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Abstract

Convolutional neural networks (CNN) have been shown to provide a good so-
lution for classification problems that utilize data obtained from vibrational
spectroscopy. Moreover, CNNs are capable of identifying substances from
noisy spectra without the need for additional preprocessing. However, their
application in practical spectroscopy is restricted due to two reasons. First
the effectiveness of classification using CNNs diminishes rapidly when only
a small number of spectra per substance are available for training (which
is a typical situation in real applications). Secondly, to accommodate new,
previously unseen, substance classes the network must be retrained which is
computationally intensive. Here we address these issues by reformulating a
multi-class classification problem with a large number of classes to a binary
classification problem for which the available data is sufficient for represen-
tation learning. Hence, we define the learning task as identifying pairs of
inputs as belonging to the same class or different classes. We achieve this
using a Siamese convolutional neural network. A novel sampling strategy is
proposed to address the imbalance problem in training the Siamese network.
The trained network can classify samples of previously unseen substance
classes using just a single reference sample (termed as one-shot learning in
the machine learning community). Our results on three independent Raman
datasets demonstrate much better accuracy than other practical systems to
date, while allowing effortless updates of the system’s database with new
substance classes.

Keywords: Spectrum Matching, Siamese Network, One-shot Learning,
Convolutional Neural Networks
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1. Introduction

Raman spectroscopy is used for the identification and quantification of
solids (particles, pellets, powers, films, fibers), liquids (gels, pastes) and gases.
The technique relies upon the inelastic scattering of monochromatic light,
caused by interactions with molecular vibrations. A “molecular fingerprint”
of a substance can therefore be obtained in the form of a spectrum comprising
peaks that are characteristic of its chemical composition. Since it provides
fast, non-contact, and non-destructive analysis, Raman spectroscopy has a
wide range of applications in a variety of industries and academic fields.

Pattern recognition methods can be used for automatic identification of
substances from their Raman spectrum. However, most of the pattern recog-
nition methods require preprocessing of the data. Due to this limitation, a
standard pipeline for a machine classification system based on Raman spec-
troscopy includes preprocessing in the following order: cosmic ray removal,
smoothing and baseline correction. Additionally, the dimensionality of the
data is often reduced using principal components analysis (PCA) prior to the
classification step.

It was shown in [1], that Raman Spectra classification can be achieved
successfully using convolutional neural networks (CNNs). There are three
main benefits of using CNNs for vibrational spectra classification. Firstly, a
CNN can be trained to remove baselines, extract good features, and differen-
tiate between spectra from a large number of classes in an integrated manner
within a single network architecture. Thus it removes the need for prepro-
cessing the signal. Secondly, CNN has been shown to achieve significantly
better classification results than all previous methods [2, 3, 4, 5, 6, 7, 8, 1].
Thirdly, the classification is very efficient in terms of computation time.

In addition to these factors, a practical spectrum matching system should
be enable spectra to be added or removed from a database dynamically in
real time, without the additional overheads associated with retraining the
underlying classifier. Some substances might have only few or even a single
sample per class. Thus a practical system should be able to provide accurate
classification even when the training data is sparse. In this context, applying
CNN is problematic. First, adding a new class to a CNN requires a change in
architecture of the network (or at least its last layers) and retraining of the



network! which is computationally intensive and therefore time consuming.
Second, training CNN requires many labelled samples, while using one or a
few training samples per class dramatically degrades the accuracy of CNN
compared to a fully trained CNN or a simpler classifier with a small training
set.

Previous methods, that provide the capability of dynamically updating
the reference set that contains one or few samples per substance, have tended
to use very simple pattern matching algorithms. Typically, commercial sys-
tems return a short list of candidate substances ranked according to their
similarity with the query spectrum according to the relative magnitudes of
their hit quality index (HQI) scores. Different metrics have been used for
HQI including Euclidean distance, correlation, and the cosine of the angle
between two spectra. The cosine similarity metric has also previously been
combined with a nearest neighbour classifier [9, 10]. Variations on these met-
rics include assigning greater weight to particularly discriminating peaks, or
eliminating peaks that only occur in the query spectrum on the assumption
that they are due to impurities that are of no interest. The HQI value can
be affected by artefacts due to baseline and purge problems and the presence
of additional peaks caused by sample contamination and is therefore suscep-
tible to misinterpretation. Databases shipped with commercial vibrational
spectroscopy instrumentation sometimes contain records for substances that
simply list the positions and intensities of the peaks contained within the
spectra and these could be determined from theoretical models (conversely
our application is concerned with matching to reference spectra obtained em-
pirically). Although reducing the data to peak positions allows queries to be
run quickly, peak width can be important for interpretation [11]. Multi-scale
methods make use of the structures of individual peaks [12, 13, 14]. Where
a sample contains an unknown mixture of substances, probabilities for the
presence of each component may be obtained by, for example, a generalized
linear model [15] or reverse searching using non-negative least squares [16].
A reverse search ignores peaks that occur in the query spectrum but not in
the reference spectrum contained in the library/database.

To summarize, previous methods for spectra matching do not extract

LA more efficient method is to retrain the last layers and only fine tune the rest of the
weights. However, the success of this approach depends on the similarity of the new class
to the existing ones.



salient features from the data and are therefore highly susceptible to noise
and require preprocessing of the raw signal for good matching performance.
Hence, CNN is advantages over these methods in providing accurate, efficient,
and fully automated classification of spectra. However, 1) it requires large
training sets and 2) retraining when a substance is added or deleted from
the system. In this paper, we present a system that enjoys all the benefits
of CNN and solves these two problems. Our experiments show that the
proposed method can perform an accurate classification of spectra even in
cases where the number of classes is large and with a single or a handful of
samples per class. Moreover, it allows new classes to be added or existing
classes to be removed from the model in real time with no additional effort.

2. Materials and Methods

2.1. Our Approach

Our approach tackles the two issues of CNNs that restrict their use in
practical systems: degradation in accuracy due to lack of training data and
inability to perform online updates of the database.

Training with limited data: Here the issue of limited available data
for training the CNN is addressed by reformulating an n-way classification
task into a binary task in which pairs of inputs are assigned to the same
class or different classes. For this binary problem, applied to a large number
of classes, even a small number of samples per class would result in a large
number of training pairs (we provide further details in Section 2.3). To
learn the resulting binary problem we use a special architecture, referred
to as Siamese network [17], which has been used to determine if pairs of
inputs originate from the same class in a number of domains (e.g., RGB
images [18, 19, 20], NIR images [21], speech [22] and text [23]).

Online updates: The Siamese network architecture can be viewed as a
combination of a non-linear mapping for extracting features from the input
pairs with a weighted metric for comparing the resulting feature vectors. The
mapping and the metric are learned in an integrated manner using gradient-
based learning. When a Siamese network is trained on many classes, the
resulting features and the corresponding learned metric are capable of gener-
alizing beyond the classes seen in training. Thus it can be used for learning
to process data from unseen classes using a single training sample, termed
one-shot learning. Previous work showed the merit of using Siamese net-
works for one-shot learning in character recognition and object classification

4



s(xy1, z2)

sigmoid

w' | fi = foll

Twin ConvNet f(-) —

@ Twin ConvNet f(-) %@\
(2)—

Figure 1: Diagram of a Siamese network with a convolutional neural network as its twin
network. x1 and zo are two samples to compare, f; and fo denote their features extracted
by the twin CNN. The metric in the feature space has chosen to be weighted L; which is
learnable by adjusting w[24]. Finally the network outputs a similarity measure s(z1,22) €
[0,1].

(e.g. [18, 24]). We propose applying one-shot learning, using a Siamese
network, for spectra classification and use it to build a dynamic classifica-
tion system that enables online updating of a spectrum database (without
retraining the system). Specifically, for an n-way classification problem, we
use a single reference sample per class, including the new classes that were
not previously represented during the training of the Siamese network, and
map the reference samples and the test sample to the feature space via the
CNN part of the the Siamese network. Then, the nearest neighbour rule is
applied using the learned similarity metric for classifying the test sample.
If more samples are available per class, the comparison can be extended to
k-nearest neighbors. One can also perform ranking or any other analysis of
distances between the test sample to the reference set.

2.2. Siamese Network for One-Shot Learning

Siamese networks [18] consist of two (twin) networks that have exactly
the same structure and identical weights. The architecture of the Siamese net
used in this work is shown in Figure 1. We implemented the twin networks
using the CNN architecture shown in Figure 2. The twin network maps an
input spectrum to a feature space using the same mechanism as is employed
for classification using a single CNN [1] and thus enjoys all the benefits
of CNN as detailed above. The CNN architecture includes six blocks, each
with a convolutional layer, followed by batch normalization, LeakyReL.U non-
linearity, and max-pooling. The number of feature maps is decreased in every
second layer. The outputs of the last block are concatenated and flattened
to form a feature vector, which is used as an input to the metric learning
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Figure 2: Diagram of convolutional neural networks that are variants of LeNets[25]. This
was used in our work as the twin network in Siamese networks. BN stands for batch
normalization. Conv(m, n) stands for a convolutional layer with m neurons/filters of
kernel size n. Maxpooling(c, s) denotes a MaxPooling layer with kernel size o and stride
s.

part of the Siamese net. Further details of the CNN architecture are shown
in Figure 2. We note that all the building blocks including convolutional
layers and max-pooling are one dimensional as we represent spectra as 1D
sequences of intensity at each wavenumber.

The Siamese network computes the following function:

s(xi, %)) = o(=w || f(x;) = f(x)[h) (1)

where x;,x; are a pair of positive or negative samples, o is the sigmoid
activation function. f is a non-linear transform realized by a convolutional
network (twin network) and w are the trainable weights that can be viewed
as a metric in the feature space. We use a binary cross-entropy loss function
to train the Siamese network
N
£==>" |ynlog s %) + (1= ) log(1 = s(xa,%0,)|  (2)

n=1

where N is the total amount of positive and negative pairs.
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2.3. Imbalanced Positive and Negative Pairs: A Sampling Strategy

One of the core problems associated with training a Siamese network
is generating negative and positive pairs efficiently and sufficiently for the
purpose of distinguishing both similar and dissimilar samples. Suppose there
are N classes, each of which has M samples, the total number of positive
and negative pairs are M (M — 1)N/2 and M*>N(N — 1)/2, respectively. In
applications like mineral recognition, in which there are typically hundreds of
different minerals, but only a handful of spectra available for each, there will
be considerably more negative than positive pairs i.e. for M ~ 10 and N ~
100, there will be roughly 5K positive and 500K negative pairs. If we feed
this ratio of training pairs into the network without proper countermeasures,
positive pairs may be dominated by negative pairs during training and will
therefore be under-represented in the model. As a result, the network is
likely to be biased towards distinguishing dissimilar pairs. An extreme case
would be a classifier that only reports negative responses and fails to learn
variance within the same class or similar samples.

A common way of dealing with an imbalanced dataset is to under-sample
the majority class i.e. negative pairs in this case, or over-sample the minority
class i.e. positive pairs, or to combine both these strategies [26]. Here,
we propose using a Bootstrapping-based strategy as follows: assume that
we have S, positive pairs and S,, negative pairs where 5, < S,, for each
iteration. We then sample .S, positive pairs and an equal number of negative
pairs, both with replacement. We repeat a number of iterations until the
Siamese network has been trained sufficiently. It should be noted that it is
crucial to sample the positive pairs with replacement, instead of generating
all the positive pairs deterministically, to prevent overfitting to positive pairs.

2.4. Training Convolutional Siamese Nets

It is common practice to increase the number of training samples by
augmenting the real samples with the synthetic ones. Here, we employed
data augmentation technique, proposed in [1], which consists of three steps.
First, each spectrum is shifted left or right a few wave numbers randomly.
Then, random noise, proportional to the magnitude at each wave number, is
added. Lastly, the augmented data is created as linear combinations of all
spectra, belonging to the same substance, with random coefficients.

The Siamese network was trained using the Adam algorithm[27] (a vari-
ant of stochastic gradient descent) for 50 iterations. The learning rate was



reduced by half every 10 iterations. Xavier initialization was used to initial-
ize the convolution layers. We applied early stopping to prevent overfitting.
Training was performed on a single NVIDIA GTX-1080 GPU.

2.5. Raman Spectroscopy Datasets

We tested the proposed method on three Raman spectroscopy datasets,
two public available mineral datasets (RRUFF [28] and UNIRP [29]) and one
varied chemical dataset (CHEMK). RRUFF is the largest publicly available
mineral database. In our experiment, we used raw (uncorrected) spectra of
512 minerals and around 1700 spectra in total. UNIRP is a smaller mineral
database, containing 107 minerals and 163 spectra in total. The chemical
dataset, referred to as CHEMK in our paper, contains spectra of 123 chemi-
cals and around 500 spectra in total.

We note that the RRUFF dataset contains only spectra that were not
baseline corrected, while UNIPR and CHEMK datasets contain both base-
line corrected and raw spectra. In order to investigate the performance of
the tested methods on baseline corrected spectra, we applied a widely-used
baseline correction technique, asymmetric least squares [30], to produce a
baseline-corrected version of corresponding datasets.

3. Results and Discussion

Our experimental worked was organised into two parts. In the first part (
Section 3.1) we evaluated our method for the real-world application setting in
which online changes are made to the database (the reference set). The tests
show a significant advantage of the proposed method over the established
matching methods on three different datasets. In the second part of the
experimental work (Section 3.2) we compared the performance of the Siamese
network with a standard CNN approach [1] for spectrum classification (which
assumes that all the classes are known during training and thus does not allow
for online updates). The results of this experiment show that the proposed
method is comparable to CNN in its ability to extract good features (which all
previous matching methods lack). Finally, we use a visualization technique
(shown in Section 3.3) to illustrate the ability of the proposed method to
map samples of different classes to non-overlapping clusters. This explains
its excellent performance in spectra matching.
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3.1. Spectrum Matching

In spectrum matching the updates of the reference database with the
new classes must be done online, without any additional training. Thus the
system should be capable of processing instances of new classes that were not
included in training. The following experiment compares the performance of
the proposed method with three other popular methods for matching against
previously unseen classes.

3.1.1. Evaluation Protocol

We investigated the performance of the proposed method on unseen classes
using the following protocol: We split all classes into non-overlapping sets for
training, validation, and test. We used 50% of the classes for training, 10%
for validation, and 40% for testing. We trained the Siamese network using
all samples in the training set as discussed in Section 2.3. We validated the
results for early stopping on pairs produced from the samples in the valida-
tion set. During test time, we picked at random a single sample from each
class in the test set to form a reference set. We performed identification
of all spectra in the test set by matching them to the reference set. Using
a randomized partitioning of the data, we repeated both training and test
procedures several times to obtain statistically reliable results.

UNIPR dataset is much smaller than RRUFF and CHEMK. Specifically,
it has many classes with a single sample. A matching test requires at least
two samples: one reference and one test, thus single sample classes cannot
be used in the test time. To this end, we used a different evaluation protocol
based on a fixed split of classes for UNIPR tests. We sorted all the minerals
according to the number of spectra they contain in descending order and
selected the first 20 mineral species for testing, the second 20 for validation
and the rest for training (as training can be done with a single sample per
class). Following this protocol, we can make sure that all the test classes
have at least two spectra per class. Note that, since the training classes
have fewer samples (usually one spectrum per mineral) this protocol yields
a harder problem to solve than the one based on a random split.

We compared our method with three previous matching techniques: near-
est neighbour (NN) with L, distance, nearest neighbour with cosine similarity
and large margin nearest neighbour (LMNN). Nearest neighbour with the Eu-
clidean distance and cosine similarity have been widely used in commercial
software for spectrum matching and were therefore included for comparison.
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Dataset ~ Signal Type NN(Ls) NN(cosine) ~ LMNNJ[31]  Siamese Net
RRUFF Raw 0.461£0.046 0.525+0.036 0.725+0.041 0.901+0.014
Preprocessed  0.8024+0.033 0.833+0.030 0.818+0.029 0.886+0.032
CHEMEK Raw 0.8274+0.047 0.879+0.037 0.882+0.043 0.9724+0.024
Preprocessed 0.796+0.030 0.838+0.026 0.878+0.047 0.974+0.024
UNIPR Raw 0.630 0.723 0.803 0.965
Preprocessed 0.724 0.835 0.838 0.956

Table 1: One-shot classification accuracy of convolutional Siamese nets and other com-
pared methods with and without baseline correction.

LMNN is a popular metric learning method that determines a Mahanalo-
bis distance for k-nearest neighbour classification (kNN). A linear transform
of the input space is learned such that the k-nearest neighbors of a sample
in the training set share the same class label with the sample, while sam-
ples from different classes are separated by a large margin. In short, LMNN
learns a linear transform, which is particularly beneficial for kNN classifica-
tion. Hence the compared methods include from widely used non-learning,
limited-learning to powerful meta-learning methods(Siamese network) 2 .

3.1.2. Results and Analysis

The results, summarized in Table 1, indicate that our proposed method
outperforms all other tested methods by a large margin and removes the need
for data preprocessing. In the following, we analyze these results in detail.

RRUFF Dataset: On the raw data NN with either Ly or cosine simi-
larity performed poorly, with a low accuracy rate of ~ 0.5. LMNN achieved
better results, with an accuracy of 0.725. The Siamese network significantly
outperformed all tested methods and produced the highest rate of 0.901. On
the baseline corrected (i.e. preprocessed) data, all previous methods per-
formed much better. The Siamese network achieved 0.886, which is lower
than on the raw data but still significantly better than the other tested

2Meta-learners is a term used in meta learning and one shot learning for describing
machine learning methods which can learn e.g. cross-domain knowledge and generalize to
unseen tasks. Siamese networks can be regarded as a simple yet powerful meta- learning
method.
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methods. These results support the preconception that convolutional net-
works achieve the best integrated preprocessing and feature extraction of
raw spectra. A similar conclusion was drawn in [1] where the end-to-end
training of a CNN for Raman spectra classification produced superior results
on raw data compared to pipeline approaches.

It is worth noting that on the raw data, LMNN achieved better results
than NN with both Ly and cosine similarity (as shown in Table 1). LMNN
is capable of learning a linear transform to facilitate the subsequent nearest
neighbour classification. Such a simple transform is much more limited than
the one learned by the Siamese Network, but it does result in a modest im-
provement when applied to raw, unprocessed, spectra. An example in which
a linear transform can provide effective preprocessing is depicted in Figure
3(a). We can see that rotating the spectra clockwise or counterclockwise re-
spectively, which is a linear transform, would correct the baselines to a some
degree.

The result of LMNN on the preprocessed data was comparable to NN
with the Lo distance metric and worse than NN with cosine similarity. This
further supports the limited ability of LMNN to learn preprocessing.

CHEMK and UNIPR Datasets: Siamese net significantly outper-
formed the compared methods on CHEMK and UNIPR datasets. Specifi-
cally, the accuracy was increased by more than 10% compared to the second
best method LMNN and the widely used cosine similarity method. For the
CHEMK dataset, baseline correction worsened the accuracy of all methods
except for the Siamese net. This may imply that the standard baseline cor-
rection techniques may also inadvertently remove some information content
from spectra that is useful for classification. We emphasize that learned
preprocessing, as in Siamese Net, is tuned to the data and thus does not fail.

3.2. Comparison to Multi-class CNN

The following set of experiments aims to test the ability of the proposed
method to extract good features. To this end we compare its classifica-
tion performance to the state-of-the art Raman spectra classification method
based on CNN [1] in a multi-class classification, where unseen samples are
classified into learned classes. In addition, our experiments test how much
these methods rely on data augmentation (customary in CNN training).

12



Dataset Methods Data Augmentation Raw Preprocessed
No* 0.705+£0.031  0.7794+0.015
ConvNets{1] YO 0.933+£0.007  0.920-£0.008
RRUFF es ) . . .
. No 0.850+0.029  0.842+0.035
Siamese Nets
Yes 0.921+0.010  0.919+0.007
N 0.764+0.027 0.7584+0.032
ConvNets{1] YO 0.891-£0.012  0.877-0.016
CHEMK es ) . . .
. No 0.839+0.026  0.805+0.029
Siamese Nets
Yes 0.903+0.025 0.883+0.021

Table 2: Classification accuracy on trained classes of convolutional Siamese nets and
CNNs on the RRUFF mineral and CHEMK chemical datasets, with or without baseline
correction.

3.2.1. Fvaluation Protocol

We applied the Siamese network as described in Section 3.1, but with
the reference set composed of the known classes (used to train the Siamese
network). For this set of experiments, we followed the test protocol[1], which
randomly selects one sample from each class to form a test set. The remain-
ing samples were used for training and validation. The process was repeated
a number of times. Due to lack of training data (many classes with a sin-
gle spectrum per mineral) we did not include UNIPR dataset in this set of
experiments.

3.2.2. Results and Analysis

The results are summarized in Table 2. We can see that when data
augmentation is used in training, the classification accuracy of the Siamese
network is comparable to CNN on the preprocessed spectra and only slightly
lower than CNN on the raw data. This indicates that the proposed method is
able to extract very good features, comparable to the state-of-the-art CNN.

Additionally, one can consider the Siamese Network as an alternative to
CNN for a large-scale classification of spectra when the training data is lim-
ited. To test this hypothesis, we investigated the effect of data augmentation
on convolutioinal Siamese networks and on CNNs.

Table 2 shows that the convolutional Siamese network trained with no
data augmentation is able to achieve a good accuracy on both raw and prepro-
cessed spectra. A trained CNN network with no augmentation, was heavily

13



overfitted and showed much lower success rates than the Siamese network.
To reduce overfitting of CNN we tried halving its size by keeping only one
copy of each block (instead of two). We tested the reduced CNN on RRUFF
dataset and found that reducing the size of CNN resulted in a significant loss
of accuracy compared to the original network trained on augmented data,
specifically, 70.5% on raw spectra and 77.9% on preprocessed spectra. Fur-
thermore, the reduced CNN attained higher accuracy on the preprocessed
data than on the raw spectra, which is contrary to the results of the original
CNN trained on the augmented data. This suggests that the reduced CNN
is not large/deep enough to learn a baseline correction well.

These results confirmed that the convolutional Siamese network is a better
alternative than multi-class CNN in classification tasks with a large number
of classes but a small number of samples per class, and when synthetic aug-
mentation of the data is not possible. The success of Siamese net in this
experiment can be explained by the fact that the number of pairs obtained
from a data set comprising many classes with a small number of samples in
each, is large enough to prevent significant overfitting.

3.3. Visualization

Our method learns to map the input samples to non-overlapping clusters
which facilitates the matching. To verify this claim, we used a visualization
technique that maps high-dimensional features learned by the twin networks
in the Siamese net to low-dimensional space while preserving the pairwise
distances.

We used t-distributed stochastic neighbour embedding (t-SNE)[32] to vi-
sualize the feature space learned by the Siamese network. To avoid clutter
in the visualization, we reduced the number of unseen classes by removing
the minerals with fewer than three samples. The results depicted in Figure
4 show that the projected samples cluster by mineral type.

4. Conclusion and Future Work

In this paper, we have proposed a one-shot learning solution based on
convolutional Siamese networks to realize a dynamic spectrum matching sys-
tem which is capable of classifying both seen and unseen classes accurately.
Importantly, for unseen classes/substances, the proposed system requires as
few as one example per class to achieve accurate classification which enables
classes/substances to be added into the model dynamically. We validated

14
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the feasibility and effectiveness of our method on the largest public avail-
able mineral dataset. Although we demonstrated our method for Raman
spectroscopy, it can also be applied to other kinds of spectroscopy and other
applications such as computational chemistry, drug discovery, and health
care. The approach is particularly applicable for cases where the data avail-
able for training is limited and/or frequent updates of the reference database
are required. The one-shot solutions are not limited to Siamese Networks.
Some different one-shot architectures have previously been applied to related
fields such as drug discovery (see also Altae-Tran et al. [33]). We anticipate
further development of our work to include an adaptation and evaluation of
different one-shot learning methods in spectroscopy.
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