovers node s7 at the E5 corner. The final solution

is, thus, {sstart, s1, s5, s6, s7, s3, s4, sstop}.
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Figure 4.6: Underestimated heuristic length example – left–bound path

If left unchallenged, the left-bound path would reach the goal and the search

would terminate with a solution. Unfortunately, the right-bound path does

not allow this to happen. Let us explore this problematic scenario and its

cause with the aid of Figure 4.7.

Exploring from the intersection at E10, the right-bound path (blue dashed

line) splits off from the left and follows the contour from E10, through

E12, C12, C8 and, after reaching G8, it identifies the vertex as a corner,
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adding it to the path as s1. The next corner, s2 is found in the next

step. The path continues through C7, C3 and reaches H3 at which stage

s2 is pruned from the path. By the time the right-bound path reaches K8,

marked by swall, both previously identified corner nodes s1 and s2 have

been pruned from the path. The path does not possess any information

regarding the free-space it hasn’t explored, and, as such, assumes to have

line-of-sight from sstart to swall. From the right-bound path’s perspective,

the tiles marked by grey cross-hatch are assumed to be hypothetical free-

space. Under these assumptions, the next step for swall would be from

K8 to L8, which would be identified as a path corner. As such, the hypo-

thetical path {sstart, L8, L2, B2, B13, E13, sstop} (demarcated by the dotted

green line in Figure 4.7) presents the maximum consistent heuristic length

estimate. Because the path only computes its heuristic length based on

the nodes it contains, it instead greatly underestimates the distance as be-

ing {sstart, swall, sstop}. This has the consequence that the path is greedily

prioritized over the left-bound one. The path is eventually terminated,

considered to be locked-in, but not before looping over the interior contour

a second time. Given more complex topologies that lead to similar situa-

tions, numerous locked-in paths could be generated, which would result in

a slowing down of the algorithm’s performance.
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Figure 4.7: Underestimated heuristic length: exploring right-bound path
(blue dashed line) from sstart to swall; corner nodes s1 and s2 are pruned
before path reaches swall; in swall path assumes line-of-sight from sstart
(hypothetical free-space grey cross-hatch tiles); green dashed line – ideal
heuristic length estimate of path from sstart to swall passing by swall

To the author’s knowledge, there exists no information on the number of

scenarios from the Moving AI database [70], which can present the afore-

mentioned problematic configuration, and performing such an evaluation

may not prove feasible. Because of this limitation, the algorithm’s per-

formance may be negatively impacted and addressing the issue could po-
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tentially boost the performance of the algorithm. Some possible solutions

are considered for discussion, but are left for future research. One such

solution would be to keep track of an “inner path” that wraps an ob-

stacle’s boundary at inner corners (rather than outer corners). For the

example in Figure 4.7, the inner path is described by {E12, C12, C3, K3, K8,

which would represent a better approximation for the heuristic length of

the path. Such a solution has not been implemented as of this writing.

This limitation can compromise the completeness of the algorithm, as the

heuristic estimation for the path sstart, swall grossly underestimates its cost,

which prioritises these types of paths before others. In practice, scenarios

like these can result in long search times. A time-out functionality was

introduced to mitigate this problem, but the increase in search time can

negatively impact the performance metrics of RPF (Chapter 5).

Additional in-depth knowledge of the environment can also benefit the algo-

rithm. If a preprocessing step can, for example, uniquely identify individual

obstacles in the search space, the algorithm could potentially avoid some

bifurcations that would result in redundant paths when re-encountering

the edge of the same obstacle. Additionally, if the start and stop nodes

belong to a free-space region that is bound by the interior boundary of

an obstacle (e.g. outer walls of a house delimiting the interior), similar to

Figure 4.7, then, recognising the obstacle as bounding the free-space can

be exploited. It is evident that following the edge would not be conducive

to an optimal solution, in much the same way that following the exterior

walls of a house from inside the house (without ever exiting) would be a

redundant search, in that one would either end up back at the starting

point or, at best, would find the goal through a path that is topologically

equivalent to the optimal one, but with a far greater cost of travel. In the

example illustrated in Figure 4.7 and assuming knowledge of the bounding

obstacle, simply intersecting the outer bound at E10 is insufficient to iden-
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tify the direction of travel conducive to the solution. However, identifying

the interior corners stretching the convex hull of the boundary (i.e. vertices

C3, C12, K3, K12, and potentially C7, C8, E12, F12, H12, I12) would allow for

a rapid termination of the east-bound path (when reaching either C12 or

E12). Such a preprocessing procedure can prove useful even in robotics ap-

plications operating in dynamic environments as changes to the topology

of the outer boundary are far less likely to happen in realistic environments

(e.g. exterior walls don’t change often).

4.6 Algorithm properties

4.6.1 Multiple path solutions

If the algorithm is allowed to run longer, beyond having found a shortest

path it can generate multiple alternative paths, if such paths exist and

given that in its expansion RPF has encountered sufficient obstacles. This

behaviour is trivial to implement and the only modification needed for

Algorithm 9. The conditional statement at Line 17 presents an extra test,

becoming:

if (path.length > shortestLength) ∨ (desired > size(clearedPathQueue))

where desired corresponds to the number of desired paths to search. This

unfortunately, is not enough to guarantee that the alternative paths founds

are unique (don’t overlap), nor that the target number of solutions can be

reached.

Examining the paths found by RPF in Figures 4.8 & 4.9, one should remark

that the multiple solutions found by the algorithm. In both scenarios, a

number of 4 paths were requested. However, for the configuration in Figure

4.8, only 3 paths are identified. While a 4th path can be visually recognised
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Left-bound paths Right-bound paths
Line-of-sight ray-casts Final path solutions

Start node Goal node

Figure 4.8: Screen-shot of multi-path solutions found by RPF

as passing south-bound of the obstacle {295, 296, 297, 265}, none of the

paths of the algorithm ever encounter the obstacle and thus the path is

never explored. This also implies that with the exception of the shortest

path solution, the alternative paths are not discovered in ascending order

of length, but rather as simple by-products of the root path branching off

when it encounters obstacles.

Taking the example in Figure 4.9, a slight modification to the topology in

the for of an obstacle at {235, 267} allows the algorithm do discover the

requested number of paths, while the south-bound path also takes priority

as solution when the obstacle is discovered by the intersection at cell {265}.

Multi-path solutions found by RPF can be used if one wishes to consider

alternative routes. This can be desirable to avoid congestion if multiple

agents or AI characters in a game navigate together towards a target. A
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Figure 4.9: Screen-shot of alternate multi-path solutions found by RPF

post-processing stage can analyse paths based on criteria other that short-

est length. For example, it can provide longer paths that prioritize fewer

heading changes or low steering angles, such as S-Theta* [80]. Inflating

the space around path trails can allow for clearing the minimum width and

directing agents through different paths based on width or momentum, for

example. Multiple paths may also be useful if one desires an algorithm ca-

pable of replanning, such as D* [81]. Given A mobile robot that discovers

its planned path blocked by dynamic changes in the real-world environ-

ment, would be able to choose an alternate with very little replanning. If

alternative paths are stored in memory while the robot moves towards a

goal, it would require replanning only in switching from the blocked path

to the new path, or by updating its map and performing a new search be-

tween its current location and the next expected heading change, similarly

to clearing a path section – Line 42 in Algorithm 9.
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4.6.2 Any-time nature

There are algorithms that provide any-time suboptimal solutions by in-

flating the heuristic cost. For example, Any-time A*, also referred to as

ARA* [82], is a variant of A* that can provide any-time solutions to a

path-finding problem even when it is interrupted before completion. It,

however, achieves this by executing A* multiple times with decreasing cost

functions and using the information from previous searches to minimise the

length of the path.

An intriguing property of RPF is that, as a best-first search algorithm, it is

an any-time algorithm, as it can provide a suboptimal solution before the

algorithm completes. If a solution exists, the algorithm will have arrived

at the goal node prior to arriving at a shortest path solution. The initial

suboptimal path would consist of the segments described by the line-of-sight

checks and the obstacle-adjacent nodes that trace the edge of the obstacle

from the intersection node to the tangent node where the path abandons

the object boundary. The reader must note that RPF does not explicitly

assign parents to nodes (i.e. it only maintains lists of indices and their

sidedness). Having nodes pointing back to their parents is characteristic

that would be required if one were to retrace a suboptimal solution back

to the origin, as is the case for the algorithms in the A* family. Enabling

such a behaviour in RPF can represent an alternate avenue of research.

Accounting for and providing suboptimal solutions would incur an overhead

that may impact performance. Availability of any-time solutions presents

with a trade-off in respect to time and memory, as each path would require a

separate structure to keep track of additional nodes. However, committing

any-time suboptimal solutions to memory can be desirable in certain cir-

cumstances. For example, let us consider a hypothetical scenario in which

RPF is implemented on a ground robot as an iterative life-long optimising
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bug algorithm. The robot would, thus, navigate between a start and goal

point a multitude of times, attempting to shorten its path with each trip.

If, after having located its target, the robotic agent navigates back to the

starting position while at also attempting to optimise its current path,finds

itself with a depleted power source and has deviated considerably from the

initial path, either by following a very long or unsuccessful route, its higher

level deliberative layer may choose to not allow it to attempt any more

exploratory behaviour. Instead, it would direct the robot to return via the

already known suboptimal path, which has a known length, and retrace it

to the starting point within a window of safety.

4.6.3 Unknown 2D Environments

The focus of the research for the RPF algorithm is directed towards the

problem of path planning in known 2D environments. However, there is

a related class of challenges when considering path-planning in unknown

2D environments [83], [84], [85], [86]. Navigation for a robotic agent in

known environments implies planning a path, and afterwards executing

it. Inaccurate world models can compromise the validity of a plan (e.g.

locked door, barrier) [15]. In unknown environments, the problem domain

differs in that the robot must transverse its environment without prior

knowledge of a map. Because of this, the navigation strategy is one of

exploration, in which the robot only has information about its immediate

environment through its sensors, and memory of the search-space it had

previously visited.

The Ray Path Finder algorithm is presented as an online, any-angle path-

planning method. Drawing a parallel between bug algorithms and RPF,

the similarities lie in the behaviours of the latter’s paths. However, Ray

Path Finder operates in known environments, meaning that it possesses



4.6. Algorithm properties 145

information on the entirety of the map at the start of the problem, and can

formulate a solution based on this knowledge, before an agent engages in

moving towards its target. A key difference between paths in the RPF al-

gorithm and classical bug algorithms is that paths are allowed to terminate

early, if they are deemed infeasible. A bug algorithm on the other hand

may not terminate until it reaches its target, which implies that the paths

it follows can intersect or loop freely.

While not addressed in this work, some of the strategies presented through

the Ray Path Finder algorithm could, however, be adapted into a bug-like

or multi-bug variant on unknown environments. The problem posed is of

an agent navigating in an unknown terrain with a goal-seeking behaviour

that aims to guide them to the target in the shortest amount of time. One

can envision how such a behaviour would unfold in a real-world scenario.

Let us consider a robotic agent placed in an environment for which it has

no prior information. While navigating in a straight line towards its target,

when the line of sight is broken, the robots reverts back to tracing object

boundaries, pruning and inserting new nodes into its path that it keeps in

memory. While wall following, it could infer that, by tracing the wall in a

specific direction, it is moving too far away from the target, and it could

decide to return to the point of intersection and trace the obstacle bound-

ary by moving in the opposite direction, and repeat this strategy based

on a heuristic estimation. The implemented algorithm has not been opti-

mised for best performance. Due in part to the complexity of the algorithm

relative to other algorithms, such a task can prove challenging. Potential

future improvements (of the principles as well as of the implementation

could further reduce the search-space and improve on run-time. For exam-

ple, if the algorithm posses prior-knowledge about the environment, certain

subroutines can be bypassed, for instance, in the case of an environment

that only contains convex objects, checking for path redundancies becomes
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unnecessary (i.e. any two points on the object boundary would not go out-

side the object, thus a tangent line through any point on that boundary

would not intersect the same object after leaving the object’s edge). An

equivalent bug variant would not employ the methodologies presented for

wall following and boundary departure, but rather rely on sensor informa-

tion. The behaviours of RPF could potentially be imitated by means of a

compass and odometry.

In the case of non-convex objects that the robot may intersect multiple

times while leaving the boundary, a strategy can be envisioned which takes

note of redundant paths presented in Section 3.7. If, after having left an

obstacle’s boundary, it intersects the same obstacle again and begins tracing

the wall in the opposite direction of the previous search, the robot reaches

its previous point of departure from the wall boundary, it can simply revert

back to moving in a straight line towards the target. It, thus, intersects

the obstacle as it did previously, but traces its wall in the other direction

and avoids retracing the redundant path.

Based on RPF’s shortening of a path only after it has reached the goal, a

similar behaviour would allow a robot to optimise its path on successive in-

stance of moving between its start and goal. With a free-space assumption

strategy, the robot can attempt to find a straight line-of-sight between its

successive points of departure from obstacles’ boundaries. If no line-of-sight

exists, the robot may attempt to explore on the side which keeps it close to

the wall boundary, as a free space is guaranteed given that the robot had

previously discovered its lower bound while originally moving towards the

goal. Other strategies on the RPF algorithm for navigating unknown 2D

environments could be thought of, and may make useful additions to the

class of Bug algorithms.
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4.7 Chapter Summary

This chapter introduced the novel path-planning algorithm developed in

this work - Ray Path Finder.

RPF, comes under the class of any–angle path–finding algorithms, applied

within a 2D environment, in which nodes can have as a parent any other

node with a direct line of sight. RPF minimizes the amount of collision

check computations. It looks to connect the least amount of points belong-

ing to a path without breaking the line of sight between them.

For certain topologies however, an additional step is necessary to prevent

the path from mistakenly leaving the edge. RPF is able to provide sub-

optimal solutions before the algorithm completes, also RPF is able to ter-

minate early, not having to backtrack steps. If the algorithm is allowed to

run longer, beyond having found the shortest path RPF is able to generate

multiple alternative paths.

An important issue not addressed by RPF currently, is the underestima-

tion of the path heuristic lengths for certain topologies, and thus impacts

performance of RPF.



Chapter 5

Experimental results

This chapter describes the experimental setup of this work, and the re-

sults which were subsequently obtained. The developed interface, and the

databases which were used are discussed, and analysis of the results acquired

are explored in depth.

5.1 Interface

5.1.1 Graphical user interface

The path planning algorithms has been implemented using the Java Pro-

gramming Language (Java 8). Often, path-planning algorithms can be

difficult to debug, or even implement. The behaviour of an algorithm can

also be challenging to describe or visualise. For these reasons, a graph-

ical user interface (GUI) was constructed to allow for easy development,

integration and testing of path-planning algorithms. The implementation

provides a graphical user interface (GUI) developed using Swing and the

JavaFx platform. The GUI is used for testing and development and for the

visual inspection of solutions and for manual manipulation of grids through

148
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Figure 5.1: Screen-capture of path-planning visualisation tool

user input. A screen-capture of the user interface is illustrated in Figure

5.1.

The application allows for constructing new maps by direct user input (i.e.

clicking, dragging), choices of path-planning algorithms can be selected for

evaluation, as well as visualising solutions. The GUI integrates with the

MovingAI database and allows for saving new maps that follow the same

map data format described in [70].

5.1.2 Synchronisation

The application is implemented on multiple threads of execution, with var-

ious features such as a graphical user interface (GUI), file input/output

operations for loading or saving maps. Multi-threaded applications can

suffer from thread interferences as one thread can randomly pause the ex-

ecution of another, modify resources that are shared between them, etc.

This can result in erroneous timing results and/or memory consistency er-
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rors. As such care must be taken so that other threads do not interfere

with the thread responsible for executing the search, so that algorithms

only get executed in isolation without the possibility of the search being

interrupted from other threads.

To ensure that the path-planning algorithms run reliably without exter-

nalities affecting their performance metrics, a separate worker thread is

allocated the sole responsibility for running the search within a synchro-

nised block of execution which guarantees that when the thread executes

the synchronized function, all other threads which could in any way inter-

fere with the search block, suspend execution until the worker thread had

performed the search.

5.2 Database

Grid-based maps have been used as test-beds for path-planning by a wide

variety of researchers. Furthermore, the paradigm is widespread, having

been adopted in countless video-game developments, or in the form of oc-

cupancy grid maps in the field of robotics, including the ROS platform

[87].

The Moving AI lab [88] is run by Prof. Nathan Sturtevant at the University

of Denver, as is publicly available for download. The database is one of the

most popular databases of 2D grid-maps in the path-planning literature.

The database is often used by state-of-the-art algorithms for evaluation

[55],[50], [51], [89], [83], [25], [57]. It provides a good selection of game

maps and maze maps. Each map is provided with a large set of scenarios

that provide as input map dimensions, the coordinates of the start and

goal nodes along with the optimal length that assumes
√

(2) diagonal cost

and does not allow agents to cut corners through walls. For these reasons,
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the MovingAI map database [88] has been used in this work for evaluating

the performance of the proposed methodology and for comparison against

other algorithms in the literature.

Map examples from the database can be seen in Figures 5.2, 5.3, 5.5, 5.4,

5.6. Baldur’s Gate is a set of 75 maps taken from BioWare’s video-game

Baldur’s Gate II: Shadows of Amn, with a total of 93160 scenarios. The

scaled version of (512 x 512) is used for evaluation. Maps from this game

generally present rooms with large open-space areas.

(a) AR0400SR (b) AR0406SR

Figure 5.2: Sample maps from Baldur’s Gate II

The largest of the four games in the database, BioWare’s role-playing game

Dragon Age: Origins consists of 156 maps ranging in size from 30 x 21

to 1104 x 1260, with a total of 159465 scenarios. Maps from the game

are generally large is size, with long connected “corridor-like” regions and

intricate topologies.
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(a) hrt201d (b) lak100d

Figure 5.3: Sample maps from Dragon Age: Origins

The popular military sci-fi game from Blizzard Entertainment, Starcraft,

has 37 map with a total of 97650 scenarios. Starcraft maps are generally

large with dimensions of 512x512 and above, and present with large regions

of connected free-space.

(a) BlackLotus (b) Inferno

Figure 5.4: Sample maps from Startcraft

Maps from the popular video-game franchise Warcraft III total 36 with a

scenario number of 45101. Most similar to Starcraft in terms of topology.
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(a) riverrun (b) thecrucible

Figure 5.5: Sample maps from Warcraft III

The Mazes database offers a set of closed mazes with fixed corridor widths

ranging from 32 cells wide to 2 cells wide.

(a) maze512-32-1 (b) maze512-2-0

Figure 5.6: Sample maps from Mazes

The experimental evaluations use 391 maps, with a cumulative number of

scenarios of 562170. Additionally, the maps are also used at double the

original scale presented in the database. The numerical breakdown of the

database is presented in Table 5.1.
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Table 5.1: Map Database: Games & Scenarios

Mazes 32W Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Total

Maps 10 75 156 37 36 314

Scenarios 60670 93160 159465 97650 45101 456046

Inputs Blocked 0 0 0 0 2446 2446

Double Corners 0 0 80 3 17 100

Invalid Scenarios 0 0 80 3 2463 2546

For simplicity, the algorithms imposes two restrictions on the global start

and global goal vertices, namely that their corresponding grid-cell (vertex

at upper left corner of the observed cell) must be unoccupied (consistent

with the map database used for evaluation) and, that neither vertex can

be a double-corner (scenarios from the database that don’t respect the re-

striction are ignored for all evaluated algorithms). Each scenario from the

Moving AI database provides metrics and restrict corner-cutting (i.e. cross-

ing between two diagonally adjacent blocked grid-cells). For this reason,

cutting corners is disallowed in all evaluated algorithms.

The rejected scenarios total 2546 in number, for a total number of 453500

valid scenarios.

5.3 Experimental results

5.3.1 Introduction

The current section presents results for metrics collected from a number of

implemented algorithms. For comparison with other methodologies in the

literature, five algorithms have been implemented or adapted for data col-

lection. All the algorithms presented perform single source path-planning

on 2D uniform-cost octile grids. The search agent is treated as a point

object with no holonomic constrains, meaning that it can travel in any
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direction, unrestricted. Each algorithm performs a total number of 453500

searches, with the scenarios spread over 314 maps from the MovingAI

database (presented in Table 5.1 of Section 5.2).

The first two algorithms are the standard benchmarking algorithm A* and

its post-processing variant, A* with Post-Smoothing. Both algorithms use

an octile heuristic for distance estimation. DOctile (Equation 1.9) is a con-

sistent heuristic for 2D grids with 8-neighbourhood connectivity, in which

orthogonal movements have a step cost of 1 and diagonal steps have a

cost of
√

2. A second any-angle algorithm after A* with Post-Smoothing,

Theta*, was selected for implementation due to its near-optimal path solu-

tions. Results from literature ([56], [55], [4]) suggest that Theta* provides

a good trade-off between runtime and path length, by finding near-optimal

paths that are shorter than the ones found by A*, and which look more

realistic (i.e. have fewer heading changes outside of those around obsta-

cle corners) while incurring a slight increased runtime relative to A*. The

Anya algorithm is a recent addition to the any-angle path-planning family

of algorithms. It is also the first to be optimal, finding true shor. Two im-

plementations of the Anya algorithm have been integrated into our exper-

imental setup. The first Anya algorithm version is implemented by Oh et

al. [27] and available at [90]. The second version of Anya is implemented by

its original authors, Harabor et al. and described in [24], [25]. The source-

code is made public at [60]. We label this version as Anya(Harabor et al.)

to distinguish it from the version introduced by Oh et al. [27]. As grid-

based any-angle algorithms, Theta* and Anya search over grid nodes but

are not bound to move on grid edges. As such, both Theta* and Anya use

the Euclidean distance (DEuclidean – Equation 1.10) as their heuristic esti-

mation function. Finally, the novel path-planning methodology proposed

in this work is implemented in two variations: the original implementation

of RPF (labelled RPF On Cells) which operates on cell centres (using the
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grid-map tiles as nodes as opposed ), and the latest implementation of the

algorithm which operates on vertices. Both versions of the algorithm are

any-angle path-planning algorithms and use Euclidean distance (DEuclidean

– Equation 1.10) as the heuristic for distance estimation.

The experiments presented are performed on a 2.9GHz Intel Core i7 ma-

chine with 8GB of RAM running Windows 10.

A number of different metrics are considered for the evaluation of our al-

gorithms:

• path length - the sum of the Euclidean distance for each pair of nodes

belonging to a path that connects the start and goal nodes;

• run-time - the elapsed time between initiating the search for a path

and reaching a solution;

• nodes expanded - the number of nodes within the search-space that

the path-planning algorithm visits during a search;

• heading changes - number of nodes from start to goal in which the

path changes its direction;

• memory usage - the amount of RAM memory that a path planning

requires to perform the search;

The following sections describe the metrics and present the experimental re-

sults of the selected path planning algorithms. The experiments have been

conducted on the popular maps from the MovingAI database (see Table

5.1 from Section 5.2). The experimental results informs us about the per-

formance of our novel path-planning algorithm, Ray Path Finder, against

the current state-of-the-art algorithms. A discussion on the implications of

the results vis-a-vis the competitiveness and applicability potential of the

algorithm follows in Section 5.4.
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5.3.2 Path length

Solving the shortest-path problem has been a main focus of much of the

research in the path-planning field. Path length is a key metric in establish-

ing an algorithm’s dominance. Minimising this metric implies converging

towards the optimal solution. For a game character, shorter paths improves

the perceived intelligence of the character. For a robotic agent, finding a

shorter path has many benefits. Among them is the reduction of energy

expenditure and increased battery life, as the robot would travel shorter

distances. Additionally, it would limit the wear and tear of the platform.

Table 5.2 summarises the average path length data collected over five maps

from the MovingAI lab database by the aforementioned algorithms.

Table 5.2: Average Path-length

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 252.97 391.44 552.68 256.58 1107.30

A*PostSmoothing 243.61 380.49 532.97 246.97 1076.01

Anya (Oh et al.) 241.18 373.82 525.11 242.15 1071.86

Anya (Harabor et al.) 241.18 375.14 525.12 244.11 1071.86

Ray Path Finder 241.20 375.50 525.74 244.13 1071.86

Theta* 241.27 375.43 525.47 244.24 1072.00

As expected, A* consistently has the longest paths of the six, because of

its constraint to move along grid-edges. A* with Post-Smoothing, by its

simple smoothing technique, improves on the base path length average of

A* across all the games tested. Its biggest improvement is on the maze

maps (last column in Table 5.2), reducing the length by 2.83%.

This is expected given the simple topologies of the maze maps, which only

have right corner walls and no other obstacles.

The four remaining algorithms, namely the two Anya implementations,

Theta* and the proposed algorithm, Ray Path Finder, performed similarly
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well to each other, and further improve on the path lengths identified by

A* with Post-Smoothing.

If reducing path length is the main focus, simple smoothing solutions for

paths are a useful tool for game characters, because of the simplicity of

implementing such a solution. It offers a reduction in path length and

improves on the perceived intelligence of a game character with minimal

effort.

5.3.3 Run-time

Along with the path length, the run-time performance of a path-planning

algorithm is one of the most important aspects of the shortest-path prob-

lem. A reason for this is that, general, they are antagonist metrics, as

improving one degrades the other. Online algorithms such as Theta* and

A* with Post-Smoothing have this trade-off because they require additional

computation, and thus more time, to improve on the solution of their inher-

ited A* base algorithm. The run-time overhead that the extra computation

carries will not allow these algorithms to outperform A* vis-a-vis this met-

ric. Ideally, we desire online algorithms to be as fast as possible while

limiting trade-offs.

A summary of the run-time performance of the algorithms can be observed

in Table 5.3.

Table 5.3: Average Run-time (ms)

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 7.11 8.43 45.58 8.98 72.80

A*PostSmoothing 38.66 15.45 203.08 57.61 165.63

Anya (Oh et al.) 1.99 12.29 13.34 2.44 2.91

Anya (Harabor et al.) 0.16 1.01 1.54 0.22 0.38

Ray Path Finder 0.24 15.52 4.98 0.31 2.21

Theta* 26.06 35.13 225.17 31.63 505.39
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Looking at A* Post-Smoothing and Theta* in terms of average run-time,

the two algorithms alternate in outperforming each other, with Theta*

being faster on maps from Baldur’s Gate II and Warcraft, and A* Post-

Smoothing taking the lead for the remaining games. However, both algo-

rithms are an order of magnitude slower than A*. This is to be expected

given the overhead of performing additional line-of-sight checks.

Both Ray Path Finder and Anya (Oh et al.) outperform A*, by an order of

magnitude or more (e.g. RPF on Baldur’s Gate II maps) with the exception

of Dragon’s Age: Origins, where A* is faster. The Anya algorithm by

Harabor et al. is the fastest of the six algorithms across all maps. It is

interesting to note that their implementation is an order of magnitude faster

than that of Oh et al., which seems to slow down on the larger maps from

the Starcraft and Dragon’s Age: Origins games. Given that the principle

behind the Anya algorithm is identical, the performance difference comes

down to the level of implementation. This serves as a good example on

how a good implementation can drastically improve on the run-time of an

algorithm.

Overall, Ray Path Finder is the second fastest algorithm after Anya (Hara-

bor et al.) with the exception of Dragon Age: Origins, where RPF’s per-

formance degrades, making it the second slowest after Theta*. Ray Path

Finder is similar in performance to Anya (Oh et al.), but is surpassed in

all instances by Anya (Harabor et al.). However, RPF has the same order

of magnitude as Anya (Harabor et al.), with the exception of Dragon Age:

Origins and Mazes (32W), where RPF is an order of magnitude slower.

Given this discrepancy in run-time, it is very likely that the degradation

in performance is due to the topology of the maps in Dragon Age: Ori-

gins. Maps from the aforementioned game are large in size, with long and

narrow connected “corridor-like” regions, in which “overhead” paths that
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challenge RPF are much more likely to occur.

The following figures present the correlation between path length and run-

time of the six tested algorithms across the five games. distributions of

the data-points for each algorithm across The x axis represents the path

length, expressed in cell units of a 2D grid-map. The logarithmic y axis

represents time, expressed in nanoseconds. A red horizontal line is drawn

at the 1 millisecond mark (106 nanoseconds) as a reference point.

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Baldur’s Gate: 1x Scale. (Path Length vs. Time (ns))
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Figure 5.7 illustrates the performance of the six algorithms on the game

maps from Baldur’s Gate II. Both A* and A* with Post-Smoothing (Figures

5.7a & 5.7b) exhibit a strong correlation between a path’s length and the

algorithm’s run-time. This is due to the nature of the search performed by

the A* family, in which three costs need to be calculated in relation to each

expanded node. A* with Post-Smoothing presents an additional overhead

of performing line of sight checks between the nodes of the solution. As

such, it exhibits earlier signs of run-time degradation, with more of its

run-time profile being distributed towards the 108 ns mark even for paths

shorter than 100 units (Figure 5.7b). Theta* presents a similar profile to

A*, but delayed in time. Similar to A* with Post-Smoothing, Theta* also

has a wider distribution across the time axis but it is only evident for longer

paths. Theta* is 177% faster than A* with Post-Smoothing on Baldur’s

Gate II maps, but 266% slower than A*.

A notable distinction among the algorithms is the variant of Anya by Oh

et al. (Figure 5.7c), with a 72% improvement in run-time compared to A*.

While the data-points are exclusively situated above the 106 ns mark, mak-

ing it generally slower than the other Anya implementation (i.e. Harabor

et al.), the profile is very compact and mostly concentrated below the 107

ns mark, which allows for a consistent, predictable performance on maps

of the type found in Baldur’s Gate II.

Ray Path Finder (Figure 5.7e) presents a similar profile to Anya (Harabor

et al.) (Figure 5.7d), with the exception of the lower part of the distribu-

tion, which is more strongly associated with paths that have line-of-sight

between start and stop nodes. Because of this, the algorithm only needs to

perform a simple line-of-sight check that results in a straight-line solution.

Figure 5.7e suggests that for such scenarios, Ray Path Finder outperforms

Anya (Harabor et al.). and indeed all the other algorithms. Anya (Harabor
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et al.) concentrates more of its solutions in a narrow band between 104 and

106 ns while RPF has more outliers above the 106 ns mark, with a more

sparse distribution. This indicates that for some scenarios, the algorithm

does perform better than Anya (Harabor et al.) but for others it performs

worse.

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Dragon Age Origins: 1x Scale. (Path Length vs. Time (ns))

Examining the algorithms’ behaviour on maps from Dragon’s Age: Origins

in Figure 5.8, it is evident that this map dataset is more challenging for all

six algorithms, resulting in longer run-times. Of the three profiles among
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A*, A* Post-Smoothing and Theta*, Theta* presents with the highest

run-time overall, while A* Post-Smoothing presents a very sharp increase

in run-time even for short paths. Anya (Oh et al.)’s profile (Figure 5.8c

presents with a similar sharp increase in run-time for short paths. This is

likely due to Dragon’s Age: Origins having maps with more complex and

cluttered environments.

Anya (Harabor et al.) (Figure 5.8d) proves the most adept at solving the

maps while maintaining a good run-time average around the 106 ns mark.

Ray Path Finder (Figure 5.8e) experiences large variability resulting in a

sparse profile and some considerable degradation in run-time – one order of

magnitude slower than Anya (Harabor et al.), with numerous outliers above

107 ns. It does, however, share a similar profile with Anya (Harabor et al.)

for data-points below the 106 ns mark. Some maps from Dragon’s Age:

Origins present with longer than average paths (i.e. over 1000 units, with

the average path length of approximately 375 units – see Table 5.2). Most

algorithms show little increase in run-time in response to the longer path

lengths (over 1000) provided by the scenarios. However, RPF struggles with

these scenarios. One reason for RPF’s poor performance on Dragon’s Age:

Origins may have to do with the specific topologies of the game’s maps,

some of which are large in size and have long and narrow corridors. In

such instances, “overhead” paths are more likely to occur. These present a

challenge for RPF as it underestimates the heuristic lengths of these paths,

which leads to the algorithm performing extensive expansions.

Figure 5.9 examines the algorithms on the Starcraft game maps. A* and

Theta* present similar profiles, with Theta* suffering a steeper degradation

in run-time for longer paths. A* with Post-Smoothing exhibits a sharp

increase in run-time for all path-lengths.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Starcraft: 1x Scale. (Path Length vs. Time (ns))

Anya (Oh et al.) has poor performance on Starcraft when compared to

both Anya (Harabor et al.) and Ray Path Finder. Anya (Harabor et

al.) and Ray Path Finder present with similar profiles, and RPF suffers a

sharper increase in run-time for scenarios above the 106 ns mark, mostly

for path-lengths above 250 units.

Figure 5.10 illustrates the performance of the algorithms on the popular

game Warcraft. The profiles of the algorithms on Warcraft are reminiscent
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of the ones for Baldur’s Gate II. Theta* presents a similar profile to A*

with a longer run-time. A* with Post-Smoothing (Figure 5.10b) has a wider

distribution across the time axis than A* with short paths having a longer

run-time, even when compared to Theta* (Figure 5.10f).

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Warcraft: 1x Scale. (Path Length vs. Time (ns))

Anya (Oh et al.) (Figure 5.10c), while having a longer running time than

both Anya (Harabor et al.) and Ray Path Finder, has a consistent run-

time window between 106 and 107 ns, similar to the behaviour on maps
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from Baldur’s Gate II. Ray Path Finder (Figure 5.10e) presents a similar

profile to Anya (Harabor et al.) (Figure 5.10d). Similar to its profile on

Baldur’s Gate II, Anya (Harabor et al.) concentrates more of its solutions

in a narrow cluster. Ray Path Finder, on the other hand, has a more sparse

distribution along the time axis, implying that it has a higher variability

in performance, with some searches running faster than Anya (Harabor et

al.) and others running slower.

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Mazes (32W): 1x Scale. (Path Length vs. Time (ns))



5.3. Experimental results 167

Figure 5.11 illustrates the performance of the algorithms on maze maps

with 32-unit wide corridors. A*, A* with Post-Smoothing and Theta*

exhibit a similar profile, with Theta* being the slowest of the three. All

three algorithms are outperformed by Ray Path Finder and Anya (Harabor

et al.), and by Anya (Oh et al.) for longer paths (Figure 5.11c). While

slower than Anya (Harabor et al.) and Ray Path Finder, Anya (Oh et al.)

presents an interesting profile, in that path length has very little influence

on its run-time. As this is not the case for maps from Dragon’s Age: Origins

and Starcraft, Anya (Oh et al.)’s profile suggests that the general topology

of the maps plays a role in the algorithm’s response. With the exception

of scenarios with line-of-sight solutions, Ray Path Finder (Figure 5.11e) is

outperformed by Anya (Harabor et al.) (Figure 5.11d). RPF exhibits a

shallow slowdown in run-time when compared to Anya (Harabor et al.),

which mostly maintains its run-time below the 106 ns mark. Given that

the maze maps have a fixed size of 512 by 512 cells, with wide corridors at

right angles, the Anya algorithms would readily scan the majority of the

map (as exemplified in Figure 5.12), while searching for long paths within

the topology.

Figure 5.12: Anya Search-space on Mazes (32W): red – search-space
scanned by Anya; green – path found
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5.3.4 Node expansions

During the search process for a path between the start node and the target

node on a 2D grid graph, the algorithm directs the incremental traversal of

the graph from a node to its immediate free neighbours in the search-space.

The number of nodes that are expanded by the algorithm can impact the

efficiency of the algorithm. Performing occupancy checks on the nodes im-

plies accessing the data structure that stores the map information. The

nodes generally need to be stored in memory, in a data structure (e.g.

open list) that requires insertion and extraction of elements. These opera-

tions can cumulatively reduce performance. As such, the number of node

expansions during a search is desired to be minimal.

Table 5.4: Average Node-expansion (103 units)

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A 268.95 196.07 1094.19 395.75 1159.61

A*PostSmoothing 268.95 196.07 1094.19 395.75 1159.61

Anya (Oh et al.) 527.21 646.67 1023.21 528.20 535.70

Anya (Harabor et al.) N/A N/A N/A N/A N/A

Ray Path Finder 2.43 73.50 21.57 2.93 30.60

Theta* 3784.46 3995.38 30708.76 4229.78 59869.25

Table 5.4 presents the average number of node expansions that the algo-

rithms perform across the five games. As a note, node expansion informa-

tion was not collected for the Anya (Harabor et al.) algorithm. Their ver-

sion of Anya employs bit-level shifting and masking in a number of different

procedures that scans along grid rows which are represented by integers in

an 1D integer-array that encodes at the bit-level the occupancy of the grid.

The optimisations adopted by Harabor et al. for their implementation of

Anya results in a fast and efficient algorithm, but the resulting tightly cou-

pled codebase makes collection of the node-expansion metric difficult. The

version of Anya by Oh et al. does not employ this approach and as such,

the node expansions were more easily obtainable.
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Examining the node expansions in Table 5.4, Theta* stands out as the

most costly of the five remaining algorithms. This is expected, given that

it eagerly performs line-of-sight operations for all pairs of nodes in its open

list. The two versions of A*, having the same underlining expansion policy

expand the same number of nodes.

The proposed methodology, Ray Path Finder, expands the fewest number

of nodes on average, by two orders of magnitude on maps from Baldur’s

Gate II, Starcraft and Warcraft and by one order of magnitude on Dragon’s

Age: Origins and maze maps. Because of its principle of operation, RPF

works on free-space assumptions and only expands nodes when moving in

free-space towards a target, or tracing the bounds of an obstacle.

Figures 5.13, 5.14 and 5.15 exemplify the nodes expanded by three of the

tested algorithms: Theta*, Anya (Oh et al.) and Ray Path Finder.
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Figure 5.13: Search-space of Theta*: red – expanded nodes; green – path
solution

Theta* (Figure 5.13) presents a similar search-space to A*. However, as

observed in Table 5.4, Theta* can perform an order of magnitute more

node expansions than A*. While the number of distinct nodes expanded

is similar to A* (i.e. the area covered by the search), expanded nodes are

frequently revisited during the line-of-sight checks that Theta* performs,

which negatively impacts the performance of the algorithm. Performing

line-of-sight checks between each node and its parent results in the algo-

rithm having a long run-time, which limits its applicability.
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Figure 5.14: Search-space of Anya (Oh et al.): red – expanded nodes; green
– path solution

We observered in Section 5.3.3 that the run-time performance of Harabor

et al.’s implementation of Anya is unchallenged. One reason for this is its

principle of operation. From a visual inspection of Anya’s search-space,

as depicted in Figure 5.14, we see that the surface of the explored free-

space is typically comparable to algorithms such as A* or Theta* (Figure

5.13). Unlike A* and Theta*, however, which expand nodes sequentially,

updating a node’s parent and calculating a score for each node, Anya,

instead, searches over intervals of free-space across grid rows. This proves

to be very effective, as both implementations of Anya (Oh et al. and

Harabor et al.) perform well in practice. The second reason for Anya

(Harabor et al.)’s performance revolves around its efficient implementation

that makes use of bit-level manipulation to expand over grid-rows very fast.
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Figure 5.15: Search-space of Ray Path Finder: blue – expanded nodes by
left-bound paths; red – expanded nodes by right-bound paths; yellow –
expanded nodes by line-of-sight; green – path solution

A key attribute of the Ray Path Finder algorithm is its reduced search-

space. An example of RPF’s expansion policy is illustrated in Figure 5.15.

The algorithm only expands nodes along object boundaries (marked with

blue for nodes expanded by left-bound paths and with red for nodes ex-

plored by right-bound paths) and when traveling in a straight line towards

a goal after leaving an obstacle’s boundary (marked with yellow). Because

in operates on the free-space assumption, it also delays performing line-

of-sight between the nodes of a path, until it has reached the goal. This

avoids the caveat of performing extensive line-of-sight checks that encum-

ber algorithms such as Theta*.

As observed in this section, while RPF exhibits an order of magnitude
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reduction in the number of nodes expanded relative to Anya, this is not

directly reflected in the run-time performance of the algorithm (as observed

in Table 5.3). The probable causes and possible solutions for improving the

run-time performance of RPF are discussed in Section 5.4.

5.3.5 Heading changes

A path on a 2D grid graph is composed of sequential segments that connect

pairs of nodes from the start node to the end node. A holonomic agent

following this path would require to change direction in any node of the

path where the segments are not collinear. These nodes are referred to

as heading changes and reflect on the perceived intelligence of the agent.

Shortest paths only have heading changes around obstacle corners. Arbi-

trary heading changes of the path in free-space look unrealistic and are not

conducive to optimal path solutions. In general, minimising the number

of heading changes creates a more realistic path and contributes to the

perceived intelligence of the robotic platform by making the subsequent

path-following more efficient, reducing fuel consumption, minimising loss

of momentum, etc..

Table 5.5: Average Heading-changes

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 51.23 52.46 95.65 44.83 60.51

A*PostSmoothing 5.97 19.71 23.32 5.84 24.66

Anya (Oh et al.) 4.71 17.36 15.01 5.04 23.97

Anya (Harabor et al.) 4.60 15.97 13.66 4.99 23.78

Ray Path Finder 4.85 17.35 16.27 5.30 24.75

Theta* 4.91 17.13 16.00 5.32 24.31

Table 5.5 summarises the average number of heading changes the algo-

rithms perform. As the only grid-constrained algorithm of the six exam-

ined, A* exhibits the largest number of heading changes. A robot that
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would use A* as its path-planning algorithm would behave very ineffi-

ciently, being restricted to movements of 90 deg and 45 deg and unneces-

sarily having to change its direction instead of navigating straight through

free space. Even employing a simple smoothing technique, such as A*

with Post-Smoothing would improve on the robot’s behaviour, sometimes

by an order of magnitude, as is the case for Baldur’s Gate II and War-

craft. Among the any-angle algorithms, A* with Post-Smoothing is the

least effective but nonetheless manages to significantly reduce the number

of heading changes.

The remaining algorithms, Anya (Oh et al. and Harabor et al.), Theta* and

Ray Path Finder, all improve on this metric to a similar extent. To justify

why Anya (Harabor et al.) presents with a smaller number of heading

changes, as compared to the implementation by Oh et al., we must note

that the metric for the four algorithms was collected by retrieving the

number of nodes contained in the path of a resulting solution. Collinear

nodes (which are inconsequential to path length) that were identified by

the algorithms but are in fact redundant do not get removed from the

path, and, as such, are not discounted by the heading changes metric.

Additionally, the algorithms do not account for the existence of different

equal-cost paths that have the same length but are different in the number

of heading changes, as minimising a path’s length is what drives the search.

5.3.6 Memory footprint

The memory footprint during the algorithm’s runtime is considered as an

indicator of the resource usage of the methodology, which can affect per-

formance and which can dictate the employability of an algorithm. Reduc-

ing the memory footprint of an algorithm reduces the load on resources,

and frees them up to be used for other purposes and minimises power con-
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sumption, ownership cost of the hardware and response time. A space-time

trade-off can occur when an algorithm produces fast results at the cost of

higher memory requirements. For an algorithm to be efficient, we wish to

have a fast algorithm that is not demanding of higher resources.

Table 5.6 presents the average memory expenditure of the algorithms.

Table 5.6: Average Memory (KB)

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 63.10 51.83 415.02 69.54 1553.47

A*PostSmoothing 78.13 58.17 444.52 81.25 1668.20

Anya (Oh et al.) 122.83 3415.76 3397.54 163.06 505.84

Anya (Harabor et al.) 88.82 807.27 1178.49 96.59 428.78

Ray Path Finder 18.99 999.22 209.68 296.37 469.93

Theta* 4973.34 2182.60 36545.15 5498.77 79919.66

Examining Table 5.6, no one algorithm stands out as the most memory

efficient for all game maps. A* and A* with Post-Smooting present with

a relatively consistent memory footprint for Baldur’s Gate II, Dragon’s

Age: Origins, Warcraft and Starcraft, outperforming all algorithms apart

from Ray Path Finder. However, their performance degrades considerably

on Mazes, in which they are the most memory demanding after Theta*.

Theta* is the poorest performing algorithms of the six evaluated, by as

much as two orders of magnitude against A* on the maps from Baldur’s

Gate II, Dragon’s Age: Origins, Warcraft and Starcraft. It has the highest

memory footprint of all algorithms on Mazes, followed by A* with Post-

Smooting and A*. The reason for this is that maze maps have a high

concentration of connected, unoccupied nodes which have to be maintained

in memory, with each node requiring to update their heuristic cost. This

results in a flood-fill behaviour of the algorithms, in which they require to

explore the entirety of the search-space up to the goal node. In addition to

this requirement, Theta* also needs to perform line-of-sight checks for the

unoccupied nodes.
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Anya (Oh et al.) is the second poorest performing algorithm after Theta*.

Anya (Harabor et al.) outperforms Anya (Oh et al.) for all maps, up to an

order of magnitude on game maps from Baldur’s Gate II, Dragon’s Age:

Origins and Warcraft. It also outperforms Ray Path Finder on Dragon’s

Age: Origins, Warcraft and Mazes. However, it is outperformed by Ray

Path Finder, A* and A* with Post-Smooting on Baldur’s Gate II and

Starcraft.

Ray Path Finder has the smallest memory footprint for maps in Baldur’s

Gate II and Starcraft, but performs poorly on Warcraft, where it is the

second most memory demanding after Theta*. The higher memory demand

for these games is likely due to overhead paths, for which Ray Path Finder

grossly underestimates the heuristic cost, and which forces the algorithm

to maintain them in memory for longer. On Dragon’s Age: Origins, it

outperforms Anya (Oh et al.) but not Anya (Harabor et al.), and is an

order of magnitude more memory intensive than A*.
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5.3.7 Impact of Gridmap resolution

This section illustrates the impact on performance relative to the scale of

the maps. Maps were scaled at two times (2X) their original dimensions.

The experiments presented are performed on a 2.9GHz Intel Core i7 ma-

chine with 8GB of RAM running Windows 10. For this particular experi-

mental setup, the number of scenarios is reduced to a 1–in–3 sampling rate.

The graphs presented are semi-logarithmic scatter plots on the Y axis. Ta-

bles 5.7, 5.8, 5.9, and 5.10 present the averages for the metrics collected on

maps scaled at double their original size.

Table 5.7: Average Path-length

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 503.66 821.10 1094.77 512.67 2222.61

A*PostSmoothing 484.94 797.76 1055.57 493.49 2159.63

Anya (Oh et al.) 480.16 783.04 1040.13 484.19 2151.33

Anya (Harabor et al.) 480.16 786.68 1040.13 487.82 2151.33

Ray Path Finder 480.19 786.86 1041.29 487.87 2151.33

Theta* 480.26 787.04 1040.48 487.95 2151.35

As expected, the path length is double that of the original scale (see Table

5.2) for all algorithms tested.

Table 5.8: Average Run-time

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 35.73 39.78 213.27 43.07 373.95

A*PostSmoothing 317.22 113.97 2356.46 616.80 1147.10

Anya (Oh et al.) 5.96 31.85 32.52 6.07 8.18

Anya (Harabor et al.) 0.25 1.63 2.35 0.34 0.68

Ray Path Finder 0.37 24.58 7.23 0.42 4.54

Theta* 184.08 295.31 1852.82 226.00 2991.25

In Table 5.8, at the 2X scale, run–time of Theta* is substandard. It is

seen to have an average of a 87% increase in comparison to the original
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scale, Table 5.3. A* Post–Smoothing is seen to suffer from magnitude

degradation.

While Anya (Harabor et al.) and Ray Path Finder are approximately two

times slower than the original scale, they are still the fastest algorithms of

the six examined. Anya (Oh et al.) appears to slow down more due to the

algorithm implementation.

Table 5.9: Average Node-expansion (103 units)

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 1059.44 780.84 4241.25 1533.82 4542.11

A*PostSmoothing 1059.44 780.84 4241.25 1533.82 4542.11

Anya (Oh et al.) 2102.57 2601.42 3979.59 2104.75 2119.72

Anya (Harabor et al.) N/A N/A N/A N/A N/A

Ray Path Finder 4.85 283.70 52.77 5.90 62.89

Theta* 29697.33 35355.73 233104.12 33872.69 482717.58

Node expansions in 2X Scale is seen in Table 5.9. A* and A* Post-

Smoothing have the same expansion principal, and would expand the same

number of nodes. From examination of this table, Theta* remains standing

out as the costliest of the algorithms (refer to Table at original scale 5.4) -

this was again expected, similar to the 1X scale, has to perform line-of-sight

checks for all pairs of nodes in its open list.

Table 5.10: Average Heading-changes: 2X Scale

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

A* 92.08 74.06 142.68 79.56 91.34

A*PostSmoothing 5.91 20.87 23.08 5.80 24.77

Anya (Oh et al.) 4.68 18.31 14.82 5.02 24.08

Anya (Harabor et al.) 4.56 16.80 13.48 4.97 23.89

Ray Path Finder 4.83 19.97 16.61 5.28 24.86

Theta* 4.97 18.81 16.30 5.41 24.47

With the exception of A*, heading changes are not affected by scaling, as

the topologies of the paths don’t change, but merely their length. This

can be observed in 5.10. A*, as discussed previously, is constrained to
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moving along grid edges and hence would have to perform a higher number

of heading changes whilst attempting to move diagonally at angles other

than 45◦.

In comparison to A*, A* with Post-Smooting and Theta*, scaling has less

of an impact on Ray Path Finder overall. RPF’s metrics preserve the same

order of magnitude compared with those seen at the original scale (i.e. in

Table 5.5). which demonstrates RPF’s resilience to map scaling.

It has also been observed that Anya (Harabor et al.) appears to share

RPF’s resilience to map scaling. However, Anya (Oh et al.) is not as

fortunate, as its run-time degrades faster.

Looking at Figures 5.16, 5.17,5.18, 5.19, and 5.20, the profiles of these

algorithms appear to remain almost identical in comparison to their 1X

profiles, Figures 5.7, 5.8, 5.9, 5.10, 5.11, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Baldur’s Gate: 2x Scale. (Path Length vs. Time (ns))
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Dragon Age Origins: 2x Scale. (Path Length vs. Time (ns))
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Starcraft: 2x Scale. (Path Length vs. Time (ns))
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Warcraft: 2x Scale. (Path Length vs. Time (ns))
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Mazes (32W): 2x Scale. (Path Length vs. Time (ns))
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5.3.8 RPF versions

This section compares two different implementations of the Ray Path Finder

algorithm, the variant described in the current work and refered to as Ray

Path Finder or RPF, and a legacy variant labeled RPF on Cells. The

development of RPF on Cells was subsequently abandonded in favour of

RPF, which favours a cleaner and less complex implementation.

Ray Path Finder, the newer version of the algorithm operates over vertices

on a 2D uniform-cost octile grid-graph indexed as a 1D array. The legacy

variant, RPF on Cells, operates over cell centers on a 2D uniform-cost

octile grid-graph. It indexes the grid-map as a 2D array, maintaing the x

and y coordinates for each node, as opposed RPF which treats nodes as

single integer values in the 1D array representation of the grid.

The principle of operation of both algorithms is the same, but given their

different implementations, it serves as a useful showcase to justify the adop-

tion of the vertex based solution, embodied by RPF. The implementation

of RPF on Cells avoided using vertices, but rather operated directly on the

grid-cells. However, this version presented with functional issues when ex-

ploring narrow spaces, such as corridors with minimum widths of 1 cell. For

such scenarios, a cell could be visited repeatedly from different directions,

and additional checks were required to identify these situations. Further-

more, because obstacles could occasionally share the same corner cell and

the search paths require keeping track of such corner nodes, paths could

pass through the same cell but attempt to indentify it as a distinct corner,

which would result in an unwanted self-intersection. For example, two di-

agonally opposing squares that are spaced one cell apart have the same cell

as a corner, one as its lower-right corner, and the other as its upper-left

corner. Because of this, a path could end up passing through the same cell

while following the edge of the two separate obstacles, but falsely conclude
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that it had intersected itself. To account for such cases, a workaround re-

quired keeping track of pairs of cells for each corner, both the free corner

node that belonged to the path and the occupied corner that belonged to

the object boundary. In addition to list which maintains the path, the

implementation required additional lists to keep track of the corner pairs.

Unfortunately, these solutions considerably increased the complexity of the

algorithm further, and resulted in a degradation of performance from the

additional overhead. The vertex based solution was adopted instead, as it

proved more elegant, and allowed for better performance. The vertex-based

Ray Path Finder avoided the pit-falls that plagued the previous cell-centric

variant, as each vertex uniquely indentifies a corner of an obstacle.

A set of experiments pits the two implementations of RPF against each

other. Scenarios were selected from the entire database, with a 1–in–3

sampling step. The experiments were performed on an 1.8GHz Intel Core

i3 with 4GB RAM running Windows 10. The following tables represent

the averages of the collected metrics. The new algorithm improves on the

metrics of the original, with an average 55.75% decrease in run-time (Table

5.11), and an average 80.01% decrease in memory expenditure (Table 5.12).

Table 5.11: Average Time (ms) on maps

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

RPF 0.45 4.95 9.18 0.51 2.96

RPF On Cells 1.02 9.34 14.80 1.25 13.90

Table 5.12: Average Memory usage (KB)

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

RPF 0.55 37.81 127.36 0.65 5.27

RPF On Cells 9.59 1862.47 1730.36 0.77 1425.85

Table 5.13 shows an improvement in path length due to paths wrapping

tighter around an obstacle boudary, i.e. the path passes through the corner
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vertex which neighbours an occupied cell.

Table 5.13: Average Path Length

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

RPF 235.65 186.66 496.89 239.80 1024.70

RPF On Cells 236.74 190.93 505.74 240.93 1174.91

Additionally, the search procedure also presents a speed-up in converging

to the any-time solution. Table 5.14 summarises the average time in mil-

liseconds for the algorithm to first encounter the goal, before it proceeds

to optimise a solution.

Table 5.14: Average Time (ms) to reach goal on first encounter

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

RPF 0.12 3.48 3.75 0.14 1.14

RPF On Cells 0.19 6.50 5.88 0.19 4.56

While an improvement on its experimental predecesor, the implementation

of the Ray Path Finder algorithm has not been optimised for performance.

Refinement of RPF is a subject for future research and has the potential

to further improve on the algorithm’s metrics.
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5.3.9 Anya vs. RPF

This section compares Ray Path Finder, the proposed algorithm, with the

two implementations of Anya, identified in the previous sections as the

best performing algorithms. The metrics used for comparison with RPF

for taken from Anya (Harabor et al.), with the exception of node-expansions

which are not available. The node expansion metrics are instead extracted

from Anya (Oh et al.). The following experiments were performed on an

1.8GHz Intel Core i3 with 4GB RAM running Windows 10. Scenarios were

selected from the MovingAI database, with a 1–in–3 sampling step.

Tables 5.15, 5.16 & 5.17 summarise the averages of the collected metrics.

Anya has a 48.88% higher memory footprint on average, and covers 89.21%

more of the search-space, but outperforms RPF in run-time by 65.68%. Ta-

ble 5.18 presents the percentage of scenarios for each game in which Ray

Path Finder outperforms Anya (Harabor et al.) with respect to run-time.

The first row in the table indicates the total percentages in which RPF is

faster. This includes the scenarios in which the start and stop goal have a

direct line-of-sight to eachother. The second row in the table excludes the

aformentioned scenarios, looking only at scenarios in which there is at least

one obstacle breaking the line of sight between the start and destination.

Even for such cases, RPF outperfroms Anya (Harabor et al.) between 40%

and 49% of the time, with the one exception being Mazes, in which it only

outperforms it on 15% of occassions. Coupling this with the information

from Table 5.17, in which it was observered that Anya (Harabor et al.) is

faster on average than RPF, it becomes apparent that there are scenerios

for which the performance of RPF is severely degraded. Empirical obser-

vations made from comparisons of the two algorithms on individual maps

indicate that the ocassions for which RPF suffers considerable degradation

in run-time occur when the scenarios under observation lead the algorithm
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to form “over-head” paths for which the heuristic length function greatly

underestimates the cost of travel, and prioritises them over viable paths

with a consistent heuristic cost. This is likely to happen for certain map

topologies, as best can be observered for the cases with the Maze maps, in

which overhead paths are very common due to long, winding corridors.

Table 5.15: RPF vs. Anya (Harabor et al.): Average Memory (KB)

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

Anya (Harabor et al.) 470.69 630.07 1105.92 490.04 621.89

RPF 173.43 374.19 1177.74 470.46 583.61

Table 5.16: RPF vs. Anya (Oh et al.): Average search-space expansion

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

Anya (Harabor et al.) 49382.35 69968.98 476788.60 77352.50 186510.63

RPF 2269.59 11501.90 19237.24 2893.57 46861.51

Table 5.17: RPF vs. Anya (Harabor et al.): Average Run-time(ms)

Baldur’s Gate II Dragon Age: Origins Starcraft Warcraft Mazes 32W

Anya (Harabor et al.) 0.26 0.80 2.40 0.37 0.73

RPF 0.50 6.62 11.38 0.51 5.27

Table 5.18: RPF vs. Anya (Harabor et al.): Scenarios where RPF has
better Run-time than Anya (Harabor et al.) (%)

Baldurs Gate II Dragon Age: Origins Starcraft Warcraft Mazes (32W)

RPF - obstacles ≥ 0 48% 45% 52% 52% 16%

RPF - obstacles ≥ 1 40% 41% 49% 44% 15%

The graphs illustrated in Figures 5.21, 5.22, 5.23, 5.24 and 5.25 are log-

arithmic scatter plots which present the behaviours of RPF and Anya

over the five database games. They indicate that with the exception of

scenarios where start and goal nodes have direct line-of-sight, Anya out-

performs RPF in run-time. Both algorithms present a similar behaviour

profile between path length and run-time for all types of maps, with Anya
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(Harabor et al.) having a faster run-time than RPF. These results can be

explained by Anya (Harabor et al.)’s performance optimisations curtsey

of the authors, and by RPF’s inefficient implementation coupled with the

performance hit due to the liberal expansion of “over-head” paths which

advertise grossly underestimated heuristic lengths to the driving Best-first

search algorithm of RPF.

Figure 5.21: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns) on
“Baldur’s Gate II” maps

Figure 5.22: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns) on
“Dragon Age: Origins” maps
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Figure 5.23: Anya (Harabor et al.) vs. RPF on Warcraft maps: Path
Length - Time(ns)

Figure 5.24: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns) on
“Starcraft” maps

Figure 5.25: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns) on
“Mazes 32W” maps

Figure 5.26 presents a sub-sample of Figure 5.24 which isolates the data

points for scenarios in which start and target have a direct line-of-sight.

As can be observed, RPF performs slightly better in these circumstances

because the search is equivalent to a single line-of-sight check.
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Figure 5.26: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns):
sub-sampling of direct line-of-sight data-points
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5.4 Discussion on RPF

A novel strategy for finding any-angle paths on octile grids was introduced

in the form of Ray Path Finder. To the author’s knowledge, RPF is the

only algorithm to combine a best-first-search strategy and bug-like path

searches to perform online any-angle path-planning.

In this chapter we presented the experimental evaluation of the RPF algo-

rithm against five popular state-of-the-art online path-planning algorithms

from the literature, namely A*, A* with Post-Smooting, Theta*, and two

distinct implementations of the Anya algorithm (Anya (Oh et al.) and

Anya (Harabor et al.)). Each algorithm was evaluated over 453500 scenar-

ios on 314 maps from five popular game maps from the MovingAI database

(presented in Table 5.1 of Section 5.2).

The algorithm has been shown experimentally to be competitive on a num-

ber of different metrics against the other five algorithms. The metrics used

for this evaluation were the length of the identified path, run-time of the al-

gorithm, nodes expanded during search-space exploration, heading changes

of the path, and memory requirements of the algorithm.

Regarding path length, Ray Path Finder finds short paths on the same

level as Anya (Oh et al.), Anya (Harabor et al.) and Theta* (as observed

in Section 5.3.2). Looking at run-time (Section 5.3.3), Ray Path Finder is

the second fastest algorithm, overall, after Anya (Harabor et al.) on four of

the five evaluated games, and is similar in performance but generally faster

than the variant of Anya by Oh et. al. which present a non-optimised im-

plementation. One game represents the exception. RPF suffers a reduction

of performance on Dragon’s Age: Origins, making it the second slowest af-

ter Theta*. The limitation of RPF described in Section 4.5 regarding the

underestimation of the heuristic cost of “over-head” paths (i.e. paths that
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the interior contour of an obstacle that contains the start node) is another

aspect that is subject for future improvement. As there exists no strategy

to inform on which scenarios or maps present with topologies that can lead

RPF to create and expand “over-head” paths, no straightforward conclu-

sion can be drawn as to the negative impact that these scenarios have on

the performance of the algorithm. Our conjecture is that, if an elegant so-

lution for accurately estimating the heuristic length of “over-head” paths

were to be identified and implemented, the performance of Ray Path Finder

would improve, and possibly make RPF more competitive against the dom-

inant algorithm in our experimental results, namely Anya (Harabor et al.).

Such a solution would come in the form of an efficient way of implement-

ing a methodology similar to the one described in Section 4.5, to allow

for an accurate estimate of the heuristic of “over-head” paths. Because

such a solution does not exist in practice as of this writing, the optimality

of the algorithm is compromised. The Best-first search algorithm priori-

tises paths that promise the smallest heuristic. As such, over-head paths

can find themselves being evaluated first, as they underestimate their true

heuristic cost, which can result in additional run-time.

As observed in Subsection 5.3.4, the proposed methodology explores fewer

nodes within the search-space compared to other on-line path planning

algorithms. However, while Ray Path Finder exhibits a reduction in the

number of nodes expanded relative to Anya, this is not always reflected

in the run-time performance of the algorithm. The version of Anya by

Harabor et al. is, on average, faster than our proposed methodology across

all game maps, as observed in Subsection 5.3.3.

Subsection 5.3.6 shows Ray Path Finder to have a smaller memory footprint

than other algorithms for game maps from Baldur’s Gate II and Starcraft,

and a memory footprint comparable to Anya (Oh et al.) and Anya (Hara-
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bor et al.) for the other evaluated games. Both Ray Path Finder and Anya

(Harabor et al.) present with decent resilience to scaling up of maps, as

observed in Subsection 5.3.7.

Because RPF, in its current form, is generally dominated by Anya (Hara-

bor et al.), it may not be the preferred search method for any-angle path-

planning on octile grids. However, RPF possesses properties that can make

it appealing for certain applications. If a faster run-time is desirable over

path-length, the algorithm can be allowed to terminate early, after at least

one path has converged to a sub-optimal solution. Given its ability to

produce multiple solutions, for instance, gives the option for a higher-level

planner to chose alternative paths that may have other favourable charac-

teristics, such as shallow turning angles for preserving momentum.

The variability in performance of the algorithm requires further investiga-

tion, as it could be attributed to a number of different factors. One key

reason for this comes down to the implementation of the Ray Path Finder

algorithm. Inefficiencies in Ray Path Finder’s implementation may con-

tribute to the algorithm’s poor performance relative to Anya (Harabor et

al.). One aspect of Anya (Harabor et al.)’s implementation is the use of

a Fibonacci heap for operating its priority queue, which improves an algo-

rithm’s asymptotic run-time. In contrast to Anya (Harabor et al.), RPF

has not been optimised to use a Fibonacci heap for its priority queue data

structure, but uses only a generic queue provided by the Java API library.

The second reason for Anya (Harabor et al.)’s performance revolves around

its efficient implementation that makes use of bit-level manipulation to ex-

pand over grid-rows very fast. This allows the algorithm to scan the free

search-space efficiently, but tightly-couples the algorithm to the data struc-

ture representing the grid-map. For their implementation, Anya (Harabor

et al.) use a bit-packed integer matrix where each bit of an integer element
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represents the occupancy state of the search-space. While Ray Path Finder

along with the other algorithms use the same underlining data-structure

for consistency of the experimental results, they are not able to take ad-

vantage of the bit-packed matrix, having to access the data-structure one

bit at a time. Because of these reasons, the algorithm provides room for

improvements of its implementation. As well, other additions to its prin-

ciples of operation could help it make further headway in improving its

performance. One caveat of RPF’s implementation is how path objects are

represented and handled internally by the algorithm. Individual paths are

treated as linked lists which undergo look-ups, insertions, extractions and

cloning. These processes can cumulatively take a long time and consume

resources. Cloning the paths, for instance, can be a relatively expensive

procedure, as memory needs to be allocated on the heap for each new ob-

ject (i.e. list). The main Best-first search algorithm is implemented as a

priority queue that extracts and reinserts paths with each iteration. With

each insertion and reinsertion, the heuristic length of each path is calcu-

lated in order to compare them with each-other, and to order each path

in the queue from shortest to longest. Recalculating the path of each path

with each expansion is expensive and unnecessary. A better solution that

stores the path’s length and only updates it during a change in its topology

would be preferable. As an additional example of inefficiency, given a large

number of intersections with obstacles, the priority queue may hold many

paths in the queue, out of which only a handful may prove useful in leading

to a solution.

The positive aspects in Ray Path Finder’s performance present a promis-

ing avenue for further research into the algorithm. The evidence to date

presents RPF as a competitive algorithm as compared to other state-of-

the-art algorithms. It has been observed in Subsection 5.3.9 that RPF

can outpeform Anya (Harabor et al.) in run-time, up to 52% of the time
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on certain game maps. The algorithm’s main defficiency lies in RPF’s

inability to accurately estimate the cost of “over-head” paths, as no ap-

propriate solution has been developed as of this writing. Future research

into Ray Path Finder that extends beyond the scope of the current work,

may provide a solution to the problem of “over-head” paths. If such a

solution is indeed identified, it could address a large array of scenarios

for which RPF currently exibits a substantial degradation in performance.

It is likely that additional optimisations brought to the algorithm would

improve the run-time and potentially further reduce the number of node

expansions. Such optimisations would include, but not be limited to, using

a Fibonacci heap to operate RPF’s priority queue, caching the results of

line-sight checks that have succeeded, information sharing between paths

to indicate search-spaces that have already been explored, and possibly

adopting/implementing a better data structure representing the expanded

paths, e.g. using a tree structure. A solution that accurately estimates the

heuristic of “over-head” paths would also allow RPF to converge to solu-

tions faster. Applying a smarter branch-and-bound strategy and heuristics

to the Best-first search algorithm may be able to discard paths early would

also prove useful in reducing the number of paths in the queue.



Chapter 6

Conclusion

This chapter presents the summary of the findings of the developed any-

angle path-planning algorithm. Conclusions and recommendations are of-

fered for future research work, including some potential applications of the

novel algorithm.

6.1 Summary

The thesis introduces a novel best-first search algorithm for finding any-

angle paths on grid-constrained graphs. To the author’s knowledge, RPF

is the only algorithm to combine a best-first-search strategy and bug-like

path searches to perform online any-angle path-planning.

We have developed and implemented an online any-angle path-planning

algorithm based on “bug-like” paths with free-space assumptions and con-

ducted by a best first-search algorithm. The paths travelling towards a

goal (using a variant of Bresenham’s line algorithm introduced in 3.2) bi-

furcate when encountering an obstacle and split off in opposite directions.

The paths perform wall-following (using a novel contour tracing algorithm

198
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introduced in 3.3), while identifying corner points that can be added to the

path. While wall-following, each path investigates its tautness to preserve

the optimality of the best-first search that handles the priority of each path

based on which path estimates it is the shortest. For this purpose it prunes

nodes that compromise a path’s tautness at each step to retain a consis-

tent heuristic. It greedily searches for a solution among the most promising

paths and only performs line-of-sight checks between path vertices after the

path has arrived at a solution.

The proposed algorithm is shown experimentally to be competitive on a

number of performance metrics with state-of-the-art any-angle algorithms.

It also presents desirable properties that allow it to have a reduced search-

space and make it suitable for providing any-time solutions.

Employing the algorithm can reduce the search space considerably (Fig-

ure 6.1) and finds solutions fast. The algorithm presents with competitive

metrics, comparable to Anya, the fastest state-of-the-art online any-angle

path-planning algorithm. It also allows for multi-path and any-time solu-

tions, making it a good candidate for robotic platforms or applications that

impose time constraints.

Figure 6.1: Search space comparison: A* (left), Theta*(middle), RPF
(right)
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Additionally, a graphical user interface was developed in order to:

• provide a general and simple tool for evaluating path-planning algo-

rithms.

• perform simulations and visualise results regarding algorithm be-

haviours.

• provide compatibility with the MovingAI map database.

• enable large-scale data collection of algorithm metrics.

This would allow future researchers to use the tool and integrate their al-

gorithm with the application, allowing them to focus on the development

of their respective path-planning methodology rather than having to im-

plement, manage and handle low-level interactions with incompatible map

databases.

RPF operates on 2D grid-maps, represented by a 2D occupancy matrix

that encodes a cell as block or unblocked. As such, its implementation is

specific to operations performed on the matrix, i.e. traversing the encoded

free-space of the occupancy grid by incrementally moving in the Moore

neighbourhood of a cell, as well as tracing along the contours of blocked

regions in the same manner. Through its principle of operation, however,

RPF could also operate on a ground robot by employing behaviours similar

to those used by bug algorithms (e.g. tactile and/or range sensors along

with odometry). Essentially, the paths that the algorithm propagates to-

wards the goal node act in a similar way to individual bugs.

As part of the Ray Path Finder algorithm, a novel contour tracing algo-

rithm has been developed, which can provide a good alternative to other

methodologies in the literature and which can have potential applications

beyond RPF (e.g. image segmentation).
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6.2 Future Work

The research presented in this work has been undertaken as part of the

Cognitive Assisted Living Ambient System (COALAS) Project (Nr. 4194)

[91]. The COALAS project was selected under the European cross-border

cooperation programme INTERREG IV A France (Channel) – England,

and co-funded by the European Regional Development Fund (ERDF), with

the aim of developing an “autonomous cognitive platform, combining an

intelligent wheelchair coupled with the assistive capabilities of a humanoid

robot” [91]. The project aimed to develop a system consisting of a hu-

manoid robot, powered wheelchair, and sensors in order or develop an

assistive navigation system, which has been a key issue of development for

the disabled. The COALAS wheelchair falls under the category of assistive

technology, with semi-autonomous (collision avoidance) and autonomous

functionality (mapping, planning). The wheelchair has been supplied with

Udoo Quad on-board mini PC, a LiDAR sensor and wheel-encoders. We

have adapted the system for collision avoidance, remote control, odometry

estimation and integrated the ROS navigation stack for the purposes of

mapping and autonomous navigation. The ROS framework for robotics

development and visualisation along with the Gazebo Robotic simulation

environment (Figures 6.2, 6.3, 6.4) allow for a safe testing and experimen-

tation environment. Complementary to the development of the Ray Path

Finder algorithm, the ROS-enabled smart wheelchair serves as a mobile

robotic agent capable of mapping the environment and autonomous navi-

gation, and represents the prime candidate for a future implementation of

a ROS-based RPF path-planning solution.
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Figure 6.2: Screen-capture of platform model with LiDAR sensor inside
maze constructed using Gazebo simulation environment [92]

Figure 6.3: Screen-capture of platform model with LiDAR sensor in RViz
following path found by Theta* implementation [92]
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Figure 6.4: Left: screen-capture of platform model with LiDAR sensor
feedback as viewed in RViz (ROS compatible robotics visualisation tool);
Right: screen-capture of platform with LiDAR in simulated world with
obstacles in Gazebo [92]
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6.2.1 Optimisations

This section presents a brief discussion on potential optimisations of the

RPF algorithm.

The current implementation of Ray Path Finder performs ray-casting be-

tween subsequent node pairs until all node pairs have a clear line of sight

between them. This presents some redundancy. After a path has reached

the goal, line-of-sight checks are performed between subsequent nodes in

the path. If both the path and its bifurcated descendent share common

vertices other than the root (start node) and continue to be expanded

after having reached the goal (i.e. they have similar lengths and/or the

algorithm requests multiple solutions), the line-of-sight checks between the

shared vertices are performed independently for each path, leading to re-

dundancy. This can be prevented by sharing information between paths

(i.e. maintaining a history of the performed line-of-sight checks). A possi-

ble implementation would be to cache the results of the Bresenham algo-

rithm explorations already performed in order to avoid redundancy in the

line-of-sight expansions.

The direction monitoring functionality of each path is implemented by

maintaining references to subsequent vertices on the obstacle’s edge and

computing the discrete number of turns away from the desired direction

of travel towards a goal node. This solution is part of a legacy implemen-

tation, but the same functionality could be achieved in other ways. One

such way would be to perform angle calculations, which could prove more

appropriate for implementing RPF on a robotic platform lacking a grid-

map discretisation of the environment. Another possible alternative, which

would operate on grid maps would be to add the number of inner corners

and subtract the number of outer corners.
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As of this writing, a drawback of the current implementation of the RPF al-

gorithm relates to how a path bifurcates at the point of intersection with an

obstacle. Each individual path is implemented as a self-contained object,

and maintains its own references to path nodes it had previously visited,

and the list of nodes under consideration to be part of the path. When an

obstacle is encountered, a new copy of the path in question is constructed,

i.e. copies of the data structures containing the node references are as-

signed to the newly created path. Given an environment or configuration

conducive to a high number of intersections, the copying process could de-

lay the runtime of the algorithm with memory management tasks. The

redundancy of the information in each path could be reduced. This re-

mains an elusive problem and among the most prominent open questions

that have arisen from the current research.

Path creation

In an environment with many concave objects, paths could intersect repeat-

edly with edges of the same object, which would lead to the generation of

a new redundant path for each new intersection. From an implementation

stand-point, object creation and duplication of the data structures from

one path object to another can strain resources and impact performance.

Given that one drawback of RPF is that it requires the creation of a new

path object with each wall intersection, it can prove desirable to avoid un-

necessary path generation. This could be achieved in a number of ways

and we will discuss three possible options:

• Off-line obstacle labelling - in a preprocessing stage, obstacles inside

a map can be uniquely identified (by means of contour tracing, for

example) and the cells belonging to the same obstacle can share an

identifier unique to each individual object; by this means, in the on-
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line path-planning search, when an intersection occurs with a cell that

has the same identifier as the ones of the previous wall following step,

the algorithm can avoid creating a new path to follow the obstacle

in the opposite direction, as the path would intersect itself and be

discarded as redundant. One should note that if the goal node were

located inside the convex hull bounding an obstacle, the procedure

described above could fail to find a solution. Therefore, additional in-

formation may be required from the preprocessing stage, for example,

a bounding box associated with each object.

• Online lookahead step - after a path determines that it can leave the

edge of an obstacle and resume travel in a straight line, before en-

gaging in a ray-cast towards a goal node (or internal goal node), the

algorithm can perform a lookahead step, in which it allows the wall

following to carry on for a number of steps (chosen stochastically);

the lookahead procedure would terminate in one of three ways, ei-

ther by intersecting the path, in which case the obstacle would not

be intersected again, or by crossing on the opposite side of the M-

line defined by the goal node and the internal start node (point of

departure from obstacle edge), in which case the wall following can

be allowed to continue normally (i.e. a new path would be redun-

dant), or, finally, by exhausting the number of steps, in which case

a conclusion would not be drawn, and the algorithm would resume

normal ray-casting behaviour. The latter case would prove costly as a

redundant path may still be generated; as such, choosing the number

of lookahead steps could have an either a positive or negative impact

on performance.

• Avoidance of path structures - one could circumvent the issue by

avoiding the task of path creation altogether. The implementation

choice for moving away from node objects (e.g. implementations of



6.2. Future Work 207

algorithms in the A* family), and using path objects instead was done

on the basis of simplicity. The implementation uses structures such

as linked lists for appending, inserting and deleting nodes which are

represented by signed integer values (the absolute value represents

the index corresponding to the vertex, and the sign reflects the side

of the path at the moment of exploration). The main difficulties of

using individual node objects is the problem of nodes having multiple

potential parents and also maintaining the sides of the paths passing

through the node. Algorithms such as R* [93] and LIAN [94] could

provide alternatives methods for handling multiple parents. A solu-

tion that would address these issues is reserved as a potential avenue

for future research.

Multi-threading

The algorithm could benefit from parallelisation (eg. parallel Dijkstra [95])

as the searches executed by each path are performed independently of each

other. From an implementation point of view, multiple threads running si-

multaneously would have access to shared resources such as the grid graph.

For static maps however, occupancy queries (read operations from mem-

ory and/or cache) would not require synchronisation (preventing multiple

threads from accessing the object at the same time). Shared resources that

would require synchronisation to prevent concurrency faults would be the

priority stack maintaining references of the active paths. The decision of

adopting parallelisation would take into consideration the boost in perfor-

mance and weigh the potential reduction im runtime against the overhead

of multi-threading (thread object creation, shared resource synchronisation,

processor architecture, etc.).
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6.2.2 Open Questions and Potential Applications

The following section presents a brief discussion on some potential appli-

cations and variations on the RPF framework. Some questions that could

hopefully fuel future research directions are considered:

One avenue of investigation, that has not been explored in detail by the

current work, would be to alter the algorithm to perform path clearing pro-

cedures (i.e. checking for line-of-sight between subsequent nodes of a path)

in reverse order (from stop to start) after having reached the goal node at

least once. Such a behaviour would be desirable and expected of a robotic

agent that would enact a RPF-like navigation strategy. In an unknown

environment the robot would learn about its surroundings by multiple at-

tempts of travelling between the start and stop goals, assimilating more

information about the environment and optimising the path it travels with

each iteration. Such a scenario would imply travelling towards the goal and

returning to the start node, but rather than retracing its steps, the robot

can attempt to optimise the path by minimising the travel score between

path nodes. Preliminary experiments indicate that reversing the order of

the nodes in a path (Line 40 of Algorithm 9) and/or reversing the path’s

side are insufficient to accomplish this behaviour.

6.2.3 Hybridisation

One can imagine a hybrid algorithm that combines the initial stage of

the Ray Path Finder algorithm (racing a path towards an end goal) with

other solutions such as Theta* or Anya to clear a path that has reached a

goal. During the development stage, brief experimentation with a RPF- A*

variant allowed for the discovery of solutions with fewer node expansions

than a purely A* algorithm, but had the same limitations in a path’s any-



6.2. Future Work 209

angle and optimality attributes as A*. In an RPF hybrid algorithm, a path

is allowed to search until it terminates or reaches its target, after which a

second algorithm is allowed to perform internal searches between nodes of

the path. To arrive at an optimal solution, any such hybrid should also

maintain a path’s tautness (node backward and forward pruning), which

would introduce a higher complexity to the implementation.

Similar to other algorithms, such as Bidirectional A* [96], RPF on known

environments may benefit from a bidirectional variant, in which two simul-

taneous searches from start and goal meet to form a solution. A bidirec-

tional RPF could, ideally, improve performance, but with a trade-off of

having a higher memory demand and complexity. Other hybrids that more

closely fit the any-angle paradigm would see a RPF variant that can handle

non-holonomic movement, such as in the case of Theta*-RRT [97].

Swarm robotics

In a hypothetical adaptation of RPF in a robot swarm application, robots

can be sent out and allowed to perform a search for the target, after which

more robots can attempt to optimise the solutions found. If multiple paths

are discovered, the robots can be distributed among them so as to avoid

congestion.

Cellular automata

A discrete computational model with applications in diverse fields of study,

from biology to mathematics, cellular automata are a useful tool for gener-

ating complex using relatively simple rules. In general, a cellular automaton

consists of a cell grid where each cell represents an entity that exists in one

of a finite number a states [98]. Given a set of rules applied to each cell
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based on the states of the cells in its neighbourhood, the state of the cell

can change with each generation. Some classes of resulting patterns that

evolve with each generation can exhibit complex behaviour with few simple

governing rules. Conway’s Game of Life, one of the most popular examples

of a cellular automaton, has been determined to be Turing complete [99],

making it a powerful method of computation, and is designed around four

simple rules:

• a live cell with fewer than two neighbours dies, due to under-population

• a live cell with more than three neighbours dies, due to over-population

• a live cell with two or three neighbours survives to the next generation

• a dead cell with exactly three neighbours becomes a live cell.

Hypothetical algorithms combining RPF inspired behaviours with a cellular

automaton are considered as a future research direction. One can envision

such a cellular automaton in a path planning strategy having a few simple

rules:

• automaton starts off with only one cell (start node)

• a dead cell which finds itself in an open space, and has a live cell as

neighbour (either an open space or a leave point) or next t

• a live cell with more than three neighbours dies, due to over-population

• a live cell with two or three neighbours survives to the next generation

• a dead cell which finds itself on an object boundary with at least one

living neighbour becomes a live cell (i.e. contour tracing), unless the

neighbour is a leave point

Rather than expanding one cell at a time, a cellular-automata solution

would be able to cover a larger surface depending on the size of the desired
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object or based on the momentum of a navigating agent. This would also

be applicable to solutions found by RPF, where cellular automata would

re-trace the path or paths found by the algorithm, expanding larger sur-

face areas to account for desired properties or behaviours from the robotic

agent, such as corner clearance to avoid collisions with moving targets, or

to approach the corner from a better angle of attack to preserve momentum

and have a smoother, more natural trajectory.

An RPF inspired cellular automaton variant may provide a solution to

path-planning on grids with non-uniform traversal costs, as the automaton

may allow the search-space to dilate locally, in order to account for paths

with different weights. A cellular automaton approach to RPF may also

be able to tackle the problem of path-planning in 3D environments.
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