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Abstract

Nowadays many products, such as 3C products (Computer, Communication and

Consumer Electronics) and cars, consist of software and hardware. The causes of

warranty claims of such products may be attributed to software specific failures,

hardware specific failures, software-hardware interaction failures and human errors.

Apparently, those causes may be dependent. For example, one may claim warranty

due to the malfunction of the embedded software in a product item and then the

entire item may be replaced. Nevertheless, the existing research on warranty man-

agement studies mainly concentrates on warranty analysis of hardware subsystems,

assuming that the warranty claims are statistically independent of those caused

by the failures of software subsystems or human factors, that is, the interactions

between those causes are neglected.

This paper investigates warranty costs incurred due to those three subsystems

with a focus on their interactions. It estimates the costs due to different cause, de-

velops integrated warranty cost models and optimises warranty policies considering

the above possible combinations. Numerical examples are given to illustrate the

proposed models.
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1 Introduction

A warranty is a contractual obligation incurred by a manufacturer in connection with the sale

of a product. In broad terms, the purpose of warranty is to establish liability in the event of

a premature failure of an item or the inability of the item to perform its intended function

(Blischke & Murthy, 1992). For products sold with warranty, manufacturers bear additional

cost incurred due to warranty servicing. Such cost, often referred to as warranty servicing

cost, is generally substantial. For example, according to WarrantyWeek (2016), Apple paid

$1.25 billion or more for warranty claims during a single quarter in the second half of 2015;

and during the same time period, HP Inc. paid around $300 million per quarter. Therefore,

accurately estimating warranty cost is indispensable to the manufacturers.

Nowadays, many products, such as 3C products (Computer, Communication and Consumer

Electronics) and cars consist of two subsystems, hardware and embedded software. The designed

functions of the products are performed based on the reliable collaboration of their hardware

and software subsystems. That is, a hardware failure or/and a software failure may cause a

warranty claim. For example, Fig 1 shows four warranty claims of four air-conditioners, which

are four real cases collected from a Chinese air-conditioner manufacturer. The warranty claim

No 3, as interpreted in English in Fig 2, is due to the failure of the control software, which is

embedded in the control board. As a result, the entire control board is replaced.

Fig. 1. Four warranty claims, in which No 3 is due to a software failure and its host hardware is

replaced.

It should also be noted that warranty claims are not always triggered by the failures of product

items, some users’ behaviours (human factors) may also contribute warranty claims (Wu, 2011).
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Fig. 2. Figure 1 in English

1.1 Related work

1.1.1 Warranty policy optimisation

In the literature, many methods aiming to optimise the warranty price and the warranty length

of an individual product have been proposed. Fig. 3 illustrates the evolution of the research in

warranty policy optimisation, which shows that the research evolves from simple and unrealistic

assumptions to more complex and realistic ones.

Fig. 3. Evolution of warranty policy optimisation

At the early stage, many researchers attempt to find the optimal price and warranty length,

assuming that the product is composed of only one component. Some other factors, such as pro-

duction rate, market competition and demand, etc., may also be considered. Ladany and Shore

(2007) address a method to determine the optimal warranty period with considering the prod-

ucts lifetime and market demand. Lin, Wang, and Chin (2009) optimise the price, warranty

length and production rate of a one component system dynamically. Wu, Chou, and Huang

(2009) develop a decision model to determine the optimal price, the length of warranty and the

production rate to maximise profit based on the pre-determined life cycle in a static demand

market. Dai, Zhou, and Xu (2012) indicate warranty costs are incurred by both the supplier

and the manufacturer, and provide the structural properties of the equilibrium strategies with

considering warranty length in warranty management. Ding, Rusmevichientong, and Topaloglu

(2014) investigate the relationship between the sales revenues and the repair costs under war-

ranty coverage with considering the partial information about product reliability. Yazdian,
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Shahanaghi, and Makui (2016) jointly optimises the acquisition price, re-manufacturing de-

gree, selling price and the length of warranty of re-manufacturing products under linear and

non-linear demand functions.

The assumption that a product is composed of only one component is too simplistic and even

unrealistic. Researchers then consider the assumption that a product is composed of multiple

components. Huang, Liu, and Murthy (2007) develop a model to determine the optimal prod-

uct reliability, price and warranty strategy to achieve the maximum total integrated profit for

a general repairable multi-component product sold under a free replacement-repair warranty

strategy. Matis, Jayaraman, and Rangan (2008) explore the optimal price and pro rate war-

ranty length for a multi-component product with considering the different repair options on the

components. Liu, Wu, and Xie (2015) analysed cost for a multi-component system with failure

interaction under renewing free-replacement warranty, Ahmadi (2016) addresses an optimal re-

placement problem for complex multi-component systems by determining an optimal operating

time which balances income and cost to maximizes the expected profit over a cycle. Chen, Lo,

and Weng (2017) seek to maximize the total profit per item of a multi-component product

through optimally determine the production run length and the warranty period. Additionally,

some researchers have noticed that, in the real world, a manufacturer may produce more than

one product. The warranty claims of different products produced by the same manufacturer

can be statistically dependent, because these products share similar design, same parts, same

production line and other common causes. Such dependence should be considered by collective

warranty models (Luo & Wu, 2018b, 2018a). Somboonsavatdee and Sen (2015) focuses on the

analysis of repairable systems that are subject to multiple sources of recurrence, which assumes

that dependence among the cause-specific recurrent processes is induced via a shared frailty

structure.

All of the work mentioned simply considers hardware subsystems. However, currently, as many

product consists of hardware and software components, the difference and interplay between

these two different types of components should be considered in warranty policy.

Hardware failures under warranty are usually rectified by the manufacturer, with no fee or

partial fee to the consumer, based on the type of warranty policy used (Murthy & Djamaludin,

2002).

Software subsystems plays a vitally important role in many products. In this paper, we chiefly

discuss software subsystems embedded in hardware subsystems. In spite of great advancements

in software reliability/quality assurance, potential faults may still be introduced into the soft-

ware during its development process (Kimura, Toyota, & Yamada, 1999; Williams, 2007). Soft-

ware failures are usually caused by incorrect logic, incorrect statements, incorrect input data,

and what not. In order to satisfy the reliability requirement and/or reduce the operating cost,

4



software testing actions are normally performed to detect and remove software faults before the

software is released. Software reliability can be improved by increasing the testing effort and by

correcting detected faults. Therefore, in terms of software management, the determination of

the optimal software release time, i.e. the optimal testing time, may be an important decision

problem, which is called the optimal software release problem in the literature. The reader is

referred to Kimura et al. (1999) for more details on this problem.

In addition to hardware and software subsystems, product users, may be considered as another

essential sub-system in many situations. Warranty claims are not always triggered by hardware

or software failures, they may also be due to human factors. According to Wu (2011), there

are at least two types of human factors in the context of warranty management. (1) consumers

might not be bothered to claim warranty for failed items that are still under warranty, which is

called failed-but-not-reported (FBNR) phenomenon; (2) consumers may conduct a fraudulent

warranty claim, or claim failure due to misuse or many other human factors, which is referred

to as non-failed but reported (NFBR) claims. The first type of human factor relaxes a common

assumption in warranty literature — all failures may cause warranty claims whereas the second

type relaxes the assumption — all claims reported are due to product failures. Furthermore,

after the updates of the software released by the manufacturer, whether and when to download

and install the updates are decided by the customers. This implies the software update adoption

rate, which can affect the software’s reliability, may also be influenced by human factors.

Apparently, a product with lower price can enhance its sales volume; but reduce the unit profit

of the product. Regarding the effect of warranty on manufacturer’s profit, Wu et al. (2009)

state that, in practice, consumers may predict the quality of a product based on its warranty,

and a satisfactory warranty will certainly enhance consumers’ purchase willingness, which is the

well-known warranty’s signalling theory. Products with longer warranty length may increase the

total warranty cost to the manufacturer (Dai et al., 2012). Hence, it is important to trade-off

the price and warranty length of a product in practice.

According to the literature, the failures of a product item consisting of hardware and soft-

ware subsystems can be divided into three categories: hardware specific, software specific and

hardware-software interaction failures (Fernandez & Stol, 2017; Roy, Murthy, & Mohanta, 2015;

Teng, Pham, & Jeske, 2006). In order to estimate the warranty cost more accurately, this paper

proposes a new model that considers hardware and software failures of a product and even its

user’s behaviour integrally.

1.1.2 The sales volume

The sales volume of a product is affected by two critical marketing variables: the selling price

and the warranty length (Chen et al., 2017). For example, these two variables, selling price P
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and warranty length T , can influence the sales volume, M , and profit, ω. The sales volume

of a product is negatively related to its selling price and positively related to its warranty

length. The profit of product k in this paper is the revenue deducting the warranty cost, i.e.

ω = MP − S(T ), where S(T ) is the aggregated warranty cost of the product within T .

In the literature, the sales volume M , is expressed by a function of product price P and length

of warranty T in different forms, including linear (Lin et al., 2009; Yazdian et al., 2016) and

non-linear (Huang et al., 2007; Ladany & Shore, 2007) ones. For simplicity, a linearity form,

introduced by (Yazdian et al., 2016), is used in this paper. The sales volume is defined by

M = A− βP + ηT, (1)

where A(> 0) is a constant relating to the market size of the product, and β(> 0) and η(> 0)

are the price and length of warranty elasticities, respectively.

1.2 Novelty and contributions

The existing research on warranty management focuses on hardware subsystems (Ye & Murthy,

2016), software subsystems (Pham & Zhang, 1999) or human factors (Wu, 2011) separately. Lit-

tle research, however, has been devoted to investigate the warranty claims due to the interplay

of those three sub-subsystems.

This is the first paper that takes a holistic consideration of warranty claims caused by different

factors: hardware failure, software failure and user behaviours. The interplays between hardware

and software failures are investigated for five different aspects.

The paper has important managerial implications. In warranty management, optimising war-

ranty policy and forecasting warranty claims are two of the most important activities. This

requires analysts to understand the interplay of different warranty claim causes in order to

make a precise forecasting and warranty optimisation. The methods proposed in this paper,

offers a better way than existing ones. The methods therefore advance the state-of-the-art in

warranty claim forecasting and policy optimisation, and offer warranty managers theoretically

established methods that can be used in their projects.

1.3 Summary

The rest part of this paper is structured as follows. Section 2 gives assumptions and notations

that will be used in this paper. Section 3 categories the routes of warranty claims into different

situations, derives warranty cost models assuming that warranty claims due to hardware and
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software failures are statistically independent, and optimises the warranty policies through

maximising the expected total profit from a manufacturer perspective. Section 4 derives cost

models when the interplay of different subsystems is considered. Section 5 integrates the cost

models derived from its preceding sections. Section 6 gives numerical examples illustrating the

derived models. Section 7 concludes the paper.

2 Assumptions and Notation

In this paper, we analyse warranty cost from a manufacturer’s perspective. The following as-

sumptions are made:

(i) Products are new at t = 0 when they are sold.

(ii) Non-renewing free replacement warranty (NFRW) policy is offered to protect hardware

failures. Under this policy, the manufacturer provides its customers with repair or replace-

ment on hardware failures at no cost within the warranty period, the original warranty is

not altered upon a failed item, and the manufacturer only guarantees satisfactory service

on the item within the original warranty period.

(iii) Hardware failures require rectification to restore the products to an operating state.

(iv) Repair on hardware failures is assumed to be minimal repair, i.e. an item with a hardware

failure is restored to the operating state that is exactly before it failed. Compared with

the warranty duration, the repair time is so short that it is negligible.

(v) Software failures can be fixed through the removal of problems by debugging errors.

(vi) When a software failure occurs, the manufacturer can detect the fault which and remove

it, failures due to this error may not occur again.

(vii) An individual consumer makes at most one non-failed but reported (NFBR) claim. Upon

a NFBR claim, only administration cost is incurred to the manufacturer.

(viii) The hardware and software of a product have the same warranty period.

The notations used in this study are presented in Table 1.

3 Independent profit analysis

3.1 Possible warranty claim routes

A typical warranty claim process is shown in Figure 4. This process starts from the time when

the item is thought to be failed and ends in five different routes.
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Table 1

Notations
T length of the warranty period
P price of the product
M total sales volume of the product
S(T ) total warranty cost of the product until time T
ω expected total profit of the product
λ1(t) expected number of hardware failures at time t
λ2(t) expected number of software failures at time t
λ3(t) expected number of software failures when the default bugs are not removed in operating
Λ1(t) expected total number of hardware failures until time t
Λ2(t) expected total number of software failures until time t
Ch(T ) total warranty cost of hardware until time T
ch1 expected cost of a warranty claim due to a hardware failure
ch2 expected cost of a hardware components replacement
ωh expected total profit of a hardware product over warranty period
cs1 expected cost of a claim due to a software failure
cs2 expected cost of producing and releasing a software update/patch
cs3 expected cost of developing software to resolve a hardware caused product failure
Cs1(T ) total warranty cost of a software product with Type I policy over warranty period
Cs2(T ) total warranty cost of a software product with Type II policy over warranty period
τi time of ith software patches/updates release, τ0 = 0
∆τ interval between software patches/updates releases
λ2,i expected number of software failures after ith release installed, λ2,0 = λ2(0)
θ impact factor of patches/updates installation on expected number of software failures
n number of patches/updates releases over warranty period
ωs1 expected total profit of software product with Type I policy over warranty period
ωs2 expected total profit of software product with Type II policy over warranty period
H1(t) cumulative distribution function of time to a NFBR claim
Chu1 cost of NFBR claim when the warranty will not be ceased
Chu2 cost of NFBR claim when the warranty will be ceased
chu1 administration cost per NFBR claim
chu2 expected cost on fixing the cause of an NFBR claim.
q1(t) probability of consumers being inclined to claim warranty
q2(t) probability of consumers installing updates
Nh(T ) total number of warranty claims due to hardware failure
Ns1(T ) total number of warranty claims due to software failure with Type I policy
Ns2(T ) total number of warranty claims due to software failure with Type II policy
Ns3(T ) total number of warranty claims due to software failure when the default bugs are kept
p(t) probability of a software failure leads to hardware failure
Nhs1(T ) total number of claims due to hardware failure with software impacts under Type I policy
Nhs2(T ) total number of claims due to hardware failure with software impacts under Type II policy
Nhs3(T ) total number of warranty claims due to software failure with hardware impacts
Nhr(T ) total number of hardware components replacements due to software failure
C01(T ) total warranty cost in Scenario 0 with Type I policy
C02(T ) total warranty cost in Scenario 0 with Type II policy
ω01 expected total profit in Scenario 0 with Type I software warranty policy
ω02 expected total profit in Scenario 0 with Type I software warranty policy
Cint11(T ) total hardware warranty cost with considering human factors
Cint21(T ) total software warranty cost with considering human factors
Cint31(T ) total warranty cost based on the hybrid model

Route 1 If a user reports a failure to the manufacturer (or the warranty servicing agent of her

area), and the failure is diagnosed as a hardware failure covered by the warranty policy, the

manufacturer may offer the user free repair or replacement of the item. Then, the process

ends (End 1 in Figure 4). The cost of the manufacturer on this event consists of the hardware

repair/replacement cost and the related management cost.
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Route 2 If a user does not report a failure to the manufacturer, this process ends (End 2 in

Figure 4). This phenomenon is called as the failed-but-not-reported (FBNR) event, which may

be due to various reasons, for example, an item is not expensive so that the user is not both-

ered to claim warranty (Wu, 2011). This event does not incur any cost to the manufacturer.

Route 3 If a user reports a failure to the manufacturer, and the failure is not covered by the

warranty policy or the item is not really failed, this process ends (End 3 in Figure 4). This

phenomenon is named as not-failed but reported (NFBR) claim, which may be due to misuse,

fraud, etc (Wu, 2011). The manufacturer may pay the related management cost, such as

diagnosis fee, caused by this event.

Route 4 If a user reports a failure to the manufacturer, and the failure is diagnosed as a

software failure covered by the warranty policy, the manufacturer should offer the user free

repair of the software system. If the software is not connected to the internet, this process

ends (End 4 in Figure 4). The cost of the manufacturer on this event consists of the software

debugging and repairing cost and the related management cost.

Route 5 If a user reports a failure to the manufacturer, and the failure is diagnosed as a

software failure covered by the warranty policy, the manufacturer should offer the user free

repair of the software system. If the software is connected to the internet, the manufacturer

may develop and release the related update/patch on-line. Then, this process ends (End 5 in

Figure 4). The cost of the manufacturer on this event consists of the software debugging and

repairing cost, the update/patch developing and releasing cost and the related management

cost.

The above five routes and their associated costs should be considered by the manufacturer to

support precise warranty management. Sometimes, Route 3 and Route 4 or Route 5 may occur

concurrently, because some interactions may exist between hardware and software subsystems.

This paper aims to optimise warranty policies comprehensively to maximise the manufacturer’s

profit with considering the issues related to the hardware, software and user of a products.

3.2 Warranty claims due to hardware failure

A hardware failure during the operating phase may be rectified through repair or replacement,

and the warranty may be non-renewing or renewing. More specifically, hardware failures under

warranty are usually rectified by the manufacturer, with no fee or partial fee to the consumer,

based on the type of warranty policy used (Murthy & Djamaludin, 2002).

Suppose the manufacturer takes non-renewing warranty policy, minimal repair on hardware

failures is performed and the time on repair is negligible. Denote λ1(t) as the failure intensity

function and Λ1(t) as the cumulative failure intensity function. Then the expected warranty
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Fig. 4. Warranty claim process

cost of hardware failures is

E[Ch(T )] = Mch1Λ1(T ) = Mch1

∫ T

0
λ1(t)dt, (2)

where T is the length of warranty, ch1 is the expected cost of each warranty claim due to

hardware failure. The expected profit of a hardware product is

ωh = MP − E[Ch(T )] = (A− βP + ηT )(P − ch1Λ1(T )). (3)

Eq. (3) presents that the expected profit is a function of two variables P and T . To maximise

ωh, the optimal P and T should be found. It is easy to prove that when T is known, an optimal

P exists to maximize ωh, even the form of failure intensity function λ1(t) is unknown.

Meanwhile, the relationship between ωh and T is determined by the forms of failure inten-

sity function λ1(t) and cumulative failure intensity function Λ1(T ). Suppose that the arrival

process of warranty claims due to hardware failures following a Non-Homogeneous Poisson Pro-

cess (NHPP) with failure intensity function λ1(t) and the cumulative failure intensity function

Λ1(t) =
∫ t

0 λ1(u)du. Assuming the NHPP follows a power law intensity in this paper, the in-

tensity and cumulative intensity functions of an item are λ1(t) = a1b1t
b1−1 and Λ1(t) = a1t

b1 ,

where a1 > 0 indicates the initial intensity and b1 > 1 means that the hardware reliability is
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decreasing over time. Then, the expected profit of hardware product is

ωh = MP − E[Ch(T )] = (A− βP + ηT )(P − ch1a1T
b1). (4)

According to Eqs. (3) and (4), we have the following Proposition 1. The proof is presented in

the Appendix.

Proposition 1 (1) If P is decision variable and T is known, the optimal solution, which max-

imizes the expected profit of a hardware product ωh, exists. (2) If T is decision variable, P is

known, and the arrival process of warranty claims due to hardware failures following a power

law NHPP, the optimal solution, which maximizes the expected profit of a hardware product ωh,

exists.

3.3 Warranty claims due to software failure

Potential faults or causes of failures are introduced into the software during its development

process. Once a fault is diagnosed and removed, some of the software’s errors may be debugged

and the total number of potential faults are reduced, which results in a growing reliability

of software. In recent times, there is a trend that software patches are provided during early

software release and updating. To satisfy customers concern of reliable software, manufacturers

may provide warranty on the embedded software. Within the warranty period, the manufacturer

provides assurance to the customers that the software may work properly and if any defect is

found, the manufacturer may either repair or replace the software without charging the customer

(Kansal, Singh, Kumar, & Kapur, 2016; Singh, Kapur, Shrivastava, & Kumar, 2015).

The software warranty policies can be divided into two types:

Type I The consumer is entitled to return the software, and the manufacturer should provide

support to bring the software back up to its operating mode. Every product is repaired

independently under this type of warranty policy.

Type II The manufacturers may collect error reports via the internet, and then debug the

errors and release updates or patches online according to the reports. All consumers who buy

the products can download and install the updates free of charge.

The cumulative number of software failures can be represented by a counting process with

failure intensity λ2(t) and cumulative failure intensity Λ2(t) =
∫ t

0 λ2(t)dt. The failure intensity

decreases with time as the initial faults will be detected and removed in operating. Such model

is named by the software reliability growth model (SRGM).

If the manufacturer takes Type I software warranty policy, the expected warranty cost on
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software failures is

E[Cs1(T )] = Mcs1Λ2(T ) = Mcs1

∫ T

0
λ2(t)dt, (5)

where cs1 is the expected warranty cost of each claim on software failure under Type I software

warranty policy, and M is the number of product sold at t = 0.

If the manufacturer takes Type II software warranty policy, to model the warranty cost we have

the following assumptions:

(i) if a software system failure occurs before the corresponding update is executed, the soft-

ware is brought back to the operating mode as the same version, i.e. the error isn’t

removed; and

(ii) the manufacturer releases the updates/ patches based on a pre-specified time schedule,

for example, releasing updates online in every 6 months.

Under this type of warranty policy, the expected warranty cost on software failures is:

E[Cs2(T )] = ncs2 +Mcs1
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+Mcs1

∫ T

τn
λ2,n(t)dt, (6)

where n = b T
∆τ
c is the number of releasing patches; M is the number of product sold at t = 0;

τi is the time of releasing ith patch/update under time-based policy, τi− τi−1 = ∆τ and τ0 = 0;

λ2,i is the failures intensity after ith patches/updates released, λ2,i = θλ2,i−1 and λ2,0(t) = λ2(t);

and cs2 is the expected total cost of releasing an update. In this model, ∆τ is a pre-specified

time length, such as 1 month, 6 months, etc.; and θ(> 0) is the impact factor of patch/update

on the software failure intensity, and θ can be estimated based on lab data or field data in

practice.

Regarding the expected profit of software product, under Type I software warranty, according

to Eq. (5), the expected profit of a software product is

ωs1 = MP − E[Cs1(T )] = (A− βP + ηT )(P − cs1Λ2(T )). (7)

If T is known as a constant, the right hand side of Eq. (7) becomes to a parabolic function,

and the coefficient of P 2 item is negative, hence ωs1 has global maxima.

If P is known as a constant, the relationship between ωs1 and warranty length T is determined

by the form of SRGM. To demonstrate the relationship, the intensity and cumulative intensity

can be constructed according to the most well-known NHPP-based SRGM, Goel-Okumoto (G-

O) model (Wang, Wu, Shu, & Zhang, 2015). The intensity is λ2(t) = a2b2e
−b2t−1, and cumulative

intensity is Λ2(t) = a2(1 − e−b2t). The parameters of λ2(t) and Λ2(t), a2 and b2 are positive,

which indicate the expected number of failures is decreasing with t and the expected total

number of failures until time t has a upper limit a2. Then, the expected profit of a software
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product is

ωs1 = MP − E[Cs1(T )] = (A− βP + ηT )(P − cs1a2(1− e−b2T )). (8)

When P is known, the first order derivative of ωs1 on T is dωs1
dT

= cs1a2e
−b2T−1(Ab2 + βAb2P +

η − ηTb2) + ηP − ηcs1a2. Thus, we have the following result.

Proposition 2 (1) If P is decision variable and T is known, the optimal solution, which maxi-

mizes the expected profit of a software product ωs1 under Type I software warranty, exists. (2) If

T is decision variable and P is known, and the software failures follow G-O SRGM; the optimal

solution, which maximizes the expected profit of a software product ωs1 under Type I software

warranty, only exists on the boundaries.

When the manufacturer takes Type II software warranty, according to Eq. (6), the expected

profit of a software product is

ωs2 =MP − E[Cs2(T )]

=MP − [ncs2 +Mcs1
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+Mcs1

∫ T

τn
λ2,n(t)dt], (9)

There are three variables in this situation, which are: product price P , warranty length T and

updating interval ∆τ . Then we have the following two propositions.

Proposition 3 If ∆τ is pre-specified, P is decision variable and T is known, the optimal

solution, which maximizes the expected profit of a software product ωs2 under Type II software

warranty, exists.

Proposition 4 If both P and T are known and ∆τ is a decision variable, the optimal solution,

which maximizes the expected profit of a software product ωs2 under Type II software warranty,

exists.

3.4 Warranty claims due to users

The NFBR and FBNR events should be considered in warranty cost analysis, however there

is another human factor, the adoption rate, which should not be ignored either. The adoption

rate is the percentage of the users who have downloaded and installed the updates/patches of

the software embedded in the product. Sometimes users may not download and install software

patches/updates immediately after they are released. The adoption rate may be a function of

time, for example, the adoption rate of the software embedded iPhone may increase over time.

According to Wu (2011), it is reasonable to assume that a consumer makes at most one NFBR

claim. Wu (2011) proposes three models to estimate the expected warranty cost when both
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NFBR claims and FBNR phenomenon are considered. Manufacturers responses to NFBR claims

may be different: (1) some manufacturers may cease the warranty contract for consumers with

NFBR claims, and (2) some may not cease the warranty contract, as it is not easy to tell if a

NFBF claim is intentionally or unintentionally committed. However, both responses incur costs

to the manufacturers, and therefore should be considered in estimating warranty cost. Following

(Wu, 2011), we assume that time to a NFBR claims is a random variable Z with cumulative

distribution function H1(t) = 1 − e−(t/α1)α2 , α1, α2 > 0. Then, we consider the following two

scenarios.

(i) A NFBR claim may not cause warranty to be ceased, the manufacturer may check and

return the item. Then the expected warranty cost is given by

E[Chu1(T )] = Mchu1H1(T ), (10)

where chu1 is the administration cost per NFBR claim.

(ii) A NFBR claim may cause warranty to be ceased, the manufacturer may fix and return

the item. Once the warranty ceases, there are no further costs to the manufacturer. Then

the expected warranty cost is given by

E[Chu2(T )] = Mchu2H1(T ), (11)

where chu2 is the expected cost on fixing the cause of a NFBR claim

Regarding the FBNR phenomenon, the consumers’ willingness to claim warranty may diminish

with time, then the probability of consumers being inclined to claim warranty is assumed to be

q1(t) = e−γ1−γ2t, (12)

which is called a warranty execution function (WEF) (Wu, 2011), where γ1, γ2 > 0.

Regarding the effects of delayed updating behaviour on warranty cost, the probability of con-

sumers installing the update, i.e. adoption rate, q2(∆t), increases with time after releasing.

∆t = t − τi, where t is the current time and τi is the time when the ith update is released.

The delayed updating behaviour does not incur new cost directly, but it can affect the cost

E[Cs2(T )].

4 Comprehensive profit analysis and optimization

In literature, most of the researchers use the Markov process to model the interaction between

hardware and software based on the physic structures of products (Roy et al., 2015; Teng et
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al., 2006), in this paper, briefly, the hardware-software interaction failures are modelled under

two different situations.

(i) the interaction between hardware and software failures can be categorised into two cate-

gories, hardware-failure-caused software failure and software-failure-caused hardware fail-

ure; and

(ii) the causes of hardware-software interaction failures cannot be determined.

Below we discuss the above two situations.

The scenarios of product failure are presented in Table 2. Scenario 0 is the basic one, in which

the hardware and software failures are independent, and a warranty claim can be caused by

either hardware or software. In Scenario 1, beyond the claims in Scenario 0, some claims are

caused both hardware and software failures at the same time, as some software failures can

lead to hardware failures. In Scenario 2, the same type of claims in Scenario 0 also occurs, and

besides some claims are caused by hardware-software (h-s) interplay problems which can be

resolved through replacing hardware parts by some other types. The causes of warranty claims

in Scenario 3 is similar to those in Scenario 2, but the problems can be resolved by developing

software instead of replacing hardware. Scenario 4 is a predicted scenario with considering auto-

programming technology based on Artificial Intelligence (AI), in which the faults of software are

not only generated in developing stage before release but also introduced by hardware failures

in operation.

Table 2

Scenarios of product failure

Scenarios Interplay Solution

0 Hardware and software failures are independents. Repair hardware/software independently.

1 Software failure can lead to hardware failure. Repair hardware and software.

2 Problems of h-s interplay lead to product failure. Replace hardware parts to improve reliability.

3 Problems of h-s interplay lead to product failure. Develop software to improve reliability.

4 Hardware failure can lead to software failure. Repair hardware and software.

The costs and profits in these scenarios should be modelled in different ways, which are discussed

below.
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4.1 The interplay between software and hardware

In this section, the cost of the ith warranty claim due to hardware failure is denoted by ch,i,

with E(ch,i) = ch1, and the cost of jth warranty claim due to software failure is denoted by cs,j,

with E(cs,j) = cs1, where ch,i and cs,j follow non-negative continuous probability distributions.

In practice, a product may be composed of many different hardware subsystems, which may be

controlled by one or more software subsystems. To investigate the interplay between software

and hardware subsystems, we consider the following 5 scenarios.

Scenario 0 The occurrences of hardware and software failures are statistically independent.

If the software system cannot be updated online, the total warranty cost of M sold items of

a product during the warranty period is

C01(T ) =
Nh(T )∑
i=1

ch,i +
Ns1(T )∑
j=1

cs,j, (13)

where Nh(T ) is the total number of warranty claims of M items due to hardware failures

during the warranty period T , and Ns1(T ) is the total number of warranty claims of M items

due to software failures during the warranty period T . Nh(T ) and Ns1(T ) have cumulative

intensities Λ1(T ) and Λ2(T ), respectively.

The expected total cost in this situation is

E[C01(T )] = Mch1Λ1(T ) +Mcs1Λ2(T ) (14)

and the expected total profit in this scenario is

ω01 = MP − E[C01(T )] = M [P − ch1Λ1(T )− cs1Λ2(T )] . (15)

Assume that the software can be updated online. Once a fault is reported, confirmed and

repaired, the software that is embedded all of the sold items of this type of product will be

repaired. Then, the total warranty cost of a product during the warranty period is

C02(T ) =
Nh(T )∑
i=1

ch,i +
Ns2(T )∑
j=1

cs,j +
n∑
k=1

cu,k, (16)

where n is the number of software updates during the warranty period, and cu,k is the cost

of the kth debugging and updating, E(cu,k) = cs2. Ns2(T ) is more complicated than Ns1(T )

because the intensity function of Ns2(T ) is influenced by software updating activities.

E[Ns2(T )] = M
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+M
∫ T

τn
λ2,n(t)dt, (17)

The parameters in Eq. (17) are defined the same as those in Eq. (6). Then the expected total
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cost is

E[C02(T )] = Mch1a1T
b1 +Mcs1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+
∫ T

τn
λ2,n(t)dt

]
+ ncs2, (18)

and the expected total profit in this scenario is

ω02 = MP − E[C02(T )]. (19)

Scenario 1 The occurrence of hardware and software failures are statistical dependent; but

no failure is due to the physical interaction of the hardware-software subsystems. A software

failure can lead to hardware failures of the M sold items with probability p(t) at time t, where

p(t) can be estimated based on historical data. If the software cannot be updated online, the

total warranty cost of the M sold items of a product during the warranty period is given by

C11(T ) =
Nhs1(T )∑
i=1

ch,i +
Ns1(T )∑
j=1

cs,j, (20)

where Nhs1(T ) = Nh(T ) +Ns1(T )
∫ T

0 p(t)dt. Then, the expected total warranty cost is

E[C11(T )] = Mch1

[
Λ1(T ) +

∫ T

0
λ2(t)p(t)dt

]
+Mcs1Λ2(T ). (21)

Then the expected total profit is

ω11 = MP − E[C11(T )] = M

{
P − ch1

[
Λ1(T ) +

∫ T

0
λ2(t)p(t)dt

]
− cs1Λ2(T )

}
. (22)

If the software can be updated online, once a fault is reported, confirmed and repaired,

all of the sold items’ embedded software will be repaired. Then, the total warranty cost of a

product during the warranty period is

C12(T ) =
Nhs2(T )∑
i=1

ch,i +
Ns2(T )∑
j=1

cs,j +
n∑
k=1

cu,k, (23)

where Nhs2(T ) = Nh(T ) +Ns2(T )
∫ T

0 p(t)dt. Then, the expected total warranty cost is

E[C12(T )] =Mch1a1T
b1 +Mch1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+
∫ T

τn
λ2,n(t)dt

] ∫ T

0
p(t)dt

+Mcs1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+
∫ T

τn
λ2,n(t)dt

]
+ ncs2, (24)

and the expected total profit in this scenario is

ω12 = MP − E[C12(T )]. (25)

The updating time interval, ∆τ , is pre-specified and decided by the manufacturer.
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Scenario 2 The occurrence of hardware and software failures are statistical dependent; and

the failures of the product are not only caused by pure hardware/software factors but also by

some design problems related to hardware-software interaction. In this scenario, repairing the

software is impossible or the software repairing cost is huge, the manufacturer may decide to

replace the hardware subsystems of all items to reduce the failure rate of the product. Then,

the total warranty cost of the M sold items of a product during the warranty period is

C21(T ) =
Nh(T )∑
i=1

ch,i +
Nhr(T )∑
j=1

Mchr,j, (26)

where chr,j is the cost of replacing hardware components for the jth software-caused hardware

failure, E(chr,j) = ch2. In this case, the software bugs would not be removed, and the number

of software failure following a counting process with failure intensity λ3(t). Then Nhr(T ) =

Ns3(T )
∫ T

0 p(t)dt. The expected total warranty cost is

E[C21(T ) = M

{
ch1Λ1(T ) + ch2

∫ T

0
λ3(t)p(t)dt

}
(27)

The expected total profit is

ω21 = M

{
P − {ch1Λ1(T )− ch2

∫ T

0
λ3(t)p(t)dt

}
. (28)

Scenario 3 The hardware and software are interplaying; and the failures of the product are

not only caused by pure hardware/software factors but also by some problems relating to

hardware-software interplay (eg. bad design). Different from Scenario 2, in this scenario, it

is impossible to merely replace the hardware subsystem. The manufacturer may decide to

develop/improve the software to reduce the failure rate of the product. Then, if the product

cannot be updated online, the total warranty cost of M sold items of a product during the

warranty period is

C31(T ) =
Nh(T )∑
i=1

csh,i +
Ns1(T )∑
j=1

cs,j, (29)

where E(csh,i) = cs3 is the expected cost of developing software to resolve a hardware-caused

product failure.

Then the expected cost is

E[C31] = M [cs3Λ1(T ) + cs1Λ2(T )] , (30)

and the expected total profit is

ω31 = M {P − cs3Λ1(T )− cs1Λ2(T )} . (31)
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If the product can be updated online, then the total warranty cost is

C32(T ) =
Nh(T )∑
i=1

csh,i +
Ns2(T )∑
j=1

cs,j +
n∑
k=1

cu,k, (32)

Then, the expected total warranty cost is

E[C32(T )] = M

{
cs3a1T

b1 + cs1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+
∫ T

τn
λ2,n(t)dt

]}
+ ncs2, (33)

and the expected total profit in this scenario is

ω32 = MP − E[C32(T )]. (34)

The updating time interval, ∆τ , is pre-specified and decided by the manufacturer.

Scenarios 4 This scenarios describes a potential situation in the near future. The Artificial

Intelligence (AI) technology allows software subsystems themselves to program automatically

to deal the dynamic state of the product, which implies that faults may be introduced into the

software not only during the developing process before released but also during the operating

phase. Then, the total warranty cost in this scenario is

C41(T ) =
Nhs1(T )∑
i=1

ch,i +
Nhs3(T )∑
j=1

cs,j, (35)

where Nhs1(T ) = Nh(T ) + Ns1(T )
∫ T

0 p(t)dt and Nhs3(T ) = Nh(T )
∫ T

0 q(t,M)dt + Ns1(T ).∫ T
0 q(t,M)dt is the probability that a hardware failure leads to software failure at time T .

Then the expected cost is

E[C41(T )] =Mch

[
Λ1(T ) +

∫ T

0
λ2(t)p(t)dt

]

+Mcs1

[∫ T

0
λ1(t)q(t)dt+ Λ2(T )

]
, (36)

and the expected total profit in this scenario is

ω41 = MP − E[C41(T )]. (37)

According to Proposition 1 and Proposition 2, in all of the above 5 scenarios, we have the

following two propositions.

Proposition 5 If the software cannot be updated online, P is decision variable and T is known,

the optimal solution, which maximizes the expected profit of the product, exists.

Proposition 6 If the software cannot be updated online, P is decision variable and T and ∆τ

are known, the optimal solution, which maximizes the expected profit of the product, exists. If
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∆τ is decision variable and T and P are known, the optimal solution, which maximizes the

expected profit of the product, exists.

5 Integrated warranty models

The integrated warranty models are built in three situations. In the first situation, the warranty

claims of a hardware product and the human factors are integrated. In the second situation,

the warranty claims of a software product and the human factors are integrated. In the third

situation, the warranty claims of a product consisting of hardware and software and the human

factors are integrated.

5.1 Hardware warranty with considering human factors

If a product is pure hardware, the NFBR and FBNR phenomena can influence the total warranty

cost of it. Routes 1, 2 and 3 of warranty claim process discussed in Section 3.1 can occur.

If the NFBR may not cause warranty to be ceased, according to Eqs. (2), (10) and (12), the

expected total cost is

E[Cint11(T )] = E[Ch(T )]q1(T ) + E[Chu1(T )]

=Mch1a1T
b1e−γ1−γ2T +Mchu1(1− e−(t/α1)α2 ). (38)

Then, the expected profit of the product is

ωint11 =MP − E[Cint11(T )]

= (A− βP + ηT )(P − ch1a1T
b1e−γ1−γ2T − chu1(1− e−(t/α1)α2 ). (39)

If the NFBR may cause warranty to be ceased, according to Eqs. (2), (11) and (12), the expected

total cost is

E[Cint12(T )] = [E[Ch(T )]q1(T ) +Mchu2]H1(T ) + E[Ch(T )]q1(T )(1−H1(T ))

=M
[
ch1a1T

b1e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

+Mch1a1T
b1e−γ1−γ2T e−(t/α1)α2 . (40)

Then, the expected profit of the product is
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ωint12 =MP − E[Cint12(T )]

=MP −M
[
ch1a1T

b1e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

+ch1a1MT b1e−γ1−γ2T e−(t/α1)α2 ). (41)

5.2 Software warranty with considering human factors

If only the software warranty is considered and the software cannot be updated online, the

NFBR and FBNR phenomena may influence the total warranty cost of it, but the delayed

updating is not applied on this situation. Routes 1, 2 and 4 of warranty claim process discussed

in Section 3.1 can occur.

If the NFBR may not cause warranty to be ceased, according to Eqs. (5), (10) and (12), the

expected total cost is

E[Cint21(T )] = E[Cs1(T )]q1(T ) + E[Chu1(T )]

=Mcs1a2(1− e−b2T )e−γ1−γ2T +Mchu1(1− e−(t/α1)α2 ). (42)

Then, the expected profit of the product is

ωint21 =MP − E[Cint21(T )]

= (A− βP + ηT )(P − cs1a2(1− e−b2T )e−γ1−γ2T − chu1(1− e−(t/α1)α2 ). (43)

If the NFBR may cause warranty to be ceased, according to Eqs. (5), (11) and (12), the expected

total cost is

E[Cint22(T )] = [E[Cs1(T )]q1(T ) +Mchu2]H1(T ) + E[Cs1(T )]q1(T )(1−H1(T ))

=M
[
cs1a2(1− e−b2T )e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

+Mcs1a2(1− e−b2T )e−γ1−γ2T e−(t/α1)α2 . (44)

Then, the expected profit of the product is

ωint22 =MP − E[Cint22(T )]

=MP −M
[
cs1a2(1− e−b2T )e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

−Mcs1a2(1− e−b2T )e−γ1−γ2T e−(t/α1)α2 ). (45)

If the software can be updated online, the NFBR, FBNR and delayed updating phenomena

all can influence the total warranty cost of it. Routes 1, 2 and 5 of warranty claim process

discussed in Section 3.1 can occur.
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Assume the proportion of users installed the update, i.e. adoption rate, is q2(∆t) = 1 − e−d∆τ

where d > 0, and the FBNR is considered then Eq. (6) can be modified to

E[C ′s2(T )] = ncs2 + q2(∆τ)cs1
n∑
i=1

q1(τi)
∫ τi

τi−1

λ2,i−1(t)dt+ q2(T − τn)q1(T )cs1

∫ T

τn
λ2,n(t)dt. (46)

Take the NFBR and FBNR into account, if the NFBR may not cause warranty to be ceased,

according to Eqs. (10), (12) and (46), the expected total cost is

E[Cint23(T )] = E[C ′s2(T )] + E[Chu1(T )], (47)

then, the expected profit of the product is

ωint23 =MP − E[Cint23(T )]

=MP − ncs2 − q1(∆τ)q2(∆τ)cs1
n∑
i=1

θi−1 [Λ2(τi)− Λ2(τi−1)]

−q1(T − τn)q2(T − τn)cs1θ
n [Λ2(T )− Λ2(τn)]−Mchu1(1− e−(t/α1)α2 ). (48)

If the NFBR may cause warranty to be ceased, according to Eqs. (11), (12) and (46), the

expected total cost is

E[Cint24(T )] = (E[C ′s2(T )] +Mchu2)H1(T ) + E[C ′s2(T )](1−H1(T )), (49)

then, the expected profit of the product is

ωint24 = MP − E[Cint24(T )]. (50)

5.3 Hybrid warranty with considering human factors

If a product is composed of hardware and software subsystems, the warranty cost of such

product is influenced by the warranty claims on both hardware and software failures, the three

human factors and the interplay between hardware and software subsystems. In Section 4.1, 5

different scenarios of hardware and software subsystems interplay are discussed, in this section,

the hybrid model is constructed based on the interplay described in Scenario 1, i.e. a software

failure can lead to hardware failure with probability p(t) at time t within the M sold items of

a product.

If the software cannot be updated online, the NFBR and FBNR phenomenon may affect the

total warranty cost, but the delayed updating is not applied in this situation. If the NFBR

may not cause warranty to be ceased, according to Eqs. (10), (12) and (21), the expected total

warranty cost is
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E[Cint31(T )] = E[C11(T )]q1(T ) + E[Chu1(T )]

=Mq1(T )

{
ch1

[
a1T

b1 + a2(1− e−b2T )
∫ T

0
p(t)dt

]
+ cs1a2(1− e−b2T )

}
+Mchu1(1− e−(T/α1)α2 ). (51)

Then the expected total profit is

ωint31 = MP − E[Cint31(T )]. (52)

If the NFBR may cause warranty to be ceased, according to Eqs. (11), (12) and (21), the

expected total warranty cost is

E[Cint32(T )] = [E[C11(T )]q1(T ) +Mchu2]H1(T ) + E[C11(T )]q1(T )(1−H1(T )). (53)

Then the expected total profit is

ωint32 = MP − E[Cint32(T )]. (54)

If the software can be updated online, the delayed updating effect is applied. Then, the expected

warranty cost considering delayed updating and FBNR is

E[C ′12(T )] =Mq1(T )ch1a1T
b1 + ncs2

+ch1

[
q1(∆τ)q2(∆τ)

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ q1(T − τn)q2(T − τn)
∫ T

τn
λ2,n(t)dt

] ∫ T

0
p(t)dt

+cs1

[
q1(∆τ)q2(∆τ)

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ q1(T − τn)q2(T − τn)
∫ T

τn
λ2,n(t)dt

]
. (55)

If the NFBR may not cause warranty to be ceased, according to Eqs. (10), (12) and (55), the

expected total warranty cost is

E[Cint33(T )] = E[C ′12(T )] + E[Chu1(T )], (56)

and the expected total profit in this scenario is

ωint33 = MP − E[Cint33(T )]. (57)

If the NFBR may cause warranty to be ceased, according to Eqs. (11), (12) and (55), the

expected total warranty cost is

E[Cint34(T )] = [E[C ′12(T )] +Mchu2]H1(T ) + E[C ′12(T )](1−H1(T )), (58)

and the expected total profit is

ωint34 = MP − E[Cint34(T )]. (59)
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The effect of the variables P and T on then expected profits ωint31, ωint32, ωint33 and ωint34 are

explored by the corresponding numerical examples.

6 Maintenance policies

Considering maintenance policy optimisation has been one of the focuses in the warranty related

research. For example, recently, Y.-S. Huang, Huang, and Ho (2017) proposes a customized

extended warranty policy, in which different preventive maintenance schedules are applied. For

more detailed discussion on maintenance models, the reader is referred to Shafiee and Chukova

(2013) for maintenance models in warranty and Peng, Liu, Zhai, and Wang (2017); Wu (2018b);

Zhao, He, and Xie (2018) for maintenance models in general.

Assume that a product composed of software and hardware subsystems has a warranty period

T . Preventive maintenance on the hardware subsystem will be performed at time points Ti = i T
N

for i = 1, 2, ..., N , which means N − 1 preventive maintenance (PM) actions are performed. A

question is how the value N , i.e., the number of PM actions, can be determined to minimise

the expected total cost during the warranty period (0, T ), from a manufacturer’s perspective.

To this end, we make the following assumptions.

(1) The PM is performed at planned times Ti = i T
N

(i = 1, 2, ..., N). The interval from Ti−1 to

Ti is called the i-th PM period, where T0 = 0.

(2) If a hardware failure occurs during the i-th PM period, the warranty of the entire product

item is reported and then a minimal repair is conducted on the hardware subsystem.

(3) The failure rate of the hardware subsystem after the ith PM becomes νi−1λ1(t) during the

ith PM period, where t ∈ (0, T
N

) and ν ≥ 1.

(4) During the ith PM period, the probability p(t), which is the probability of the occurrence

of software failures causing the hardware to fail, becomes µi−1p(t), with µ < 1.

(5) The failure rate λ1(t) is strictly increasing.

(6) The cost on each minimal repair is cr, and the cost of each PM is cp.

(7) The times on repair and PM are negligible.

Assumption (4) implies that a PM on the hardware subsystem makes the dependence between

the hardware and software subsystems weaker. cr in Assumption (6) may include the repair

cost of the failure and the other cost associated with the failure and warranty claim.

Suppose that PM does not influence the users’ behaviour towards warranty claims. The the
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expected total cost during the warranty period is given by

C(N) =cr
N∑
i=1

(
νi−1

∫ T
N

0
λ1(t)dt+ µi−1

∫ T
N

0
λ2(t)p(t)dt

)
+ (N − 1)cp

=cr
νN − 1

ν − 1
Λ1(

T

N
) + cr

1− µN

1− µ
Λ′2(

T

N
) + (N − 1)cp (60)

where Λ′2( T
N

) =
∫ T
N

0 λ2(t)p(t)dt. If λ1(t) = a1b1t
b1−1, λ2(t) = a2b2e

−b2t−1, and p(t) = δe−δt, where

b1, b2 > 1, then

C(N) =cr
N∑
i=1

(
νi−1

∫ T
N

0
a1b1t

b1−1dt+ µi−1
∫ T

N

0
a2b2e

−b2t−1δe−δtdt

)
+ (N − 1)cp

=cra1

(
T

N

)b1 (νN − 1

ν − 1

)
+
cra2b2δe

−1

b2 + δ

(
1− µN

1− µ

) [
1− e−(b2+δ) T

N

]
+ (N − 1)cp (61)

One may then seek number N∗ that minimises C(N) in Eq. (61). To find an N∗ that minimises

C(N) we need C(N + 1) ≥ C(N) and C(N) < C(N − 1), which implies D(N) ≥ 0 and

D(N − 1) < 0, where

D(N) =a1

(
T

N + 1

)b1 (νN+1 − 1

ν − 1

)
+
a2b2δe

−1

b2 + δ

[
µN −

(
1− µN+1

1− µ

)
e−(b2+δ) T

N+1

]

− a1

(
T

N

)b1 (νN − 1

ν − 1

)
+
a2b2δe

−1

b2 + δ

(
1− µN

1− µ

)
e−(b2+δ) T

N +
cp
cr
. (62)

Under some conditions, N∗ can be sought. For example, if

D(1) =a1

(
T

2

)b1
(ν + 1) +

a2b2δe
−1

b2 + δ
µ

+
a2b2δe

−1

b2 + δ
e−(b2+δ)T +

cp
cr
− a1T

b1 − a2b2δe
−1

b2 + δ
(µ+ 1)e−(b2+δ)T

2 < 0, (63)

then N∗ exists because it can be easy to prove D(∞)→∞, or C(N + 1) ≥ C(N) holds.

7 Numeric examples

In this section, the models of product profit considering warranty costs due to hardware failures

and software failure, and the integrated models are illustrated through numeric examples. The

sales volume parameters are set: market size parameter, A = 1000, coefficient of product price,

β = 0.1, and coefficient of warranty length, η = 21.
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7.1 The expected total profit considering hardware failures and software failures independently

If the hardware is under a non-renewing warranty, the values of the parameters of Eq. (3) are

set: Expected cost per hardware claim ch1 = 100, Power law parameter, a1 = 0.1, Power law

parameter, b1 = 1.04.

Then, the expected total product profit only considering warranty cost due to hardware failures

is

ωh(P, T ) = (1000− 0.1P + 21T )(P − 100× 0.1× T 1.04). (64)

According to Proposition 1, if the warranty length is known, for example, set T = 24 months;

then the expected total profit can be maximised at P = 7656.27, and the maximum expected

total profit is ωh = 5, 451, 953. The relationship between ωh and P is reflected by the Figure

5a. When the product price is known, for example, set P = 2000; then the expected total profit

can be maximised at T = 64, and the maximum expected total profit is ωh = 2, 667, 529. The

relationship between ωh and T is showed by the Figure 5b.

(a) The expected total profit ωh against

product price P , T = 24.

(b) The expected total profit ωh against

warranty length T , P = 2, 000.

Fig. 5. The expected total profit ωh.

If the manufacturer takes Type I software warranty policy, the parameters of software warranty

cost and the software reliability growth model (SRGM) are set as: cs1 = 100, a2 = 50, and b2

= 0.05.

Then, the cumulative intensity function is

Λ2(T ) = 50(1− e−0.05T ),

and the expected total profit of a software product is

ωs1(P, T ) = (1000− 0.1P + 21T )(P − 100× 50× (1− e−0.05T )). (65)

When the warranty length is known, for example, set T = 24 month, then, the expected total

profit of a software product can be maximised at P = 9267.44, and the maximum expected
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total profit is 3, 332, 737. The following Figure 6a presents the expected total profit against the

product price P .

However, if P is known and T ≥ 0, the first order derivative of Eq. (7) cannot be zero, i.e. the

Eq. (7) does not have any maxima or minima. The surface in Figure 6b presents the expected

total profit of a software product against P and T . According to this surface, we can find

that when warranty length T is approaching positive infinity, the expected profit can also be

positive infinity. Because, in SRGM, the expected cumulative number of software failures has

an upper limit, i.e. the expected total warranty cost has a maximum value. However, in the

real world, this phenomenon will not occur for two reasons: (1) a software has a limited length

of service life; and (2) the linear sales volume function of M is only valid for a limited length of

warranty in literature. Hence, the surface in Figure 6b only presents the expected total profit

of a software product against P and T within a limited range of time.

(a) The expected total profit of a soft-

ware product when T = 24.

(b) The expected total profit of a soft-

ware product against P and T .

Fig. 6. The expected total profit of a software product.

If the manufacturer takes Type II software warranty policy, the related parameters are set in

the following Table 3. Then, the expected total profit is

Table 3

Parameters for software warranty under Type II policy.
Software claim cost SRGM parameter Update cost The changes after update

cs1 a2 b2 cs2 θ
100 50 0.05 500 90%

ωs2(P, T,∆τ) = MP − [500n+ 100
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ 100
∫ T

τn
λ2,n(t)dt], (66)

where n = b T
∆τ
c is the number of releasing patches; M is the number of product sold at t = 0;

τi is the time of ith patches/updates release under time-based policy, τi = τi−1 + ∆τ and

τ0 = 0; λ2,i is the failures intensity after ith patches/updates release, λ2,i = 90% × λ2,i−1 and

λ2,0(t) = λ2(t).
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Then, if the warranty length is 2-year, i.e. T = 24, and the software’s update is released

quarterly, i.e. ∆τ = 3; the maximum expected total profit of this product ωs2 = 1, 958, 190 can

be achieved at P = 10, 614.86. The Figure 7a presents the relationship between the expected

total profit and product price under Type II software warranty policy if T and ∆τ are known.

(a) The expected total profit ωs2 against

P , when T = 24 and ∆τ = 3.

(b) The expected total profit ωs2 against

∆τ , when P = 6500 and T = 24.

Fig. 7. The expected total profit ωs2.

If the warranty length is still 2-year, and the market price of this product is P = 6500; then

the optimal update releasing interval is ∆τ = 13.6 month, and the maximized expected total

profit is 2, 227, 765. The Figure 7b presents the relationship between the expected total profit

and the update releasing interval under Type II software warranty policy if P and T are known.

The curve in Figure 7b is not continuous because the times of update releasing n = b T
∆τ
c is an

integer.

7.2 Expected total profit considering hardware-software interactions

There are 5 scenarios of hardware-software interactions discussed, in this section, the numeric

examples for Scenario 0 and Scenario 1 are provided. For the product consists of hardware and

software subsystems, the parameters are set in the Table 4.

Table 4

Parameters for Scenario 0 and 1 of interaction.
ch1 a1 b1 cs1 a2 b2 cs2 θ
100 0.1 1.04 100 50 0.05 500 90%

7.2.1 Scenario 0

In Scenario 0, the product consists of hardware and software subsystems, but the failures of

these two subsystems are assumed independently. The expected total profit under the first
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condition (software cannot be updated online) of Scenario 0 is

ω01 = (1000− 0.1P + 21T )
[
P − 10T 1.04 − 5000(1− e−0.05T )

]
. (67)

When T = 24 is known, then the expected total profit is maximised at P = 9403.55, and the

maximum expected total profit is 3, 177, 261. The curve of expected total profit ω01 against

product price P is displayed in Figure 8a.

(a) The expected total profit ω01 against

P , when T = 24.

(b) The expected total profit ω02 against

P , when T = 24.

Fig. 8. The expected total profit ω01 and ω02, respectively.

If the software can be updated online and the pre-specified updating interval is ∆τ = 6months

the expected total profit in Scenario 0 is

ω02 = (1000− 0.1P + 21T )P − 10× (1000− 0.1P + 21T )T 1.04

+100×
[
n∑
i=1

0.9i−1 [Λ2(τi)− Λ2(τi−1)] + 0.9n [Λ2(T )− Λ2(τn)]

]
+ 500n. (68)

If the warranty length is T = 24 months, then n = 4 the expected total profit is maximised

at P = 8, 743.16 and the maximum expected profit is 7, 930, 037. The curve of expected total

profit ω02 against product price P is displayed in Figure 8b.

If the warranty length is T = 24 months and the product price P = 8000, the maximum

expected total profit is 8, 345, 104 achieved at ∆τ = 12.25. The curve of expected total profit

ω02 against the updating interval ∆τ is displayed in Figure 9a.

7.2.2 Scenario 1

In Scenario 1, the occurrence of hardware and software failures are statistical dependent: a

software failure can lead to hardware failures with probability p(t) at time t. Assume p(t) =

0.1e−0.1t in this case. If the software cannot be updated online, the expected total profit is Then
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(a) The expected total profit ω02 against

∆τ , when T = 24 and P = 8000.

(b) The expected total profit ω11 against

P , when T = 24.

Fig. 9. The expected total profit ω02 and ω11, respectively.

the expected total profit is

ω11 = (1000−0.1P+21T )

{
P − 100

[
0.1T 1.04 + 50(1− e−0.05T )

∫ T

0
0.1e−0.1tdt

]
− 100× 50(1− e−0.05T )

}
.

(69)

When T = 24 is known, then the maximum expected total profit ω11 = 1, 638, 784 can be

reached at P = 10, 991.81. The curve of expected total profit ω11 against product price P is

displayed in Figure 9b.

If the software can be updated online, then the expected total profit is

ω12 = (1000− 0.1P + 21T )P − E[C12(T )]

= (1000− 0.1P + 21T )P − (1000− 0.1P + 21T )× 10T 1.04

−100

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+
∫ T

τn
λ2,n(t)dt

] ∫ T

0
0.1e−0.1tdt

−100

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+
∫ T

τn
λ2,n(t)dt

]
− b T

∆τ
c × 500. (70)

If the software is updated online in every 6 month, i.e. ∆τ = 6, the warranty length is T = 24

and the times of updating is n = b T
∆τ
c = 4; then, the maximum expected total profit ω12 =

1, 336, 010 can be achieved at P = 11, 384.86. The curve of expected total profit ω12 against

product price P is displayed in Figure 10a.

If the warranty length is T = 24 months and the product price P = 12, 000, the maximum

expected total profit is 1, 448, 997 achieved at ∆τ = 13.03. The curve of expected total profit

ω12 against the updating interval ∆τ is displayed in Figure 10b.
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(a) The expected total profit ω12 against

P , when T = 24 and ∆τ = 6.

(b) The expected total profit ω12 against

∆τ , when T = 24 and P = 12, 000.

Fig. 10. The expected total profit ω12, respectively.

7.3 Expected total profit considering hardware-software interactions and human factors

If a product is composed of hardware and software subsystems, the warranty cost of such

product is influenced by the warranty claims on both hardware and software failures, the three

human factors and the interplay between hardware and software subsystems. In this case, the

hardware and software warranty parameters are set as same as above examples and the human

parameters are set in Table 5.

Table 5

Parameters for human factors.

NFBR parameters FBNR parameters Delayed updating parameter

α1 α2 chu1 chu2 γ1 γ2 d

60 2 50 80 0.01 0.018 0.9

7.3.1 Off-line situation

If Scenario 1 of hardware-software interplay occurs, the software cannot be updated online, the

NFBR and FBNR phenomena affect the total warranty cost, and the NFBR does not cause

warranty to be ceased, the expected total profit is

ωint31 =MP − E[Cint31(T )] = MP − E[C11(T )]q1(T )− E[Chu1(T )]

=MP −Me−0.01−0.018T

{
100

[
0.1T 1.04 + 50(1− e−0.05T )

∫ T

0
0.1e−0.1tdt

]
+ 5000(1− e−0.05T )

}
−50M(1− e−(T/60)2). (71)

If the warranty length is T = 24 months, the maximum expected total profit ωint31 = 2, 786, 918

can be achieved at P = 10, 000. The curve of expected total profit ωint31 against the price P
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is displayed in Figure 11 by the line curve; in this figure, the point-curve, which is under the

line curve, represents the total profit ωint31 against the price P without considering the human

factors. Figure 11 indicates that if the human factors are not taken into account, the expected

Fig. 11. The expected total profit ωint31 against P with and without considering human factors, when

T = 24.

total profit is undervalued in this case.

If the NFBR may cause warranty to be ceased, the expected total profit is

ωint32 =MP − E[Cint32(T )]

=MP − [E[C11(T )]q1(T ) +Mchu2]H1(T )− E[C11(T )]q1(T )(1−H1(T )). (72)

If the warranty length is T = 24 months, the maximum expected total profit ωint32 = 2, 784, 683

can be achieved at P = 9, 999. This result indicate that whether the NFBR event causes

warranty to be ceased or not, the optimal value of price P is not influenced significantly.

7.3.2 Online situation

If the software can be updated online, the delayed updating effect is applied. Meanwhile, if

the NFBR may not cause warranty to be ceased, the expected total profit is ωint33 = MP −
E[Cint33(T )], where E[Cint33(T )] consists of the cost of the NFBR event cost and the warranty

cost modified with considering FBNR and delayed updating phenomena. According to Eqs.

(53), (54) and (55), the optimal P and ∆τ can be found by simulation. The simulation result

shows that if the warranty length is T = 24 months and the updating interval is ∆τ = 6, the

maximum expected total profit ωint33 = 1, 521, 743 can be achieved at P = 11, 139.05. The

curve of expected total profit ωint33 against the price P is displayed in Figure 12a by the line

curve; in this figure, the point-curve, which is under the line curve, represents the total profit

ωint33 against the price P without considering the human factors.

If the warranty length T = 24 and the price P = 12000 are known, the optimal updating

interval may also be determined by simulation. The result shows the maximum expected total
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(a) The expected total profit ωint33

against P with and without consider-

ing human factors, when T = 24 and

∆τ = 6.

(b) The expected total profit ωint33

against ∆τ with and without consider-

ing human factors, when T = 24 and

P = 12000.

Fig. 12. The expected total profit ωint33.

profit ωint33 = 1, 584, 178 is achieved at ∆τ = 13.03. The plot of expected total profit ωint33

against the updating interval ∆τ is displayed in Figure 12b by the points; in this figure, the

stars, which is under the points, represent the total profit ωint33 against ∆τ without considering

the human factors.

Figure 12a and 12b indicate that if the human factors are not taken into account, the expected

total profit is undervalued under this online situation.

8 Conclusions

The warranty cost of a product with embedded software system should be modelled in a manner

that the failure of hardware, software and users. This paper developed the models of warranty

costs incurred by hardware specific, software specific and hardware-software interaction failures

and provided integrated models.

Future work in this area includes the form of the cumulative intensity function of hardware-

software interaction failure and the relationships among the three types of failures in the second

scenario. In the meantime, this paper assumes the repair upon a hardware failure is minimal. In

our future work, we will consider imperfect repair using models such as the arithmetic reduction

of age models, the arithmetic reduction of intensity models (Doyen & Gaudoin, 2004) or the

doubly geometric process (Wu, 2018a).

In some scenarios in this paper, some scenarios assume that the repair upon failures is minimal,

which may be too strong. Our future work will relax this assumption and consider more generic

scenarios.
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Appendix

Proof of Proposition 1: The expected profit of a hardware product is

ωh = MP − E[Ch(T )] = (A− βP + ηT )(P − ch1a1T
b1).

If T is known, the first order derivatives of ωh is dωh
dP

= A − 2βP + ηT + βch1a1T
b1 , and the

second order derivatives of ωh is d2ωh
dP 2 = −2β < 0. Then, ωh is maximised at P = A+ηT+βch1a1T

b1

2β
.

If P is known, the first order derivatives of ωh is dωh
dT

= −ηch1a1(b1+1)T b1+(βP−A)ch1a1b1T
b1−1+

ηP, and the second order derivatives of ωh is d2ωh
dT 2 = −ηch1a1(b1+1)b1T

b1−1+(βP−A)ch1a1b1(b1−
1)T b1−2.

Because M = A− βP + ηT ≥ 0, T ≥ 0 and b1 > 1, then, d2ωh
dT 2 < 0 and the optimal solution of

T , maximising ωh, exists. 2

Proof of Proposition 2: The expected profit of a software product is

ωs1 = MP − E[Cs1(T )] = (A− βP + ηT )(P − cs1a2(1− e−b2T )),

If T is known, the above function becomes to a parabolic function, it means the optimal P ,
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which maximises ωs1, exists.

If P is known, the first order derivative of ωs1 on T is dωs1
dT

= cs1a2e
−b2T (Ab2+βAb2P+η−ηTb2)+

ηP−ηcs1a2, then the second order derivative of ωs1 on T is d2ωs1
dT 2 = b2cs1a2e

−b2T [b2(A− βP + ηT )− 2η] >

0, hence, the optimal T , which maximises ωs1, does not exist. 2

Proof of Proposition 3: If the manufacturer takes Type II software warranty, according to

Eq. (6), the expected profit of a software product is

ωs2 = MP − [ncs2 + cs1
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ cs1

∫ T

τn
λ2,n(t)dt].

If ∆τ = τi − τi−1 and T are known, the number of release n is also known, then the expected

profit is

ωs2 = MP −
[
ncs2 + cs1

n∑
i=1

θi−1 [Λ2(τi)− Λ2(τi−1)] + cs1θ
n [Λ2(T )− Λ2(τn)]

]
;

it is equal to

ωs2 = (A− βP + ηT )(P −B)− ncs2,

where B = cs1a2
∑n
i=1 θ

i−1(e−b2τi−1 − e−b2τi) + cs1a2θ
n(e−b2τn − e−b2T ) is a constant.

Obviously, the above function also is a parabolic function, then the optimal P , which maximises

ωs2, exists. 2

Proof of Proposition 4: If the manufacturer takes Type II software warranty, according to

Eq. (6), the expected profit of a software product is

ωs2 = MP −
[
ncs2 + cs1

n∑
i=1

θi−1 [Λ2(τi)− Λ2(τi−1)] + cs1θ
n [Λ2(T )− Λ2(τn)]

]
.

If P and T are known, this function is equal to

ωs2 = (A− βP + ηT )(P − cs1a2D)− ncs2,

where D =
∑n
i=1 θ

i−1(e−b2τi−1 − e−b2τi) + θn(e−b2τn − e−b2T ) and −ncs2 are the non-constant

terms.

As n = b T
∆τ
c is an integer greater than 0, and ωs2 decreases with n, then, when n = 1 t, ωs2

can be maximised. When n = 1, T
2
≤ ∆τ ≤ T . Then D = (1 − e−b2τ1) + θ(e−b2τ1 − e−b2T ), a

local optimal ∆τ , which maximises ωs2, exists. 2
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