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Remembering information from continuous past episodes is a complex task 1. On the one hand, we 1 

must be able to recall events in a highly accurate way that often includes exact timing; on the other 2 

hand, we can ignore irrelevant details and skip to events of interest. We here track continuous episodes, 3 

consisting of different sub-events, as they are recalled from memory. In behavioral and MEG data, we 4 

show that memory replay is temporally compressed and proceeds in a forward direction. Neural replay 5 

is characterized by the reinstatement of temporal patterns from encoding 2,3. These fragments of 6 

activity reappear on a compressed timescale. Herein, the replay of sub-events takes longer than the 7 

transition from one sub-event to another. This identifies episodic memory replay as a dynamic process 8 

in which participants replay fragments of fine-grained temporal patterns and are able to skip flexibly 9 

across sub-events.  10 

Episodic memory retrieval is a flexible process that operates at different timescales 1. In some instances, 11 

it is crucial for our behavior to mentally replay events at the same speed as the initial experience: Re-12 

enacting a classic movie scene relies on a temporally accurate representation of dialogue and events. 13 

In other instances, it would be highly dysfunctional to recall our memories at the same speed they 14 

originally unfolded: We have to be able to reconstruct how we came to work today without zoning out 15 

at our desk for thirty minutes and must therefore be able to flexibly adjust the speed of our memory 16 

replay.  17 

Previous work has already put forward that memory replay in humans could be forward and 18 

compressed: Studies that related the timescale between retrieval and perception of a particular event 19 

asked participants to mentally navigate routes based on their memories. The duration of memory 20 

replay (i.e. mental navigation) was found to be faster than the real navigation, but varied substantially 21 

between participants 4,5. Interestingly, this compression mirrors earlier findings of neural replay in 22 

rodents, showing that hippocampal place cells, which correspond to certain positions along the animal’s 23 

path, later fire again on a faster timescale than during navigation. This is interpreted as reflecting 24 

compressed replay of past trajectories 6,7. One recent study in humans observed the reactivation of 25 

static representations in electrocorticography (ECoG) and found patterns of oscillatory gamma power 26 

reappearing faster than during perception 8. On the other hand, several studies that investigate neural 27 

correlates of memory, find reinstatement of temporal patterns from perception in memory, 28 

demonstrating that some patterns are replayed at the same speed 2,9–11. Notably, a recent study that 29 

applied functional magnetic resonance imaging (fMRI), managed to track continuous memory 30 

reinstatement over long episodes (50min). Spatial patterns reappeared during the free recall of 31 

narratives; recall was temporally compressed, but varied between participants 12.  32 

Despite these indications about the speed of replay in behavioral and neural data, no study so far has 33 

tried to directly read out the temporal dynamics of memory replay in humans on a fine-grained 34 

temporal scale. Importantly, the recent advent of multivariate  methods in neuroscience has now 35 

opened new avenues for the investigation of these processes: By leveraging multivariate patterns in 36 

combination with electrophysiology, it is now possible to track representations from perception in a 37 

time-resolved manner, as they reappear during memory retrieval 2,8,9,13–16. Importantly, simultaneous 38 

EEG and multi-unit recordings in primates demonstrate an intimate relation between neural firing and 39 

the phase of slow oscillations in the EEG 17. Therefore, information about neural patterns can be 40 

captured and tracked in human electrophysiology via oscillatory phase 2,17,18.  41 



3 
 

Capitalizing on these methodological advances, we here investigate the flexible dynamics of episodic 1 

memory replay in continuous mnemonic representations. Studying these trajectories during memory 2 

replay requires a paradigm that prompts participants to evoke continuous representations with distinct 3 

subevents from memory. This will make it possible to track fragments of these representations in 4 

episodic memory via multivariate analysis methods. To this end, we asked subjects to associate static 5 

word-cues with ‘video-episodes’ consisting of a sequence of three distinct scenes (scenes were short 6 

videos of 2 seconds duration each). The three dynamic scenes thus formed a continuous six-second-7 

long video. In encoding-trials, we presented a word-cue during one of the scenes. This allowed us to 8 

prompt memory replay in a natural way, i.e. we asked participants to recall in which of the three scene-9 

positions they had learned an association during encoding. After completing this part of the task, we 10 

asked about the video-episode itself and confirmed memory accuracy. In a behavioral experiment, we 11 

investigated direction and speed of replay via measuring reaction times to the scene-position response. 12 

In a separate MEG study, we leveraged the content-specific phase patterns that each scene elicited and 13 

used them as handles to track the direction and speed of replay of the video-episodes. If memory replay 14 

were indeed compressed, we expected to find evidence for this compression in reaction times and in 15 

the reinstatement of neural patterns. This replay could either be forward or backward. In line with 16 

previous findings, we expected to find evidence for reactivation of temporal patterns, signifying replay 17 

at the same speed for fragments of neural activity 2,9–11. We further hypothesized that the disparity 18 

between accurate representations and overall compression would be due to a flexible mechanism that 19 

allows subjects to skip between temporally accurate patterns (i.e. omit information between 20 

fragments). Skipping between sub-events (i.e. scenes of the video-episode) should furthermore 21 

manifest itself in a slower average replay within sub-events compared to the overall compression level, 22 

if replay is initiated more often from the beginning of a scene than within a scene. 23 

In the behavioral experiment, participants associated word-cues with one of three scenes within video-24 

episodes (Figure 1a). We used four continuous video-episodes, each consisting of three individual 25 

dynamic scenes. A trial-unique word-cue appeared in one scene during a video-episode. After a brief 26 

distractor task (Figure 1b) subjects performed, in alternation, either a cued-recall (CR) retrieval task or 27 

an associative-recognition (AR) task (Figure 1d, top). The AR task was included as a control condition, 28 

because active replay is arguably not required for recognition. In the CR blocks, we presented 29 

participants with the word-cues (Figure 1d, top-left). Their task was to recall the scene-position that 30 

was associated with the word-cue as quickly as possible. In AR blocks, subjects successively saw the 31 

word-cues superimposed on screenshots from encoding and were asked to decide as quickly as possible 32 

whether this association was intact or rearranged (Figure 1d, top-right).  33 

To address the direction and speed of memory replay, reaction times (RTs) at retrieval were compared 34 

between associations that were learned in the first, second and third scene-position of a video-episode 35 

(Figure 1d, bottom). We only used RTs for correct hit trials (correct recall in CR and correctly recognized 36 

intact associations in AR blocks) and excluded trials in which the subjects were wrong or guessed (see 37 

Supplementary Information for the same analysis including correct guesses). If the CR task indeed 38 

elicited replay in the forward direction, we should observe faster reaction times with CR, but not AR, 39 

for associations that were learned earlier during encoding. Furthermore, if replay was compressed, the 40 

delay between reaction times to different scene-positions should be smaller than the duration of the 41 

scenes segments themselves. The resulting 3x2 repeated-measures ANOVA tested the factors position 42 

and task. A significant main effect of position (F1.85, 42.48 = 5.884, p = 0.007, partial η2 = 0.204, 95% 43 

CI[0.081, 0.414], log-RT: F1.79, 41.26 = 3.375, p = 0.049, partial η2 = 0.128, 95% CI[0.028, 0.352]) and a 44 
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position by task interaction (F1.75, 40.34 = 5.9, p = 0.008, partial η2 = 0.204, 95% CI[0.05, 0.44], log-RT: F1.76, 1 

40.58 = 5.606, p = 0.009, partial η2 = 0.196, 95% CI[0.03, 0.467]) were obtained. Both effects were driven 2 

by the cued-recall task (repeated-measures ANOVA position only: F1.79, 41.19 = 9.082, p = 0.001, partial η2 3 

= 0.283, 95% CI[0.102, 0.514], log-RT: F1.60, 36.90 = 8.207, p = 0.002, partial η2 = 0.263, 95% CI[0.079, 4 

0.504]): During encoding, individual scenes of each video-episode lasted 2 seconds. During CR retrieval, 5 

however, associations that were learned in the first scene-position of a video-episode (mean RT = 2.5s) 6 

were recalled on average 116ms faster than associations that were learned in the second scene-7 

position (one-tailed t23 = -1.870, p = 0.037, Cohen’s d = -0.382, 95% CI[-0.793, 0.037], log-RT: one-tailed 8 

t23 = -2.4, p = 0.012, Cohen’s d = -0.49, 95% CI[-0.909, -0.061]). Associations that were learned in the 9 

second scene-position (mean RT = 2.617s) were recalled on average 176ms faster than associations 10 

that were learned in the third scene-position (one-tailed t23 = -2.767, p = 0.006, Cohen’s d = -0.565, 95% 11 

CI[-0.991, -0.128], log-RT: one-tailed t23 = -2.274, p = 0.016, Cohen’s d = 0.464, 95% CI[-0.881, -0.038]), 12 

(mean RT = 2.793s)). The replay of the video-episodes was therefore forward and compressed during 13 

CR, which replicated our findings from a behavioral pilot experiment (see Supplementary Information). 14 

The average RT difference of 146ms per position corresponds to a compression factor of 13.7 during 15 

replay.  16 

Might the effects be due to asymmetrical encoding of scene-positions? One could argue that 17 

associations have a higher saliency when they are presented in the first scene-position, leading to 18 

higher confidence and shorter RTs during retrieval. Additionally, subjects can take more time to 19 

rehearse early associations during the remainder of the video-episode, perhaps resulting in the weakest 20 

memory trace for the last scene. Importantly, however, if the serial position merely affects the overall 21 

strength of the memory trace in our paradigm, we should observe comparable effects on cued recall 22 

(CR) and associative recognition (AR). Conversely, if the effect is contingent on the need to mentally 23 

replay scene after scene, serial position at encoding should only exert an effect on the CR task.  24 

Importantly, no differences in reaction times between scene-positions were evident in the AR task 25 

(Figure 1d, right; repeated-measures ANOVA: F1.64, 37.66 = 0.708, p = 0.472, partial η2 = 0.03, 95% 26 

CI[0.003, 0.196], log-RT: F1.61, 36.95 = 0.793, p = 0.435, partial η2 = 0.033, 95% CI[0.002, 0.231], pairwise 27 

comparisons of positions: all ps > 0.199, all BF01 > 2.158). The Bayesian statistics provide evidence for 28 

the specificity of the effect, a significant position by task interaction, further supports that the position 29 

effect on RTs is specific to the CR task and contradicts a saliency-based explanation. Finally, we observed 30 

a significant main effect of task with unscaled (F1.00, 23.00 = 62.349, p < 0.001, partial η2 = 0.731, 95% 31 

CI[0.633, 0.849]) and log-transformed (F1.00, 23.00 = 95.036, p < 0.001, partial η2 = 0.805, 95% CI[0.718, 32 

0.899]) reaction times. This was due to faster RTs in associative-recognition blocks (two-tailed t23 = -33 

7.896, p < 0.001, Cohen’s d = -1.612, 95% CI[-2.216, -0.992], log-RT: two-tailed t23 = -9.749, p < 0.001, 34 

Cohen’s d = -1.99, 95% CI[-2.68, -1.285]). Taken together these results are evidence that successful 35 

recall of elements from a continuous video-episode relies on compressed forward replay. 36 

In the alternating blocks of the behavioral experiment, participants recalled on average 69.47% (SD = 37 

23.21%) of the correct word-scene associations in cued-recall (CR) blocks. They further recognized 38 

90.27% (SD = 10.74%) of intact associations (Hits) and erroneously named 12.40% (SD = 14.38%) of 39 

rearranged associations intact (False Alarms) in an associative-recognition (AR) blocks. Performance in 40 

CR (i.e. percent correct responses) and in AR (i.e. percent Hits minus percent False Alarms) was 41 

compared with a 2x3 repeated-measures ANOVA. This revealed a significant main effect of task (F1, 23 = 42 

38.30, p < 0.001, partial η2 = 0.625, 95% CI[0.408, 0.826]), driven by a better performance in the 43 
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associative-recognition blocks (two-tailed t23 = 6.189, p < 0.001, Cohen’s d = 1.263, 95% CI[0.716, 1 

1.796]) and a significant factor position (F1.72, 39.65 = 7.624, p = 0.002, partial η2 = 0.249, 95% CI[0.125, 2 

0.515], interaction task with position F1.84, 42.24 = 1.145, p = 0.324, partial η2 = 0.047, 95% CI[0.003, 3 

0.238]). This was driven by a slightly better performance in the cued-recall task, for associations that 4 

were learned in the second position of a video-episode (repeated-measures ANOVA: F1.58,36.24 = 2.794, 5 

p = 0.086, partial η2 = 0.108, 95% CI[0.045, 0.342], position 1 vs. 2: two-tailed t23 = -2.804, p = 0.01, 6 

Cohen’s d = -0.572, CI[-1 -0.135], position 2 vs. 3: two-tailed t23 = 1.962, p = 0.062, Cohen’s d = 0.4, 95% 7 

CI[-0.02, 0.813]) and a worse performance in associative-recognition for associations that were learned 8 

in the third position (repeated-measures ANOVA: F1.86,42.68 = 5.552, p = 0.008, partial η2 = 0.194, 95% 9 

CI[0.091, 0.373], position 2 vs. 3: two-tailed t23 = 3.879, p < 0.001, Cohen’s d = 0.792, 95% CI[0.325, 10 

1.246], all other ps > 0.14). Importantly the better performance for the second position in the CR task 11 

cannot explain the RT effects. Firstly, in the behavioral data there is no difference in performance 12 

between the 1st and the 3rd position (two-tailed t23 = -0.282, p = 0.781, Cohen’s d = 0.058, 95% CI[-13 

0.457, 0.344]), yet the biggest difference in reaction time is between the 1st and the 3rd position. 14 

Furthermore, position 2 is remembered better than position 1 in the CR task of the behavioral data 15 

(position 1 vs. 2: two-tailed t23 = -2.804, p = 0.01, Cohen’s d = 0.572, 95% CI[-1, -0.135]), yet the average 16 

reaction times are faster for the first positon. 17 

In the MEG experiment subjects remembered on average 63.54% (SD = 11.768%) of associations, 18 

excluding guesses. After preprocessing on average 200.348 trials (SD = 38.645) remained for known 19 

correct associations and an additional 116 trials (SD = 39.425) were guessed or incorrect responses. In 20 

the MEG experiment subjects completed on average 10.8696 blocks (SD = 5.8644). In the behavioral 21 

experiment, subjects completed on average 12.3333 blocks (SD = 6.6833) of 22 

encoding/distractor/retrieval. These alternated between the two tasks. 23 

In the MEG experiment, participants performed the same CR task as in the behavioral experiment, with 24 

the only difference being that they gave responses after the word-cue disappeared (Figure 1c). In a first 25 

step, we asked whether perceptual content could be distinguished based on oscillatory phase. To this 26 

end, we compared the inter-trial phase coherence (ITPC) between encoding-trials grouped according 27 

to their video-content against the ITPC between trials grouped randomly. This has been used previously 28 

to reveal the content specific entrainment of cortical rhythms to naturalistic dynamic stimuli 2,17. The 29 

four video-episodes showed reliably distinguishable phase patterns during encoding (pcluster < 0.001, 30 

Figure 2a, left and middle). The significant cluster (across time space and sensors) contained robust 31 

differences in the lower frequencies and showed a maximum over occipito-parietal sensors (Figure 2a, 32 

middle). Consistent with our previous results 2, strongest differences were observed at the onset of 33 

each scene. Importantly, the frequency band centered at 8 Hz was included in the cluster, which was 34 

previously linked to the reinstatement of phase patterns 2. Testing the 8 Hz phase differences on the 35 

source level revealed one broad cluster of content specificity during encoding (pcluster < 0.001). 36 

Averaging t-values across this significant cluster over time revealed highest values in occipital and 37 

parietal locations (Figure 2a right). Together, these results show that every sub-scene within a video-38 

episode was associated with a content specific fingerprint in oscillatory phase, which was maximal in a 39 

parieto-occipital region. In the following, we used these sub-scene specific phase patterns at the center 40 

frequency of 8 Hz as handles to track replay in memory.  41 

In a first step, we tested whether these phase-patterns of the video-episodes were reactivated in 42 

memory. Therefore, we first contrasted phase-similarity between encoding-retrieval combinations of 43 
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the same video-episodes (e.g. watching video A, recalling video A) with encoding-retrieval combinations 1 

of different video-episodes (e.g. watching video A, recalling video B). Similarity between encoding and 2 

retrieval phase patterns was analyzed with a sliding-window approach (window size = 1 sec), providing 3 

a time resolved measure of memory replay 2,19,20 (see Figure 2c). On the source level, analysis was 4 

restricted to an anatomically defined occipito-parietal region of interest (ROI) following the results from 5 

the encoding phase and previous studies showing memory replay in these regions 2,21–24 (Figure 2b). 6 

Content specific phase was assessed separately at every virtual sensor and corrected for multiple 7 

comparisons via random permutation considering spatial clusters. Evidence for replay was found for hit 8 

trials (Hits; pcluster = 0.034; Supplementary Figure 3a, also see Supplementary Figure 3b for unmasked 9 

maps of t-values), suggesting that replay of video-episodes can be tracked in the phase of an 8Hz 10 

oscillation. Notably, we found no such replay effect for Misses, i.e. trials in which subjects either 11 

guessed, or did not remember the correct scene-position and/or video-episode. Furthermore, a direct 12 

contrast between Hits and Misses revealed significantly stronger replay for Hits compared to Misses 13 

(pcluster = 0.030, Figure 2d), demonstrating the functional significance of this pattern-reinstatement for 14 

memory.  15 

The above findings confirm that content specific patterns of activity from encoding, are reinstated in a 16 

purely memory driven way. This motivated us to ask in which direction and at what relative speed 17 

patterns from encoding unfold during retrieval. Do patterns from the beginning of the video-episodes, 18 

for instance, also reappear earlier during memory retrieval? 19 

To this end, we divided the encoding interval into 6 non-overlapping windows, centered at 0.5, 1.5, 2.5, 20 

3.5, 4.5, and 5.5 seconds. We then analyzed the phase-similarity to these windows across the retrieval 21 

interval. The latency at which patterns reappear should be reflected in the distribution of phase-22 

similarity across time. Consequently, we compared these distributions between the distinct time 23 

windows from encoding (Figure 3a). 24 

Specifically, to test the direction of replay statistically across subjects, we used the following approach: 25 

We cumulated the similarity distributions across the whole retrieval time. This provided the cumulated 26 

similarity (CS) for every subject and every encoding-window. Similarity started at the beginning of the 27 

retrieval interval with a value of zero. It ended at the end of the retrieval interval, with a value of one 28 

(Figure 3c). If phase-similarity to an encoding-window “A” cumulates earlier than phase-similarity to an 29 

encoding-window “B”, then the cumulated similarity for “A” is higher compared to “B” and 30 

consequently “A” is replayed earlier during retrieval than “B”. In other words, when the CS of one 31 

phase-pattern is higher than the CS of another, then the evidence for replay of that phase-pattern is 32 

leading over the other at that point. If, however replay of a phase-pattern is lagging behind the replay 33 

of another, the CS should be lower at that time point. We tested this relation statistically at every time 34 

point by comparing the cumulated similarity across all windows for each subject. The overall tendency 35 

is tested best by fitting a line across all six encoding windows. Herein, a negative slope indicates forward 36 

replay, since earlier windows have higher values in the CS than later windows, a positive slope signifies 37 

backward replay. We tested this slope against 0 with a two-sided t-test and corrected for multiple 38 

comparisons by controlling the false discovery rate 25. 39 

Results revealed significant forward replay in two time windows (i.e. 135ms to 1919ms, and 3458ms to 40 

3473ms after cue presentation, see Figure 3d. See also Methods for some notes of caution regarding 41 

the interpretation of the exact time-window). We can therefore conclude that there is a dominance of 42 
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early encoding-patterns in early time points at retrieval, relative to late encoding-patterns. This 1 

supports the notion of forward replay (see also Supplementary Information for additional evidence 2 

supporting forward replay) and corroborates the finding of forward replay from the behavioral 3 

experiment.  4 

In neural data, the forward direction of replay was evidenced by the tracking of content specific 5 

temporal patterns. Notably, however the reactivation of temporal patterns signifies that participants 6 

replayed fragments of the video-episodes at roughly the same speed as during encoding. Hence, these 7 

data already indicate that memory replay is not the straightforward recapitulation of the original 8 

experience. Instead, flexible processes must be at work to reconcile the overall compression of memory 9 

with the reappearance of temporal patterns.   10 

We hypothesized that the disparity between locally detailed patterns and the global compression was 11 

possible through the flexible skipping between salient components in memory (e.g. sub-events); in our 12 

data, the boundaries between scenes were salient elements within the video-episodes. We therefore 13 

investigated whether these boundaries would serve as stepping stones enabling participants to skip 14 

through their memories on a faster time-scale. Consequently, we tested statistically whether the speed 15 

of replay slowed down within scenes, since the skipping between the scenes of a video-episode should 16 

be easier and more likely than skipping within the individual scenes.  17 

To this end, we extended the method of fitting a line across CSs to compare the compression of replay 18 

within individual scenes (i.e. within sub-events) to the overall compression level. Specifically, calculating 19 

the slope of the fitted line allows for an estimation of the speed of replay. This slope indicates the lag 20 

between replayed patterns in the retrieval interval, such that steep slopes indicate a long lag (i.e. slow 21 

replay). We fitted a separate line for each pair of encoding-windows that belonged to the same scene 22 

across their respective CSs and averaged the slopes across the three lines. The time interval between 23 

442ms and 2350ms displayed slopes significantly below zero, confirming forward replay within scenes. 24 

This was tested with a series of one-sided t-tests, controlling the false-discovery rate. More importantly, 25 

between 550ms and 2350ms at retrieval, slopes of windows within a scene were significantly steeper 26 

(i.e. replay was slower) compared to the slope obtained across all encoding-windows (Figure 3e). These 27 

slopes were compared again at every time point across participants with a one-sided t-test, controlling 28 

the false-discovery rate. This means that when participants replayed the first and second part of a 29 

scene, this replay was less compressed than we expected from the global compression level of the 30 

whole video-episode. Consequently, this also means that subjects did not recapitulate every scene 31 

successively in every trial. Taken together, these results show that memory replay does not occur at a 32 

constant speed; instead, the speed of replay seems to change flexibly depending on the replayed 33 

interval (Figure 3b, right). Finally, we repeated these tests with those trials in which subjects did not 34 

remember the correct positional-scene or video-episode; however, we found no significant time-points 35 

for any of the contrasts, which demonstrates the implication of these replay effects in memory (see 36 

Supplementary Information). In a further control analysis, we excluded the first 800ms of the retrieval 37 

interval for the similarity analysis in order to rule out that event related potentials (ERPs) drove 38 

similarities. Again, we found significant negative slopes between 812ms and 1212ms and slower replay 39 

within scenes in that window (see Supplementary Information). The slopes were again compared at 40 

every time point across participants with a one-sided t-test, controlling the false-discovery rate. Finally, 41 

we averaged the similarity for the windows that belonged to the same scene and repeated the 42 
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cumulated similarity analysis: Significantly negative slopes between 550ms and 1919ms ensured that 1 

forwardness was not merely driven by forwardness within scenes (see Supplementary Information).  2 

These results statistically support a flexible forward replay strategy. Via cross-correlations, we next 3 

derived a descriptive measure of the delay between the six sub-events during flexible memory replay 4 

(550ms-2350ms). The cross-correlation was computed on pairs of averaged and smoothed similarity 5 

distributions (Figure 3b), which retained a time lag value for every combination of the six sub-events. 6 

The adaptive replay that we found is also visible in the pattern of time lags and can be illustrated with 7 

shorter lags between time windows that belong to different scenes compared to time windows that 8 

belong to the same scene (Figure 3B, right). In contrast, to illustrate a strict and inflexible forward replay 9 

strategy, lags between the sub-events should increase linearly according to their position at encoding 10 

(illustrated in Figure 3B, right).  11 

In this study, we tracked the replay of continuous episodes from memory. We used a paradigm in which 12 

participants associated unique word-cues with one out of three distinct scenes in seamless video-13 

episodes. We prompted replay by asking volunteers in which exact position (1, 2, or 3) they had learned 14 

each word-cue. Behavioral and neural data indicated that replay of memories takes place in a forward 15 

direction and at a compressed speed, i.e. memory replay was faster relative to perception. Notably, on 16 

a neural level, we found indications for different speeds of replay: Fragments of temporal patterns 17 

reappeared at the same speed and the speed of replay within sub-events (i.e. scenes) of continuous 18 

video-episodes was slower than the overall compression level. Notably, our method assesses the 19 

reinstatement of patterns in oscillatory phase over time, i.e. discarding spatial information and 20 

amplitude information in the signal. This provides direct evidence for temporal ‘replay’ of patterns, as 21 

opposed to the reinstatement of static information.  22 

Importantly, our finding of different compression levels implies that memory replay acts in a flexible 23 

way. The disparity between the slower speed of replay within scenes and the overall compression is 24 

an aggregated observation that cannot hold on a single trial level. Specifically, it signifies that replay is 25 

not a simple concatenation of fragments because in a single trial, the sequential replay of three 26 

scenes would take longer than the overall compression permits. Consequently, participants must be 27 

able to skip between replayed fragments; importantly the slower speed of replay within scenes 28 

denotes that on average, the skipping between sub-events must take place on a faster temporal scale 29 

than the skipping within sub-events. A plausible interpretation of the observed pattern is therefore 30 

that replay of relevant information is initiated from the boundaries between scenes and that 31 

participants can flexibly skip between them. Event boundaries 26 have been previously shown to 32 

trigger replay events during memory encoding 27. They could therefore also serve as starting points 33 

during memory retrieval, to initiate the replay of information on a fine-grained temporal scale.   34 

Specifically, if replay proceeds from event boundaries on a slower timescale, the moments of replay 35 

for the second part of a scene will, on average, be substantially delayed relative to the start of the 36 

sub-scene (i.e. event boundary). On the other hand, the replay of the beginning of a new scene can 37 

start relatively early after the beginning of a previous scene, because replay can be initiated from this 38 

event boundary (see Figure 4).  39 

Mechanistically, the hippocampus has been suggested to preserve the temporal order of experiences 40 
28 by storing a sparse index 29. Accordingly, interactions between the hippocampus and visual cortex 41 

have been observed during memory replay in sleeping rodents 21. We therefore speculate that the 42 
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here observed replay, which was located in posterior cortical areas, may have been triggered by the 1 

hippocampus in order to execute the vivid reinstatement of sensory information. Future studies with 2 

access to hippocampal and cortical signals should investigate this hypothesized interaction during 3 

memory replay. Notably, our task requires subjects to rely on sensory representations and likely 4 

promotes such accurate sensory pattern reinstatement. At first glance, the reinstatement of temporal 5 

patterns is also at odds with the observation of compression in general. An important implication 6 

from the finding of temporal pattern reinstatement under global compression is therefore that the 7 

accurate reinstatement of patterns must be limited to fragments of the original perception. In other 8 

words, subjects possibly omit non-informative (perhaps redundant) parts of the video-episodes and 9 

therefore replay a shorter episode in memory, which contains less information. Previous work on 10 

mental simulation of paths supports this interpretation. The duration that participants take to 11 

mentally simulate a path increases, when this path includes more turns 5. In the same way, the 12 

duration of replay might depend on the overall number of relevant elements within a video-episode.  13 

Another crucial result from our experiments is the forward direction of replay. This finding is in line 14 

with recent studies showing anticipatory activation of familiar paths in the visual cortex 23 and 15 

evidence of forward replay of long narratives 12. Notably, in the rodent literature, the task of spatial 16 

navigation appears to determine whether replay is backward or forward. At the end of a path, awake 17 

rodents replay in a backward fashion 6, whereas animals that plan the path towards a goal display an 18 

anticipatory activation of place-cells in the forward direction 30.  Task requirements in our design 19 

could indeed have prompted participants to step mentally through the video-episodes in a forward 20 

manner. Speculatively, other designs (e.g. tasks requiring recency judgments) might therefore cause a 21 

backwards replay. This would be well in line with the flexibility in memory replay that we observed in 22 

the neural data, since a flexible mechanism could arguably guide replay in a forward and backward 23 

direction when skipping through events. An interesting additional question arising from this is 24 

whether replay of fine-grained temporal patterns in the cortex can also be backwards.  25 

Importantly our study also demonstrates how one can investigate these open questions. The design 26 

that we used to trigger the replay of distinct sub-events in a continuous episode can easily be adapted 27 

to a working memory context and our method to track oscillatory patterns allows for the investigation 28 

of replay in working memory, during rest and during sleep. We have repeatedly shown how to use the 29 

similarity in oscillatory phase to track content-specific reactivation, even when the exact onset of 30 

memory-reactivation is unknown. We here extended our previously developed method 2 to track 31 

distinct sub-events from continuous representations: In a statistically robust way we aggregated 32 

evidence across several repetitions and compared their distribution across time.  33 

This investigation of temporal dynamics during human episodic memory replay has only recently 34 

become an option, when the tracking of multivariate patterns was extended to human 35 

electrophysiology 2,9,11,15,16,27,31. Leveraging a paradigm in combination with a method that can detect 36 

the individual fingerprints in oscillatory patterns, we were now able to observe the fine-grained 37 

dynamics of memory replay on a behavioral and on a neural basis. Our data render memory replay as 38 

a flexible process, namely the compression level varies within replayed episodes: Some fragments 39 

reappear on a timescale that resembles the original perception and replay is less compressed within 40 

sub-events of continuous episodes, which suggests that participants were able to flexibly skip 41 

between sub-events during memory replay.   42 
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Methods 1 

Participants 2 

No statistical methods were used to pre-determine sample sizes but our final sample sizes are similar 3 

to those reported in previous publications 2,3. 4 

Behavioral pilot and experiment 5 

For the behavioral pilot only 12 subjects (8 female, 4 male) participated that were on average 22.58 6 

years old (youngest: 19, oldest: 29). 2 of the female participants were left handed, the rest were right 7 

handed. Data from 24 right handed volunteers (18 female, 6 male) was acquired for the behavioral 8 

experiment. The average age of this sample amounted to 22.79 years (youngest: 20, oldest 34).  9 

MEG experiment 10 

For the MEG experiment 24 volunteers (13 male, 11 female) participants were tested. Subjects were 11 

between 18 and 34 years old (mean: 23.92 years). 6 participants were left handed, 18 participants were 12 

right handed. 1 of the 24 subjects was excluded after pre-processing because of a persistent electrical 13 

artifact in the data that could not be removed with filtering.  14 

6 additional subjects (4 female, 2 male) aged 19 to 28 years (mean: 22) were recorded but not analyzed. 15 

2 subjects moved excessively throughout the recording session (maximal movement: 1.8 cm and 2.7 16 

cm), 1 subject moved excessively throughout the session (maximal movement 1.4 cm) and fell asleep 17 

during the experiment. 1 subject felt unwell and aborted the experiment after approx. 10 % of the 18 

recording session, 1 subject only completed approx. 70 % of the recording session and moved more 19 

than 2 cm throughout the experiment. Finally 1 subject was lost due to technical failure during the 20 

recording. After preprocessing, the maximal movement of included participants across all trials (i.e. the 21 

range of all positions) was on average 5.89mm (s.d. = 2.62, min = 1.69, max = 9.09).  22 

All participants in the pilot studies, behavioral experiments and the MEG experiment, were native 23 

English speakers. Before participation they were screened for any neurological or psychiatric disorders. 24 

Their informed consent was obtained according to the ethical approval that was granted by the 25 

University of Birmingham Research Ethics Committee (ERN_15–0335A). 26 

Material and experimental set up 27 

Stimulus material and allocation of experimental conditions were pseudo-randomized, as described in 28 

the corresponding sections below.  29 

Videos 30 

For each of the balancing pilots (Supplementary Information), a total of 12 short video-clips were used. 31 

Videos stemmed from a pool that was provided by Landesfilmdienst Baden-Württemberg, Germany, 32 

some of them were additionally edited. Each video-clip was a 2-second-long colored, dynamic scene 33 

that featured a single action (i.e. a ship sailing or a diver jumping into the water). During the task, video-34 

clips were always superimposed with a transparent text box (white box with alpha value 0.9) in which 35 

the word-cue could appear. According to the behavioral results from balancing pilot 1, we edited or 36 
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changed some of the scenes before the second balancing pilot. The final video-clips were 12 different 1 

scenes that belonged to four general topics. For the behavioral experiments and the MEG experiment, 2 

the video-clips were then grouped into four seamless sequences of frames that formed a video-episode 3 

(i.e. a sequence of three scenes that belong to a general topic and form a short story). The 3 scenes of 4 

each video-episode were clearly distinguishable.  5 

According to the second balancing pilot, scenes that were assigned to be in 1st, 2nd or 3rd position of 6 

video-episodes, did not differ significantly in difficulty (percent correct responses), when associated 7 

with a word-cue. Pairwise comparisons with t-test of positions 1 and 2 (t17 = 0.86, p = 0.4), 2 and 3 (t17 8 

= 0.15, p = 0.88) and 1 and 3 (t17 = 1.4693, p = 0.16) and Bayes-Factor analysis supported the null 9 

Hypothesis of no difference between positions. This was supported either by substantial (BF01>1.6) or 10 

strong (BF01>3.3) evidence for the null hypothesis in the comparison of positions 1 and 2 (BF01 = 2.97) 11 

of positions 2 and 3 (BF01 = 4.07) and of positions 1 and 3 (BF01 = 1.65). Importantly, reaction times in 12 

the second balancing pilot did not differ significantly between the video-clips that we finally assigned 13 

to be in position 1, 2 or 3. Pairwise comparisons with t-test of assigned positions 1 and 2 (t17 = -0.59, p 14 

= 0.56), 2 and 3 (t17 = -0.31, p = 0.76), and 1 and 3 (t17 = -1, p = 0.33) and Bayes-Factor analysis supported 15 

the null Hypothesis for the comparison of positions 1 and 2 (BF01 = 3.53) of positions 2 and 3 (BF01 = 16 

3.95), and positions 1 and 3 (BF01 = 2.67). 17 

Word-cues 18 

Word-cues were downloaded from the MRC Psycholinguistic Database 32. For the balancing pilots 19 

(Supplementary Information), we divided 540 word-cues into 18 lists. Those lists did not differ in 20 

Kucera-Francis written frequency (mean = 20.80, s.d. = 8.55), concreteness (mean = 506.50, s.d. = 21 

90.07), imageability (mean = 521.04, s.d. = 69.51), number of syllables (mean = 1.63, s.d. = 0.68), 22 

number of letters (mean = 5.61, s.d. = 1.42) or word-frequencies taken from SUBTLEXus  (mean = 15.22, 23 

s.d. = 14.07); specifically, “Subtlwf” was used 33. In the balancing pilots, 12 of the lists were associated 24 

with a video-clip and 6 of the lists were assigned to become a distractor word. Across subjects each list 25 

was associated with every movie once and served as a distractor word six times. This was done to 26 

additionally control for list specific effects across subjects. An additional 9 words were randomly 27 

selected for practice. 28 

For the behavioral pilot, the behavioral experiment and the MEG experiment, we divided 360 word-29 

cues into 12 lists. Those lists were likewise balanced for Kucera-Francis written frequency (mean = 30 

20.41, s.d. = 7.47), concreteness (mean = 518.72, s.d. = 78.39), imageability (mean = 530.78, s.d. = 31 

60.17), number of syllables (mean = 1.56, s.d. = 0.62), number of letters (mean = 5.44, s.d. = 1.30) and 32 

word-frequencies taken from SUBTLEXus  (mean = 15.07, s.d. = 13.04); again, “Subtlwf” was used 33. 33 

Across participants, each of the lists was associated with every video-clip twice. An additional 6 words 34 

were randomly selected for practice. 35 

Response options 36 

To create the response options (see Figure 1c-d), we took Screenshots from the video-clips. In the 37 

balancing pilots (Supplementary Information), we adjusted brightness and contrast, so that no 38 

screenshot appeared more salient. For the behavioral pilot, the behavioral experiment and the MEG 39 

experiment the numbers 1, 2 and 3 were framed by a square which resembled a frame from an old 40 

film. Those represented the first response options, i.e. the choice between scene 1, scene 2 or scene 3. 41 



12 
 

For the second response, i.e. the response about the correct video-episode, the 3 screenshots from the 1 

concatenated video-clips were presented next to each other for each of the 4 choices. In the control 2 

task of the behavioral experiment, the response option intact/rearranged was realized with a 3 

screenshot which was of the same size as the videos during presentations. This screenshot was 4 

superimposed by a transparent textbox containing a word-cue. The words intact and rearranged were 5 

displayed at the left and right of the textbox as response options. The left/right position of these options 6 

was balanced across participants. 7 

Behavioral setup 8 

Visual content was presented on an LED monitor (Samsung syncmaster 940n at a distance of 9 

approximately 60 cm from the subject’s eyes. The monitor was set to a refresh rate of 60 Hz. On a 10 

screen size of 1280 x 1024 pixels, the video-clips had the dimension of 360 pixels in width and 288 pixels 11 

in height on the screen. “Helvetica” was chosen as the general text font, font size was set to 22 for 12 

instructions and to 28 for word-cues. Black text (rgb: 0, 0, 0) and movies were presented against a white 13 

background (rgb: 255, 255, 255). 14 

MEG setup 15 

MEG was recorded at the Sir Peter Mansfield Imaging Center (SPMIC) in Nottingham, UK. Subjects 16 

performed the experiment in a seated position at a distance of approximately 60 cm from a white 17 

screen. The image was projected onto the screen using a PROPixx projector (VPixx Technologies, Saint-18 

Bruno, Canada) that operated at a refresh rate of 60Hz and a resolution of 1920 x 1080 px. The 19 

projected image appeared at a size of approx. 40 x 22.5 cm on the screen. Accordingly, the video-clip 20 

appeared in a dimension of approx. 15 x 12 cm. An eye tracker (EyeLink 1000 plus, SR Research, Ontario, 21 

Canada) was placed in front of the screen. The tracker was mounted in an upwards facing orientation, 22 

slightly below the visible display, on a small wooden board. In this setup it tracked the subject’s left eye 23 

from below and from a distance of approximately 55 cm.  24 

Procedure 25 

Behavioral pilot and behavioral experiment 26 

In the behavioral pilot (Figure 1a, b, d top-left), subjects saw video-episodes that consisted of 3 distinct 27 

scenes. Those scenes comprised of the video-clips from balancing pilot 2 (Supplementary Information), 28 

which ensured that no material specific differences were to be expected between position 1, 2 and 3 29 

of the video-episodes; not in memory performance and most importantly not in reaction time. 30 

Participants first completed the screening questionnaire and gave informed consent. After instruction 31 

with the task, they saw the video-episodes twice for familiarization and were instructed to pay attention 32 

to their 3-scene-structure, such that they could confidently identify the first, second and third scene of 33 

each video-episode.  34 

After a short practice version of the task, the experiment started. It was again a sequence of encoding, 35 

distractor and retrieval blocks. In each encoding block subjects learned a series of associations (Figure 36 

1a). They first saw a fixation cross on the screen for 2 seconds. Thereafter one of the four video-37 

episodes played for 6 seconds. During this video-episode a transparent textbox was overlaid on the 38 

video. In one of the three scenes, a word-cue appeared in the textbox and disappeared again with the 39 

end of the scene. Subjects were instructed to form a vivid association between the word and the precise 40 
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scene of the video-episode, such that they could later recall that exact scene and video-episode upon 1 

presentation with the word-cue. We randomized the presentation of the associations in a balanced 2 

way, such that no video-episode was presented more than twice in a row and a word-cue did not appear 3 

in the same position more than twice in a row. Additionally, every position within every video-episode 4 

was associated with a word cue once within 12 subsequent associations.  5 

After each video-episode a fixation-cross showed for 1 second then subjects rated the plausibility of 6 

the association between word-cue and scene. Three response options were labelled with “not 7 

plausible”, “plausible” and “very plausible” and could be selected with the buttons 4, 5 and 6 on the 8 

numerical pad of the keyboard. The plausibility rating served to keep participants engaged in the task 9 

and support memory formation. In the distractor block, subjects were presented again for 45 seconds 10 

with simple math problems and had to decide which one of two single digit sums was either bigger or 11 

smaller (Figure 1b). For the retrieval block the word-cues were now randomized again in a balanced 12 

way, such that word-cues corresponding to the same video-episode regardless of position, or to the 13 

same position regardless of video-episode, did not appear more than twice in a row.  14 

Retrieval blocks (Figure 1d, top-left) started with a fixation cross, displayed for 2 seconds. Then a word-15 

cue appeared in the center of the screen and the three framed numbers appeared on a triangle around 16 

the word-cue. Participants were instructed to select, as quickly as possible, in which of the three scenes 17 

they learned the word. For this choice they only saw the numbers 1, 2 and 3; after they made this 18 

choice, screenshots forming the four video episodes appeared in the four corners of the screen. 19 

Participants were asked to indicate now, to which of the four episodes the selected scene belonged. 20 

The position of the numbers 1, 2 and 3 as well as the mappings of the four screenshot-sequences to 21 

the screen positions were randomized in a balanced way, namely all possible permutations of 1, 2 and 22 

3 were randomly mapped onto the three positions within 6 subsequent trials and all possible 23 

permutations of the four positions of the video-episode screenshots were used within 24 trials. This 24 

was done to control for any potential effects from specific screen positions on reaction times or position 25 

specific response preferences. In order to respond, volunteers were asked to place the index finger of 26 

their dominant hand on the number 5 of the numerical pad on the keyboard. The surrounding numbers 27 

4, 6 and 8, which form a triangle around the number 5 were highlighted with red stickers and served as 28 

the response options for the scene-response (first response: 1, 2 or 3). Those buttons corresponded 29 

spatially to the position of the permuted numbers 1, 2 and 3 on the screen. Accordingly, the buttons 1, 30 

7, 9 and 3 which form a square on the numerical pad, were available for the second response which 31 

informed about the correct video-episode. Importantly subjects were instructed to make all responses 32 

with the index finger of their dominant hand and go back to the starting position after every response, 33 

i.e. leave the finger resting on the button 5. At the end of every retrieval trial, a scale appeared on which 34 

subjects rated the confidence in their response. Three options were labelled with “guess”, “sure” and 35 

“very sure” and corresponded to the buttons 4, 5 and 6 on the numerical pad. 36 

Participants performed a variable amount of runs of encoding, distractor and retrieval blocks that varied 37 

in length according to their individual memory performance. The first block comprised of 24 items, 38 

subsequently its length was adjusted. If more than 70% of items were recalled correctly in the last block 39 

(i.e. correct scene and movie were selected), 12 items were added to the next block, if less than 50% 40 

were recalled correctly, 12 items were removed from the following block. All blocks comprised at least 41 

of 12 associations that had to be learned. All participants completed 360 trials in total. 42 
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In the final behavioral experiment (Figure 1a, b, d top row) subjects performed exactly the same task 1 

as in the behavioral pilot experiment, however, every other block was performed with a different 2 

retrieval task. Specifically subjects performed the same learning paradigm, yet they did alternating 3 

retrieval blocks of cued-recall (CR, see above) and associative recognition (AR). In the AR blocks (Figure 4 

1d, top-right) subjects were presented with a screenshot of a single video-clip, representing one of 5 

three scenes within a video-episode. The center of the screenshot was again superimposed with a 6 

transparent textbox containing one of the previously learned word-cues. The association between 7 

word-cue and video-clip could either be intact, i.e. the word was learned in this exact position within 8 

the video-episode, or it could be rearranged. In the latter scenario, a different video-clip from the same 9 

video-episode was superimposed by the word-cue. This means that word-cues were either presented 10 

in the correct position or in the wrong position within the video-clip. Participants were again instructed 11 

to decide as quickly as they could, whether the association was intact or rearranged. Block-size was 12 

adjusted in the same way with percent of correct responses measured as 200*(Hits - False Alarms)/N, 13 

with Hits being the number of correctly identified intact associations and False Alarms referring to the 14 

number of rearranged associations that were declared intact and N referring to the number of trials in 15 

the last block. Response buttons for the intact/rearranged choice were 4 and 6 on the numerical pad, 16 

which are in equal distance from the number 5, where the index finger of participants’ dominant hand 17 

rested comfortably at the beginning of each trial. After the experiment participants answered a few 18 

interview questions regarding eventual strategies and their subjective experience of the task. 19 

MEG experiment 20 

In the MEG experiment (Figure 1a, b, c) volunteers learned associations between video-episodes and 21 

word-cues in the same way as in the behavioral experiment. Memory retrieval was similar to the 22 

behavioral pilot experiment (i.e. a cued-recall task); however, a fast response was not required (see 23 

below). Upon informed consent and screening questionnaires, participants received the instructions 24 

for the task on a laptop outside the scanner. They familiarized themselves with the video-episodes 25 

twice, paying close attention to their structure. It was ensured that every participant was able to 26 

identify the three different scenes of a video-episode. In a short practice, they performed a block of 27 

encoding, distractor and retrieval with the six example words. The head-localization coils of the MEG 28 

system were attached to the participants’ head and their positions were logged along with the shape 29 

of the participant’s head (see Data Collection). Subsequently, volunteers were seated in a comfortable 30 

position under the MEG helmet. Subjects used a single button on each of two response pads with their 31 

left and right index finger. After the eye tracker was mounted and calibrated, the experiment started.  32 

The MEG experiment was again a sequence of encoding, distractor and retrieval blocks. In each 33 

encoding block (Figure 1a), subjects learned a series of associations between scenes in video-episodes 34 

and unique word-cues. Participants first saw a fixation-cross on the screen for 1 second. After that one 35 

of the four video-episodes played for 6 seconds overlaid with a transparent textbox. In one of the three 36 

scenes of the video-episode, the unique word-cue appeared in the textbox and disappeared again with 37 

the end of the scene. The task was again to form a vivid association between the word and the precise 38 

scene of the video-episode in order to later recall the exact scene and video-episode, when only 39 

presented with the word-cue.  40 

After the video-episode, the fixation-cross appeared again for 500ms. Finally, the two response options 41 

‘plausible’ and ‘not plausible’ appeared on the left and right of the screen. Subjects used the left or 42 
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right button to indicate whether the association between video-scene and word-cue was plausible to 1 

them. This task kept participants engaged and supported their memory performance.  2 

The order of presentation was randomized in a balanced way: no video-episode was presented more 3 

than twice in a row and a word-cue did not appear in the same position more than twice. Additionally, 4 

every position within every video-episode was associated with a word cue once within 12 subsequent 5 

associations. In the distractor block (Figure 1b) subjects solved simple math problems for 45 seconds: 6 

They had to decide which one of two single digit sums was either bigger or smaller, using a left or right 7 

button press. Participants received feedback on the distractor task in form of the words “correct” or 8 

“wrong” displayed in green or red respectively. For the retrieval block the word-cues were now 9 

randomized again in a balanced way, such that word-cues corresponding to the same video-episode 10 

regardless of position, or to the same position regardless of video-episode, did not appear more than 11 

twice in a row.  12 

Trials of the retrieval block (Figure 1c) started with a fixation cross that was displayed for 1 second. 13 

Then a word-cue appeared in the center of the screen for 3.5 seconds. In this time interval subjects 14 

remembered in which exact scene they had seen this word. For a random time interval between 250ms 15 

and 750ms, a fixation cross was shown again, then the response options appeared. The time interval 16 

for retrieval was chosen based on reaction-time data from the behavioral experiments, such that 17 

participants could comfortably remember the correct association. The first response option required 18 

the selection of the correct scene. To this end pictograms featuring the numbers 1, 2 and 3 were 19 

displayed on the top of the screen. The mapping of the numbers 1, 2 and 3 to the three screen-positions 20 

was randomized in a balanced way such that all possible permutations appeared within 6 subsequent 21 

trials.  Participants could now move a red square, which framed the current selection. By pressing the 22 

left button they changed their selection by moving the frame clockwise. This selection was confirmed 23 

by pressing the right button. Note that this button assignment ensured that subjects would always 24 

prepare the same response during the retrieval trial, regardless of the memory content. This is 25 

important to control for trivial but systematic differences that correlate with memory content in the 26 

retrieval interval.  27 

After the position was selected, the two other position pictograms were overlaid with transparency 28 

(alpha = 0.9), such that the selected option remained highlighted on the screen. The concatenated 29 

screenshots from the video-episodes appeared below the position-pictograms and the red selection 30 

frame could be moved clockwise with the left button. Again, the selection was confirmed with the right 31 

button. To ensure that subjects followed instructions and tried to recall the position as soon as they 32 

were presented with the word-cue (and did not wait until the response options were presented), a time 33 

limit of 4 seconds was imposed to select the correct position and again to select the movie. To allow 34 

for flexibility due to hasty or imprecise selections, 200ms were added to this time limit, whenever the 35 

selection-frame was moved. Participants did not know about this increment. If the time limit was 36 

exceeded, the message ‘too slow’ appeared at the center of the screen for 5 seconds. Altogether the 37 

time limits were designed, such that subjects could comfortably remember the correct association 38 

during the presentation of the word-cue, and were eager to select the two responses straight away. 39 

After the associated video-episode was selected, unselected response options were overlaid with 40 

transparency for 300ms, then the two options ‘guess’ and ‘know’ were presented on a new screen to 41 

give the participant the opportunity to communicate, whether the selected answers were based on a 42 

guess. 43 
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Participants performed a variable amount of runs of encoding, distractor and retrieval blocks. The 1 

blocks varied in length according to individual memory performance. The first block comprised of 24 2 

items, subsequently its length was adjusted. If more than 90% of items were recalled correctly in the 3 

last block (i.e. correct scene and movie were selected), 24 items were added to the next block. If more 4 

than 70% of items were recalled correctly, 12 items were added to the next block, if less than 50% were 5 

recalled correctly, 12 items were removed from the following block, if less than 40% were recalled 6 

correctly, 24 items were removed. All blocks comprised at least 12 associations that had to be learned, 7 

i.e. block-size was never reduced below 12 items; all participants learned and recalled a total of 360 8 

associations. 9 

Data Collection 10 

Stimulus presentation and the collection of behavioral data was realized on a standard desktop 11 

computer running MATLAB 2014b (MathWorks) under Windows 7, 64 Bit version. Stimuli were 12 

presented through the Psychophysics Toolbox Version 3 34.  In the behavioral experiments, responses 13 

were collected from button presses on the numerical pad of a wired keyboard (Model 1576, Microsoft 14 

Corporation, Redmond, US). In the MEG experiment, fiber optic response pads were used.   15 

Neurophysiological data were collected with 275-channel CTF MEG (CTF, Coquitlam, BC, Canada) at the 16 

Sir Peter Mansfield Imaging Center (SPMIC) in Nottingham, UK. The system was used in third-order 17 

gradiometer configuration, recording at a sampling frequency of 600 Hz over the whole duration of the 18 

experiment. Three localization coils that were attached to the participants’ left preauricular point (LPA), 19 

right preauricular point (RPA) and to a point slightly above the nasion (NAS) were energized during the 20 

recording session. This was done to localize the head position relative to the sensors. 21 

Head digitization was collected with a Polhemus ISOTRAK device (Colchester, Vermont, USA). A 22 

minimum of 500 points on the scalp were logged relative to the positions of the three fiducial points 23 

(LPA, RPA, NAS). Individual anatomical data was acquired via magnetic resonance imaging (MRI) (3T 24 

Achieva scanner; Philips, Eindhoven, the Netherlands) with an MPRAGE sequence covering the whole 25 

head at 1mm3 resolution.  MRIs were either measured at the SPMIC or at the Centre for Human Brain 26 

Health at the University of Birmingham (CHBH).  27 

For 17 of the included subjects (23), eye tracking (Eyelink 1000 Plus, SR Research, Ontario, Canada) was 28 

recorded on a separate Computer provided by the manufacturer at a sampling rate of 2000 Hz. The 29 

data was additionally written into 3 analog input channels of the MEG system via the EyeLink Analog 30 

Card. The eye tracker was used in remote mode tracking the pupil and corneal reflection with a 16mm 31 

lens. It was calibrated and validated using 13 points on 80% of the screen, which contained all of the 32 

task relevant information.  33 

Analysis of Reaction Times 34 

We defined reaction time (RT) as the time to the first response after onset of the word-cue (Figure 1d, 35 

bottom-row). All RTs faster than 200ms were considered implausible and discarded from further 36 

analysis. Additionally, RTs that were 2.5 standard deviations above the mean RT were discarded. The 37 

means of remaining RTs were then tested statistically. Data distribution of reaction times was assumed 38 

to be normal but not formally tested. Individual data points are shown in Figure 1d. To account for 39 
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potentially non-normal distribution of RTs 35, all statistical tests are also reported for log-transformed 1 

RTs.  2 

Preprocessing of Neural Data 3 

The data was preprocessed in MATLAB 2015a (MathWorks) with a combination of functions from the 4 

Fieldtrip toolbox for EEG/MEG analysis 36 and custom written scripts.  5 

For the sensor level analysis, the 3rd order gradiometer correction was first applied, then the continuous 6 

recording was filtered with a Butterworth IIR filter of 4th order with a stopband of 49.5 to 50.5 and its 7 

harmonics (99.5 - 100.5, 149.5 - 150.5, 199.5 - 200.5, and 249.5 - 250.5) to reduce the line noise artifact. 8 

Additionally, the data was filtered with a stopband of 59 – 60 to attenuate noise with a center frequency 9 

of 59.5 Hz.  10 

Subsequently, the data was segmented into trials that started 1.5 seconds prior to video-onset and 11 

ended 7.5 seconds after video-onset at encoding. Trials at retrieval started 1.5 seconds prior to the 12 

onset of the word-cue and ended 5 seconds after onset of the word-cue. If available, the dataset was 13 

combined with the downsampled and segmented trials from the eye tracking.  14 

To remove activity from eye blinks and noise, and to detect heartbeats, Independent Component 15 

Analysis (ICA) was used 37. For the computation of the ICA unmixing matrix, trials containing coarse 16 

artifacts or showing strong muscle activity were heuristically excluded. Additionally, the data was 17 

downsampled to 250 Hz and cut to 1-second-long segments; the obtained unimxing matrix was then 18 

applied to all original trials.   19 

When possible, we compared independent components with the eye tracking data; we removed those 20 

components that picked up eye-blinks or eye-movement related activity. Additional components that 21 

picked up electrical noise were removed from the data. A copy of components which contained a clear 22 

R-wave of the QRS complex in a heartbeat was stored for later peak-detection and regression. All 23 

remaining components were projected back to a channel representation.  24 

Finally, all data was inspected visually and trials containing artifacts were removed from later analysis. 25 

After visual inspection, 84.26 % (S.D. = 8.29 %) of trials remained.  26 

Heartbeats were removed with a regression based approach: An iterative peak detection algorithm was 27 

applied to the ICA-component showing the clearest R-wave; it served as a proxy for ECG. This was done 28 

only for the remaining trials after visual inspection. Before peak-detection the heartbeat-component 29 

was highpass-filtered (4Hz, 4th order Butterworth). The peak detection algorithm first calculated a 30 

plausible maximum of heartbeats that were not to be exceeded. The signal was z-scored and 31 

thresholded. Local peaks were detected by finding local maxima in clusters of z-scores that were above 32 

threshold. Subsequently the threshold was lowered stepwise, down to a z-score of 2. With lowering 33 

threshold, increasingly bigger areas around the peaks were excluded from further peak detection. If 34 

the maximum number of plausible peaks was exceeded, the threshold was no longer lowered. A 35 

heartbeat template was now created by averaging 500ms long segments around the peaks. Gaps in the 36 

continuous recording were subsequently zero-padded in order to convolve the component with the 37 

template. Peak detection was then repeated on the convolved time course and a new template was 38 

built from these peaks for subsequent convolution 38. After a few repetitions, the template converged 39 

and the resulting peaks were controlled manually, even though errors rarely needed to be corrected.  40 
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Instead of simply subtracting the averaged template from the data, the trials were now split into four 1 

big segments and a general linear model (GLM) was built around the peaks in each segment. A high 2 

pass filter (1Hz, 4th order Butterworth) was applied to the data, only for the purpose of fitting the model. 3 

The GLM consisted of a separate repeated measure factor for each time point in the heartbeat, 4 

beginning 280ms before the peak and ending 720ms after the peak 38. Additionally, a separate factor 5 

was included for every heartbeat, which modelled the offset between 280ms pre-peak and 720ms post-6 

peak. Furthermore an offset factor for the overall segment was included. The solved model was then 7 

applied to every channel. The data model ŷ was built by using only the repeated measure factors, which 8 

modelled each time point within the heartbeat (i.e. the beta weights for offsets were set to 0). After 9 

visual inspection, this resulting model of the heartbeat was subtracted from each original channel.  10 

For the source level analysis, the anatomical data was first aligned to the digitized head positions. This 11 

was done by extracting the surface of the head from the anatomical MRI; in a first step a rough 12 

alignment was done manually, then the Iterative Closest Point (ICP) algorithm implemented in fieldtrip 13 
36 was used to match the surface to the point-cloud of the head digitization, finally this solution was 14 

controlled and eventually corrected again manually. The transformation to the aligned space was 15 

subsequently applied to the segmentation of the brain, which was likewise extracted from the 16 

anatomical images. To correct for head movements, the average head positions within the trials were 17 

first clustered, such that one positional-cluster was built for every 10 trials. Subsequently a separate 18 

lead field was computed for every cluster and then averaged. Hereby, an average lead field across all 19 

trials was obtained for each participant 39. Importantly ‘all trials’ refers to the trials that were included 20 

in a given contrast (e.g. for the contrast of Hits and Misses at retrieval, encoding trials were not included 21 

in the computation of the lead field). Before the source level analysis, the 3rd order gradiometer 22 

correction was applied to the cut raw-data, lead fields were adjusted accordingly. Finally, the data was 23 

demeaned and bandpass filtered between 4 and 15 Hz. The position of virtual sensors in individual 24 

brains was derived from a 1 cm spaced grid, which was placed 6mm below the surface of the cortex 25 

into the MNI brain and then spatially warped into individual brains. This was done via the inverse of the 26 

transformation describing their normalization and resulted in 1407 individual virtual sensor positions 27 

which were anatomically equivalent. Finally, to reconstruct activity on virtual sensors a regularized 28 

linearly constrained minimum variance (lcmv) beamforming approach, implemented in the Fieldtrip 29 

toolbox 36, was used. Filter coefficients were again computed on all data in a given contrast.  30 

Analysis of oscillatory power 31 

To estimate oscillatory power at retrieval (Supplementary Figure 1), the Fourier-transformed data was 32 

multiplied with a complex Morlet wavelet of six cycles. This was done in steps of 10ms for every full 33 

frequency between 2 and 40Hz. The raw power was then obtained from the squared amplitude of the 34 

Fourier spectrum. Across all trials within the contrast (i.e. Hits and Misses), a baseline was computed 35 

as the average power between 1 second pre-stimulus and 4 second after stimulus onset 40. Trials were 36 

then normalized by subtracting the baseline and dividing by it (activitytf − baselinef)/baselinef, with t 37 

indexing time and f indexing frequency. 38 

Region of Interest (ROI) 39 

An occipito-parietal region of interest (ROI) was derived from the AAL atlas 41 (Figure 2b). To obtain the 40 

ROI in form of a group of virtual sensors, the sensor-positions in MNI-space were assigned to the 41 
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nearest described AAL-region, based on their Euclidean distance. The occipito-parietal ROI comprised 1 

of bilateral AAL-regions: angular gyrus, calcarine sulcus, cuneus, inferior occipital cortex, inferior 2 

parietal lobule, lingual gyrus, middle occipital gyrus, precuneus, superior occipital gyrus, superior 3 

parietal lobule, supramarginal gyrus. 4 

Content specific oscillatory phase at encoding 5 

During encoding, participants repeatedly watched the same video-episodes. Hence, it was possible to 6 

assess content specific properties if they were more similar between trials of same content than 7 

between trials of different content (Figure 2a). In order to determine whether the ongoing oscillatory 8 

phase was specific to individual perceptual content, trials were grouped into 4 sets according to the 9 

video-episode that was perceived. The complex Fourier spectrum was again derived by multiplying the 10 

Fourier-transformed data with a complex Morlet wavelet of six cycles. Then, inter-trial phase coherence 11 
42 (ITPC) was computed across the trials of same content (i.e. for each of the four trial-groups). This was 12 

done at every full frequency between 2 and 40 Hz in steps of 10ms starting 1 second before the onset 13 

of the video-episodes and ending 7 seconds after the offset of the video-episodes. Following that, the 14 

trials were shuffled and grouped randomly into 4 sets of mixed-content-trials. Sets were of equal size 15 

to the 4 sets of same-content-trials. Again, ITPC was computed separately for each of the 4 sets. To 16 

balance the contribution of the 4 sets, a Rayleigh Z-correction was applied with N*ITPC2, where N refers 17 

to the number of trials in a set. Finally, the corrected ITPC was averaged across the 4 sets in the ordered 18 

and in the shuffled condition. Their difference indicated content specificity of phase which could be 19 

statistically tested 17,43.  The analysis in source-space was done in the same way using the virtual sensors; 20 

however, the frequency was restricted to 8 Hz.  21 

Content specific phase similarity between encoding and retrieval 22 

The reactivation of temporal patterns (Figure 2c-d, Supplementary Figure 3) was estimated on virtual 23 

sensors for the frequency of 8 Hz. To this end, the oscillatory phase coherence between encoding and 24 

retrieval was contrasted between trial-combinations of same content (e.g. watching video-episode A, 25 

recalling video-episode A) and random trial-combinations of different content (e.g. watching video-26 

episode A, recalling video-episode B). The combinations were balanced, such that in both conditions 27 

(same vs. different combinations) exactly the same trials were used in the same amount of 28 

combinations. We only changed the pairing between encoding and retrieval trials. For each trial-29 

combination, 1-second long windows from the encoding trial were now compared to every time point 30 

at retrieval starting at the onset of the word-cue and ending at its offset after 3.5 seconds. This 31 

comparison was done with a sliding window approach. As a metric of phase-similarity, the phase 32 

coherence across time 2,19,20 (i.e. across the 1 second window) was computed. All possible windows 33 

from encoding were used in this sliding window approach, with the first window ranging from 0 to 1 34 

seconds and the last window ranging from 5 to 6 seconds during the video-episode (compare Figure 2 35 

c). Note that the response options set on between 250ms and 750ms after the word-offset, additionally 36 

the first response-screen did not contain content-information (only the numbers 1, 2, and 3) and all 37 

responses required a button-press on the left button. Therefore, no confounds from the response 38 

interval were expected to bleed into the tested interval. Oscillatory phase was estimated by multiplying 39 

the Fourier-transformed data with a complex Morlet wavelet of six cycles in steps of 15.6ms for 40 

consistency with our previous analyses 2. The average similarity between all time-windows and 41 

combinations was subsequently averaged to derive a single value of similarity for combinations of same 42 
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content and a single value for combinations of different content at each virtual sensor. Note that this 1 

method enables the investigation of highly dynamic patterns in a robust way, because a measure that 2 

captures dynamic changes in ongoing oscillations is accumulated across encoding time, retrieval time 3 

and ten thousands of trial-combinations. 4 

Time courses of Replay 5 

To observe the temporal scale of reactivation (Figure 3), the distribution of similarity to the 6 

remembered stimulus content (i.e. phase coherence) across retrieval was compared between different 7 

sliding windows from encoding. By definition, a distribution is normalized to an area under curve of 1 8 

and therefore accounts for differences in total similarity between windows. To robustly compare the 9 

distribution of similarity between 6 non-overlapping windows, phase-coherence was accumulated 10 

across time, such that at the beginning of the retrieval time, zero similarity to all windows was present 11 

and at the end of retrieval (i.e. at 3.5 seconds after word onset) 100 % of similarity was reached (Figure 12 

3c). This made it possible to compare at each time point, whether the similarity to a window had come 13 

up earlier than to another window. In other words: If patterns from window “A” tend to appear earlier 14 

than patterns from window “B” across subjects, then the cumulated similarity to window A should be 15 

statistically higher than the cumulated similarity to window “B”, at several time points.  16 

In order to test for a general tendency for forward replay, a line was fitted across all 6 windows and 17 

tested against a slope of 0 (Figure 3d). Hence a negative slope of this line means that earlier windows 18 

from encoding appear earlier during retrieval. In order to test the hypothesis that the replay of 19 

individual scenes takes place on a slower timescale (Figure 3e), 3 lines were fitted across the 2 non-20 

overlapping windows within each scene, and their slope was averaged. A more negative average slope 21 

of these 3 lines compared the slope of the line across all windows supports the hypothesis that 22 

replaying individual scenes takes place on a slower temporal scale.  23 

Importantly this way of cumulating the similarity distributions allows for robust testing across subjects 24 

at the expense of introducing temporal dependencies between time points. Specifically, if more 25 

similarity to a window is present at an early point this can propagate to later points, if similarity 26 

thereafter increases at the same speed for all windows. The extent of significant time intervals should 27 

therefore be interpreted with caution. Another disadvantage of this method is that the slope is interval 28 

scaled and its absolute value is not interpretable.  29 

In order to compensate for this disadvantage and quantify the actual lag between time windows from 30 

encoding descriptively (Figure 3a-b), the distributions of similarity were averaged across subjects and 31 

smoothed with a moving average kernel of 250ms, to attenuate noise (Figure 3a, right). The cross-32 

correlation between distributions was then computed to estimate the lag between them: The shape of 33 

one similarity distribution is matched to another (Figure 3b). This was done within the time interval in 34 

which the slowing down of replay was observed; specifically, in which the slope for lines fitted within a 35 

scene was significantly more negative than the slope across all windows (i.e. between 550ms and 36 

2350ms at retrieval).  37 

Statistical analyses 38 

Behavioral performance and Reaction times 39 
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Behavioral performance was tested with a repeated-measures ANOVA, on the percent of correct 1 

responses. Partial eta-square (η2) was calculated as a measure of effect-size. Greenhouse-Geisser 2 

correction was used with all repeated-measures ANOVAs. Post-hoc tests were then performed with 2 3 

separate repeated-measures ANOVAs for the final behavioral experiment and with a series of one-4 

sample two-tailed t-test (see Supplementary Information). T-tests were one-tailed if specific 5 

hypotheses were tested, t-tests were two-tailed, if no assumption about the direction of effects was 6 

made. All confidence intervals were derived via bootstrapping with 10,000 iterations 44. Data 7 

distribution of percent correct responses was assumed to be normal but not formally tested. Individual 8 

data points of behavioral performance are shown in Supplementary Figure 8. 9 

RTs in the balancing pilots (Supplementary Information) were first contrasted with two-tailed one-10 

sample t-tests. In order to statistically test the null hypothesis the Scaled JZS Bayes Factor 45 to the one-11 

sample t-tests was contrasted against a prior effect size of 0.707. RTs in the behavioral pilot experiment 12 

were compared with a repeated-measures ANOVA with the factor position (1, 2 and 3). In the final 13 

behavioral experiment, a 2x3-repeated-measures ANOVA was computed with the factors retrieval task 14 

(cued-recall vs. associative recognition) and position (1, 2 and 3). Post-hoc tests were then performed 15 

with 2 separate repeated-measures ANOVAs. Reaction times for the 3 different positions were 16 

subsequently compared with a series of post-hoc one-sample t-tests. All confidence intervals were 17 

derived via bootstrapping with 10,000 iterations 44. Greenhouse-Geisser correction was used with all 18 

repeated-measures ANOVAs, null-effects of interest were tested with Bayesian t-tests against a prior 19 

effect size of 0.707 45. 20 

Content specific oscillatory phase at encoding 21 

Content specific phase at encoding was statistically tested by contrasting average ITPC across arranged 22 

groups with the average ITPC across shuffled groups. This was done with a series of one-tailed t-test at 23 

every time point between 0 and 6 seconds after onset of the video-episode, at every frequency 24 

between 2 and 40 Hz and at every sensor. Multiple comparison correction was done via Monte-Carlo 25 

permutation of contrast labels as implemented in the fieldtrip toolbox 36,46, treating each subject as a 26 

unit of observation. 3-dimensional clusters and cluster-sums were formed across time, frequency and 27 

sensors. Cluster-sums in the original contrast were compared to the distribution of cluster-sums under 28 

random label assignment in order to derive p-values. The cluster-forming threshold corresponded to 29 

the critical t-value (alpha < 0.05) of a single-sided one-sample t-test, 1000 random permutations were 30 

drawn. On the source level, content specific phase was assessed for the frequency of 8Hz. Again, the 31 

ITPC of arranged groups and the ITPC of shuffled groups were contrasted with a one sample t-test that 32 

was computed at every time point and every virtual sensor. Clusters were summed across neighboring 33 

sensors and time points in 1000 random permutations. To obtain time courses within the parieto-34 

occipital ROI, t-values were averaged across all virtual sensors within the ROI.  35 

Content specific phase similarity between encoding and retrieval 36 

Based on previous results 2, statistical testing for content specific reactivation was done for the 37 

frequency of 8 Hz, restricted to an occipito-parietal region of interest (ROI) derived from the AAL atlas 38 
41. Averaged similarity values of encoding-retrieval combinations were contrasted between 39 

combinations of same content and combinations of different content. This was done with a one-sample 40 

t-test on every virtual sensor within the ROI. Subsequently t-values were thresholded with a t-value 41 

corresponding to a one-sided alpha value of 0.05; clusters were built across neighboring virtual sensors. 42 
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Statistical testing was done again via 1000 random permutations using the Monte-Carlo method 1 

implemented in the fieldtrip toolbox 36 and treating each subject as the unit of observation. Cluster-2 

sums in the original contrast were compared to the distribution of cluster-sums under random label 3 

assignment in order to derive p-values. A series of post-hoc t-tests was done on every time-point at 4 

retrieval in order to estimate the contribution to the effect from encoding windows (see Supplementary 5 

Information, specifically Supplementary Figure 3a). 6 

Time courses of replay 7 

Time courses were obtained by averaging across the ROI, which allows for an unbiased investigation of 8 

the time-courses of reactivation (see Supplementary Information, specifically Supplementary Figure 9 

2a). Specifically, the cluster correction approach results in a biased noise-distribution within the cluster 10 

of significant reactivation. This renders the interpretation of its shape and any post-hoc analysis on 11 

sensors within the cluster problematic 46, see also 47. Since 86.46% of the t-values in the ROI were 12 

positive, we therefore decided to average across all virtual sensors within the anatomical ROI for the 13 

analyses of all time courses that were statistically tested.  14 

Likewise, similarity densities were computed on the averaged similarity values across all virtual sensors 15 

within the ROI. The cumulated similarity density distributions for 6 non-overlapping encoding-windows 16 

were obtained for every subject. Consequently, at every retrieval time-point a line could be fitted across 17 

6 values for every subject. The slope of that line was subsequently subjected to a two-sample t-test 18 

against 0 across all subjects. Data distribution of slope was assumed to be normal but not formally 19 

tested. Individual data points of slope are shown in Supplementary Figure 8.The resulting time-course 20 

of t-values across the whole retrieval time was finally subjected to a multiple comparisons correction 21 

by controlling the false discovery rate 25. To compare the speed of replay within scenes, to the overall 22 

speed, the average slope fitted across two windows each (windows within scenes) was statistically 23 

tested against the slope across all encoding windows with a series of one-tailed one-sample t-tests. T-24 

values were obtained again at every time point during retrieval and the false discovery rate was 25 

controlled in order to correct for multiple comparisons. To estimate at which time-points reinstatement 26 

could be detected best (Supplementary Information, Figure 2a), a series of one-tailed one-sample t-27 

tests was computed at every retrieval time point, between encoding-retrieval similarity of same content 28 

combinations and encoding-retrieval combinations of different content combinations (see 29 

Supplementary Information).  30 

Finally, the average similarity to all encoding time points was compared within the ROI, between trials 31 

in which an association from the first, second or third scene was recalled (Supplementary Information, 32 

Figure 2b). This was done with a repeated-measures ANOVA with the factor position and pairwise post-33 

hoc one-tailed one-sample t-tests. 34 

Oscillatory power  35 

Baseline corrected oscillatory power was contrasted on the sensor level with a series of one-sample t-36 

tests (see Supplementary Information). Multiple-comparison correction was realized with a cluster-37 

based Monte-Carlo permutation as implemented in the fieldtrip toolbox 36. 1000 permutations of 38 

contrast-labels were used; the clusters were formed from neighboring values below a threshold (see 39 

below). Neighboring values were derived across time from 0 to 4 seconds after the onset of the word-40 

cue, across frequency from 2 to 40 Hz and spatially across sensors. The threshold was the t-value which 41 
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corresponds to a threshold of alpha = 0.05 for a single sided test. The maximal cluster-sum of real data 1 

was then compared to the distribution of maximal cluster-sums under random permutations in order 2 

to derive a p-value. In order to find the most robust frequencies that showed oscillatory power 3 

decreases, a one-tailed t-test was computed for the average power difference across time (0 – 4s), 4 

sensors and frequencies. On the source level, baseline-corrected power at 8 Hz was averaged over time 5 

between 0 and 4 seconds and subjected to a one-sample t-test. Multiple comparison correction was 6 

addressed with the same cluster-based permutation approach; however, clusters were formed across 7 

neighboring virtual sensors.   8 
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Figure 1 Experimental design and behavioral results 1 

(a) During encoding subjects repeatedly saw one out of four video-episodes. In one of three scenes that 2 

comprise a video-episode, a word-cue appeared in the center of the screen. (b) In the distractor block 3 

participants identified either the bigger or the smaller one of 2 simple sums. (c) In the MEG experiment, 4 

participants saw the static word-cue during retrieval for 3.5 seconds, followed by a fixation cross for 5 

250ms - 750ms. Subsequently they first picked the scene-position in which they learned the association 6 

and then confirmed the correct video-episode. (d) In the cued-recall (CR) task of the behavioral 7 

experiment (left) 24 participants selected the correct scene position as quickly as possible during 8 

retrieval. In an associative-recognition (AR) control task (right) they decided whether the presented 9 

association (word superimposed on a screenshot) was intact or rearranged. In CR blocks, subjects were 10 

faster to recall an association that was learned in earlier scene-positions during encoding (bottom left). 11 

Importantly, in the control task, they performed the same encoding task and needed source memory 12 

for AR retrieval, however no modulation of reaction times was found. The y-axis denotes the difference 13 

to each participant’s average reaction time in the respective task. Spaghetti-plots show individual 14 

subjects. Boxplots are 25th and 75th percentile and the median; whiskers are maxima and minima, 15 

excluding outliers. Red dots within the boxplots depict the arithmetic mean. Significant differences are 16 

marked with a star and denote a significant one-tailed t23 = -1.870, p = 0.037, CI = [-∞ -10ms], Cohen’s 17 

d = 0.382 (left) and t23 = -2.767, p = 0.006, CI = [-∞ -67ms], Cohen’s d = 0.565 (right), n.s. denotes non-18 

significant in a post-hoc paired t-test comparison (ps > 0.199).  19 
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Figure 2: Reinstatement of oscillatory patterns from encoding 1 

(a) During encoding, the different video-episodes elicited content specific phase patterns. The left panel 2 

shows the averaged t-values (N = 23) across sensors in the cluster of significant content-specificity (i.e. 3 

t-values of PLV within groups of same content vs. groups of mixed content). Topographies in the middle 4 

are t-values within the same cluster (across time, frequency and space), averaged across time and 5 

across all frequencies (top) or only for 8 Hz (bottom). Both topographies show maximal values over 6 

occipital and parietal sensors. The right panel shows the average t-values across time on virtual sensors, 7 

within the temporo-spatial cluster of significant differences at 8Hz. Occipital and parietal sensors 8 

expressed the maximal t-values. (b) Occipito-parietal region of interest (ROI) that we used for statistical 9 

testing of content-specific reactivation. (c) Time course of content specific phase at 8 Hz during 10 

encoding, averaged across the ROI. Below, the sliding window approach is illustrated, in which all 11 

possible time windows from encoding were compared to each retrieval time window via phase 12 

coherence. Subsequently, combinations of same and different content combinations were contrasted. 13 

(d) Cluster of significant differences between content-specific reactivation for successfully remembered 14 

and forgotten associations (pcluster = 0.030).  15 
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Figure 3: Chronometry of memory replay 1 

(a) The 6 non-overlapping time windows from encoding illustrated next to a video-episode (left). The 2 

average (across 23 subjects) similarity densities to these windows are on the right. The blue bar denotes 3 

where replay was significantly slower within scenes (see e). (b) Cross correlations of similarity densities 4 

within this window show the adaptive pattern. The matrix shows the combination of windows that are 5 

correlated in each cell. The times in ms at which cross correlation is biggest are displayed in the color-6 

coded cells. In this, lags between windows within scenes are bigger than lags between windows across 7 

scenes (right, top); with strict forward replay, all scenes would be replayed in order (right, bottom). (c) 8 

Illustration of the cumulative similarity (CS) approach used to test replay-dynamics. If evidence for a 9 

window statistically precedes evidence for another during retrieval, its cumulated similarity is higher. 10 

Fitting a line through those subsequent encoding windows will therefore result in a negative slope. (d) 11 

Average slope of lines fit across all windows’ CS, for each subject and time point. Negative slope 12 

indicates that earlier encoding-windows have higher CS values and signify forward replay. The slope 13 

was tested against 0 with a series of two-sided t-tests. (e) Contrast of average slopes from the average 14 

fit across windows within scenes and a fit across all windows, supporting an adaptive replay framework. 15 

A series of one-sided t-tests was used to contrast the slope across participants at every time point. The 16 

horizontal blue bars in d and e indicate significance controlling the false discovery rate at a level of 5%.  17 
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Figure 4: Illustration of several replay speeds and their aggregation 1 

Temporal patterns from different time-windows during the video-episodes are reinstated during 2 

retrieval. The temporal patterns (colored according to the corresponding time window) signify replay 3 

at the same speed (no compression), yet overall the speed of replay is compressed. If replay can start 4 

from the boundaries in the video, the moments of replay for the second part of a scene will be 5 

substantially delayed relative to the start of the sub-scene (local compression). On the other hand, the 6 

replay of the beginning of a new scene does not have to start too long after the beginning of a previous 7 

scene, because replay can be initiated from this event boundary, because of skipping between 8 

boundaries. Replay patterns from single trials (t1, t2, t3, t4) will then aggregate such that patterns from 9 

the same scene are statistically further apart than patterns from different scenes (bottom row, color 10 

coded according to the time-window). The global compression level will be higher than expected from 11 

the local compression level within scenes and substantially higher than expected from temporal pattern 12 

reinstatement. Only such a dynamic replay framework that allows for skipping between patterns, can 13 

explain the observed result of various speeds within the replay interval (Figure 3). 14 
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