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Abstract

In this paper we consider the option value of the environment employing a stochastic general

equilibrium growth model. In our model, as in existing studies, because of irreversibility, the

environment has signi�cant real option value. However, unlike the existing literature, the value

of the environment is endogenously determined in our general equilibrium setting. In our

model, the elasticity of substitution between the environment and consumption not only has

quantitative e¤ects but also qualitative e¤ects on the option value of the environment and the

optimal allocation of land. We also show that the volatility of the exogenous shock process has

quantitatively signi�cant e¤ects on the size of the option value which has important implications

for the practical estimation of environmental option values.
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1 Introduction

Since one of the most important features of environmental economics is uncertainty and

irreversibility (Pindyck, 2007) the application of real options is well established in the literature;

to name a few, Arrow and Fisher (1974), Conrad (1997), Ulph and Ulph (1997), Bulte et al. (2002),

Kassar and Lasserre (2004), Morgan et al. (2008), and Leroux et al. (2009). We add to this literature

by investigating an optimal land conversion problem where reserved land (e.g., old growth forest) is

converted to agricultural land. We explicitly take into account the irreversibility of land conversion in

a simple stochastic growth model. The irreversibility of land conversion means that the government

can convert the reserved land into agricultural land but it cannot reverse the process. Furthermore,

due to stochastic technological growth, the future values of reserved land and agricultural land are

uncertain. Hence, naturally and inevitably, the option value of unconverted reserved land plays the

most important role in our analysis.

What is new in our study is that we investigate the real option in a general equilibrium framework.

The most relevant papers to ours are Conrad (1997), Bulte et al. (2002) and Leroux et al. (2009) all

of which analyze the option value of irreversible land conversion within a partial equilibrium setup.

The bene�t of constructing a general equilibrium model is that the (shadow) price of the reserved

land is endogenized. In partial equilibrium models, to determine the value of the reserved land it

is necessary to assume that the economic value of the service �ow from the reserved land is given

exogenously. In our model, by assuming that the exogenous shock emerges from the productivity of

agricultural land, and that the quality of (the service �ow from) the reserved land is unchanged, the

shadow price of the reserved land is determined within the model. More speci�cally, we argue that an

old forest that we see now is physically the same old forest a couple of centuries ago. What is really

di¤erent now from the past is us. That is, as the productivity of farmland (or general alternative land

use) improves, we become richer. And, as we become richer, we demand for more the environment

(income e¤ect). In other words, it is our way of perceiving the environment that generates the

changes in the shadow price of the environment. This is very di¤erent from, say, computers; the

value of computers has been changing rapidly, mainly because their quality has been indeed changing

rapidly. The assumption taken in the existing partial equilibrium framework treats the value of the

environment in a similar way to that of computers. Such a treatment can be preferable, for example,

when we are motivated by the developments of the technology specialized to extract the economic

values from the environment; on the contrary, what we try to capture is the change in the way of

evaluating the environment as people become richer.

There are additional reasons for employing a general equilibrium model in this context. First,

many decisions relating to environmental use are made at the national/regional level. Therefore,

the government should not ignore general equilibrium feedbacks when it makes a decision of this

kind. Second, we can exploit macroeconomic data and some technology concepts such as total factor

productivity (TFP) in our estimation of the exogenous stochastic process. The partial equilibrium

models typically estimate the value (or shadow price) of the environment as the exogenous stochastic

process by using a proxy. For example, Conrad (1997) estimates the trend and volatility parameters
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of the value of a forest as a geometric Brownian motion (GBM) by using the numbers of visitors to

the forest being examined. Bulte et al. (2002) also employ visitor numbers, in this case to Costa

Rica. As noted by Forsyth (2000), this approach can be valid as long as bene�ts are broadly de�ned.

In this paper, we use the TFP of the agricultural sector (agri-TFP) and TFP based on GDP (GDP-

TFP); the former is motivated by the fact that farmland is the most important reason to convert

reserved land, frequently forest, in many developing countries, while the latter is chosen because we

can interpret agricultural land as general land use other than the reserved environment, which is

perhaps more relevant to developed countries. Of course, although we refer to agricultural land in

our theoretical model we do not need to interpret this construct literally as farmland in our empirical

application.

In our model we show that the elasticity of substitution � between general consumption goods C

and the service �ow from the reserved land or environment R plays a key role not only quantitatively

but also qualitatively. More speci�cally, if preferences are elastic (� > 1), then as society become

richer, the optimal R decreases, while it increases if inelastic (� < 1). That is, the ultimate fate

of the environment hinges on whether � is above or below 1. The key intuition behind this is

that � represents the �exibility of the societal preferences in terms of the consumption-environment

choice. In our model, the production of C requires farm land A as an input and its productivity

W grows stochastically. On the one hand, the improvement of farmland productivity directly makes

the conversion of R into A more attractive. On the other it also makes people richer, stimulating

the demand for R. Intuitively, if people are �exible (� > 1), the reduction of the service �ow from

R is not very painful, since it can easily be compensated by additional C. Hence, the government

optimally chooses more production of C by converting R into A. However, if preferences are not

�exible (� < 1), the demand mix of C and R does not change very much. Since the demand for C

does not increase very much as W improves, less A is necessary. In sum, while the shadow price of

R always increases as W increases, the equilibrium level of R may increase or decrease, depending

whether people feel strongly that the environment is irreplaceable (� < 1) or not (� > 1). This is

essentially the same mechanism that generates Baumol�s curse (Baumol, 1967), in which the key is

the cost reduction e¤ect of technological improvement. If the demand for a sector does not increase

rapidly enough, as the productivity increases, the labour input for a sector decreases. Alternatively,

we can frame this in terms of land use, the intensive margin (i.e., the productivity of W ) increases

stochastically, and if the demand for C does not increase rapidly enough the extensive margin (i.e.,

the land use for C) decreases.

The signi�cance of � qualitatively is also in operation even without irreversibility. Although we

examine � in depth because of its strong impact on the option value, its implication is more general.

Indeed, the importance of � is not a new �nding as it is well understood in the environmental literature

(eg, Lopez, 1994, Rowthorn and Brown, 1999, and Heal, 2009) In addition, to ensure that there is no

ambiguity in parameter interpretation that is caused by von Neumann and Morgenstern (vNM) type

expected utility theory, we employ Epstein-Zin-Weil recursive preferences, (See Epstein and Zin 1989

and Weil 1990. See also Smith and Son, 2005 for an application in environmental economics) which

are also known as generalized isoelastic preferences (GIE). Thus, in our model it is the elasticity of
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substitution between C and R, but not the elasticity of intertemporal substitution or the coe¢ cient

of relative risk aversion, that determines the fate of the environment.

Previewing our numerical results, we �nd that the e¤ects of the option value quantitatively

depends on the technology process. Speci�cally, the technology process has a small welfare e¤ect

when framed in relation to GDP-TFP, but its e¤ects can be much larger with agri-TFP. This is

simply because, as is often the case in many real option applications, the volatility of the stochastic

process (relative to its trend growth rate) is quantitatively important in the model. In fact, compared

to the trend growth rate, GDP-TFP exhibits relatively low levels of volatility while agri-TFP is much

more volatile. Therefore, given relatively small share of the agricultural sector in developed countries,

unless we assume some extreme parameter values, the option value of R is not very large. A similar

result has previously been noted in the literature by Bulte et al. (2002) and others. Other parameters,

such as the elasticity of intertemporal substitution � and the coe¢ cient of relative risk aversion 


also have signi�cant e¤ects on the model behavior, albeit to a lesser extent.

Another important result is that the extent of excessive land conversion can be fairly large even

under GDP-TFP if the government ignores the option value of R. But, the combination of a large

mistake in land allocation and a small welfare loss is due to the �at value function F with respect

to R. That is, a �at value function implies that a large change in R (�R which is a mistake in this

case) leads to only a small change in F (�F which is a welfare loss in this case), such that �F=�R

is small in absolute terms. Similarly, losing a small option value causes a small welfare loss (�F ,

since the value function is the sum of the non-option and option values), which is associated with a

large mistake in land use (�R). This implies that it is important to choose which measure is used to

evaluate the e¤ects of a land conversion in practical policy terms: welfare loss or the physical extent

of land conversion.

The plan of this paper is as follows. Section 2 introduces myopic and dynamic models and

solves them. The former is e¤ectively a static general equilibrium model without the irreversibility

constraint; we use this as a benchmark to evaluate our full dynamic model. Also, the myopic model

alone can illustrate how the value (shadow price) of the environment is endogenously determined and

how � a¤ects optimal land allocation. Section 3 presents and evaluates the numerical results of the

dynamic model. Section 4 provides further discussions and Section 5 concludes.

2 Model

This section establishes and solves the dynamic and myopic models. For the dynamic model we

explicitly analyze the irreversibility constraint of the reserved land R, while for the myopic model we

eliminate it. For the former, Section 2.4 obtains the fundamental partial di¤erential equation (PDE)

by applying Ito�s lemma (or the like) to the model, Section 2.5 �nds the value function by integrating

the fundamental PDE, and Section 2.7 calculates the barrier curve and the option value by using

the boundary conditions. In the text presented, we mostly discuss the intuition based on the simple

cases, because their analytical tractability delineates implications and model intuition more clearly.

Extensive mathematical derivations have been placed in a technical appendix at the end of the paper.
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2.1 Model Setup

We consider the optimal land conversion problem in a continuous time dynamic general

equilibrium setting with GIE preferences. Within this setup we assume that the government

maximizes the objective function (1) subject to constraints (2). That is,

value function : Ft (Wt; Rt) = lim
�t!0

max
�t

�
U
1�1=�
t �t+

1

1 + ��t
Et
�
F 1�
t+�t

� 1�1=�
1�


� 1
1�1=�

(1a)

where

�ow utility : Ut (Ct; Rt) =
�
C
1�1=�
t + �R

1�1=�
t

� 1
1�1=�

(1b)

subject to

total land available: 1 = At +Rt (2a)

agricultural production: Yt = WtAt (2b)

resource constraint: Yt = Ct + �Wtvt (2c)

technology growth: �Wt = ~�Wt�t+ ~�Wt�wt (2d)

land conversion rate: �At = ��Rt = �t�t � 0 (2e)

where �t is an in�nitesimally short time duration. The value function Ft is essentially the present

value (PV) of the representative household�s current and future �ow utility Ut with discount rate �;

here we formulate it in the recursive form. The government�s choice is the optimal land conversion rate

�t (1a). Ut is increasing in general consumption goods Ct and the service �ow from the environment

Rt (1b). Parameters � > 0, � > 0 and 
 > 0 are the elasticity of intratemporal substitution between

Ct and Rt, the elasticity of intertemporal substitution, and the coe¢ cient of relative risk aversion,

respectively. If � = 1=
, this GIE formulation reduces to the expected utility model of vNM. By

using GIE speci�cation we can disentangle � and 
, which are often regarded as economically di¤erent

objects. Note that � is the relative importance of the service �ow from Rt, and it also absorbs the

di¤erence in measurement units.

Without loss of generality, the total land mass is normalized to be one (2a), which can be used

as agricultural land At or as reserved environment Rt (e.g., old growth forest, conservation reserves,

etc.). Output Yt is produced by a linear technology (2b), in which the only production factor is At,

and its productivityWt follows a GBM (2d). The only source of uncertainty in our model is the shock

dwt to the technology, where ~� and ~� are the trend growth rate of Wt and its volatility, respectively.

Output is consumed or used as land conversion cost �Wtvt (2c), where we assume that the land

conversion cost is proportional to conversion rate �t and the marginal cost of land conversion �Wt is

linearly increasing in Wt, where � > 0 is a parameter.1

1Often, the land conversion cost (per unit production capacity of the farmland) is supposed to be increasing over
time because people start converting the most pro�table land (i.e., cheap conversion cost relative to its production
capacity) then gradually move to less pro�table land. Though we do not model this sort of land heterogeneity
explicitly, our assumption tries to capture this increasing marginal cost of land conversion. However, in our numerical
experiments, we set � = 0 since perhaps the conversion cost is anyway negligible (see Bulte et al. 2002 for this). This
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We assume that land conversion is an irreversible decision (2e); �dRt � 0 implies that the

government can reduce Rt but cannot increase it. We can restate this as �t � 0. It is known that,
since there is no upper bound for the conversion speed in our model, the optimal land conversion is

either (a) convert no land (�t = 0) if Rt < R� (Wt) or (b) jump2 immediately to optimal R� (Wt)

otherwise, where optimal land allocation R� (Wt) changes as technology changes, and hence it is a

function of Wt. Since curve R� (Wt) demarcates the state space into conversion and non-conversion

regions and the optimal locus "closely" follows R� (Wt), this type of optimal control problem is

referred to as barrier control.3 Preview Figure 3 to see how the barrier curve divide the state space.

2.2 Short Form

For simplicity, we substitute out several variables; the following short form notation is equivalent

to the above model (1) and (2). All derivations in this section are based on this formulation.

Ft = lim
�t!0

max
vt

(�
Zt (1�Rt � �vt)1�1=� + �R1�1=�t

� 1�1=�
1�1=�

�t+
1

1 + ��t
Et
�
F 1�
t+�t

� 1�1=�
1�


) 1
1�1=�

(3a)

�Zt = �Zt�t+ �Zt�wt (3b)

�At = ��Rt = vt�t � 0 (3c)

where � = (1� 1=�)
�
~�� ~�2=2�

�
, �2 = (1� 1=�)2 ~�2 and Zt = W

1�1=�
t . We always assume that

� < �, otherwise the value function Ft (Zt; Rt) explodes. The state variables in this formulation are

transformed technology Zt and reserved land Rt, and the only choice variable is �t. Since there is

a one-to-one relationship between technology Wt and its transformation Zt, as a function argument,

we use them interchangeably in generic functions; e.g., we use both Ft (Wt; Rt) and Ft (Zt; Rt).

In the special case where � = 1=
, it is obvious that (3a) reduces to vNM additively time separable

formulation. Recognizing that preference are invariant against any positive monotonic transform of

Ft, we de�ne Vt = F
1�1=�
t = (1� 1=�). Replacing �t with dt, (3a) can be rewritten as follows.

Vt (Zt; Rt) = max
vt

1

1� 1=�

Z 1

t

e��t
�
Zt (1�Rt � �vt)1�1=� + �R1�1=�t

� 1�1=�
1�1=�

dt (4a)

dZt = �Ztdt+ �Ztdwt (4b)

dAt = �dRt = vtdt � 0 (4c)

assumption is also necessary to facilitate the comparability between dynamic and myopic models.
2To be precise, Rt does not jump, if we de�ne jump as a discontinuous movement. The movement of Rt is continuous

but non-di¤erentiable. Its movement is non-di¤erentiable because it is too zigzag. In a sense, it exhibits successive
"twitches". This fact comes from our assumption that the stochastic term in GBM is a Wiener process. Knowing this,
we still (ab)use the word "jump" to depict such a continuous but zigzag movement in Rt.

3The real option models can be classi�ed into three types based on the way of exercising the option. For land
conversion models, Conrad (1997) assumes that all land must be converted from Rt to At at once; in his model, since
the possibility of partial land conversion is excluded, essentially it reduces to the optimal stopping model (i.e., only
the timing of the conversion matters). The other two allow the government to convert a portion of land; Leroux et al.
(2009) assumes that there is a maximum speed of land conversion, which is often called bang-bang model, while Rt
can jump to the optimal level immediately in Bulte et al. (2002), which is a barrier control model like ours. For the
latter, unlike the former, Rt jumps to the barrier curve, because there is no upper limit of the conversion speed.
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2.3 Myopic Case

First we consider the model without irreversibility. Since this speci�cation omits the irreversibility

constraint, we call this the myopic model. However, the solution to the myopic model per se is rational

within its framework. The myopic model provides a useful benchmark in evaluating the option value

of Rt, as the dynamic version inherits many of the properties from it. Importantly, the myopic version

reveals that (a) the shadow price of Rt is increasing in Wt, and (b) � determines the ultimate fate of

Rt, indicating that these two results hold even without option values being considered. Assuming no

conversion cost (� = 0), the myopic model becomes static (or a sequence of static models) such that

the optimization problem reduces to the maximization of the �ow utility Ut

max
R

�
C
1�1=�
t + �R

1�1=�
t

� 1
1�1=�

(5)

s.t. Ct = Wt (1�Rt) (6)

The solution is given by

Rm (Wt) =
��

W ��1
t + ��

(7)

Pt = �UR;t
UC;t

= �

�
Rm (Wt)

Ct

��1
�

= �

�
Rm (Wt)

Wt (1�Rm (Wt))

��1
�

= Wt (8)

where Rm (Wt) is the optimal choice under the myopic assumptions. We de�ne the shadow price Pt of

the environment to be the slope of the indi¤erence curve in equilibrium. Regardless of the parameter

values, Pt is increasing in Wt; indeed, Pt = Wt in this simple case. In contrast the optimal Rm (Wt)

can be both increasing and decreasing in Wt depending on �. That is, if � < 1 the optimal reserved

land increases as technology improves, such that at the limit t!1 all land is used as the reserved

environment. However, if � > 1, all land is converted into At. The broken lines in Figure 3 shows

the optimal land allocation for the myopic case.

2.4 Fundamental PDE

Here, we obtain the fundamental PDE from the model. In the vNM time separable case (4),

we can simply apply Ito�s lemma to obtain (9) i.e., if � = 1=
, the solution techniques employed

are in keeping with Dixit and Pindyck (1994). However, for GIE preferences (3), to obtain (9),

we follow Svensson (1989), which is shown in the Appendix. The application of his method within

environmental economics can be found in Epaulard and Pommeret (2003) and Smith and Son (2005)

for example.

Rede�ning the value function as V = F 1�1=�= (1� 1=�), we �nd the following fundamental PDE:

�V =
U1�1=�

1� 1=� + �VZZ +

��2

2
VZZZ

2 � VRv� (9)
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where the lower subscripts show partial derivatives; VZ = @V=@Z, VZZ = @2V=@Z2 and so on.4 To

obtain the fundamental PDE for the vNM formulation, simply let � = 1=
. Optimal conversion rate

v� can be zero or positive. Intuitively, �� is positive only if R is larger than the optimal level R� (Z).

In this case, the government �nds it optimal to change R to R� (Z) immediately. Similarly, it is zero

if the current R is smaller than R� (Z). In this case, the government has no choice other than keeping

the current level of R.

To further understanding we have �ve speci�c comments. First, since V is a monotonically

increasing transformation of F , preferences are invariant against this transformation.5 Second, the

role of 
 in our framework is to rescale the risk measure � and nothing more than that. This

immediately implies that 
 cannot cause any qualitative change, in the sense that we can always

reparameterize � to eliminate 
, although it can have quantitatively important implications, which

we will discuss later. Third, while � is objective risk which measures the standard deviation of the

technology shock as it is, we can interpret
p
�
� as the subjective risk measure, which captures the

idea that di¤erent people perceive one unit of risk di¤erently, depending on their risk tolerance 1=
.

Fourth, � also a¤ects the subjective risk measure. As Epaulard and Pommeret (2003) point out,

� also can be interpreted as a �uctuation aversion parameter. Subsequently we numerically show

that the role of � is both quantitatively and qualitatively quite similar to that of 
. Although �

also appears in the �rst term in (9), its e¤ects are small. Fifth, it is obvious that, for the vNM

formulation, there is no gap between objective and subjective risk measures.

2.5 Non-Conversion Region (v� = 0)

In the region where R < R� (Z), the government does not convert the land; v� = 0. In this region,

the PDE (9) is not really a PDE but an ordinary di¤erential equation (ODE). Using superscript 0 on

V 0 to indicate the value function that is de�ned in the non-conversion region, we can now re-express

equation (9) as:

�V 0 (Z;R) = �V 0ZZ +

��2

2
V 0ZZZ

2 +

�
Z (1�R)1�1=� + �R1�1=�

� 1�1=�
1�1=�

1� 1=� (10)

Solving (i.e., integrating) ODE (10), we obtain (11) below. It is quite easy to con�rm that (11a)

is indeed the solution to (10) by checking that the derivatives of V satisfy (10). Unfortunately, the

solution includes the nuisance integrals, though we can have a more simple solution form in the

special case with � = �. Indeed, when � = � (11b), the solution techniques employed below are

4From this point onward we drop time subscripts, such that all uppercase letters are time varying and lowercase
Greek letters are time invariant parameters. The only exceptions are choice variable � and Wiener process dw which
do not appear below.

5Note that, for �ow utility U , it is only increasing linear transformations that preserve the preference. Note that U
is included in the expectation operator, implying it is stochastic, while V (or equivalently F ) includes the expectation
which per se is non-stochastic.
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standard and in keeping with those explained in Dixit and Pindyck (1994, Ch11).

V 0 (Z;R) = B (R)Z� +G (Z;R) (11a)

= B (R)Z� +
Z

�� �
(1�R)1�1=�

1� 1=� +
�

�

R1�1=�

1� 1=� if � = � (11b)

where

G (Z;R) = G0 (Z;R)�G1 (Z;R)

G0 (Z;R) =
Z�0


��2a2

Z Z

�
~Z (1�R)1�1=� + �R1�1=�

� 1�1=�
1�1=�

~Z1+�0 (1� 1=�)
d ~Z

G1 (Z;R) =
Z�


��2a2

Z Z

�
~Z (1�R)1�1=� + �R1�1=�

� 1�1=�
1�1=�

~Z1+� (1� 1=�)
d ~Z

� = a1 + a2 > 1 and �0 = a1 � a2 < 0 with a1 =
1

2
� �


��2
and a2 =

r
a21 +

2�


��2

where ~Z and Z indicate that we take integral only with respect to the former. We can provide some

intuition regarding the above results.

First, in general, for this class of ODE (second order linear ODE), the characteristic polynomial

of (10) has two roots � and �0. One is greater than one and the other is negative. There are two

elementary solutions corresponding to them (Z� and Z�0), and the general solution is the linear

combination of these two elementary solutions and particular solution G. Also, to eliminate term

with Z�0, we have already used one boundary condition, which we discuss in Section 2.7.

Second, particular solution G can be interpreted as the value of land if the government does not

change the land allocation from the current combination. This is particularly clear if � = �, for which

the last two terms can be rewritten asZ 1

0

e��t

(
Z (t) (1�R)1�1=�

1� 1=�

)
dt =

1

�� �
(WA)1�1=�

1� 1=� =
1

�� �
C1�1=�

1� 1=� (12)Z 1

0

e��t
�
�
R1�1=�

1� 1=�

�
dt =

�

�

R1�1=�

1� 1=� (13)

These shows the PVs of A and R, given �xed A and R.6 Interestingly, without adding any special

assumptions, our model naturally has two di¤erent e¤ective discount rates: ��� for A and � for R.
We will discuss this further, in relation to environmental discounting in Section 4.

6This is the so-called discounted dividend model (DDM) in accounting. The PV of an eternal constant dividend
�ow D is Z 1

0

e��tDdt =
D

�

If the dividend grows at the rate of �, D (t) = e�tD where D = D (0) is the dividend at t = 0. Then, it follows thatZ 1

0

e��tD (t) dt =

Z 1

0

e��te�tDdt =

Z 1

0

e�(���)tDdt =
D

�� �
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Third, the remaining term B (R)Z� > 0 represents the value of future possible land conversion,

i.e., the option value. We will soon determine the functional form of B (R) by using free boundary

conditions, but for now it should be regarded as an anonymous function of R. Note, the option value

of future land conversion is zero in the conversion region, in which the government converts R (i.e.,

exercises the real option) immediately and hence the remaining option value is zero.

Fourth, related to the third point, remember that often option values are explained as follows;

"If a decision is irreversible and the situation is uncertain, even though the net present value of an

irreversible decision is positive, it may still be better to wait for the arrival of new information, rather

than making such an irreversible decision right now." This can be understood as follows in our case.

Suppose for a while there are only two possible choices R1 and R2 where R1 < R2. Choosing R2 is

keeping an option in the sense that it is still possible to move to R1 at some point in the future, while

choosing R1 is exercising an option in the sense that it is no longer possible to return back to R2. In

this case, even if the present value of having R1 forever is higher than that of having R2 forever (i.e.,

dif > 0 below), choosing R1 may still not be optimal.

dif =

(
Z

�� �
(1�R1)1�1=�

1� 1=� +
�

�

R
1�1=�
1

1� 1=�

)
�
(

Z

�� �
(1�R2)1�1=�

1� 1=� +
�

�

R
1�1=�
2

1� 1=�

)

This is precisely because of the di¤erence in the option values; B (R1)Z� < B (R2)Z�. That is, since

Z is stochastic, the government wants to wait for the arrival of new information about Z until the

dif becomes large enough to make sure that the optimal choice is moving to R1.

2.6 Conversion Region (�� > 0)

In the conversion region (R > R� (Z)), since R jumps to R� immediately, the total value of land

is the value of the optimal land allocation at the barrier curve R� (Z) minus the conversion cost

(measured in utility terms). By letting F 1 be the value function for the conversion region, we have

V 1 (Z;R) = V 0 (Z;R�)� Conversion Cost

= V 0 (Z;R�)� �
Z R�(Z)

R

�� (Z; dR) (14a)

= V 0 (Z;R�) + �Z

(
(1�R)1�1=�

1� 1=� � (1�R� (Z))
1�1=�

1� 1=�

)
if � = � (14b)

where ��� (Z;R) < 0 is the marginal value loss of land conversion, and �� (Z;R) satis�es

�� (Z;R) = �
�
Z (1�R)1�1=� + �R1�1=�

� 1=��1=�
1�1=�

Z (1�R)�1=� < 0 (15)

� (Z;R) =

�
Z (1�R)1�1=� + �R1�1=�

� 1�1=�
1�1=�

1� 1=� =
	(Z;R)

1�1=�
1�1=�

1� 1=� (16)
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Intuitively, �� (Z;R) is the derivative of �ow utility with respect to �; i.e., �� is the marginal utility

loss of land conversion cost. The total conversion cost is the integral of the marginal utility loss from

current R to optimal R� (Z).

2.7 Boundary Conditions

We now consider our boundary conditions. In general, each real option problem shares the same

or similar fundamental PDE as (9), but it is boundary conditions that characterize each of them. In

this model, we have �ve boundary conditions; among them, the main boundary conditions are three

free boundary conditions, which are imposed along the barrier curve R� (Z). The adjective "free"

implies that the position of the boundary (the barrier curve in this case) is determined endogenously.

We �rst explain the three free boundary conditions, and, after deriving key expressions from them,

we then discuss the other two boundary conditions.

[Figure 1: Boundary Conditions around here]

2.7.1 Free Boundary Conditions

There are three conditions imposed on the free boundary R� (Z):

� Boundary Condition 1: The level matching condition (LM) implies that the values of F 0 and
F 1 must be the same on the barrier curve. That is,

V 0 (Z;R�) = V
1 (Z;R�) (LM)

We have already used this to derive V 1. Obviously (14a) implies that the (LM) holds when

R = R� (Z).

� Boundary Condition 2: Following Dixit and Pindyck (1994), we use the value matching (VM)
condition to signify the �rst order optimality condition (with respect to �): 0 = V 0R (Z;R�) +

��� (Z;R�). Or equivalently,

BR (R�)Z
� +GR (Z;R�) = ���� (Z;R�) (VM)

BR (R�)Z
� � Z

�� � (1�R�)
�1=� +

�

�
R�1=�� = �Z (1�R�)�1=� if � = � (VM�)

Heuristically, the left hand side of (VM) shows the marginal gain of converting one more unit of R

to A and its right hand side shows the marginal cost of land conversion. If the government decides

to convert the land, the marginal bene�t must be equated to the marginal cost at the optimum (i.e.,

at R = R� (Z)). If the left hand side is greater than the right hand side, then more land should be

converted, and vice versa.

� Boundary Condition 3: The smooth pasting condition (SP) must also hold: 0 = F 0RZ (Z;R�) +

11



��Z (Z;R�), or

�BR (R�)Z
��1 +GRZ (Z;R�) = ����Z (Z;R�) (SP)

�BR (R�)Z
��1 � 1

�� � (1�R�)
�1=� = � (1�R�)�1=� if � = � (SP�)

This is the �rst derivative of (VM) with respect to Z. See Dixit and Pindyck (1994) for the intuition

behind the smooth pasting condition.

2.7.2 Barrier Curve R� (Z)

We now can obtain the barrier curve R� as a function of Z (or equivalently W ), by eliminating

the unknown function BR (R�) from (VM) and (SP). In general, we can only implicitly determine

R� as a solution to (17a), which can be solved only numerically.

0 = �GR (Z;R�)� ZGRZ (Z;R�) + � f��� (Z;R�)� Z��Z (Z;R�)g (17a)

0 = �
�R

�1=�
�

�
� (� � 1) Z (1�R�)

�1=�

�� � � � (� � 1)Z (1�R�)�1=� if � = � (17b)

But, if � = � (17b), we can express R� explicitly.

R� = R� (Z) =
��2

Z� + ��2
=

��2
W ��1 + ��2

if � = � (18)

where �2 =
�

� � 1
�=�
1

��� + �

�
=

�

� � 1
�� �
�

� > � if � = 0
�

To understand this result, consider the result when � = � and assume � = 0. First, compare (18)

with the myopic solution (7). The functional forms are clearly identical except for the di¤erence

between �2 and �. Hence, the qualitative nature of the barrier curve crucially hinges on � as the

myopic choice does (see Figure 3). Second, it can be shown that �2 > �, if � is small enough.7

Hence, if the government ignores the irreversibility constraint, it always converts too much reserve

into agricultural land; i.e., R� (Z) > Rm (Z) for any Z. Third, excessive land conversion R� �Rm is
larger when the ratio �2=� > 1 is larger. It is easy to show that, if � = 0, �2=� is a function of only

�=�2 and �=�2, and it is decreasing in both �=�2 and �=�2. That is, �2=� is larger if the volatility

� is larger relative to � and �. This con�rms our natural conjecture; i.e., gap R� � Rm is larger

when the technology is more volatile. Hence, it is not surprising that the option value tends to be

larger with more uncertainty. Although it is hard to show algebraically, our numerical examinations

demonstrate that these observations hold for the general case (17a) for reasonable parameter ranges.

7To show this exactly holds for � = 0, �rst apply l�Hospital�s rule to show �2 > 1 if � = � (�2 ! 1 as � = �!1),
and then show that �2 is increasing in �, given �. Note if � > � then a meaningful solution exists.
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2.7.3 Option Value B (R)Z�

To �nd the option value B (R)Z�, we �rst eliminate Z (R�) from (VM) and (SP) to obtain

BR (R�) (20a), where Z (R�) is the inverse function of R� (Z). An inverse exists because R� (Z) is

monotonic, indeed, if � = �, we can write it explicitly as Z (R�) = �2
�
1�R�
R�

�1=�
.

BR (R�) =
���� (Z (R�) ; R�)�GR (Z (R�) ; R�)

Z (R�)
�

(19a)

= �3
R

��1
�

�

(1�R�)
�
�

where �3 =
�=��2

� (� � 1) if � = � (19b)

Integrating this, we obtain B (R).

B (R) =

Z R

0

BR

�
~R
�
d ~R (20a)

= �3

Z R

0

~R
��1
�

(1� ~R)
�
�

d ~R if � = � (20b)

Again the integral is with respect to ~R, and a tilde is added to ~R to distinguish ~R from its end

value R.8 With this, the option value is pinned down if we specify state variables Z and R by using

B (R)Z�. Note that, as mentioned above, this result holds only in the non-conversion region. In

the conversion region (R > R� (Z)), the real option is exercised, and the remaining option value is

identically zero.

2.7.4 Additional Boundary Conditions

The two remaining boundary conditions are imposed along lines Z = 0 and R = 0.

� Boundary Condition 4: Due to the consideration at Z = 0, the integral constant on the negative
root �0 must be zero.

B0 (R) = 0 for any R (21)

A similar condition appears in most real option problems. First of all, remember that the general

solution is the linear combination of two elementary solutions and one particular solution: V 0 (Z;R)

= B (R)Z� +B0 (R)Z�0 +G (Z;R), where B (R) and B0 (R) are integral constants. Note that they

are constants with respect to Z (because (10) has the derivatives of Z only), and in general they may

not be constants with respect to R. Indeed, B (R) has been already obtained in (20a). For B0 (R), if

it is non-zero, since �0 < 0, term B0 (R)Z�0 dominates as Z ! 0. In this case, from (17), R� < Rm,

implying that the irreversibility leads to more land conversion, which is a contradiction.

� Boundary Condition 5: Along R = 0, we impose the condition that option value B (R)Z� is
8Note that, because B (R) is independent from Z, we can integrate BR( ~R) even if ~R is not on the barrier curve.

Obviously, BR( ~R (Z)) = BR (R� (Z 0)) as long as ~R (Z) = R� (Z 0) even if Z 6= Z 0. In a sense, what we do care about
here is only the shape of function BR (�).
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zero.

B (R) = 0 for R = 0 (22)

This is simply because, without land to be converted, there is no chance to exercise an option in the

future. This condition is used in (20), in which integration is between 0 and R. The starting value 0

of the integration (i.e., lower subscript on
R
) is determined by this zero option value condition.

3 Numerical Results

This section �rst shows the baseline case, where we extract some parameters from GDP-TFP. It

also shows the results with agri-TFP and the sensitivity of the quantitative results to the changes in

key parameters.

3.1 Parameter Selection

In our numerical exercise, we set the baseline parameter values as in Table 1. Our choice of value

for the discount rate 4% is guided by the macroeconomic literature. It must be close to the long-

run average of the risk-free short-term risk-free rate. Our choice is signi�cantly less than the value,

frequently 7%, employed in previous studies such as Bulte et al. (2002) and Leroux et al. (2009).

We will discuss this di¤erence further in Section 4.2, in relation to environmental discounting.

Trend technology growth rate ~� and its volatility ~� (standard deviation) are obtained from simple

estimations of Japan, U.K. and U.S. production function. The average estimates are ~� = 0:0117

(1:17% per annum) and ~� = 0:0112. We label this as GDP-TFP. As a sensitivity analysis, we show the

results with TFP growth rate of agricultural sector, since agricultural land use is perhaps the leading

reason for land conversion for many developing countries. For this, we employ data from Hu¤man

and Evenson�s (1993) yielding ~� = 0:0211 and ~� = 0:0604. We also note from the agricultural

productivity literature that many countries have annual TFP growth rates of approximately 2%

(e.g., Heady et al, 2010), although volatility is not typically reported. We call this Agri-TFP case.

We could also use the GDP growth rate and its volatility, instead of TFP, but the result does not

di¤er very much from the GDP-TFP case (this is perhaps because �2=� does not change very much).

As discussed above, intratemporal substitution � plays a crucial role in our model. Model

behaviour is qualitatively di¤erent between � > 1 and � < 1. Hence, our strategy is rather than

employing one precise parameter value, we show results for two values: 5:0 and 0:7. As we will

demonstrate, all parameters other than � only a¤ect model behaviour quantitatively.9

Next we consider the value of the elasticity of intertemporal substitution �. While there is a

consensus about the importance of this parameter in the literature the range of values reported is

wide. Indeed � = 1 is the key threshold for many economic properties (see Bansal and Yaron 2004, for

example). Most empirical research investigates � in relation to the sensitivity of consumption growth

(Ct+1=Ct) to the the change in the real interest rate, and they often �nd � < 1 (see Yogo 2004). In

9At this point, it is also worth noting that, in the partial equilibrium models of Bulte et al. (2002) and Leroux et
al. (2009), it is the agricultural returns to scale parameter that plays a similar role to our �.
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more structured models, such as dynamic general stochastic equilibrium models, researchers tend to

prefer (or estimate) � that is equal to 1 or somewhat greater than it. In contrast, for the coe¢ cient

of relative risk aversion 
, there seems to be a consensus in the literature that 
 > 1 is necessary to

mimic the observed equity premium and other stylized economic facts. In �nancial economic papers,

in which 
 and � are often disentangled under GIE preferences, it is common to have both 
 and

� greater than 1 (e.g., Bansal and Yaron 2004). We choose � = 2:0 and 
 = 4:0 as the baseline,

following Barro (2009). However, since it is interesting to investigate the cases with � < 1 and 
 < 1,

we show the results with � = 0:4 and 
 = 0:8 as part of our sensitivity analyses. We also show the

results with � = 6:0 and 
 = 12:0 in light of Mehra and Prescott (1985) who suggest in their seminal

paper that a reasonable value for 
 is 10 or less.

To allow for the relative importance of R in the �ow utility �, we simply assume that it is equal

to 1:0; i.e., �fty-�fty weights on C and R. Note that this choice of � is innocuous in the sense that

its value depends on the choice of the measurement unit of Z. Hence, changing � simply changes

the scale unit of the W axis in the following �gures (though in a non-linear way). In Section 4.3,

we discuss how to estimate � and �. Finally, we simply assume � (coe¢ cient on the marginal cost

of land conversion) is zero. There are three reasons why � = 0. First, it ensures the comparability

with the myopic case. Second, it is in keeping with the existing literature such as Bulte et al. (2002).

Third, we simply believe that conversion costs are negligible when modern technology is available.

3.2 Barrier Curve

Given our choice of parameter values, we are now able to plot the barrier curve. Due to the option

value of unconverted land, the optimal level of the reserved environment R� is always larger than

myopic Rm, as shown Figure 3. As discussed above, the ultimate fate of the reserved land crucially

depends on �; R� approaches to zero if � is above 1, while it approaches the maximum possible value

(1) if � is below 1. The horizontal gap between the solid and broken lines shows the mistake that

the government or society would make if it ignores the option value of R. This gap is larger with

agri-TFP than with GDP-TFP, simply because agri-TFP exhibits more volatile technology growth.

Note that, for GDP-TFP with � = 5:0, although visually Rm and R� are quite close, there is a sort

of optical illusion. In fact its horizontal gap is larger than with � = 0:7 (see Figure 6.).

[Figure 3: Barrier Curves around here]

If we evaluate the size of mistakes by examining the vertical gap between the solid and broken

lines, we obtain a further insight into the model. Consider the case with agri-TFP and � = 0:7, for

example. Suppose that R = 0:5 and read the solid line, which shows that it is optimal when W is

around 0:70; i.e., 0:5 = R� (0:70). Similarly, we can read the broken line, which shows R = 0:5 is

myopically optimal if W = 1:00; i.e., 0:5 = Rm (1:00). The vertical gap along line R = 5:0, i.e., the

di¤erence between 0:70 and 1:00, is very large, re�ecting the steep slope of the barrier curve. On

average, it takes 30:5 years for technology W to grow from 0:70 to 1:00.10 Hence, if the government
10Ignoring the volatility term ~�dw in (2d), to evaluate a vertical gap in terms of time, solve WT = W0e

~�T for T ;
i.e., T = ln (WT =W0) =~�, where W0 and WT are initial and end technology levels, respectively.
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mistakenly chooses R = 0:5 when W = 1, then we can say that such a choice was optimal more than

30 years ago. Similarly, for agri-TFP with � = 5:0, we can numerically show that 0:5 = R� (1:04)

and 0:5 = Rm (1:00), and the technology gap between 1:00 and 1:04 corresponds to 3:4 years, which

is not long because the barrier curve is �at in this case. Hence, if the government mistakenly chooses

R = 0:5 when W = 1:00, then it will be optimal within 4 years. Though we do not discuss the

vertical gap any further, this gives a hint to the question that "why does the government convert

the land to R� (W ) knowing that, if � < 1, such a R� will result in too much land conversion in the

future?". It is because, even if the government chooses R > R� (W ), it will be optimal only in the

very distant future.

3.3 Option Value

Figure 4 shows the option value of unconverted land R. Remember that the option value is zero

in the conversion region. It is always true that the option value tends to be larger near the barrier

curve, because future conversion is more likely. Also, the option value tends to be larger with � = 5:0

compared to the cases with � = 0:7.

Now suppose that an economy rests just to the left of the barrier curve. Since it is in the non-

conversion region, it has a positive option value. Given an upward trend of technology (~� > 0), with

a downward sloping barrier curve (� > 1) it is more likely to move from the non-conversion region to

the conversion region than with an upward sloping barrier curve (� < 1). In a similar vein, the slope

of the barrier curve is �atter with � = 5:0, which also increases the option value. Because of this,

the option value tends to be larger with very small � and very large.11 Thus, it takes its minimum

value of zero at � = 1. If � = 1, the barrier curve is vertical at R� = �= (�+ 1). In this case, there

is no option value since there is no chance for W , which causes vertical movements only, to push an

economy from the non-conversion region into the conversion region.

Not surprisingly, the option value is larger with agri-TFP because of its higher volatility. Together

with the barrier curve (Figure 3), we �nd that (i) the volatility of W is important and (ii) given

upward trend of W , the downward sloping barrier curve tends to generate a larger option value.

Finally, regardless of the value of �, the option value is small compared to the magnitude of the value

function. This can be understood by comparing the units of the z axis of Figures 4 and 5.

[Figure 4: Option Value around here]

3.4 Value Function

Figure 5 shows the shape of the value function over both conversion and non-conversion regions.12

In all cases, given W (i.e., along the direction of the R axis), the value function is quite �at, and it

11It may appear strange that we cannot have a large option value even if we set � very close to zero. However, this
slope e¤ect is rather small and secondary. Even if we set � = 0:25, the magnitude of the option value is much smaller
than with � = 5:0 (result not shown). Note that the condition that � > � is violated for � lower than 0:221:::; if other
parameters are set as in the baseline case, � = 0:25 is almost the lower bound for reliable computation.
12Under our standard formulation (1) or equivalently (3), V takes a negative values for � < 1 and vice versa, though

this does not have any meaningful implications.
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is �atter with � > 1 than � < 1. This property is inherited from the �ow utility, which also shows a

very �at shape with respect to R.

[Figure 5: Value Function around here]

Figure 6 shows the consumption equivalence of the welfare loss and the gap between Rm and R�.

For the latter, we can interpret the mistake that the government would make if it ignores the option

value of R. Such a gap is around 5% of the optimal R� even in the smallest case (i.e., GDP-TFP

with � = 0:7), and it can be 80% of R� (for agri-TFP with � = 0:5). However, the consumption

equivalent welfare loss, which is de�ned as a permanent exogenous consumption compensation that

is necessary to make up the welfare loss caused by choosing Rm, is negligible for GDP-TFP, though

it could be almost 3% for agri-TFP. This �nding that the welfare loss tends to be small is in keeping

with those previously reported by Alders et al. (1996) and Bulte et al. (2002).

There are a couple of points worth discussing. First, it is not surprisingly, the consumption

equivalent loss and the myopic mistake R� � Rm are both larger for agri-TFP than for GDP-TFP.
This is because the option value is larger when the technology is more volatile. Second, for both

technology types, for � = 5:0, we �nd the combination of small consumption equivalent loss and a

large mistake in the land allocation. This is because of the �at shape of the value function along the

R axis. That is, the �at value function implies that a large change in R is related to a small change

in F (value loss or gain), and vice versa. Such a tendency is not peculiar for � = 0:7, with which

the value function is less �at. Third, for both technology types, we �nd smaller welfare losses and

larger gaps R� � Rm for � = 5:0 than for � = 0:7. This is intuitively because � shows the �exibility
of preferences. If � is low, society is in�exible in consumption-environment choices ; i.e., for a certain

change in economic conditions, preferable combination of C and R do not change very much. In

the current context, even if society misperceives the irreversibility condition, their choice does not

change very much. However, the in�exibility leads to a large welfare loss, and society requires a large

compensation amount to make up the loss from the misallocation. We can say the opposite things for

� = 0:5. Note, a �at value function (or utility function) is often associated with �exible preferences

in general, and also it is partly because that the over-conversion of the land is not a simple waste of

resources but it also contributes, though not optimally, to the welfare through generating C.

[Figure 6: Equivalent Consumption Loss around here]

3.5 Sensitivity Analyses

Before discussing the details, note that the myopic barrier curve is not a¤ected by �, 
 or �,

because the myopic choice is e¤ectively static. Hence, the following changes in the gap between R�
and Rm and the welfare loss is caused by the change in R� and not in Rm.

[Figure 7: Sensitivity Analysis for � and 
 around here]

Figure 7 shows the e¤ect of changing � and 
 for the GDP-TFP case. Their e¤ects are more or

less similar. This is because they a¤ect the model behaviour mainly through subjective risk measure
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p
�
�, where � and 
 enter in the same way. Note that, as Epaulard and Pommeret (2003) point

out, � also shows "the aversion to �uctuations". For �, the e¤ect transmitted through the power on

the �ow utility seem to be minor for this parameter assumption. The e¤ects of 
 materialize only

through the subjective risk measure. The e¤ects of changing � is larger than those of 
 for � < 1,

and vice versa. For agri-TFP, we �nd similar results, but both consumption equivalence and the gap

R� �Rm are much more sensitive to the changes in � and 
 (�gure not shown).

[Figure 8: Sensitivity Analysis for � around here]

Figure 8 shows that, for lower �, horizontal gap R��Rm and consumption equivalent loss are both
larger, which implies that the option value is more important for lower �. The e¤ects of changing

the discount rate � appear mainly because it changes the value of R as an asset; i.e., the PV of the

future service �ow is higher with lower discount rate.13 Both are more sensitive for � = 0:7 than for

� = 5:0. This is perhaps because the expected life length of the unconverted land R is longer for

� = 0:7 (see the discussion in Section 3.2). One exception is that the consumption equivalent loss

for � = 5:0, for which higher � leads to more consumption equivalent loss (upper left panel). This

is perhaps because lower � also a¤ects the PV of the permanent consumption compensation. This

e¤ect is not strong, though it is always working. Indeed, in this case (i.e., upper left panel), the e¤ect

through R as an asset is overturned because the consumption equivalent loss takes extremely small

values (its peak is around 0:005% or less of actual consumption).14 These tendencies are unchanged

even for agri-TFP. In summary, we can say that � a¤ects model behaviour mainly by changing the

asset value of R.

Finally, with vNM preferences, in which we set 
 = 1=� = 0:5, the results are quite similar to the

case with 
 = 0:8.

3.6 Summary of Numerical Simulations

We summarize our �ndings as follows. First, intratemporal elasticity of substitution � between C

and R plays the most crucial role in our model. It changes the shape of the barrier curve, but it also

has quantitative e¤ects as well. Since the barrier curve is downward sloping for � < 1, where, given

an increasing trend of technology W , it is more likely that society will convert R in near future; i.e.,

graphically it is more likely to cross the barrier curve from below in Figure 3. Also, since it shows

the �exibility in consumption-environment choice, with a lower � (i.e., less �exible), the gap between

myopic Rm and the dynamically optimal R� tends to be smaller, but the welfare loss by ignoring the

option value of the reserved land tends to be larger.

Second, the e¤ect of changing � is often supposed to appear through the change in the value of

R as an asset. Basically, we �nd the same e¤ects, that is, a lower discount factor � increases the

13See footnote 6.
14Because of this, in the upper left panel of Figure 8, the lines show unnatural bumps; actually, each of them should

be a smooth bell-shaped curve. These bumps are simply due to the �nite approximation error of the method involved
here. In addition to this zoom-in e¤ect, the level of consumption for low W is also low, and hence by normalizing the
welfare loss such a small consumption the �nite approximation error is ampli�ed.
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optimal reserved land R� for all cases examined. In our analysis, however, its e¤ects, especially on

the welfare loss, are complicated and can be dependent onW . This complication for the consumption

equivalence loss is perhaps an artifact of measuring it as a permanent consumption compensation,

and its PV is also a¤ected by �.

Third, the e¤ects of increasing the elasticity of intertemporal substitution � and increasing the

coe¢ cient of relative risk aversion 
 are quite similar. As discussed above, � is also regarded as

a sort of "�uctuation aversion". The main channel of � and 
 a¤ecting the results is through the

subjective risk measure
p
�
�, for which x% change in � has exactly the same e¤ect as x% change

in 
. Certainly, while 
 a¤ects the model behaviour solely through
p
�
�, � also appears on the

shoulder of the �ow utility. However, the e¤ects of � through the latter seems to be very small. The

welfare loss and the mistake in land allocation become more sensitive to the change in � and 
 under

the assumption that the alternative land use is literally agricultural land, in which the volatility of

technology growth is large.

Fourth, setting aside �, the most important factor that quantitatively a¤ects the results is the

volatility of technology growth ~�, which is in line with most real option studies. In this analysis,

agri-TFP is examined as an alternative assumption to GDP-TFP. In our numerical exercises, we use

~� = 0:0604 for agri-TFP and ~� = 0:0112 for GDP-TFP. This means that subjective risk
p
�
� is

almost 5:4 times larger under agri-TFP than that under GDP-TFP. To achieve the same e¤ect by

changing 
 for example, we need to raise 
 by more than 29 times larger than baseline 
 = 4.15 This

means that we need 
 = 116, which is perhaps implausible. To avoid possible misunderstanding that

the square root on �
 is the reason behind this observation, which we believe is a super�cial issue, we

rephrase our �nding as follows; (i) we choose, as plausible upside alternatives, � = 12 following Mehra

and Prescott (1985) and ~� = 0:0604 using agri-TFP; and (ii) we �nd that the e¤ects of changing ~�

to 0:0604 has much larger e¤ects than changing � to 12.

Fifth, for GDP-TFP, even in the case with a large gap between R� and Rm, the welfare loss of

choosing Rm is quite small. Our value function is �at; i.e., it is insensitive to a change in R especially

for � = 5:0. Hence, a large mistake in R is related to a small value loss, and vice versa. This �nding

is more or less consistent with the existing real option analyses of land conversion. However, for agri-

TFP, the consumption equivalent loss can be as large as 1% for � = 0:7 and almost 3% for � = 5:0.

Since we measure the consumption equivalent loss in terms of permanent consumption subsidy, these

numbers are fairly signi�cant. However, these results are sensitive to the volatility assumption which

is also a typical �nding in the real option literature. All in all, if we evaluate the policy e¤ect by

the consumption equivalent loss, the policy implication can be sensitive to the assumption of the

volatility of W .

15It is calculated as 29:1::: = (0:0604=0:0117)2.
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4 Further Discussions

4.1 Initial State Dependence

It is interesting to investigate in more detail the dynamics of the barrier control model we have

developed. Consider the left panel of Figure 9. Suppose that an economy starts from somewhere in

the conversion region (north east of the barrier). Then, no sooner does the government �nd that it is

located in the conversion region, it jumps to R� horizontally. This means that if a positive shock hits

this economy, then it again jumps to R� horizontally. However, if a negative technology shock hits,

it will be pushed into the non-conversion region, and so no government action will be taken. That is,

a negative shock leads to no action, while a positive shock yields a horizontal jump. This results in

a zigzag movement along the barrier curve, which is the reason why this type of dynamics is called

barrier control. Note that, since, whatever the starting point is, all economies will be on the barrier

curve in the end, there is little initial state dependence.

[Figure 9: Barrier Control Dynamics around here]

However, an interesting outcome occurs for � < 1. In this case, once an economy is pushed a

long way into the non-conversion region, since a technology is increasing on average, it is likely to

stay in that region forever. Of course, it is also possible that the economy is hit by a large negative

shock and moves to left, but such a possibility is low. To be more precise, it is known that the drift

term ~�dt dominates the stochastic term ~�dw in (2d) in the long run. Hence, once an economy is a

long way inside the non-conversion region, it will not come back to the conversion region again. This

dominance of the drift term over the stochastic term has previously been noted in the environmental

economic option value literature (e.g., Bulte et al., 2002), albeit in relation to environmental values

as opposed to technology shocks.

One important implication of this behaviour is that an upward sloping barrier curve exhibits

strong initial state dependence, which is often regarded as something theoretically undesirable. For

example, with initial state dependence for any starting point at the initial date, we can always ask

ourselves what happened one day before the initial date. This type of question is not important if

the dynamics are not dependent on the initial state. This is somewhat troublesome because, on the

one hand, we �nd anecdotal support for a very low elasticity, but, on the other hand, having � < 1

causes this initial value dependence problem.

4.2 Environmental Discounting

If � = � (11b), as already noted, (12) and (13) exhibit di¤erent (e¤ective) discount rates for A and

R as assets. That is, the e¤ective discount rate for A (or the sequence of consumption �ow C from it)

is ���, while that for R is � in our model. Note that since � can be negative or positive depending
on �, ��� can be larger or smaller than �. This result is strongly related to Gollier (2010). Although
we cannot directly apply his propositions to our model mainly because we endogenize the shadow

price of the environment, the several results in his paper reveal the importance of the curvature
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parameters such as � in determining the relative size of the e¤ective discount rates for R and for C.

Like Gollier (2010), the dual discount rates in our model do not require any particular assumptions

and they appear even without irreversibility.

In this relation, remember that our model assumes that physically the quality of the environment

does not change over time, while the production cost of C decreases as the productivity of A improves.

Hence, only the e¤ective discount rate for C (or A) is a¤ected by �. If instead the economic value

of the environment changes exogenously, because of the same reason, the e¤ective discount rate for

the environment can be higher or lower than deep parameter �. This means that, for example, if a

model does not take into account the technology growth of alternative land use A, the discount rate

for C should be chosen to make the numerical results empirically relevant. As such, our parameter

assumption does not really contradict that of Leroux et al. (2009) and Bulte et al. (2002). While

we assume there is no exogenous change in the value of R, they do not take into account the e¤ect

of the technology change in the alternative land use.

4.3 Empirical Implication

In the parameter selection, instead of pinning down the best guess of �, given its importance, we

employed two possible values for �, greater and smaller than 1. Although most existing researches

explicitly investigate the elasticity of substitution on the production side, it is a common observation

that � is important in the fate of the environment even outside the real option literature. From the

derivation process of our theoretical model, we �nd two (at least potentially) estimable equations for

�. The �rst equation is given by (8).

Myopic: lnP = ln�� 1
�
(lnR� lnC) (23)

This equation holds in the context that the irreversibility is, if not irrelevant, negligible. Regressing

the log of the shadow price of R on lnR� lnC, we can obtain the estimates of ln� and 1=�. In this
equation, we de�ne the shadow price P of the environment as the value of consumption compensation

required to accept for the temporary reduction of (the service �ow from) environment R. It is for the

temporary reduction of R, because the irreversibility of R is negligible. We do not worry about the

di¤erence in measurement units, since � absorbs it.

The second means by which we might estimate � is derived mainly from the value function (17b)

and optimality condition (17b), where we assume � = �. See Appendix A.4 for the derivation and

some additional remarks. It is useful, when the irreversibility constraint is under consideration.

Dynamic: lnP =
�
ln�+ ln

1

�
+ ln

�

� � 1

�
� 1
�
(lnR� lnC) (24)

In this case, the constant term is the mixture of many parameters, but, since we can calculate � from

�, ~� and ~�, all parameters are identi�able, provided that ~�, ~� and � are already estimated or known.

For (24), we de�ne the shadow price as the value of a one-o¤ consumption compensation to accept a

one unit of permanent reduction in R. It is for the permanent reduction of R, because R is assumed
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be irreversible.

Interestingly, the coe¢ cient on lnR�lnC is the same for the both, and the di¤erence emerges from
the constant term. Intuitively, ln 1=� represents the di¤erence between temporary and permanent

reductions of R. Since we assume � = 0:04, the present value of a one unit permanent reduction of R

is larger than that of a temporary reduction by a factor of 1=� = 25.16 In addition, the option value

of R increases the shadow price of R by �= (� � 1) > 1. As is clear in Table 2, 1=� accounts the

most of the di¤erence between (23) and (24). For � = 5:0 with agri-TFP, however, the option value

increases the shadow price P by almost 140%, which is signi�cant, although its e¤ect is negligible

for � = 0:7 with GDP-TFP.

The obvious problem with this approach is that shadow price P is usually unobservable. However,

we could employ non-market valuation methods to evaluate P . If such evaluation is available, say,

by conducting a stated preference survey, then we can estimate either (23) or (24), depending on

the context. For example, if individual level data in one region is available over a number of years,

assuming that individual characteristics appear only in � (i.e., assuming that all individuals share a

common �), the following panel estimation may be implantable.

lnPit = ln�it �
1

�
(lnRt � lnCit)

�it = � (Xit) where Xit includes any individual characteristics, etc.

A problem with this proposal is that there are very few stated preferences studies that explicitly take

account of temporal changes in value. In a survey of the literature Skourtos et al. (2010) identify one

which examines the temporal reliability of stated preference estimates. However, in principle with

the development of stated preference databases there is potential for the use of some form of meta

analysis to reveal the shadow price P . Another caveat of this approach is that both (23) and (24) are

derived at the societal (or government) level and not for individuals (see Appendix A.4 for details).

However, we believe these equations are good proxies for individual environmental pricing. Finally,

setting aside the option value of the environment,17 as many researchers observe, the elasticity of

substitution between reproductive goods and environmental goods plays a key role in many areas

of environmental economics. Thus, the empirical approaches identi�ed here, that emerge from our

model, may well be worth pursuing as a means to estimate � in the future.

16See footnote 6.
17In our another on-going research, we �nd that, in a wide class of models, � is again the key to determine whether

the environmental degradation progresses or not for an economy rich enough. At the same time, however, we also
�nd that the threshold of � is not necessarily to be 1. For example, if we have capital accumulation in the model,
the plausible threshold value for a �ow pollutant is not far from 2 for a reasonable parameter set (especially for the
reasonable assumption of the depreciation rate of capital). The threshold is 1 when (i) all output is consumed (there are
no other demand components such as investment in the market clearing condition) and (ii) the production technology
is Hicksian neutral, both of which hold in the model of this paper, but it seems to be a lower bound of reasonable
range of the threshold for �.
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5 Conclusion

In this paper, we consider the option value of the environment based on a simple general

equilibrium growth model with stochastic technology shock. As in existing environmental option

value studies, the environment can in principle have a signi�cant real option value in our model

because of its irreversibility. However, unlike the existing literature in which the uncertainty of

the value of the environment is given exogenously, the value of the environment is endogenously

determined in our general equilibrium setting. Since we have assumed that the environment is in

limited supply, as society becomes richer, the relative (shadow) price of the environment increases,

which is the mechanism of the change in the economic value of the environment in our model. This

is consistent with the observation that people living in rich countries are more eager to conserve the

environment than those in developing countries. In our model the quality (or productivity) of the

environment per se is physically unchanged.

As found in many papers in environmental economics, the most crucial parameter in our model

is the elasticity of substitution � between consumption and the service �ow from the environment.

The value of the environment is mainly dependent on how easily the environment can be substituted

by consumption in society�s consumption-environment choice. We have shown that by changing � we

can signi�cantly alter model behaviour not only quantitatively but also qualitatively. That is, when

� < 1, the optimal amount of the environment is increasing over time as people becomes richer, and

vice versa. This result is not dependent on the irreversibility of the environment and hence appears

to hold in a wide class of economic models, and we o¤er some potentially estimable equations as

by-products of our derivation process.

With the irreversibility constraint on the land conversion imposed, other parameters such as

intertemporal substitution � and coe¢ cient of relative risk aversion 
 can have quantitatively

important e¤ects. Under our model formulation, the e¤ects of � and 
 are quite similar, because their

e¤ects appear mainly through the subjective risk measure
p
�
�: Employing GIE preferences, it is

possible to have 
 6= 1=�, and hence the subjective risk measure can be di¤erent from the objective

risk measure �. We �nd that as � and 
 increase, the option value becomes larger. However, in our

model, trend technology growth ~� and its volatility ~� seem to have more quantitatively signi�cant

impacts on the option value and welfare. More speci�cally, comparing GDP and agricultural sector

TFPs, we �nd that the excessive land conversion and welfare loss are both larger, when the trend

technology growth ~� and its volatility ~� are taken from the agricultural sector, since agricultural

TFP is much more volatile in than that of the whole economy.

In terms of policy implications, we �nd that, depending on the parameter assumptions, a huge

proportion of the environment can be mistakenly converted, if the option value of the reserved

environment is ignored. For example, if we assume that the main alternative use of the environment

is agricultural land, given large uncertainty in agricultural TFP, the area of mistakenly converted

reserved land can be around 75% of the optimal reserved land if � = 5:0. However, if we measure

the policy e¤ect by consumption equivalent loss, its magnitude sharply depends on the level of

uncertainty. Speci�cally, the welfare loss is almost negligible if we adopt GDP based TFP as the
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productivity shock to A, while it is much larger if we use agricultural TFP. The welfare loss is also

dependent on the �exibility of the preference. If the preference is in�exible (� < 1), people feel

strong pain when the government converts the environment excessively. Thus, when drawing policy

implications, we need to be careful in choosing the preferred policy evaluation measure and these

measures are sensitive to the parameter assumptions, especially those relating to ~a, ~� and �.
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A Appendix

A.1 Fundamental PDE for GIE

This subsection derives the fundamental PDE for GIE preferences (3a) by using Svensson�s (1989)

method. First, expand F 1�
t+�t in (3a) around F
1�

t . Note that this is analogous to a Taylor expansion

and the higher order terms vanish in expectation (so we omit them).

F 1�
t+�t = F 1�
t + (1� 
)F�
t FZ;tZt (��t+ ��wt) + (1� 
)F�
t FR;t�Rt

�
 (1� 
)F�
�1t

FZZ;t
2
Z2t (��wt)

2

where FZ;t = @Ft=@Zt and so on. Substituting this back into (3a) and rearranging it, we �nd

lim
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1
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where lim�t!0 o (�t) = 0. Note that (i) Et [�w2t ] = �t and (ii) (1 + ��t)

1=(1�1=�) = 1
1�1=� (1 + ��t)+

o (�t). Then, subtracting 1= (1� 1=�) from the both sides, dividing the both sides by �t= (1� 1=�),
and taking the limit, we obtain

� = max
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Let Vt = F
1�1=�
t = (1� 1=�). Then,

VZ;t =

�
1� 1

�

�
Vt
FZ;t
Ft

; VZZ;t = �
1

�

�
1� 1

�

�
Vt
FZZ;t
F 2t

; VR;t =

�
1� 1

�

�
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FR;t
Ft

Hence, letting � be its optimal value ��, we obtain (9) in the main text:

�Vt =
U
1�1=�
t

1� 1=� + �VZ;tZt +

��2

2
VZZ;tZ

2
t � VRv�;t

Note that, anticipating this transform from Ft to Vt, instead of (3a), often the value function is

equivalently formulated as
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Vt = lim
�t!0

max
vt

�
Zt (1�Rt � �vt)1�1=� + �R1�1=�t
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�Zt = �Zt�t+ �Zt�wt

�At = ��Rt = vt�t � 0

A.2 Computation Tips

The computation is not trivial mainly because (a) some numerical integrals require a function

solver in each step (see (20a)) and (b) they also include the power with � and �0 which can be very

large numbers. Here, we mainly discuss how to reduce the implementation of numerical integrals.

Also, we show the special case, in which further analytical solution is available. For other techniques

such as non-equidistant grids, readers can examine our Matlab codes which can be provided on

request. Below, equation numbers with ".m" show the names of function m-�les used in our Matlab

codes.

A.2.1 Key Derivatives

This section summarizes the key notations and their derivatives. Note that the derivatives of G1

can be obtained by replacing �0 with � in those of G
1.

V 0 (Z;R) = B (R)Z� +G (Z;R)
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A.2.2 Solving NonOption Value G When (1� 1=�) = (1� 1=�) = 1; 2; � � �

We can explicitly solve the integral in G (Z;R) not only for � = � but also for the case

where n = (1� 1=�) = (1� 1=�) is a natural number (i.e., n = 1; 2; � � � ), which is equivalently
� = 1=(1 � n(1 � 1=�)). This result is useful for the debugging purpose. We show the result

only, because it is easy to verify it.

G (Z;R) =
1

1� 1=�

nX
k=0

�
n
k

� �
Z (1�R)1�1=�

�n�k �
�R1�1=�

�k
�� (n� k)

�
�� 1�n+k

2

��2

�
=

�2

��2

1

1� 1=�

nX
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k
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Z (1�R)1�1=�
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(n� k � �0) (n� k � �)

(NoOpValN.m)

G0 (Z;R) =
1


��2a2 (1� 1=�)

nX
k=0

�
n
k

� �
Z (1�R)1�1=�

�n�k �
�R1�1=�

�k
(n� k � �0)

A.2.3 Solving (17a) Further for R�

It is easy to obtain (17a) from ��(VM)�Z�(SP). Hence, for each Z,

0 = �GR (Z;R�)� ZGRZ (Z;R�) + � f��� (Z;R�)� Z��Z (Z;R�)g

= 2a2G
0
R (Z;R�) + ��� (Z;R�)

(
� � nZ (1�R�)

1�1=� + �R
1�1=�
�

Z (1�R�)1�1=� + �R1�1=��

)
(OptRg.m)

where n = (1� 1=�) = (1� 1=�), which is not necessarily a natural number in this case. For the
second line, note that (i) G0RZ and G

1
RZ have the same second term, implying

�GR � ZGRZ = �G0R � �G1R � �0G0R + �G1R = (� � �0)G0R = 2a2G0R

and (ii)
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If n = (1� 1=�) = (1� 1=�) is a natural number, for each Z, R� is such that
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This can be obtained by either 2a2G0R or �GR � ZGRZ .

A.2.4 Solving (19a) Further for Option Value

Let Z� = Z (R�). Using �G0R = �
2a2
��

n
� � nZ(1�R�)1�1=�+�R1�1=��

Z(1�R�)1�1=�+�R1�1=��

o
(see (OptRg.m)), (19a) can be

rewritten as:
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If n = (1� 1=�) = (1� 1=�) is a natural number, we can avoid the integral in the second term of

(19a).
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A.2.5 Consumption Equivalent Loss

In this version, to compute the consumption equivalent loss Ceq, we de�ne it as permanent

consumption that is given exogenously to make up the value loss caused if the government (or

society) mistakenly chooses R = Rm (not R = R�). Since Ceq is measured in percentage term, the

compensated consumption is C = W (1�R) (1 + Ceq). But, instead of computing Ceq directly, it
is e¢ cient to rede�ne technology as W c = W (1 + Ceq) so that C = W c (1 +R). From (1), it is

obvious that this rede�nition does not change the functional form of F , meaning that we do not need

recompute everything. In sum, we de�ne Ceq such that for each W

F (W c; Rm (W )) = F (W;R� (W )) where W c = W (1 + Ceq)

This implies that, in this version, we take into account the fact that Ceq changes the optimal response

by the government, meaning that the option value Z�B (R) is also a¤ected byCeq. Also, this de�nition

implies that the consumption compensation is given even after the myopic choice becomes optimal.

While unusal if a rational government ignores the option value, it is logically straightforward in

computation to assume that the mistake happens only once.
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A.3 Estimation of TFP

While we employ the numbers from Hu¤man and Evenson (1993) for agricultural TFP, because

we cannot �nd the growth rate of GDP-TFP and its volatility from the literature, we have estimated

TFP for Japan, U.K. and U.S. employing the Solow residuals approach. Assuming a Cobb-Douglas

aggregate production function, we can estimate TFP as something remaining after attributing the

GDP growth rate to the contributions of capital and labour .

dW

W
=
dY

Y
� �K

dK

K
� �L

dL

L

where W , K, L and Y are TFP, capital, labour and output, respectively. Parameters �K and �L
show capital and labour shares. Table 3 shows the estimates of TFP based on (a) OLS estimates

of �K and �L and (b) �xed �K and �L. In OLS estimates, constant returns to scale (CRS) is not

satis�ed for Japan and U.S., but imposing CRS as a restriction reduces estimation performance.

We limit ourselves to this simple estimation equation, because using more elaborated methods is

beyond our scope. Fixed factor shares are motivated by the idea of "calibration" that is popular in

macroeconomics. The average of the estimated trend growth rate of TFP ~� and its volatility ~� are

0:0117 and 0:0112 for OLS estimates and 0:0131 and 0:0129 for �xed factor shares calculation. We

adopt the average OLS estimates, but our model results change little if we employ the �xed factor

shares assumption (mainly because ~�=~�2 are very close to each other in the both cases).

[Table 3: TFP around here]

A.4 Derivation of (24)

Here we assume that � = �. We de�ne the price P of the environment as the amount of a one-time

consumption increase (�C0) to compensate the decrease in R forever (this decrease is permanent

due to the irreversibility assumption). Rewrite (11b) by using (12) and 13.

V 0 (R;Z) =
Z

�� �
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1� 1=� +B (R)Z
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@V 0
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= C

�1=�
0 = (W (1�R))�1=� = Z

�1
��1 (1�R)�1=�

We put time subscript on Ct to discriminate current consumption C0 from future consumption in the

integral. Note that all variables other than Ct show the current values; e.g., R = R0. From (SP�), at

optimum (i.e., R = R�),

BR (R)Z
� =

W

� (�� �) (W (1�R))�1=� = WC
�1=�
0

� (�� �)
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By the implicit function theorem, for a �xed level of the value function �V 0

P = � @
�V 0=@R

@ �V 0=@C0
=
�

�

�
R

C0

��1=�
+

W

� (�� �)

=
�

�

�
R

W (1�R)

��1=�
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1=�

�� �W

=

�
�=�2
�

+
1=�

�� �

�
W =

W

�� �

where (17) is used to derive the second line. Hence, eliminating W from the �rst line by using the

third line, we obtain:

P =
�

�

�
R

C0

��1=�
+
P

�
=

�

� � 1
�

�

�
R

C0

��1=�
Omitting time subscript on C, and taking the logarithm, we obtain (18):

lnP = ln�+ ln
�=�

� � 1 �
1

�
(lnR� lnC)

Our model suggests that the log of environmental price in this case must be higher than (23) by

ln �=�
��1 = ln (1=�) + ln (�= (� � 1)) > 0.
The price of R in terms of C derived in this subsection is a concept very close to the equivalent

consumption measure of the myopic loss in Figure 6. Unlike Figure 6, however, setting aside some

rather technical di¤erences, there are two major di¤erences. First, here we do not assume that lost

R is used as a production factor. This assumption is chosen to study the environmental pricing

by individuals, because presumably they do not take into account the bene�ts from converted land.

However, in Figure 6, even if society mistakenly converts too much R, such converted land is used for

production, which mitigates the loss in the value function. As a result, the price increases due to the

option value (�= (� � 1) in Table 2 are large especially for � = 5, while the equivalent consumption
loss for ignoring the option value is negligible in Figure 6. Second, unlike the consumption equivalent

loss, in which the consumption compensation is permanent; here, the consumption loss that an

individual is willing to give up to save one marginal unit of the environment is one time. Finally,

note that there is one caveat in using (24) and (23) for individual level data. That is, (24) is derived

under the assumption that R = R� for society, which may not be true for all individuals in society.

In other words, (24) and (23) are true only under the existence of aggregate utility, which, in general,

con�icts with the variations observed in individual level data. In this sense, they are most suitable

to time series data or cross country data, but obtaining such data is usually very costly.
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B Tables and Figures

Figure 1: Boundary Conditions.
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Figure 4: Option value B (R)Z�.
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Figure 9: Conceptual diagram to show the dynamics of barrier control model.
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Table 1: Deep Parameters
symbol baseline sensitivity analysis meaning
� 0:04 0:02=0:07 discount rate
~� 0:0117 0:0211 (agri-TFP) trend growth rate of W
~� 0:0112 0:0604 (agri-TFP) volatility of W growth
� 5:0=0:7 elasticity of substitution between C and R
� 2:0 6:0=0:4 elasticity of intertemporal substitution

 4:0 12:0=0:8 coe¢ cient of relative risk aversion
� 1:00 relative importance of service �ow of R
� 0:00 marginal cost of of land conversion

Table 2: Key Numbers in Base Line Simulation
� � � �2=� ln �=�

��1 1=� �
��1

GDP TFP � = 5:0 0:009 0:009 3:892 1:031 3:516 25:00 1:346
(~� = 0:0117, ~� = 0:0112) � = 0:7 �0:005 0:005 61:99 1:143 3:235 25:00 1:016

Agri TFP � = 5:0 0:017 0:048 1:718 1:401 4:092 25:00 2:394
(~� = 0:0211, ~� = 0:0604) � = 0:7 �0:008 0:026 6:319 1:423 3:391 25:00 1:188

Table 3: Estimation of Solow Residuals
OLS Fixed Factor Shares

JPN UK US JPN UK US
Constant A 0.0073 0.0144 0.0131 0.0134 0.0141 0.0114

std er 0.004 0.011 0.008 - - -
Capital 0.4024 0.3284 0.1444 0.35 0.35 0.35

std er 0.123 0.492 0.333 - - -
Labour 1.1818 0.7160 0.9653 0.65 0.65 0.65

std er 0.184 0.153 0.094 - - -
SD(e) B 0.0118 0.0130 0.0088 0.0153 0.0130 0.0104
R2 adj 0.792 0.516 0.822 - - -
Period 1980-09 1972-09 1970-09 1980-09 1972-09 1970-09

~� 0.0074 0.0145 0.0132 0.0135 0.0142 0.0115
~� 0.0118 0.0130 0.0088 0.0153 0.0130 0.0104

Notes: Data frequency is annual. "SD(e)" shows the standard deviation of residuals.
Our estimates are: ~� = A+B2=2 and ~� = B. See Reed and Clarke (1990).
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