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Abstract. We prove that the Poisson version of the Dixmier-Moeglin equiva-

lence holds for cocommutative affine Poisson-Hopf algebras. This is a first step

towards understanding the symplectic foliation and the representation theory
of (cocommutative) affine Poisson-Hopf algebras. Our proof makes substantial

use of the model theory of fields equipped with finitely many possibly noncom-

muting derivations. As an application, we show that the symmetric algebra of
a finite dimensional Lie algebra, equipped with its natural Poisson structure,

satisfies the Poisson Dixmier-Moeglin equivalence.
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1. Introduction

We fix a field k of characteristic zero, and recall that by an affine k-algebra one
means a finitely generated one that is a domain. The aim of this note is to study
the representation theory and the geometry of affine Poisson-Hopf k-algebras via
methods from the model theory of differential fields. For the reader unfamiliar with
Poisson-Hopf algebras, let us mention at this point that these include symmetric
algebras of finite-dimensional Lie algebras (endowed with their natural Poisson
bracket, see Section 2.1). For further examples, we refer the reader to [10] and [14].

As it is often the case, classifying simple representations or symplectic leaves
of Poisson(-Hopf) algebras is too wide a problem, and so we are approaching it
by studying the so-called Poisson-primitive ideals. There are several equivalent
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ways to define these (prime Poisson) ideals. Given our representation theoretic and
geometric motivation, we just give two equivalent definitions at this stage. Let
A = O(V ) be an affine Poisson k-algebra (so that V is a Poisson variety over k).
The Poisson-primitive ideals of A are the defining ideals of the Zariski closure of
the symplectic leaves of V . Equivalently, they are precisely the annihilators of the
simple Poisson A-modules. Thus, classifying Poisson-primitive ideals of a Poisson(-
Hopf) algebra is a first step towards understanding both its symplectic foliation
and its representation theory.

The goal of this paper is to provide a topological criterion to characterise Poisson-
primitive ideals among prime Poisson ideals of a Poisson-Hopf algebra. More pre-
cisely, we prove that Poisson-primitive ideals of a cocommutative affine Poisson-
Hopf algebra are exactly those prime ideals that are Poisson-locally closed. In [1],
the authors together with Bell and Moosa proved that Poisson-primitive ideals co-
incide with the so-called Poisson-rational ideals. So, combining this with our results
here, we obtain that for affine cocommutative Poisson-Hopf algebras, the notions
of Poisson-rational, Poisson-primitive and Poisson-locally closed coincide. The co-
incidence of these three notions is often referred to as the Poisson Dixmier-Moeglin
equivalence (see Section 2.2), so that we can state our main result as follows.

Theorem 1. Any cocommutative affine Poisson-Hopf k-algebra satisfies the Pois-
son Dixmier-Moeglin equivalence.

We note that the Poisson Dixmier-Moeglin equivalence does not always hold for
a Poisson algebra. By [17, 1.7(i), 1.10], in an affine Poisson k-algebra A, we have
that Poisson-locally closed implies Poisson-primitive, and Poisson-primitive implies
Poisson-rational (this also follows from Proposition 3.5 below). It was shown in
[1], that when A has Krull-dimension at most three, then Poisson-rational implies
Poisson-locally closed, and so the Poisson-DME holds in this case. However, in
that same paper, counterexamples of Krull-dimension d were build, for any d ≥ 4.
Hence, the main point of this note is to show that those (counter-)examples cannot
admit a cocommutative Poisson-Hopf algebra structure; and that in fact in this
case Poisson-rational does imply Poisson-locally closed.

While in general one cannot remove the Hopf algebra assumption in Theorem 1,
one natural question to ask at this point is: can we remove the cocommutative
assumption? That is, does the Poisson Dixmier-Moeglin equivalence hold in any
affine Poisson-Hopf algebra? While we currently do not have an answer, in Re-
mark 5.6(2) below we suggest how one could address this question. We note that
in the differential-Hopf algebra context in a single derivation the cocommutative
assumption can indeed be removed, see [2, Theorem 2.20], and also that Bell and
Leung have asked a similar question in the noncommutative setting, see [3, Con-
jecture 1.3].

As symmetric algebras of finite dimensional Lie algebras are examples of cocom-
mutative affine Poisson-Hopf algebras, Theorem 1 applies to this family of Poisson
k-algebras. Thus, we obtain (with very different methods) a Poisson analogue of
the foundational result of Dixmier and Moeglin, later generalized by Irving and
Small, that asserts that primitive ideals in the enveloping algebra U(g) of a finite-
dimensional Lie k-algebra g are precisely the locally closed prime ideals of U(g) [8].
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Theorem 2. If A is the symmetric algebra of a finite dimensional Lie k-algebra
g, equipped with its natural Poisson bracket, then A satisfies the Poisson Dixmier-
Moeglin equivalence.

We expect that our results on the representation theory of Poisson-Hopf algebras
will help us better understand representations of Hopf algebras in general. This
is justified by the fact that connected Hopf algebras arise (in a rough sense) as
deformations of Poisson-Hopf algebras [19].

It is important to note that a significant part of the proof of Theorem 1 makes
substantial use of the model theory of differential fields, via the theory of alge-
braic D-varieties and D-groups (see Sections 3 and 4). The novelty of this paper,
compared to [1] or [2] where the model theory of ordinary differential fields was
used, is that we work in the context of several possibly noncommuting derivations.
While the model theory of differential fields with commuting derivations has fruit-
fully been applied in other areas of mathematics (for instance, in differential Galois
theory, see [13]), to the authors knowledge this paper contains the first application
of the model-theoretic properties of the theory of differential fields where no com-
mutativity assumption is made among the derivations. We expect (and hope) that
the ideas presented here will motivate the further use of these tools in new areas of
algebra, and perhaps initiate the study of the model theory of Poisson rings.

2. Some preliminaries

Recall that for us k denotes a field of characteristic zero, and that by an affine
algebra we mean a finitely generated one that is a domain.

2.1. Poisson-Hopf algebras. Recall that a Poisson k-algebra is a commutative
k-algebra A equipped with a Lie bracket {−,−} such that

{a, bc} = {a, b}c+ b{a, c}, for all a, b, c ∈ A.

In other words, for each a ∈ A, the map {a,−} : A→ A is a derivation.
Given a Poisson k-algebra (A, {−,−}) the tensor algebra A⊗A can be naturally

equipped with a Poisson k-algebra structure as follows; define

{a⊗ b, a′ ⊗ b′} = {a, a′} ⊗ b b′ + a a′ ⊗ {b, b′}

for a, b, a′a, b′ ∈ A and extend to all of A⊗A by k-linearity.

Definition 2.1. A Poisson-Hopf k-algebra A is a Poisson k-algebra with the addi-
tional structure of a Hopf algebra such that the Poisson bracket {−,−} commutes
with coproduct ∆; that is,

∆({a, b}) = {∆(a),∆(b)}

for all a, b ∈ A.

Remark 2.2. Let (A, {−,−}) be a Poisson algebra with a Hopf algebra structure.
In order to prove that the Poisson bracket commutes with coproduct it suffices to
check that if G is a set of generators of A (as a k-algebra) then

∆({a, b}) = {∆(a),∆(b)}

for all a ∈ G and b ∈ G. Indeed, suppose a ∈ G and b ∈ A, then b = f(g1, . . . , gs)
for some polynomial f over k and gi ∈ G. Since {a,−} and {∆(a),−} are k-linear
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derivations, we get

∆({a, b}) =∆

(
s∑
i=1

∂f

∂ti
(g1, . . . , gs) · {a, gi}

)

=

s∑
i=1

∂f

∂ti
(∆(g1), . . . ,∆(gs)) · {∆(a),∆(gi)}

={∆(a), f(∆(g1, . . . ,∆(gs))}
={∆(a),∆(b)}.

The general case, when a, b ∈ A, follows from this in similar fashion; now writing a
as h(g1, . . . , gs) and using the fact that {−, b} and {−,∆(b)} are k-linear derivations.

We now describe a general example of cocommutative Poisson-Hopf algebra.
Namely, let A be the symmetric algebra of a finite dimensional Lie k-algebra g.
Such a (symmetric) algebra A is of the form k[x1, . . . , xs] where the xi’s form a
k-basis for the Lie algebra g. It is well known that A becomes a Poisson algebra
with Poisson bracket defined by:

{f, g} :=
∑
i<j

[xi, xj ]

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
.

Moreover, we can equip A with a Hopf algebra structure where the xi’s are all
primitive (so that A is cocommutative). One can check that then the Poisson
bracket commutes with the coproduct. Indeed, it follows from Remark 2.2 that we
only need to prove that

∆({xi, xj}) = {∆(xi),∆(xj)}

for all i, j. Using the fact that every element of g is primitive and that ∆ is an
algebra homomorphism, we get

{∆(xi),∆(xj)} ={1⊗ xi + xi ⊗ 1, 1⊗ xj + xj ⊗ 1}
=1⊗ {xi, xj}+ {xi, xj} ⊗ 1

=1⊗ [xi, xj ] + [xi, xj ]⊗ 1

=∆([xi, xj ])

=∆({xi, xj}) for all i, j.

Thus A is indeed a cocommutative affine Poisson-Hopf k-algebra.
Further examples of (affine) Poisson-Hopf algebras are given by the coordinate

ring of Poisson affine algebraic groups [10]. These examples are not, however,
generally cocommutative, unless of course the algebraic group is abelian.

2.2. The Poisson Dixmier-Moeglin equivalence. Let (A, {−,−}) be a Poisson
k-algebra . An ideal I of A is a Poisson ideal if {A, I} ⊆ I. The Poisson-center of
A is defined as

ZP (A) = {a ∈ A : {A, a} = 0}.
Recall that when A is a domain, there is a natural Poisson structure on FracA
(induced by the quotient rule of derivations).
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We denote by SpecPA the subspace of SpecA consisting of Poisson ideals. The
Poisson core of an ideal I of A is defined as the largest Poisson ideal contained in
I. A prime Poisson ideal P of A is said to be

• Poisson-locally closed if ⋂
P(Q∈SpecPA

Q 6= P

• Poisson-primitive if P is the Poisson core of a maximal ideal of A.
• Poisson-rational if ZP (FracA/P ) is an algebraic extension of k.

We say that a A satisfies the Poisson Dixmier-Moeglin equivalence (or Poisson-
DME) if a prime Poisson ideal of A is Poisson-locally closed iff it is Poisson-primitve
iff it is Poisson-rational. Let us remark that, by [5, Lemma 3.5], the above defini-
tion of Poisson-primitive does correspond to the equivalent definitions given in the
introduction.

2.3. Differential algebras. We now briefly recall some facts about differential k-
algebras that will be useful in subsequent sections. For any k-algebra A, we denote
by Derk(A) the A-vector space of k-linear derivations on A.

Remark 2.3. Let (A, {−,−}) be a Poisson k-algebra and G a set of generators of
A. Recall that a Hamiltonian of A is an element of Derk(A) of the form {a,−} for
some a ∈ A. An easy computation shows that the A-vector subspace of Derk(A)
spanned by the Hamiltonians of A is equal to

spanA({a,−} : a ∈ G).

Due to the above remark, to check that an ideal in a Poisson algebra is a Poisson
ideal one only needs to check that it is invariant under the Hamiltonians of a set of
generators. More generally, we have

Lemma 2.4. Let (A, {−,−}) be a Poisson k-algebra. If D ⊆ Derk(A) is such that

spanAD = spanA({a,−} : a ∈ A),

then

(1) an ideal I of A is Poisson iff it is a D-ideal (i.e., invariant under D), and
(2) the Poisson-center ZP (A) equals the D-constants of A (i.e., ∩δ∈D ker δ).

Furthermore, if A is a domain,

ZP (FracA) = D-constants(FracA).

Proof. This is an easy exercise. We leave the details to the reader. �

Suppose A is a commutative k-algebra equipped with a family of k-linear deriva-
tions D. We denote by SpecDA the subspace of SpecA consisting of prime D-ideals.
The D-core of an ideal I of A is defined as the largest D-ideal contained in I. A
prime D-ideal P of A is said to be

• D-locally closed if ⋂
P(Q∈SpecDA

Q 6= P

• D-primitive if P is the D-core of a maximal ideal of A.
• D-rational if the D-constants of FracA/P is an algebraic extension of k.
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We say that a A satisfies the D-Dixmier-Moeglin equivalence (or D-DME) if a
prime D-ideal of A is D-locally closed iff it is D-primitive iff it is D-rational.

The following is an easy consequence of Lemma 2.4.

Corollary 2.5. Let (A, {−,−}) be a Poisson k-algebra. If D ⊆ Derk(A) is such
that

spanAD = spanA({a,−} : a ∈ A),

then a prime ideal P of A is

(1) Poisson-locally closed iff it is D-locally closed,
(2) Poisson-primitive iff it is D-primitive, and
(3) Poisson -rational iff it is D-rational.

Consequently, (A, {−,−}) satisfies the Poisson-DME iff it satisfies the D-DME.

Given a commutative Hopf k-algebra A equipped with a family of k-linear deriva-
tions D, we say that A is a differential-Hopf algebra if each derivation commutes
with coproduct; that is,

δ(∆(a)) = ∆(δa)

for all a ∈ A and δ ∈ D. Here recall that the derivations D naturally lift to A⊗A
as follows;

δ(a⊗ b) = δa⊗ b+ a⊗ δb
for all a, b ∈ A and extend by k-linearity to all of A⊗A.

Remark 2.6.

(1) As we did in Remark 2.2, one can check that, in a commutative Hopf k-
algebra A equipped with k-linear derivations D, the derivations D commute
with coproduct if and only if δ(∆(a)) = ∆(δa) for all δ ∈ D and a varying
in a set of generators of A.

(2) Suppose (A, {−,−}) is an affine Poisson-Hopf k-algebra, we do not know if
there is D ⊆ Derk(A) with

spanAD = spanA({a,−} : a ∈ A)

and such that (A,D) is a differential-Hopf algebra. Nonetheless, in Propo-
sition 5.5, we prove that it is possible to find such D in the case when k is
algebraically closed and A is cocommutative.

3. On affine D-varieties and isotriviality

In this section we present the basics of the theory of affine algebraic D-varieties
in the context of finitely many (possibly noncommuting) derivations, together with
the notions of isotriviality and compound isotriviality. It is worth noting that the
theory of D-varieties in the context of commuting derivations appears in [6].

We make, somewhat freely (specially compared to [1, 2]), use of basic model-
theoretic terminology, for which [15] should suffice. The reader is also referred to
[2] for background and motivation for some of the definitions of this paper (pro-
longations, D-points, isotriviality). The appropriate model-theoretic context here
is that of fields equipped with finitely many (possibly noncommuting) derivations.
Fix a positive integer m. We work in the first-order language of differential rings
equipped with m derivations

Ldiff = Lrings ∪ {δ1, . . . , δm}.
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One can easily axiomatize the class of differential fields (K, δ1, . . . , δm) of charac-
teristic zero (where no commutativity assumption is made among the derivations).
Such a differential field is called existentially closed if any quantifier-free Ldiff -
formula with a realisation in a differential field extension of K already has a real-
isation in K. Note that such differential fields exist (by a standard Zorn’s lemma
and chain construction argument).

It turns out that there is a first-order axiomatization of the class of existentially
closed differential fields of characteristic zero. This is a consequence of the general
results in [16], and following their notation we denote this theory by D -CF0. In
that same paper, the authors established that this is a complete stable theory with
quantifier elimination and elimination of imaginaries. Moreover, they showed that
given (U , δ1, . . . , δm) |= D -CF0, if K is a differential subfield then K = dclU (K),
and if additionally K is algebraically closed then K = aclU (K).

We now fix a sufficiently large saturated model (U ,D = {δ1, . . . , δm}) |= D -CF0.
This means that given a small (i.e., |K| < |U|) differential subfield K of U , and a
(possibly infinite) collection Σ of Ldiff -formulas with parameters from K, if every
finite subcollection of Σ is satisfiable in U then so is all of Σ. One of the most
important definable subsets of U is its subfield of constants, which is defined as

CU =

m⋂
i=1

ker δi.

A subset of Un that is an arbitrary (possibly infinite) intersection of definable sets
will be called a type-definable set.

Remark 3.1. The field CU is algebraically closed and it is purely stably embedded.
This means that any subset of CnU that is definable in the Ldiff -structure U , over
some differential subfield K, is actually definable in the Lrings-structure CU over CK .
In particular, by ω-stability of the theory of algebraically closed fields, if G ⊆ CnU
is a type-definable group over K in the differential structure (U , δ1, . . . , δm), then
G is definable over CK in the pure-field structure CU .

We now discuss affine algebraic D-varieties. Fix a (small) differential subfield
K < U . We say that a Zariski closed set V ⊆ Un defined over K is a D-variety if its
coordinate ring K[V ] is equipped with a family of m derivations ∂̄ = {∂1, . . . , ∂m}
such that ∂i extends δi|K .

We now wish to give a more algebro-geometric characterization of affine D-
varieties. Given a Zariski closed V ⊆ Un over K and δ ∈ D, the δ-prolongation of
V is the Zariski-closed set τδ ⊆ U2n defined by the equations

f(x̄) = 0 and

n∑
i=1

∂f

∂xi
(x̄) · yi + fδ(x̄) = 0

for all f ∈ I(V/K) := {f ∈ K[x̄] : f(V ) = 0}, where x̄ = (x1, . . . , xn) and
fδ ∈ K[x̄] is obtained by applying δ to the coefficients of f . It is easy to check that
it suffices to vary f in a family of generators of the ideal I(V/K). Consequently,
if V is defined over a field k of constants (i.e., k < CU ), then τδV is nothing more
that the tangent bundle TV of V .

More generally, the D-prolongation of V , denoted by τDV ⊂ Un(m+1), is defined
as the fibred-product

τDV = τδ1V ×V · · · ×V τδmV.
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Note that τDV comes equipped with a canonical projection map τDV → V . The
D-prolongation has the characteristic property that for any a ∈ V we have that

(a, δ1a, . . . , δma) ∈ τDV ;

in other words, the map x̄ 7→ (x̄, δ1x̄, . . . , δmx̄) defines a differential regular section
of τDV → V .

If V is defined over a field k of constants, then τDV equals the m-fold fibred-
product of TV and hence it comes with a canonical (algebraic) section, the zero
section s0 : V → τDV . On the other hand, for arbitrary V defined over K, the
existence of an algebraic regular section s : V → τDV over K turns out to be equiv-
alent to a D-variety structure on V . Indeed, if ∂̄ = {∂1, . . . , ∂m} are derivations on
the coordinate ring K[V ] extending those on K, and we let z̄ = (z1, . . . , zn) be its
coordinate functions and set

s(z̄) = (z̄, ∂1(z̄), . . . , ∂m(z̄))

where ∂i(z̄) = (∂i(z1), . . . , ∂i(zn)), then it is not hard to check (using the fact that
the ∂i’s are derivations) that this s yields a section of τDV → V which is regular
and over K. On the other hand, any such section

s = (Id, s1, . . . , sm)

corresponds to the derivations on K[V ] induced by setting ∂i(z̄) = si(z̄).
From now on, we will usually refer to a D-variety as a pair (V, s) where V is an

affine algebraic variety (viewed as a Zariski closed subset of Un) and s is a section
of τDV → V . A point a ∈ V will be called a D-point of V if

s(a) = (a, δ1(a), . . . , δm(a)).

We will denote the set of D-points of V by (V, s)#. Note that this is an example
of a definable set in the structure (U , δ1, . . . , δm) and in fact this will be the main
source of such examples for us.

Remark 3.2. Note that if V is defined over a field of constants and s = s0 (the zero
section), then (V, s)# equals V (CU ), the CU -points of V .

A Zariski closed subset W of a D-variety (V, s) is said to be a D-subvariety if
s(W ) ⊆ τDW ; of course, in this case (W, s|W ) will be a D-variety. Also, a regular
map f : V → W between D-varieties (V, s) and (W, t) is said to be a D-morphism
if f maps D-points to D-points.

Remark 3.3. It is easy to check that W ⊂ V is a D-subvariety iff the ideal
I(W/K) ⊂ K[V ] is a ∂̄-ideal. Also, a regular map between D-varieties f : V →W
is a D-morphism iff the pull-back f∗ : K[W ]→ K[V ] is a ∂̄-ring homomorphism.

Lemma 3.4. Let (V, s) and (W, t) be affine algebraic D-varieties over K and f a
D-morphism between them. Then,

(1) each K-irreducible component of V is a D-subvariety,
(2) the set of D-points of V is Zariski-dense in V ,
(3) if X is a D-subvariety of W , then f−1(X) is a D-subvariety of V , and
(4) if Y is a D-subvariety of V , then the Zariski closure of f(Y ) is a D-

subvariety of W .
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Proof. (1) Let W be a K-irreducible component of V and a a Zariski K-generic
point of W . It suffices to show that s(a) ∈ τDW . As a is not contained in any of
the other K-irreducible components of V , from the nature of the equations defining
τDW , we get that τDWa (the fibre above a) coincides with τDVa. The claim now
follows.

(2) By (1), we may assume that V is K-irreducible. Let W be a proper Zariski
closed subset of V and a a Zariski K-generic point of V (hence a /∈ W ). Let
b = (b1, . . . , bm) ∈ Unm be such that (a, b) = s(a), since b ∈ τDVa, the equations
of τDV yield that there are derivations ∂i : K(a, b) → K(a, b), for i = 1, . . . ,m,
such that ∂i|K = δi|K and ∂i(a) = bi (see for instance [12, Chapter 7, §5]). By
saturation of U , there is a differential field embedding (K(a, b), ∂̄)→ (U ,D) fixing
K. So there is a point (a′, b′) in Un(m+1), namely the image of (a, b), such that
a′ ∈ V \W and

s(a′) = (a′, b′) = (a′, δ1a
′, . . . , δma

′).

That is, a′ is a D-point of V not in W . Thus, the set of D-points is dense in V .
(3) To prove that f−1(X) is a D-subvariety of V it suffices to show that

I(f−1(X)/K) ⊆ K[V ]

is a D-ideal. Recall that this ideal is given as the radical ideal generated by
f∗(I(X/K)). As radical ideals of D-ideals are again D-ideals (see [9, Lemma 1.8]),
it suffices to show that the ideal generated by f∗(I(X/K)) in K[V ] is a D-ideal.
Let δ ∈ D, then for an expression of the form

∑
i gif

∗(hi), with gi ∈ K[V ] and
hi ∈ I(X/K), we have

δ

(∑
i

gif
∗(hi)

)
=
∑
i

δ(gi)f
∗(hi) + gif

∗(δhi),

where we have used that f is a D-morphism (so f∗ commute with δ). Since X is a
D-subvariety of W , δhi ∈ I(X/K), and so the above term is in the ideal generated
by f∗(I(X/K)), as desired.

(4) To prove that Z, the Zariski closure of f(Y ), is a D-subvariety of W , it
suffices to show that each K-irreducible component of Z is such. Thus, we assume
that Z is K-irreducible. Let a be a Zariski K-generic D-point of an K-irreducible
component of Y that maps dominantly onto Z. Then, b = f(a) is a Zariski K-
generic of Z, and since f is a D-morphism we have that b is a D-point of W .
Thus,

s(b) = (b, δ1b, . . . , δmb) ∈ τDZ,
and, by Zariski genericity of b, we must have s(Z) ⊆ τDZ, as desired. �

From the above lemma we see that if (V, s) is K-irreducible (meaning that V is
K-irreducible), then it contains a Zariski K-generic D-point. Indeed, if this were
not the case, by saturation of U there would be a finite collection of proper Zariski
closed subsets of V defined over K that contains all D-points of V . But as V is
K-irreducible this finite collection does not cover all of V and hence we contradict
part (2) of the lemma.

Note that if a is a Zariski K-generic D-point of V (assuming V is K-irreducible),
then the function fieldK(V ) ∼= K(a) equipped with the derivations ∂̄ is a differential
subfield of (U ,D). Thus, from now on, we will assume that

(K[V ], ∂̄) ≤ (K(V ), ∂̄) < (U ,D),
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and, moreover, we identify ∂̄ with D.

Proposition 3.5. Let k < CU and (V, s) be a k-irreducible affine algebraic D-
variety. Then, for any prime D-ideal P of k[V ] we have

D-locally closed =⇒ D-primitive =⇒ D-rational.

Furthermore, suppose V is geometrically irreducible (i.e., kalg-irreducible), if in
kalg[V ] a prime D-ideal is D-rational only if it is D-locally closed, then the same
holds in k[V ].

Proof. By passing to the quotient k[V ]/P we may assume that P = (0).
Now assume (0) is D-locally closed. This means that⋂

Q∈SpecDk[V ]\(0)

Q 6= (0).

At the level of D-subvarieties of V (recall that each such Q corresponds to a proper
D-subvariety of V ), this is equivalent to V having a proper D-subvariety W over
k that contains all such. Take a point a ∈ V \W (kalg). Then I(a/k) ⊂ k[V ] is a
maximal ideal and any D-ideal inside it must be zero (as a /∈W ). This shows that
(0) is the D-core of a maximal ideal of k[V ]; in other words, (0) is D-primitive.

On the other hand, assume (0) is D-primitive. That is, there is a maximal ideal
m with D-core (0). Let a ∈ V (kalg) be such that m = I(a/k). Now let f be a
D-constant of k(V ). We must show that f algebraic over k. We first show that
a is not in the singular locus of f . Towards a contradiction suppose it is. Then,
for every representation f = p

q we have q(a) = 0; that is, q ∈ m. Since f is a

D-constant, we have that for each δ ∈ D

0 = δf =
δp · q − p · δq

q2

and so, either δq = 0, or δp
δq = p

q = f in which case δq(a) = 0. In any case, δq ∈ m.

Repeating this process we obtain that δ′δq ∈ m for any δ′ ∈ D, and so on, hence
we get that the D-ideal generated by q is contained in m. This contradicts the fact
that the D-core of m is (0), and so f is defined at a. Write f = p

q where q(a) 6= 0.

Now let h ∈ k[t] be the minimal polynomial of f(a) ∈ kalg. There is a sufficiently
large integer s such that if we set

r = qs · (h ◦ f)

then r ∈ k[V ]; and, since r(a) = qs(a)h(f(a)) = 0, we also have that r ∈ m. Let
δ ∈ D, since δ(h ◦ f) = (h′ ◦ f) · δf = 0, we get that δr = δ(qs) · (h ◦ f); and so
δr(a) = 0, implying that δr ∈ m. Repeating this process we obtain that δ′δr ∈ m for
any δ′ ∈ D, and so on, hence we get that the D-ideal generated by r is contained in
m. By the choice of m, r must be zero. This implies that h(f) = 0 and so f ∈ kalg.
This shows D-rationality of (0).

For the ’furthermore’ clause, suppose V is geometrically irreducible and that a
prime D-ideal of kalg[V ] is D-rational only if it is D-locally closed. Let P be a
prime D-rational ideal of k[V ]. We must show that P is D-locally closed. Let W
be the k-irreducible D-subvariety of V that corresponds to P . Also, let Y be one
of the kalg-irreducible components of W . By Lemma 3.4(1), Y is a D-subvariety
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of V (over kalg). Let b be a Zariski kalg-generic D-point of Y ; then b is a Zariski
k-generic point D-point of W . Since

kalg(Y ) = kalg(b) ⊆ k(b)alg

and the D-constants of k(b) are algebraic over k (by D-rationality of P ), we get that
the D-constants of kalg(Y ) are precisely kalg. In other words, the D-ideal I(Y/kalg)
of kalg[V ] is D-rational; by our assumption, this ideal is D-locally closed. That is,
Y contains a proper D-subvariety Y ′ over kalg that contains all such. Letting W ′ be
the Zariski k-closure of Y ′, we obtain a proper D-subvariety of W over k containing
all such; equivalently, P is D-locally closed. �

We will need one more piece of model-theoretic terminology. We denote by
AutD(U/K) the differential automorphisms of U fixing K. Given a tuple a ∈ Un,
we define the (complete) type of a over K as the orbit of a under the action of
AutD(U/K) on Un; in other words,

tp(a/K) := {b ∈ Un : σ(a) = b for some σ ∈ AutD(U/K)}.

In model-theoretic parlance, we are identifying a type with its set of realizations in
U . A type tp(a/K) is always given as an (infinite) intersection of Ldiff -definable
sets in U ; namely, the intersections of all definable sets over K containing a. We
will call the set defined by tp(a/K), in Un, the set of its realisations. We say that
tp(a/K) is isolated if its set of realizations is a definable set (it will necessarily be
definable over K).

Remark 3.6. If (V, s) is a K-irreducible D-variety and a is a Zariski K-generic D-
point, then the type tp(a/K) is precisely the set of all Zariski K-generic D-points
of V . Indeed, if b is another Zariski K-generic D-point, then, by saturation of U ,
there is a field automorphism σ of U such that b = σ(a). But since both, a and b,
are D-points, σ is in fact a differential homomorphism, and so σ ∈ AutD(U/K).
The other implication is obvious.

Proposition 3.7. Let k be a subfield of CU . Let (V, s) be a k-irreducible D-variety,
and a a Zariski k-generic D-point of V . Then tp(a/k) is isolated if and only if (0)
is a D-locally closed D-ideal of k[V ].

Proof. Suppose tp(a/k) is isolated. Then its set of realizations is definable over
k. By quantifier elimination and the fact that all such realizations are D-points of
V , this definable set must the form (V \W ) ∩ (V, s)# where W is a proper Zariski
closed subset of V defined over k. Since, by Remark 3.6, the realisations of tp(a/K)
is precisely the set of all Zariski k-generic D-points of V , all proper D-subvarieties
of V defined over k must be contained in W . At the level of D-ideals of k[V ], this
is equivalent to saying that all the nonzero D-ideals contain I(W/k). This shows
that ⋂

Q∈SpecDk[V ]\(0)

Q 6= (0),

and so (0) is D-locally closed.
On the other hand, assume (0) is D-locally closed. Let X be the proper D-

subvariety of V corresponding to the D-ideal ∩Q∈SpecDk[V ]\(0)Q. Note that X
contains all proper D-subvarieties of V defined over k. If a ∈ (V \X) is a D-point,
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then it must a Zariski k-generic of V (otherwise, its Zariski k-locus would yield a
proper D-subvariety over k not contained in X). This shows that the set

(3.1) (V \X) ∩ (V, s)#

coincides with the set of Zariski k-generic D-points of V . By Remark 3.6, this latter
set is precisely tp(a/K), so this type is given by the formula (3.1) and therefore it
is isolated. �

Definition 3.8 (c.f. [2]). Let (V, s) be a K-irreducible affine algebraic D-variety.

(1) We say that (V, s) is isotrivial if there is a differential field F < U extension
of K and an injective D-morphism over F from (V, s) to (W, s0), where W
is defined over CF and s0 is the zero section.

(2) We say that (V, s) is compound isotrivial in `-steps if there is an sequence of
K-irreducible D-varieties (Vi, si), i = 1, . . . , `, and dominant D-morphisms
over K

V = V`
f` // V`−1

f`−1 // · · ·
f2 // V1

f1 // V0 = 0

such that for each i = 0, 1, . . . , `− 1, if a is a Zariski K-generic D-point of
Vi, then f−1

i+1(a) is isotrivial. Here note that f−1
i+1(a) is a K(a)-irreducible

D-subvariety of Vi+1 (by Lemma 3.4(3)).

We now prove one of the key results of the paper.

Theorem 3.9. Let V be a K-irreducible affine compound isotrivial D-variety. If
CK(V ), the D-constants of K(V ), is algebraic over CK , then the type of a Zariski
K-generic D-point of V is isolated.

Proof. We let a be a Zariski K-generic D-point of V . We must show that tp(a/K)
is isolated. Suppose V is compound isotrivial in `-steps. We proceed by induction
on `.

For the base case, ` = 1, V must be isotrivial. By definition, there is a definable
(with possibly additional parameters) injective map from the D-points of V to a
power of CU . In model theoretic terms this means that the type tp(a/K) is internal
to CU . This in turn implies that tp(a/Kalg) is internal to CU as well. On the other

hand, the condition that CK(a) = CK(V ) ⊂ CalgK translates in model-theoretic terms

to the type tp(a/Kalg) being weakly orthogonal to CU . Indeed, to see this, one must
show that Kalg(a)∩Kalg(CU ) is contained in Kalg. Taking d in the intersection we
get d = h(c) for some polynomial h over Kalg and tuple c from CU . If X is the set
of tuples x from CU such that d = h(x), then, by Remark 3.1, X is Lrings-definable

in CU over CKalg(a). Hence, there is a tuple c′ from CalgK(a) ⊂ C
alg
K that satisfies X;

and so d = h(c′) ∈ Kalg, as desired.
It is a well known model-theoretic fact on binding groups of automorphisms (for

a proof see [7, Appendix B]) that the above two conditions (internality and weak
orthogonality) imply the existence of a type-definable group G ⊆ CnU over Kalg that
acts definably (over Kalg) and transitively on tp(a/Kalg). By Remark 3.1, G must
be definable (over CKalg ), and so the realisations of tp(a/Kalg) form a definable set;
in other words, tp(a/Kalg) over K is isolated. Since the type of any tuple of Kalg

over K is isolated, we must have that tp(a/K) is isolated as well, as desired.
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Now assume ` > 1, and suppose we have

V = V`
f` // V`−1

f`−1 // · · ·
f2 // V1

f1 // V0 = 0

as in Definition 3.8(2). Let b = f`(a), then b is a Zariski K-generic D-point of V`−1.
Since CK(b) ⊆ CK(a), we have that CK(b) is algebraic over CK ; and so, by induction,
tp(b/K) is isolated. We now claim that tp(a/K(b)) is also isolated. Indeed, a
is a Zariski K(b)-generic D-point of W := f−1(b). By definition of compound
isotriviality, W is isotrivial, and so by the base case (` = 1) the type of a over
K(b) is isolated. The result now follows from the fact that both types, tp(b/K) and
tp(a/K(b)), are isolated (this is an easy exercise but a proof appears in [15, Lemma
4.2.21]). �

Corollary 3.10. Let k be a subfield of CU and let (V, s) be a k-irreducible affine
compound isotrivial D-variety. If (0) is a D-rational ideal of k[V ], then it is also
D-locally closed.

Proof. The fact that (0) is D-rational translates to Ck(V ) being algebraic over k = Ck
(this equality holds since k < CU ). Now, by Theorem 3.9, the type of a Zariski k-
generic D-point of V is isolated; which, by Proposition 3.7, implies that (0) is a
D-locally closed ideal of k[V ], as desired. �

4. The D-DME for commutative affine D-groups over constants

In this section we discuss affine algebraic D-groups, and show that the connected
commutative ones defined over the constants are compound isotrivial in 2-steps. We
carry on the notation from the previous section; in particular, (U ,D = {δ1, . . . , δm})
is a sufficiently large saturated model of D -CF0 and all base differential fields, k or
K, of parameters are assumed to be small (i.e., of cardinality less than that of U).

Given an affine algebraic group G over K, just as the tangent bundle TG of G has
the structure of an algebraic group, the D-prolongation of G also has a canonical
structure of an algebraic group (over K).

Definition 4.1. An affine algebraic D-group (G, s) over K is an affine algebraic
group with the additional structure of a D-variety s : G→ τDG, both over K, such
that s is a group homomorphism.

Remark 4.2. At the level of the coordinate ring K[G], a section s : G → τDG is
a group homomorphism if and only if the derivations D on K[G] commute with
coproduct ∆. Indeed, the section

s = (Id, s1, . . . , sm) : G→ τDG = τδ1G×G · · · ×G τδmG
is a group homomorphism iff each section

(Id, si) : G→ τδiG,

for i = 1, . . . ,m, is a group homomorphism. But each such section is a group
homomorphism iff δi commutes with ∆ (this is well known but a proof appears in
[2, Lemma 2.19]).

If G is defined over a field of constants k, then the zero section s0 : G→ τDG is
a group homomorphism. Thus, in this case (G, s0) is a D-group. Our main focus
here is on the (compound) isotriviality of connected commutative D-groups over
a field of constants. It turns out that to establish compound isotriviality of such
D-groups one essentially only needs to understand the commutative unipotent case.
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Lemma 4.3. Suppose (G, s) is an algebraic D-group over K. If G = Gna for some
n, then (G, s) is isotrivial.

Proof. By the comments in Remark 4.2, each section

(Id, si) : Gna → G2n
a

is a group homomorphism. Thus, si : Gna → Gna is of the form si(x̄) = Aix̄ for
some Ai ∈ Matn(K), i = 1, . . . ,m. Since U is existentially closed, we can find
B ∈ GLn(U) such that

δiB = AiB

for i = 1, . . . ,m. Set f : Gna → Gna to be the map f(x̄) = B−1x̄. Then, for every
D-point a of Gna we have

δi(f(a)) = δi(B
−1a) = B−1

(
δi(a)− δi(B)B−1a

)
= B−1

(
Aia−AiBB−1a

)
= 0.

Hence, f is an injective D-morphism between (Gna , s) and (Gna , s0) (where recall
that s0 is the zero section). The result follows. �

Proposition 4.4. Suppose (G, s) is a connected algebraic D-group over a field of
constants k. If G is commutative, then every k-irreducible D-subvariety is com-
pound isotrivial in 2-steps.

Proof. As G is over a field of constants, namely k, it comes equipped with the zero
section s0 as well. Set f(x̄) = s(x̄) · s0(x̄)−1 where the product and inverse occur
in τDG. Then f is a regular (algebraic) map from G to the m-th power of the Lie
algebra L(G) of G (here we use again that k < CU ). Moreover, as G is commutative,
f is group homomorphism.

Let H be the image of f ; then H = Gna for some n. The section s induces, via
f , a D-group structure t on H. Thus, f becomes a surjective group D-morphism
between (G, s) and (H, t). We claim that

G
f // H // 0

witnesses the compound isotriviality of (G, s). Indeed, (H, t) is isotrivial by Lemma
4.3, so it suffices to show that if a is a Zariski k-generic D-point of H then f−1(a) is
isotrivial. Let g be a D-point of f−1(a) and N := ker f . Then g induces an injective
D-morphism from f−1(a) onto N (as D-subvarieties of G) given by h 7→ g−1 · h.
As N is defined over k and s|N is the zero section, f−1(a) is indeed isotrivial. Note
that this argument actually shows that f−1(a) is isotrivial for any D-point a of H
(not necessarily Zariski generic).

Now let V be an arbitrary k-irreducible D-subvariety of G. Letting W be the
D-subvariety of H given by the Zariski closure of f(V ) (see Lemma 3.4(4)) and
g := f |V , we get that

V
g // W // 0

witnesses the compound isotriviality of V . Indeed, (W, t|W ) is isotrivial because it
is a D-subvariety of the isotrivial (H, t). Also, the argument in the above paragraph
shows that if b is a Zariski k-generic D-point of W then f−1(b) is isotrivial, but
then g−1(b) = f−1(b) ∩ V is isotrivial as well. The result follows. �

Remark 4.5.
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(1) We note that in Proposition 4.4 one cannot obtain in general compound
isotriviality in 1-step (in other words, isotriviality). For example, in the
single derivative case D = {δ}, consider G = Ga × Gm with D-group
structure s : G→ TG given by

s(x, y) = (x, y, 0, xy).

Then G is not isotrivial, see [18, §2] for details.
(2) It follows from [11, Fact 2.7(iii)], that the center Z(G) of an affine algebraic

D-group (G, s) is a (normal) D-subgroup. In the case of a single derivation
D = {δ}, it was shown in [11, Theorem 2.10] that G/Z(G) with its induced
D-group structure is isotrivial. While this result extends to the case of
several commuting derivations, it is not yet known if it holds in the general
situation of possibly noncommuting derivations. It is worth noting that
if such a result does hold, then one can extend the argument of Proposi-
tion 4.4 to show that any connected algebraic D-group over the constants
is compound isotrivial in 3-steps (this would yield an interesting extension
of [2, Proposition 2.16]).

Putting Proposition 4.4 together with the results of Section 3, we obtain

Corollary 4.6. Suppose (G, s) is a connected algebraic D-group over a field of
constants k. If G is commutative, then (k[G],D) satisfies the D-DME.

Proof. By Proposition 4.4, every k-irreducible D-subvariety of G is compound
isotrivial. Hence, by Corollary 3.10, a prime D-ideal of k[G] is D-rational only
if it is D-locally closed. The result now follows from Proposition 3.5. �

5. Main results on Poisson-Hopf algebras

Recall that k denotes a field of characteristic zero. In this section we prove the
main result of the paper; namely,

Theorem 5.1. Any cocommutative affine Poisson-Hopf k-algebra satisfies the Pois-
son Dixmier-Moeglin equivalence.

Remark 5.2. By [17, 1.7(i), 1.10], in any affine Poisson algebra (A, {−,−}) we have
that Poisson-locally closed implies Poisson-primitive, and Poisson-primitive implies
Poisson-rational. We note that this also follows from our results in Section 3.
Indeed, if we let D denote the (finite) family of Hamiltonians of a collection of
generators of A, then, by Proposition 3.5, in the differential k-algebra (A,D) we
have that D-locally closed implies D-primitive, and D-primitive implies D-rational.
The remark now follows from Corollary 2.5.

We will make use of the following consequence of Proposition 3.5.

Lemma 5.3. Let (A, {−,−}) be an affine Poisson k-algebra such that A⊗kalg is a
domain. If in A⊗kalg a prime ideal is Poisson-rational only if it is Poisson-locally
closed, then the same holds in A.

Proof. The assumptions imply that A is of the form k[V ] for some geometrically
irreducible affine algebraic variety V over k. Letting D be the (finite) family of
Hamiltonians of a collection of generators of A, we get that in kalg[V ] a prime ideal
is D-rational only if it is D-locally closed (by Corollary 2.5). By the ’furthermore’
clause of Proposition 3.5, we get the same implication holds in k[V ]. Again by
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Corollary 2.5, we get that in A = k[V ] a prime ideal is Poisson-rational only if it is
Poisson-locally closed, as desired. �

A commutative and cocommutative affine Hopf k-algebra is nothing more than
the coordinate ring k[G] of a connected commutative affine algebraic group G over
k. The following well known theorem characterizes such groups over kalg (see [4]
for instance).

Theorem 5.4. Let G be a connected commutative affine algebraic group over k.
Then G is isomorphic over kalg to Gsa ×Gtm for some s and t.

A consequence of this result is that for any affine Hopf k-algebra A, that is
commutative and cocommutative, we have that

(5.1) A⊗ kalg = kalg[x1, . . . , xs, y
±
1 , . . . , y

±
t ]

where the xi’s are primitive and the yi’s are group-like. We use this fact to prove:

Proposition 5.5. Let (A, {−,−}) be an affine Poisson k-algebra. Suppose further
that k is algebraically closed and A is a cocommutative Hopf algebra. Then, there
is D ⊆ Derk(A) with

(5.2) spanAD = spanA({a,−} : a ∈ A),

and such that (A, {−,−}) is a Poisson-Hopf algebra if and only if (A,D) is a
differential-Hopf algebra.

Proof. Write A = k[G] where G is a connected commutative affine algebraic group
over k. By Theorem 5.4 (or (5.1) rather), we may assume that

A = k[x1, . . . , xs, y
±
1 , . . . , y

±
t ]

where the xi’s are primitive and the yi’s are group-like. Consider the Hamiltonians
δxi := {xi,−} : A → A, for i = 1, . . . , s, and the normalized Hamiltonians δyi :=

y−1
i {yi,−} : A→ A, for i = 1, . . . , t. We claim that

D := {δx1
, . . . , δxs

.δy1 , . . . , δyt}

is the desired set of k-linear derivations. Clearly (5.2) is satisfied (see Remark 2.3).
Now suppose that (A, {−,−}) is a Poisson-Hopf algebra. Let 1 ≤ i ≤ s and set
x := xi. Recall that ∆x = x ⊗ 1 + 1 ⊗ x. Now let a ∈ A, using sumless Sweedler
notation we write ∆a = a(1) ⊗ a(2). We then have

δx(∆(a)) = δx(a(1) ⊗ a(2))

= δxa(1) ⊗ a(2) + a(1) ⊗ δxa(2)

= {x, a(1)} ⊗ a(2) + a(1) ⊗ {x, a(2)}
= {x⊗ 1, a(1) ⊗ a(2)}+ {1⊗ x, a(1) ⊗ a(2)}
= {x⊗ 1 + 1⊗ x, a(1) ⊗ a(2)}
= {∆x,∆a}
= ∆({x, a}) (since A is a Poisson-Hopf algebra)

= ∆(δxa)
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Now let 1 ≤ j ≤ t and set y = yj . Recall that ∆y = y ⊗ y. Now let a ∈ A. We
then have

δy(∆(a)) = δy(a(1) ⊗ a(2))

= δya(1) ⊗ a(2) + a(1) ⊗ δya(2)

= y−1{y, a(1)} ⊗ a(2) + a(1) ⊗ y−1{y, a(2)}
=
(
y−1 ⊗ y−1

) (
{y, a(1)} ⊗ ya(2) + ya(1) ⊗ {y, a(2)}

)
= ∆(y−1) {y ⊗ y, a(1) ⊗ a(2)}
= ∆(y−1) {∆y,∆a}
= ∆(y−1) ∆({y, a}) (since A is a Poisson-Hopf algebra)

= ∆(y−1{y, a})
= ∆(δya)

We have shown that all these derivations commute with coproduct; in other words,
that (A,D) is a differential-Hopf algebra.

The other implication (i.e., that if D commutes with ∆ then {−,−} commutes
with ∆) follows from a similar series of equalities and applying Remark 2.2. �

Remark 5.6.

(1) In terms of Poisson groups over an algebraically closed field k, in the sense
of [10, §1.3], the above proposition shows that given a commutative affine
algebraic group G over k equipped with a Poisson variety structure, one
can find D ⊆ Derk(k[G]) such that (5.2) holds, with k[G] in place of A, and
with the property that G is a Poisson algebraic group if and only if it is an
algebraic D-group (with respect to D).

(2) We do not know at this point whether or not the cocommutativity as-
sumption can be removed from Proposition 5.5. Nonetheless, we note that
if this were the case and if algebraic D-groups over constants were com-
pound isotrivial (see Remark 4.5(2)), then the proof below of Theorem 5.1
would work for any (not necessarily cocommutative) affine Poisson-Hopf
k-algebra.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. By Remark 5.2, it suffices to show thatD-rational impliesD-
locally closed. By Lemma 5.3, we may assume that k is algebraically closed. Write
A as k[G] where G = Gsa × Gtm, and let D be the family of k-linear derivations of
A obtained in Proposition 5.5. Then (A,D) is a differential-Hopf algebra.

By Remark 4.2, the induced section s : G→ τDG is a group homomorphism; in
other words, (G, s) is a D-group. By Corollary 4.6, (A,D) satisfies the D-DME;
in particular, a prime D-ideal of A is D-rational only if it is D-locally closed. By
Corollary 2.5, this in turn implies that a prime Poisson ideal of A if Poisson-rational
only if it is Poisson-locally closed, as desired. �

We conclude with the following application:
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Theorem 5.7. If A is the symmetric algebra of a finite dimensional Lie algebra
g over k, equipped with its natural Poisson bracket, then A satisfies the Poisson
Dixmier-Moeglin equivalence.

Proof. We know from Section 2.1 that A is a cocommutative affine Poisson-Hopf
k-algebra, and so the result follows from Theorem 5.1. �
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