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Abstract

In this study, we propose a novel framework combining spatially explicit population viability analysis

and optimization for prioritizing �sh passage barrier mitigation decisions. Our model aims to maximize

the equilibrium population size, or alternatively minimize the extinction risk, of a target �sh species

subject to a budget on the total cost of barrier mitigation. A case study involving a wild coho salmon

(Oncorhynchus kisutch) population from the Tillamook basin, Oregon, USA is used to illustrate the

bene�ts of our approach. We consider two di�erent spawning adult dispersal patterns, river and reach

level homing, as well as straying. Under density dependent population growth, we �nd that homing

behavior type has a signi�cant e�ect on barrier mitigation decisions. In particular, with reach homing, our

model produces virtually the same population sizes as a more traditional barrier prioritization procedure

designed to maximize accessible habitat. With river homing, however, we �nd that it is not necessary to

remove all barriers in order to maximize equilibrium population size. Indeed, a stochastic version of our

model reveals that removing all barriers actually results in a marginal increase in quasi-extinction risk.

We hypothesize that this is due to a population thinning e�ect of barriers, resulting in a surplus of recruits

in areas of low spawner density. Our �ndings highlights the importance of considering spatiotemporal

�sh population dynamics in river connectivity restoration planning. By adding greater biological realism,

models such as ours can help conservation managers to more strategically allocate limited resources,

resulting in both cost savings and improved population status for a focal species.

Keywords: river connectivity; optimization; population viability analysis; density dependence; homing;

coho salmon.
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1 Introduction

Dams, culverts, and other arti�cial in-stream structures can hinder or even entirely block migratory �sh from

reaching essential breading and rearing habitats (Januchowski-Hartley et al., 2013). The end result is the

restricted range size, reduced productivity, and genetic isolation of migratory �sh populations, as well as

wider changes in aquatic community composition (Stanford et al., 1996; Bednarek, 2001; Lucas and Baras,

2001). Reconnecting stream habitats isolated by the presence of so called �sh passage barriers is widely

considered a top priority for restoring healthy freshwater ecosystems (Roni et al., 2008).

In this paper, we present a framework for prioritizing barrier mitigation in connectivity impaired river net-

works to improve the viability of a diadromous �sh population. In particular, we integrate spatially explicit

population viability analysis (PVA) into a heuristic optimization model with the aim of maximizing equilib-

rium population size (deterministic version) or minimizing extinction risk (stochastic version) for a target

species. A case study involving a wild coho salmon (Oncorhynchus kisutch) population from the Tillamook

basin along the Oregon Coast, USA is used to illustrate the utility of our approach.

PVA models have seen extensive use in the context of �sheries and river habitat management. Scheuerell et al.

(2006), for example, propose a PVA model to evaluate the e�ects of habitat change, hatchery operations,

and harvest management actions on salmon population status. They use a multistage Beverton-Holt model

to describe the production of salmon from one life stage to the next and to provide estimates of abundance,

productivity, spatial structure, and diversity. Their model is used to evaluate the potential consequences

of habitat conservation alternatives in Snohomish River basin in Washington State. Nickelson and Lawson

(1998), meanwhile, develop a life-cycle model to estimate the extinction probability of coho salmon popu-

lations along the Oregon Coast. Spawner abundance, demographic and environmental stochasticity, genetic

e�ects, density, and habitat driven survival rates are all taken into account. A comprehensive review on the

use of PVA models in the planning of recovery actions for Atlantic and Paci�c salmon can be found in Sweka

and Wainwright (2014).

PVA studies focusing on the importance of river connectivity for aquatic species persistence are few in number

and often limited to experiments with virtual populations. Nieland et al. (2015), one of the few dealing with

a real population, examine mortality impacts of large hydropower dams on Atlantic salmon in the Penobscot

River, Maine. Their model, which tracks both the number and location of �sh at multiple life stages, is

used to evaluate relative changes in abundance of six dam removal scenarios. Labonne et al. (2008) explore

the relationship between connectivity in dendritic networks and population dynamics. The authors �nd

that species with low dispersal ability bene�t from higher connectivity, in terms of reduced local extinction
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and genetic isolation, but that for high dispersal species, metapopulation size is negatively correlated with

connectivity. Another good example is Harvey and Railsback (2012), who analyze the e�ects of �sh passage

barriers on a virtual resident trout population. A detailed individual-based model is developed to capture the

demographics and �ne-scale movements of trout. Simulations with varying barrier densities are analyzed to

investigate how the location of barriers a�ect two population stability properties: persistence and resistance.

Interestingly, they �nd that low barrier densities can actually produce an increase in overall biomass.

Research into prioritizing the repair/removal of �sh passage barriers has progressed mostly in parallel with the

development of PVA for freshwater �sheries conservation. Traditionally, prioritization has relied on the use

of scoring-and-ranking type procedures (e.g., Kocovsky et al., 2009). However, because barriers are evaluated

in isolation, thus ignoring the interactive e�ects of multiple repair/removal actions on river connectivity,

scoring-and-ranking has been shown to produce highly ine�cient solutions (O'Hanley and Tomberlin, 2005).

To overcome this de�cit, Kemp and O'Hanley (2010) recommend the use of spatially informed graph theory

models (e.g., Eros et al., 2011) and optimization based approaches (e.g., King et al., 2017). Unlike graph

theory, optimization provides prescriptive solutions that maximize gains from river connectivity restoration

given limited resources (King and O'Hanley, 2016).

A range of barrier optimization methods have appeared in recent years. The vast majority of these are built

around relatively simple habitat connectivity indices (Kuby et al., 2005; O'Hanley, 2011; O'Hanley et al., 2013;

Neeson et al., 2015), which only consider dispersal at an abstract level. Rarely have complex �sh dispersal and

population growth been treated in comprehensive manner. Work by Paulsen and Wernstedt (1995), Newbold

and Siikamaki (2009), Zheng and Hobbs (2013), and Fitzpatrick and Neeson (2018) provide notable examples.

Paulsen and Wernstedt (1995) propose a combined simulation-optimization methodology to analyze the

cost-e�ectiveness of di�erent mitigation measures for restoring salmon populations in the Columbia River

basin, including in-stream habitat restoration and improved �sh passage past large hydropower dams and

small barriers. The simulation model is used to evaluate the biological e�ects of a speci�ed combination

of mitigation actions, while the optimization model �nds the least-cost portfolio of mitigation actions that

achieves stock-speci�c harvesting and escapement goals. As pointed out in Kemp and O'Hanley (2010),

this approach is restricted to dealing with a rather small number of potential alternatives, as every feasible

combination of mitigation actions must be individually simulated. Zheng and Hobbs (2013) employ a multi-

objective approach for optimizing dam removal decisions in the Lake Erie basin. A number of ecological and

socioeconomic criteria are considered, including native �sh abundance, recreation/commercial harvesting,

dam safety, and dam removal and invasive species management costs. A complex, ecosystem simulation

model is used to link dam removal decisions to lake-wide ecological e�ects. Importantly, the authors make
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the strong simplifying assumption that �sh recruitment and �sh community structure respond linearly to

increases in habitat availability. This greatly reduces computational overhead but also limits the generality

of their approach. Finally, Newbold and Siikamaki (2009) develop a PVA model and incorporate it into a

reserve site selection (RSS) algorithm to conserve Columbia River salmon populations. The PVAmodel is used

to estimate how watershed conservation, consisting of a suite of land-use management activities that reduce

non-point source pollution within a watershed, a�ect the long-term probability of persistence of salmon.

The RSS algorithm is used to select di�erent watersheds for conservation based on their cost-e�ectiveness in

increasing persistence. Options for barrier repair/removal are not considered.

The aim of our present work is to address various shortcomings of existing barrier prioritization methods,

which include: i) the use of structural (i.e., habitat connectivity) indices as proxies for complex biological

processes (i.e., �sh dispersal and population growth); ii) overly restrictive assumptions that weaken generality

(e.g., all response functions must be linear); and iii) limited scalability that prevents evaluating a large number

of barriers and mitigation options (e.g., having to enumerate all feasible solutions). To our knowledge, ours

is the �rst attempt at directly incorporating spatial PVA into a barrier optimization model, as opposed

to loosely coupling optimization with PVA (sensu Paulsen and Wernstedt, 1995; Zheng and Hobbs, 2013).

The remainder of the paper is organized as follows. We start by outlining our optimization framework,

which includes a formal mathematical formulation of the problem and the basic steps involved with deriving

estimates of population viability. This is followed by a description of di�erent plausible dispersal patterns for

spawning adult coho salmon, how population growth dynamics (deterministic and stochastic) are modeled,

the solution algorithm used to solve our model, and basic data processing requirements. Results from our case

study are then presented along with a comparison our proposed method to a standard barrier optimization

approach that maximizes accessible habitat. We end with some discussion points and suggestions for future

research.

2 Materials and Methods

2.1 Barrier Optimization Model

In what follows, we propose an optimization model for cost-e�ectively targeting the mitigation (i.e., removal,

replacement, or retro�tting) of in-stream barriers that negatively impact river connectivity. Two di�erent

variants of the model are considered, depending on how population growth is modeled. The deterministic

version, referred to as MaxPop, seeks to maximize the equilibrium population size for a given target species

via increased dispersal and habitat utilization. The stochastic version, referred to as MinExP, attempts to
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minimize the probability of population extinction over a given time horizon. In our current application, we

restrict ourselves to �sh species with a diadromous life-cycle, focusing speci�cally on salmon.

We make the following assumptions. The river network under consideration is strictly �dendritic,� meaning

it never diverges in the downstream direction, thus excluding braided river systems. Given this assumption,

there is always a unique path from the river mouth to any point upstream. We further assume that each

barrier has a known passability value. Passability refers to the fraction of �sh, in the range 0-1, that can

successfully pass a barrier (Kemp and O'Hanley, 2010). Passability is normally species, life-stage (e.g., adult

versus juvenile), and directionally (i.e., upstream versus downstream) dependent. Cumulative passability, in

turn, refers to the combined e�ect that barriers have on �sh dispersal. Assuming that barrier passabilities

are independent, cumulative passability is calculated by multiplying the passabilities of all barriers along the

path from a given origin (e.g., the ocean) to a given destination (e.g., an upstream spawning area). Barrier

mitigation is carried out to increase the upstream and/or downstream passability of a barrier for one or more

life-stages. For any particular barrier, there may be multiple mitigation options available. Finally, the total

cost of mitigation must not exceed a speci�ed budget.

Our model is formulated as follows. Let J , indexed by j, be the set of physical barriers, both arti�cial and

natural, within a river network, and let J ′ be the subset of arti�cial barriers. The set of barrier mitigation

actions available at arti�cial barrier j is denoted by Aj . The cost of implementing mitigation option i at

barrier j is given by cji. The total barrier mitigation budget is denoted by b. Decision variable xji equals

1 if mitigation option i is selected for barrier j, 0 otherwise. Given a vector of barrier mitigation decisions

x, function F (x) expresses the population metric of interest - equilibrium population size (e.g., number of

breeding adults) for MaxPop, probability of extinction (e.g., over the next 100 generations) for MinExP -

taking into account dispersal behavior (possibly life-stage speci�c), level of river connectivity, and population

growth dynamics.

max
x

F (x) or min
x
F (x) (1)

s.t.

∑
j∈J′

∑
i∈Aj

cjixji ≤ b (2)

∑
i∈Aj

xji ≤ 1 ∀j ∈ J ′ (3)

xji ∈ {0, 1} ∀j ∈ J ′, i ∈ Aj (4)
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Figure 1: Evaluation steps for determining equilibrium population size.

The objective (1) either maximizes equilibrium population size (MaxPop) or minimizes the probability of

extinction (MinExP). Constraint the(2) requires that the total cost of barrier mitigation actions not exceed

the available budget. Constraints (3) ensure that at most one mitigation project can be carried out at

each arti�cial barrier. Finally, constraints (4) impose binary restrictions on the barrier mitigation decision

variables.

The steps involved in determining population metric F (x) (i.e., equilibrium population size or extinction

probability) for barrier mitigation solution x are outlined in Figure 1. In Step 1, cumulative passability to

spawning/rearing areas is determined based on the barrier passabilities produced by solution x. For spawning

adult salmon, cumulative passability αj to spawning areas immediately above barrier j would be calculated as

αj =
∏
kεDj

(
p0k +

∑
i∈Aj

p′jixji

)
, where Dj is the subset of barriers downstream from and including barrier

j, p0j is the initial passability of barrier j, and p′ji is the increase in passability given implementation of

mitigation option i at barrier j. In Step 2, �sh dispersal to spawning/rearing occurs according to assumed

adult/juvenile dispersal patterns and level of longitudinal connectivity. Population growth takes place in Step

3, with the number of recruits being produced in a particular habitat area possibly density dependent. Note

that Steps 2 and 3 can be formed of multiple sub-steps if dispersal and productivity/survival are life-stage

dependent. Steps 2 and 3 need to be repeated iteratively from one generation to the next until equilibrium

population size is achieved or the population goes extinction. Depending on the type of homing pattern, �sh

dispersal (Step 2) may need to be recalculated for each generation. Note that each barrier mitigation solution

x can produce a di�erent equilibrium population size or extinction probability estimate, which means that

the whole process needs to be repeated any time a new barrier mitigation solution is evaluated.

In what follows, the various homing patterns considered in our study are discussed in Section 2.2. In

Section 2.3, we cover �sh population growth dynamics. Our solution methodology is presented in Section

2.4. Finally, in Section 2.5 we provide background information about our study area and the input data used

to parameterize our model.
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2.2 Dispersal Patterns

Upstream migrating adult salmon usually return (i.e., home) to their natal rivers to spawn. Salmon homing

can be conceptualized along a hierarchy of spatial scales (Quinn, 1997), starting with the watershed, then

main tributary, followed by stream reach, and �nally down to a speci�c point within a stream reach (i.e., the

redd). Naturally, homing is more accurate at broader spatial scales. Often a small percentage of adult �sh,

referred to as strays, move into non-natal streams during upstream movement, which has implications for

metapopulation persistence. In this study, two di�erent homing patterns (at either end of the site homing

continuum) are considered: river and reach homing. For river homing, it is assumed that adults have low

homing �delity. After returning to their natal river, adults disperse freely within the river to �nd suitable

spawning habitat. For reach homing, it is assumed that adults have much higher homing �delity and will

attempt to return to their speci�c natal stream reach. These two dispersal patterns are discussed in detail

below. For simplicity, juvenile �sh are assumed to have suitable rearing habitat within the vicinity of the

spawning area from which they emerge and so do not make appreciably long distance dispersal movements

to rearing areas upstream or downstream.

2.2.1 River Homing

With river homing, adult salmon are assumed to distribute within their natal river according to an ideal free

distribution (IFD, Case, 1999). Under IFD, �consumers� (i.e., �sh), have full knowledge of habitat resources

and disperse in such a way that consumer density is uniform. For our study, habitat resources are assumed

to be proportional to river length. If no barriers were present, the number of spawners per unit length of

river would be the same in each spawning area. With barriers present, however, dispersal is disrupted and

equal densities may not be achieved.

To model the e�ect that barriers have on driving spawner densities away from ideal, we develop a linear

program referred to as the Ideal Free Distribution with Barriers Problem (IFDBP). The model seeks to

minimize the maximum di�erence between the ideal spawner density and what can be achieved given the

presence of barriers. In addition to the notation introduced previously, let pj be the current passability

of barrier j. Following King and O'Hanley (2016), the section of river above a barrier up to the next set

of barriers or the river terminus is referred to as a river subnetwork. The amount of spawning habitat in

subnetwork j is given by vj , while the total amount of spawning habitat within the entire watershed is

denoted by V (i.e., V =
∑
jεJ vj ). The total number of spawners is denoted by N . Finally, consider the
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following decision variables.

yj = number of spawners dispersing to subnetwork j

z = maximum di�erence between observed and ideal spawner density for any subnetwork

With this in place, a mathematical formulation of IFDBP is given below.

min z (5)

s.t.

∑
jεJ

yj = N (6)

yj ≤
∏
kεDj

pkN ∀j ∈ J (7)

z ≥ 1

vj
yj −

1

V
N ∀j ∈ J | vj > 0 (8)

yj = 0 ∀j ∈ J | vj = 0 (9)

yj ≥ 0 ∀j ∈ J (10)

The objective function (5) minimizes the maximum deviation in spawner density away from ideal across all

river subnetworks. The �rst constraint (6) forces the sum of the spawners across all subnetworks
∑
jεJ yj to

be equal to the total number of spawners N . Constraints (7) restrict yj not to exceed the total number of

�sh that can potentially reach subnetwork j, which is equal to the cumulative passability
∏
kεDj

pk of barrier

j times the number of spawners N . Constraints (8) specify for all subnetworks j with non-zero amounts of

spawning habitat (vj > 0) that the maximum di�erence in spawner density z from ideal must be greater

than or equal to the observed density yj/vj in subnetwork j minus the ideal density N/V . Inequalities (9)

force yj to be zero for all subnetworks with zero spawning habitat, since no �sh would migrate to such areas.

Lastly, inequalities (10) impose non-negativity restrictions on the yj decision variables.

Note that when evaluating a �sh metapopulation that distributes among multiple rivers, model IFDBP needs

to be solved separately for each river network. Before doing so, the number of outgoing strays and the number

of incoming strays needs to be accounted for in order to specify the correct spawner population sizes N that

will distribute within each river network. Further note that as long as cumulative passability values do not
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change (i.e., no additional mitigation is carried out) then the relative proportions of �sh migrating to any

particular river subnetwork will remain constant even if the total spawner population size N subsequently

changes in later generations. The importance of this is that IFDBP only needs to be solved once when

determining equilibrium population size.

2.2.2 Reach Homing

The second adult dispersal pattern examined in this study is reach homing. Here, �sh are expected to return

to the natal stream reach from which they emerged, which for our purposes is taken to be their originating

river subnetwork. If no barriers were present, then any �sh spawned in subnetwork j would be able to return

to j as adults. When barriers are present, however, of the number of �sh N j spawned in subnetwork j, only

a fraction, equal to N j times the cumulative passability
∏
kεDj

pk of barrier j, will be able to do so. The rest

will be �trapped� in the subnetworks downstream of j.

Consequently, with reach homing, the number of spawners yj contained in subnetwork j is calculated as

the sum of the spawners that originated there and successfully returned plus a portion of spawners that

were unsuccessful in reaching subnetworks further upstream due to passability restrictions. In addition, the

number of spawners that end up in subnetwork j is a�ected by �sh straying. In particular, a small percentage

of �sh spawned in j will stray away from j to other subnetworks and a small number of �sh will be redirected

to subnetwork j after straying from other reaches. For simplicity, we assumed a �xed percentage of �sh

would stray from any subnetwork and then redistribute themselves by spreading equally among watersheds

and then with equal probability among subnetworks within a watershed. Unlike with river homing, �sh

dispersal calculations need to be updated at every generation for reach level homing.

2.3 Population Growth

2.3.1 Deterministic

We estimate density dependent salmon recruitment using the well-known Ricker model. According to the

Ricker model, the expected number of recruits Nt+1 in generation t+ 1 is determined by the equation:

Nt+1 = Nte
r(1−Nt

K ) (11)

where Nt is the number of spawners in generation t, r is the intrinsic growth rate, and K is the carrying

capacity of the habitat. If r is between 0 and 2 (i.e., 0 < r < 2), the model has a stable equilibrium. Cycles

or chaotic dynamics are produced for growth rates r ≥ 2.
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In our implementation, the Ricker model was used to generate recruits N j
t+1 separately for each subnetwork

j over 200 generations starting with an initial population size of N j
0 in subnetwork j. At every generation,

recruits are assumed to travel back to the sea and then disperse upstream according to either a river homing or

reach homing dispersal pattern. The mean of the last 100 generations was used to compute the �equilibrium�

population size, which could be stable, cyclic, or chaotic.

2.3.2 Stochastic

To account for the e�ects of environmental stochasticity on �sh population growth, equation (11) can be

replaced by the following:

Nt+1 = Nte
r(1−Nt

K )+εt (12)

Parameter εt, which adjusts the nominal growth rate r (1−Nt/K) up or down, is drawn from a normal

distribution with a mean of zero and a variance of nVr/ (n− 1), where n is the number of data points used

in the linear regression analysis to derive Ricker model parameters r and K and Vr is the residual variance

(Morris and Doak, 2002). To generate estimates for the probability of extinction, population sizes were

simulated across 50 generations using equation (12) and the fraction of simulation runs (out of 1000) in

which population abundance fell below a quasi-extinction threshold (QET) was determined.

2.4 Solution Methodology

A �ow chart of the heuristic algorithm used to solve MaxPop is shown in Figure 2. In Step 1, an initial

starting solution is generated by solving an optimization model, referred to as MaxHab, which maximizes

the amount of accessible (i.e., connectivity-weighted) habitat available to upstream migrating �sh (King and

O'Hanley, 2016). The equilibrium population size of this starting solution is computed (taking into account

dispersal and population dynamics) and then accepted as the current best (aka incumbent) solution.

In Step 2, a local search is performed in an attempt to �nd a solution with higher equilibrium population

size. First, a currently mitigated barrier is selected and its passability and the passabilities of all other

mitigated barriers upstream from the selected barrier are temporarily reset to their initial passability values.

The resulting cost savings from undoing mitigation for the selected barrier and those upstream is added

back to the remaining budget and the equilibrium population size is recalculated. A new candidate solution

is then constructed using a �greedy� add procedure, whereby the barrier mitigation option with the largest

bene�t-to-cost ratio (net change in equilibrium population size divided by cost) is selected one after another
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Figure 2: MaxPop solution algorithm.

until either the remaining budget is exhausted or no improvement in equilibrium population size can be

achieved. Note that for applications involving a diadromous species like salmon, if zero-passability barriers

are present downstream from a barrier being considered for mitigation, these should be mitigated at the same

time. Intuitively, it would not make sense to mitigate such a barrier if impassable barriers downstream would

block the upstream migration of diadromous �sh. Once a proposed candidate solution has been built, it is

then compared to the incumbent solution. If the candidate solution results in a higher equilibrium population

size, it replaces the incumbent solution. Otherwise, the algorithm goes back to the incumbent solution and

the above procedure is repeated for a di�erent selected barrier.

MinExP was solved using the same basic heuristic method developed for MaxPop but with a few straightfor-

ward modi�cations. Speci�cally, we changed the objective to minimizing quasi-extinction and, in the case of

river homing, used the solution produced by MaxPop as the initial starting solution instead of the MaxHab

solution.

2.5 Study Area

To illustrate the bene�ts of our proposed modeling framework, we examined the impact of barrier removal

on wild adult coho salmon (O. kisutch) in the Tillamook basin of Oregon, USA. Oregon Coast coho salmon

are currently listed as a threatened species under the Endangered Species Act. Construction of �sh passage
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Figure 3: Watersheds and barrier locations (dark gray circles) in the Tillamook basin.

barriers up and down the coast has caused extensive loss of access to historical coho salmon habitats. Improved

�sh passage is considered essential to the successful recovery of Oregon Coast coho (NMFS, 2015).

Oregon Coast coho salmon typically spawn in small streams NOAA (2017). Working o� a 1:100,000 scale

river network layer created by the Oregon Department of Forestry, we treated all river segments of Strahler

stream order 1 as potential spawning habitat. Strahler order of each river segment was determined using

the RivEX toolbox for ArcGIS 10.2.1 (Hornby, 2014). In the absence of barrier mitigation, total accessible

spawning habitat in the Tillamook basin is estimated to be 408km.

Data on the location of 202 culverts, dams, fords, and tidegates within the Tillamook basin were derived

from Pilson (2012). Each barrier is georeferenced and includes a description of its structure type, available

mitigation options, and estimated costs. In the absence of extensive �eld surveys or other relevant data for

assessing barrier passability individually (for a review of barrier assessment methods see Kemp and O'Hanley,

Table 1: Initial passability values.

Barrier Type Passability
Culvert 0.2
Dam 0
Ford 0.9
Tidegate 0.9
Weir 0
Other 0
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Figure 4: Estimated number of recruits per spawner (loge transformed) versus number of spawners (gray
circles) for Tillamook basin wild coho (O. kisutch) and linear regression line (solid black line) for deriving
Ricker model parameters (intercept: r; slope: −r/K).

2010), we assigned initial passability based on structure type as shown in Table 1. We assumed that barriers

were fully passable in the downstream direction (i.e., for outward smolt migration) that mitigation would

restore upstream passability to a value of 1.0. Barrier points were snapped to the river network using a

50m snapping distance. RivEX was then used to split the river network at barrier points and determine key

barrier information, including a barrier's immediate downstream barrier (required to generate set Dj) and

net length of upstream spawning habitat (model parameter vj). In order to account for spawning habitat

between the river mouth and the �rst set of arti�cial barriers, a �dummy� barrier, with initial passability

equal to 1 and no mitigation option, was added at river mouths. Mouth nodes were identi�ed using RivEX.

After snapping, the �nal dataset consisted of 193 arti�cial barriers and 19 dummy barriers spread among

6 watersheds (the Miami, Kilchis, Tillamook, Trask, Wilson and Tillamook Bay watersheds), as shown in

Figure 3.

Population counts and harvest rates for wild coho spawners in the Tillamook basin for the period 1996 to 2013

were obtained from the Oregon Adult Salmonid Inventory and Sampling Project (OASIS, 2016). Recruits

were assumed to return as adults 3 years after emerging, with the number of recruits Rt produced in year

t equal to St+3/(1 − ht+3), where St+3 is the number of recorded spawners and ht+3 is the harvest rate 3

years after t . A scatter plot of the number of recruits per spawner (loge transformed) versus number of

spawners is shown in Figure 4. Ricker model parameters were estimated in the usual way by �tting a linear

regression line to these points. The regression model, which had an adjusted R2 of 0.725, produced estimates

of r = 1.70 and K = 8442 (overall carrying capacity in the Tillamook basin). By comparison, the adjusted
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(a) (b)

Figure 5: Accessible spawning habitat (a) and equilibrium spawner abundance (b) versus barrier mitigation
cost for MaxPop and MaxHab given reach homing. Note that in both �gures, the MaxPop and MaxHab
curves nearly overlap for most budgets.

R2 for a Beverton-Holt model was 0.612, indicating that the Ricker model is a better choice for describing

density-dependent growth of wild Tillamook coho. Carrying capacity was subsequently translated to K = 16

spawners per river km based on currently accessible spawning habitat. The straying rate was set at 3%,

a mid range value for wild coho salmon (Labelle, 1992). As in Newbold and Siikamaki (2009), we used a

QET of 10% of recent (1996-2013) average abundance for wild Tillamook coho salmon, which equated to 615

spawners.

3 Results

Results for the MaxPop model are presented in Figures 5 and 6. Accessible habitat and equilibrium population

size are plotted against cost of barrier mitigation for both reach and river homing dispersal patterns. For

comparison purposes, results are also reported for model MaxHab, which maximizes accessible habitat.

Our results show that homing behavior has a signi�cant impact on optimal barrier mitigation strategies to

maximize equilibrium population size. For reach homing (Figure 5), MaxPop essentially produces the same

population sizes and amounts of accessible habitat as MaxHab. Under this dispersal pattern, mitigation

actions that maximize accessible habitat essentially maximize spawner abundance. The sets of barriers

selected for mitigation are nearly identical for both models across all budget scenarios considered (typically

sharing 96% of barriers in common). With river homing (Figure 6), however, MaxPop and MaxHab produce

markedly di�erent mitigation strategies. In most cases, MaxPop achieves a given population threshold by

removing far fewer barriers, and hence at much lower cost, than MaxHab. For example to reach a population
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(a) (b)

Figure 6: Accessible spawning habitat (a) and equilibrium spawner abundance (b) versus barrier mitigation
cost for MaxPop and MaxHab given river homing.

size of approximately 8900 spawners, 27 barriers would need to be removed at a cost of roughly $5M according

to MaxHab. In contrast, MaxPop is able to achieve the same spawner abundance by removing only 4 barriers

at a cost of around $1M (an 80% cost savings). Similarly, to reach a maximum of 9221 spawners, MaxPop

recommends the removal of 37 barriers at a cost of $14.7M, while MaxHab only achieves this when 182

barriers are removed at a cost of $90M (an 84% cost savings). On the other hand, accessible habitat for

MaxPop is substantially lower than it is for MaxHab under a river homing dispersal pattern. For example,

accessible habitat for MaxHab reaches a maximum of 569km of accessible habitat at a cost of $105.3M.

MaxPop, however, only ever goes up to 449km of accessible habitat (21% less) given $24.4M.

Mean quasi-extinction probabilities for solutions to MinExP, MaxPop, and MaxHab are provided in Figure

7. In all cases, 95% con�dence intervals were within ±2.8% of the reported means. The main observation

from Figure 7 is the much lower extinction risk achieved by MinExP for any given level of cost in comparison

to MaxPop or MaxHab, indicating that additional bene�ts can be gained by incorporating environmental

stochasticity. Without any mitigation action being undertaken, the probability Tillamook coho will reach

the quasi-extinction threshold in 50 generations (~150 years) is 88.4% for reach homing and 79.9% for

river homing. Extinction probabilities for MinExP rapidly decrease as barrier mitigation resources increase,

eventually reaching a minimum of 83.5% for reach homing at a cost of $23.2M and 72.8% for river homing

at a cost of just $8.8M. Interestingly, MinExP achieves these minimum extinction probabilities by removing

only a small subset of barriers - just 43 barriers for reach homing and 18 barriers for river homing that are

mostly concentrated low in the basin, as shown in Figure 8.

In comparison, extinction risk initially goes down for both MaxPop and MaxHab but then goes up as barrier
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Figure 7: Mean quasi-extinction probabilities versus barrier mitigation cost for MinExP, MaxPop, and Max-
Hab given reach homing (a) and river homing (b).

mitigation resources and the number of barriers removed increase, eventually rising above current quasi-

extinction probabilities. This occurs regardless of the type of homing behavior. When mitigation resources

are unrestricted, MaxPop suggests the removal of 191 barriers at a cost of $105.1M for reach homing and the

removal of 37 barriers at cost $14.7M for river homing (see Figure 8). Quasi-extinction risk is not only much

higher than MinExP (+8.3% for reach homing and +13.0% for river homing), but also higher than under

a no-mitigation scenario (+3.4% for reach homing and +6.2% for river homing). Removing all 193 barriers

at a cost $105.3M, as recommended by MaxHab, similarly would cause extinction risk to go up (+3.8% for

reach homing and +6.1% for river homing).

As an important side note, we �nd that equilibrium population size estimates are more heavily in�uenced

by type of homing behavior than are estimates for likelihood of extinction. Moreover, the relative bene�ts

of barrier mitigation di�er depending on dispersal pattern and planning goal, with larger increases in �sh

abundance observed for reach homing and larger decreases in probability of extinction seen with river homing.

In particular, for reach homing, MaxPop produces populations sizes ranging from 6580 to 9229 spawners.

Here, barrier mitigation yields large gains (+40%) in �sh abundance. For river homing, population sizes fall in

a more narrow range, 8467 to 9221 spawners, with barrier mitigation achieving a more modest improvement

in abundance (+9%). In contrast, extinction probabilities for MinExP not only vary less between the two

homing patterns, but mitigation yields larger reductions in extinction risk if river homing occurs. Speci�cally,

extinction probability decreases from 79.7% to 72.8% for river homing (-6.9%) and from 88.4% to 83.5% (-

4.9%) for reach homing.

In an attempt to provide some high-level guidance regarding optimal barrier selection strategies, we provide
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(a) (b)

(c) (d)

Figure 8: Barriers targeted for mitigation in the Tillamook basin by MaxPop for reach homing (a) and
river homing (b) and by MinExP for reach homing (c) and river homing (d) when mitigation resources are
unrestricted. Selected barriers are represented by red circles, unselected barriers by white circles. Spawning
areas are indicated by bold, pale red colored river segments.
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in Table 2 a summary of key attributes of MaxPop and MinExP solutions at selected budget levels. For both

MaxPop and MinExP, the spatial distribution of selected barriers di�ers markedly between the two homing

patterns. In particular, barriers selected for mitigation are relatively close to the river mouth for river homing

(19-48km on average for MaxPop, 22-56km on average for MinExp) and further away from the river mouth for

reach homing (77-122km on average for MaxPop, 22-122km on average for MinExP). Looking at the results

in Table 2 more broadly, distance to mouth tends to decrease and average cost per selected barrier increase

as the available budget goes up no matter what the planning goal (MaxPop vs MinExP) or homing pattern

(reach versus river). In simple terms, when �nancial resources are scarce (i.e., at low budgets), inexpensive

barriers in the upper portions of the basin are preferred, whereas high-cost barriers located nearer to the

river mouth are chosen when resources are plentiful (i.e., at high budgets).

4 Discussion

The main goal of this study is explore how optimal barrier mitigation strategies are a�ected by the considera-

tion of �sh dispersal and population dynamics. Based on our analysis of wild coho salmon from the Tillamook

basin, we �nd that the choice of homing pattern for spawning adults has a large in�uence in determining

which barriers should be mitigated to maximize equilibrium abundance. With reach homing, near optimal

equilibrium population sizes are achieved by simply maximizing accessible habitat. In short, there does not

appear to be much bene�t from using the more complex and computationally expensive MaxPop model over

the simpler MaxHab model. With river homing, however, this is decidedly not the case. For most budget

levels, solutions to MaxPop di�ered markedly from MaxHab. In particular, MaxPop recommends the removal

of a much smaller number of barriers in order to maximize spawner population size. What this suggests is

that focusing on maximizing accessible habitat may lead to the removal of an excessive numbers of barriers at

high cost, while yielding relatively little in terms of increased �sh population size. We acknowledge, however,

that there may be ancillary bene�ts from opening up extra river stretches, such as restoring natural �ow

and sediment patterns or to provide a hedge against the possibility that breeding habitat above barriers or

population growth rates have been over estimated.

The inclusion of environmental stochasticity in our analysis produced some very interesting results. Surpris-

ingly, removing all barriers resulted in higher quasi-extinction risk compared to leaving all existing barriers

in place regardless of homing pattern. The most straightforward explanation for this is a population thinning

e�ect caused by the presence of �sh passage barriers under density dependent population growth. More

speci�cally, depending on the spatial distribution of barriers and spawning habitat, limited amounts of river
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fragmentation can depress spawner densities in certain reaches/subnetworks below carrying capacity, thereby

allowing a surplus of recruits to be produced. This, in turn, can help to arti�cially boost population numbers

and improve population persistence in a manner similar to how limited harvesting can potentially increase

population growth vis-à-vis the maximum sustainable yield principle (Case, 1999). We emphasize that our

results are theoretical, but are supported by Harvey and Railsback (2012), who observed that the largest

abundance for a virtual resident trout population occurred at low but positive barrier densities. Similar

�ndings are presented in Labonne et al. (2008), with connectivity having a strong, negative in�uence on the

metapopulation size of a high-dispersal virtual aquatic species.

One of the key bene�t of our modeling approach is that it can be readily extended to applications involving a

wide variety of migratory �sh species, provided that relevant knowledge about dispersal, population growth,

and other necessary input data are available. In our analysis, we focused on two extreme forms of homing,

reach and river homing, which ostensibly cover the full range of homing �delity observed among diadromous

salmonids. Paci�c sockeye salmon (O. nerka), for instance, exhibit the highest degree of homing among

salmon, usually returning to their natal incubation sites to spawn (Quinn et al., 1999, 2006). Chinook

salmon (O. tshawytscha), on the other hand, tend to home more broadly within their natal stream (Candy and

Beacham, 2000; Hamann and Kennedy, 2012). Dispersal for these two species is described fairly accurately

by reach and river homing patterns, respectively. There is evidence to suggest that homing for coho salmon

(O. kisutch) lies somewhere between these two extremes and is in�uenced, to some extent, by spawner

densities (Anderson and Quinn, 2007). Various degrees of homing are also exhibited by other diadromous

(i.e., non-salmonid) �shes. For diadromous �sh that home imprecisely (e.g., alewife, Alosa pseudoharengus;

shad, Alosinae sp.; and sturgeon, Acipenseridae sp.), one could imagine making suitable adjustments to our

proposed dispersal model IFDBP, such that homing occurs within some radius around a natal site and is

controlled by density. For diadromous �sh that show no discernible homing preference (e.g., eel, Anguilla

sp.; and lamprey, Petromyzon and Entosphenus sp.), river homing would be the most suitable choice. Even

potadromous �sh, which migrate exclusively within a river, could be handled in a relatively straightforward

manner, either by making minor modi�cations to dispersal model IFDBP or relying on the use of dispersal

kernels (if dispersal is entirely random).

We emphasize that the results reported here are hypothetical. First, we did not examine how model outputs

are a�ected by uncertainty in key inputs, such as barrier passability values, mitigation costs, habitat estimates,

and demographic parameters (e.g., growth rate, carrying capacity, and straying rate). A full-scale sensitivity

analysis of these factors, which was beyond the scope of our present work, would be essential before any

attempt could be made to apply our models to on-the-ground planning. Second, our �ndings are based
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a speci�c form of density dependence, namely the Ricker model. Di�erent models for density dependence

(e.g., Beverton-Holt, Gompertz, hockey stick) may produce very di�erent outcomes. Third and perhaps more

importantly, we ignore various other factors in our analysis that may be important to long-term population

growth and viability, such as juvenile dispersal and survival, demographic stochasticity, Allee e�ects, hatchery

operations, di�erent forms of species interactions (e.g., competition, predation, and parasitism), and straying

of coho salmon from or to basins outside the Tillamook. Investigation of any of these aspects would provide

interesting lines of future research but would require some ingenuity in terms of devising population models

that are computationally e�cient enough to be incorporated into an optimization framework.

One of the main take-away messages from our study is that coupling PVA and mathematical optimization can

provide tangible bene�ts to conservation planners. Although PVA-optimization approaches do have higher

data requirements and considerably greater computational overhead, which limits their use to well studied

species and small- to medium-scale planning problems, where applicable, their greater biological realism has

the potential to result in better decision making in terms of developing more e�ective and e�cient conservation

strategies. In our particular case, the incorporation of spatiotemporal population dynamics revealed that, at

least under certain conditions, strategic removal of a small number of barriers can produce signi�cant �sh

population gains and that population viability may even be enhanced by leaving some passage barriers in

place. The use of simple habitat connectivity index models would invariably fail to capture these sorts of

emergent properties and potentially entail wasting limited conservation resources.
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