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Abstract

This article presents a solution algorithm for linear rational expectation models

under imperfect information, in which some decisions are made based on smaller

information sets than others. In our solution representation, imperfect information

does not affect the coefficients on crawling variables, which implies that, if a perfect

information model exhibits saddle path stability, for example, the corresponding

imperfect information models also exhibit saddle-path stability. However, imper-

fect information can significantly alter the quantitative properties of a model.

Indeed, this article demonstrates that, with a predetermined wage contract, the

standard RBC model remarkably improves the correlation between labour produc-

tivity and output.

Keywords: Linear rational expectation models, Imperfect information
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1 Introduction

This article presents a solution algorithm for linear rational expectation models under

imperfect information. ”Imperfect information” in this article signifies that some de-

cisions are made before observing some shocks, while others are made after observing

them. For example, we can consider a variant of the standard RBC model, in which

households predetermine wage (and commit themselves to accommodating any labour

demand) before observing today’s productivity shock. In this variant, the equations

that define the equilibrium are the same as in the standard RBC model, except for the

information structure; i.e., the first order condition (FOC) with respect to labour supply

has an expectation operator.

Imperfect information is an interesting consideration for several reasons. First, im-

perfect information plays an important role in many important classes of models, such

as the sticky information model of Mankiw and Reis (2001). Second, researchers often

do not know a priori what information is available when each decision is made; hence,

they may want to estimate the information structure by parameterising it, or they may

want to experiment on a model under several patterns of information structure. It is

easy to implement such exercises with our algorithm; once structural equations under

the corresponding perfect information are obtained, then the additional input to the

algorithm is only the information structure in a model. Third, the obtained numerical

result may not be robust for a small change in information structure. Indeed, we show

a variant of the RBC model with a predetermined wage contract to demonstrate that

changing information structure remarkably improves the model performance in terms of

thecorrelation between labour productivity and output.

This article offers a set of easy-to-use Matlab codes to solve a general class of linear
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models under imperfect information.1 The solution method is an extension of the QZ

method by Sims (2002). The algorithm solves the system of linear difference equations

in the following form.

0 = Ẽt[Ayt+1 + Byt] + Cξt (1)

where A, B and C are proper coefficient matrices, and yt and ξt are the vectors of endoge-

nous and exogenous variables, respectively. Expectation operator Ẽt [ ] is non-standard

because the information set in each equation can differ from each other (imperfect in-

formation).

The algorithm provides the solution of a model in the form of

κt+1 = Hκt + Jξt,S

ϕt = Fκt + Gξt,S

ξt,S : =

(
ξT
t · · · ξT

t−S

)T

where κt and ϕt are the vectors of crawling and jump variables, respectively,2 and ξt−s

is the vector of innovations at time t − s, for s = 0, · · · , S, where S is such that the

minimum information set in the model includes all information up to time t − S − 1.

The superscript T indicates transposition, and hence ξτ,S is the vertical concatenation

1The codes and a manual for them are available at:

http://www.kent.ac.uk/economics/papers/papers07.html

2Crawling and jump variables are essentially the same concepts as predetermined and non-

predetermined variables in the literature. Indeed, they are interchangeable under perfect infor-

mation, which is a special case of imperfect information. However, the traditional terminologies

predetermined/non-predetermined could be misleading, in the sense that typical non-predetermined

variables such as consumption and wage can be already determined before the current period under

imperfect information.
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of {ξτ−s}S
s=0. H, J , F and G are the solution matrices provided by the algorithm.

It is important to note that the state variables in this solution are κt and ξt,S.

Imperfect information requires the expansion of the state space, but this can be done

either by expanding the innovation vector or by expanding the set of crawling variables;

i.e., the representation of state space is not necessarily unique. Our choice of state

variables works, intuitively because, if past innovations are recorded, we can recover the

past crawling variables and hence recover the information available in past periods.

By keeping the number of crawling variables unchanged, it can be shown that the

dynamic parts of the solution (i.e., H and F matrices) are the same as in the correspond-

ing perfect information model.3 Thus, it is clear that if the corresponding perfect model

is saddle-path stable (sunspot, explosive), then an imperfect information model is also

saddle-path stable (sunspot, explosive, respectively). That is to say, the information

structure does not alter the dynamic stability property. In this sense, we can say that

qualitatively an imperfect information model inherits key properties of the correspond-

ing perfect information model. However, quantitatively imperfect information can have

significant effects, as shown in Section 5.

Moreover, invariant H and F matrices imply that the direct effects of imperfect in-

formation on impulse response functions (IRFs) last for only S periods after an impulse.

In subsequent periods, IRFs follow essentially the same process as those in the perfect

information counterpart. More specifically, suppose that an endogenous variable at is

determined S periods in advance (observing κt−S and ξt−S). In this case, the IRFs are

directly affected by the information imperfection from time t to t + S − 1. At t + S,

3See Wang and Wen (2006). They point out that the dynamic parts under imperfect information

have the same roots as those under perfect information, which is a corollary to our result.
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however, the IRFs show sudden jumps because at+S starts reacting to innovations at t.

Let κt+S be the values of the crawling variables at the beginning of t + S. Then, the

following IRFs exactly follow the same time path as those under perfect information

that starts with κt+S (without innovations). One such example can be found in Dupor

and Tsuruga (2005), who argue that the hump-shaped IRFs found in Mankiw and Reis

(2001) critically hinge on the assumption of the Calvo style information updating, in

which some agents, though their population decreases over time, cannot renew their

information forever. By instead constructing the Taylor style staggered information

renewal, Dupor and Tsuruga (2005) show that IRFs jump to zero right after the last

cohort renews its information set. We show, however, that such sudden jumps in IRFs

are rather common observations in imperfect information models.

There are, at least allegedly, three existing treatments of imperfect information.4 The

4There are three types of methods for perfect information models.

1. King and Watson’s method (1998 and 2002)(see also Woodford, undated) implements a two-stage

substitution. First, non-dynamic jump variables are substituted out, and then dynamic jump

variables are substituted out from the system of equations.

2. In the QZ method by Sims (2002) (see also Klein, 2000), the QZ decomposition is applied to

matrices on endogenous variables. Recognising that (1) roots that correspond to non-dynamic

jump variables are infinite, and (2) roots that correspond to dynamic jump variables are larger

than one in absolute terms, the transversality conditions (TVCs) eliminate both types of jump

variables at once.

3. The method of undetermined coefficients by Uhlig (1999) (see also Christiano, 1998) substitutes

a guess solution into the given system of equations; the resulting matrix polynomial is solved

directly. In principle, this method does not require that given equations are first-order difference

equations. Higher order matrix polynomials can be numerically solved (see Appendix).
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first remedy for imperfect information is to define the dummy variables.5 For example,

consider a variant of the standard RBC model, in which labour supply Lt is determined

without observing today’s innovations. Then, the optimal labour supply is determined

by

0 = Et−1 [ηLt + σCt − Wt] (2)

where Ct and Wt are consumption and wage at time t, η and σ are parameters provided

by the theory, and Et−1 [ ] is the expectation operator with all information up to time

t − 1. Define dummy variable L∗
t such that

0 = Et

[
ηL∗

t+1 + σCt+1 − Wt+1

]
Lt+1 = L∗

t

In this method, having additional crawling variable Lt, the set of crawling variables is

expanded. The problem with this method is that it cannot solve the model if some en-

dogenous variables are determined before observing some (not all) of today’s innovations

but after observing the others.

The second method developed by Wang and Wen (2006) is most closely related to

our method, in the sense that they also chose to expand expectation error instead of

crawling variables. Apart from the difference in the bases of the algorithm (they employ

the method of undetermined coefficients, while we use QZ method), however, there are

three major differences. First, our algorithm allows more flexible specification; with

our method, an endogenous variable can be determined observing some innovations but

not observing the others at t, while their method deals with lagged expectations like

5See Uhlig (1999) for example.
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the dummy variable method mentioned above. Second, our method only requires two

indicator matrices (see the next paragraph), which specifies whether each variable is

decided with or without observing each innovation, while they require researchers to

solve for their Λi and Γi matrices (i = 1, · · · , S). Third and most importantly, our

method reveals sharper analytical results (see footnote 3, for example).

The other possibility is a modification of the method of undetermined coefficients.

According to Christiano (1998), his version of method of undetermined coefficients, like

ours, can deal with models in which some endogenous variables are determined before

observing some (not all) of today’s innovations are observed but after observing the

others. The most salient difference between his method and ours is in the specification

of information structure; Christiano (1998) requires a user to provide only one matrix R

that specifies which innovations are to be included in the information set of each expec-

tation operator. Roughly speaking, his R relates equations to observable innovations.

In contrast, in the algorithm developed in this paper, a researcher must specify two

indicator matrices; one relates innovations to equations (like Christiano, 1998), and the

other relates innovations to variables. To understand why the latter matrix is necessary,

consider the above example (2). Certainly, it is clear that a researcher must specify

the information set of the expectation operator in (2). However, in a given information

set, there are generically three possibilities, namely that (a) the representative house-

hold fixes labour supply before observing some of today’s innovations, (b) it determines

wage before innovations (sticky wage), or (c) it decides consumption before innovations.

Hence, one more matrix is necessary in our algorithm to specify which of Ct, Wt or Ht

is chosen while not having full information. In general, the quantitative behaviour of a

model is completely different, depending on which variables are assumed to be decided

9



before observing some information. Indeed, Section 5 shows that the difference between

(a) and (b) is very crucial.

The plan of this article is as follows. In Section 2, we define the problem and derive

the solution, and show two key observations: (i) if the k-th time t variable yk,t is deter-

mined without observing the i-th time t− s innovations ξi,t−s, then yk,t cannot respond

to ξi,t−s; and (ii) if the expectation operator in the j-th equation has an information set

that includes ξi,t−s, then ξi,t−s cannot be the source of the expectation error in the j-th

equation. It turns out that these two restrictions are enough to determine the unique

solution coefficients. In Section 3, we discuss the assumptions that are necessary for

guaranteeing the existence of a solution. Each of them has some economic meaning, and

the existence condition is slightly tighter under imperfect information than under perfect

information. In Section 4, the main features of the solution of imperfect information

models are briefly discussed. Most of them are direct consequences of the invariant H

and F matrices. In Section 5, we demonstrate the effects of imperfect information on

the standard RBC model as an example. The final section concludes the discussion.

2 Derivation of the Solution

Essentially, our algorithm is an extension of the QZ method used in Sims (2002). Our

objective is to obtain the state space representation of a solution that satisfies two key

zero restrictions. For the details of matrix notation, see Appendix.

2.1 Definition of the Problem

This subsection defines the inputs and outputs of the algorithm.
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2.1.1 Given Models

Instead of using expectation operators like (1), following Sims (2002), we formulate the

linear rational models with expectation errors as follows.

0 = Ayt+1 + Byt + Cξt + Dξt+1 + Eξt,S (3)

where

yt =

 κt

ϕt

 , ξt,S =


ξt

...

ξt−S



E :=

[
E0 E1 · · · Es · · · ES

]

:=


E0,11 · · · E0,1N

...
. . .

...

E0,M1 · · · E0,MN

· · ·

Es,11 · · · Es,1N

...
. . .

...

Es,M1 · · · Es,MN

· · ·

ES−1,11 · · · ES,1N

...
. . .

...

ES−1,M1 · · · ES,MN


yt is the vector of all endogenous variables, in which κt is the vector of crawling variables

and ϕt is that of jump variables. Stock variables are all recorded at the beginning of

each period. M is the number of equations, which is equal to the number of endogenous

variables, N is the number of innovations, and S is such that the minimum information

set includes ξt−S−1.

ξt−s is a column vector of iid innovations at time t − s. Limiting ξt to be iid is not

restrictive since we can add the law of motions of serially correlated shocks to the system

of equations and treat the shocks themselves as crawling variables.6

Only two sets of inputs are required: (i) coefficient matrices A, B and C, which are

typically the same as in perfect information models; and (ii) indicator matrices IndE

6See Woodford (undated). This technique simplifies the algebra and computation significantly.
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and IndV (their elements are either zero or one).7 The size of IndE is the same as

that of E in (3), and, if the i, j-th element in E is zero, then the i, j-th element IndE

is also zero. Essentially, IndE specifies the information set in each equation in (3).

The size of IndV is the same as that of the vertical concatenation [JT GT ]T (see the

next subsection), and its zero elements represent variables that do not observe each

innovation. The value of the non-zero elements in J , G and E are computed by the

algorithm, while (the positions of) their zero elements are provided by a user.

2.1.2 Goal of the Algorithm

Our objective is to obtain the state space representation of (3).

κt+1 = Hκt + Jξt,S (4a)

ϕt = Fκt + Gξt,S (4b)

7See the manual for further details. Note that we do not explicitly mention these two indicator

matrix in the rest of this article.
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where

J : =

[
J0 J1 · · · Js · · · JS

]

: =


J0,11 · · · J0,1N

...
. . .

...

J0,Mκ1 · · · J0,MκN

· · ·

Js,11 · · · Js,1N

...
. . .

...

Js,Mκ1 · · · Js,MκN

· · ·

JS,11 · · · JS,1N

...
. . .

...

JS,Mκ1 · · · JS,MκN


G : =

[
G0 G1 · · · Gs · · · GS

]

: =


G0,11 · · · G0,1N

...
. . .

...

G0,Mϕ1 · · · G0,MϕN

· · ·

Gs,11 · · · Gs,1N

...
. . .

...

Gs,Mϕ1 · · · Gs,MϕN

· · ·

GS,11 · · · GS,1N

...
. . .

...

GS,Mϕ1 · · · GS,MϕN


2.2 Two Key Observations

This subsection shows two zero restrictions. The algorithm seeks the solution that

satisfies them.

2.2.1 Repeated Substitutions

To obtain the representation of κt+1 and ϕt as functions of κt−S and ξt−τ for τ =

0, · · · , 2S − 1, repeat the substitution of the vertically concatenated guess solution (4)

into itself. Defining Ȟ := [HT F T ]T , κt+1

ϕt

 = Ȟκt + Γ̃ξt,S = Ȟ

(
HSκt−S +

∑S
k=1 Hk−1Jξt−k,S

)
+ Γ̃ξt,S
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= ȞHSκt−S + (Γ0ξt−0 + Γ1ξt−1 + · · · + ΓSξt−S)

+Ȟ


H0 (J0ξt−1 + J1ξt−2 + · · · + JSξt−1−S)

+H1 (J0ξt−2 + J1ξt−3 + · · · + JSξt−2−S) + · · ·

+HS−1 (J0ξt−S + J1ξt−S−1 + · · · + JSξt−S−S)


= ȞHSκt−S + Π0ξt + Π1ξt−1 + · · · + Πsξt−s + · · · + ΠSξt−S

+ terms with ξt−τ for τ ≥ S + 1 (5)

where Γ̃ :=

[
Γ0 · · · Γs · · · ΓS

]
with Γs :=

[
JT

s GT
s

]T

, and

Π0 := Γ0 =

 J0

G0



Π1 := Γ1 +

 H

F

 J0 =

 J1 + HJ0

G1 + FJ0



Π2 := Γ2 +

 H

F

 (J1 + HJ0) =

 J2 + H (J1 + HJ0)

G2 + F (J1 + HJ0)

 , · · ·

Πs := Γs +

 H

F

(∑s−1

k=0
Hs−1−kJk

)
=

 Js + H
∑s−1

k=0 Hs−1−kJk

Gs + F
∑s−1

k=0 Hs−1−kJk

 , · · ·

ΠS := ΓS +

 H

F

(∑S−1

k=0
HS−1−kJk

)
=

 JS + H
∑S−1

k=0 HS−1−kJk

GS + F
∑S−1

k=0 HS−1−kJk


In the recursive representation,

Π0 = Γ0 =

 J0

G0


Πs = Γs + H̃Πs−1 for s = 1, · · · , S (6)

where

H̃ :=

 H 0

F 0


14



Intuitively, equation (5) shows that the j, k-th element of Πs is the effect of ξk,t−s (the

k-th innovation at time t − s) on yj,t (the j-th endogenous variable at time t). Thus,

given κt−S, Πs,jk, which is defined as the j, k-th element of Πs, is zero if yj,t is determined

without observing ξk,s.

In the matrix representation, (6) becomes

Γ = MΓΠΠ (7)

where

Γ : =

[
ΓT

0 · · · ΓT
s · · · ΓT

S

]T

(8a)

Π : =

[
ΠT

0 · · · ΠT
s · · · ΠT

S

]T

(8b)

MΓΠ : =



I 0

−H̃ I 0

. . . . . .

0 −H̃ I


(8c)

MΓΠ is clearly invertible, and plays a key role in the following.

2.2.2 Zero Restrictions

Throughout this paper, we exploit the following two observations.

1. If the k-th set of variables yk,t does not observe the i-th set of time t−s innovations

ξi,t−s, then ∂yk,t/∂ξt−s = Πs,ki = 0, given κt−S and ξt−τ for τ = s + 1, · · · . Simply

put, no decision can respond to unobserved innovations.

2. If the information set of the expectation operator in the j-th equation includes the

i-th time t−s innovation ξi,t−s, then the realization of the j-th equation must hold
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for any realisation of the i-th innovation. The expectation error in each expectation

operator occurs only due to innovations that are not included in its information

sets. Thus, Es,ji = 0.

For example, suppose that labour supply Lt (k-th variable, yk,t) is decided on before

observing today’s technology shock (i-th shock, ξi,t), but after today’s preference shock

(l-th shock, ξl,t), both of which are iid. If the FOC with respect to Lt is the j-th equation,

Π0,ki = 0 (ξi,t−0 does not affect yk,t)

E0,jl = 0 (ξl,t−0 does not cause expectation error in j-th eqn)

Roughly speaking, E0,jl = 0 means that if the expectation operator of the j-th equation

were eliminated from the j-th equation, it would still hold in terms of ξ0,l. It is the duty

of a user to specify the positions of these zero elements in Π and E (by providing IndV

and IndE).

2.3 Sketch of Derivation and Key Equations for Computation

The fully detailed derivation is provided in Appendix. This subsection briefly describes

the skeleton of the derivation and lists the minimum results necessary for computation.

2.3.1 QZ Decomposition

In order to introduce notations, this subsection briefly reviews the QZ decomposition (or

generalised Schur decomposition). For matrices A and B (∈ Cn×n), there exist unitary

matrices Q and Z such that

QHAZ = ΩA

QHBZ = ΩB
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where ΩA and ΩB are both upper triangular matrices, and superscript H indicates a

conjugate transpose. Any unitary matrix U satisfies UHU = UUH = I. Let akk and bkk

be the k-th diagonal elements in ΩA and ΩB, respectively. Assuming that akk and bkk

are not zero at the same time, then λk := bkk/akk for k = 1, · · · , n are the generalised

eigenvalues of the matrix pencil B − λkA.8

The basic idea is that, by applying the QZ decomposition to (3), the algorithm

separates unstable roots ut from stable roots st, as in Sims (2002).

0 = Ayt+1 + Byt + Cξt + Dξt+1 + Eξt,S

= ΩAZHyt+1 + ΩBZHyt + QHCξt + QHDξt+1 + QHEξt,S

=

 ΩA
ss ΩA

su

0 ΩA
uu


 st+1

ut+1

 +

 ΩB
ss ΩB

su

0 ΩB
uu


 st

ut



+

 QH
s.

QH
u.

Cξt +

 QH
s.

QH
u.

 Dξt+1 +

 QH
s.

QH
u.

Eξt,S

where  st

ut

 := ZH

 κt

ϕt


By using TVCs, the expected values of all unstable roots ut+1 are set to be equal to

zero.9

8The generalised eigenvalues have the properties similar to forward operators F ; xt+1 = Fxt.

9Remember that all innovations are assumed to be iid. Note also that, if the expectations of ut+1

must be zero under perfect information, they must be also zero under imperfect information. This

can be shown by simply applying the iterated linear projection. See Appendix for more deliberate

discussion.
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2.3.2 Notations for the Outputs of QZ Decomposition

For later use, we define submatrices as follows

ZH :=

 ZH
s.

ZH
u.

 :=

 ZH
sκ ZH

sϕ

ZH
uκ ZH

uϕ

 , Z :=

 Zκs Zκu

Zϕs Zϕu

 , QH :=

 QH
s.

QH
u.

 (9a)

ΩA :=

 ΩA
ss ΩA

su

0 ΩA
uu

 , ΩB :=

 ΩB
ss ΩB

su

0 ΩB
uu

 (9b)

where subscripts u and s imply unstable and stable roots, respectively. Note that ΩA
ss

and ΩB
uu are both invertible by construction.

Additionally, we define four matrices as

ΛA
sκ := ΩA

ssZ
H
sκ + ΩA

suZ
H
uκ (10a)

ΛA
sϕ := ΩA

ssZ
H
sϕ + ΩA

suZ
H
uϕ (10b)

ΛB
sκ := ΩB

ssZ
H
sκ + ΩB

suZ
H
uκ (10c)

ΛB
sϕ := ΩB

ssZ
H
sϕ + ΩB

suZ
H
uϕ (10d)

Note that all the matrices defined by (10) are obtained from the outputs of the QZ

decomposition.

2.3.3 Matrix Subscripts

We introduce the following notation rule for subscripts on matrices. For a matrix A,

• A.x is columns x of a matrix A,

• Ax. is rows x of a matrix A,

• A.¬x is the columns remaining after the elimination of columns x, and

• A¬x. is the rows remaining after the elimination of rows x,
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where x is the name of a set of columns or rows. This notation makes certain matrix

operations extremely simple. See Appendix for further details.

2.3.4 Zero Restrictions

As a result of manipulating the matrix equations, it is shown that

0 = Π + MΠE (E + C) (11)

MΠE : = (MyΓMΓΠ) \Q (12)

where

Γ : =


Γ0

...

ΓS−1

 , E :=


E0

...

ES−1

 , C :=

 C0

0

 , Q :=


Q 0

. . .

0 Q

(13a)

MyΓ : =



Φ Λ0A 0

. . .

Φ Λ0A

0 Φ


,

Φ :=

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 ,

Λ0A :=

 0 ΛA
sϕ

0 ΩA
uuZ

H
uϕ


(13b)

and X\Y = X−1Y . Our immediate objective is to find E and Π. Bear in mind that,

while MyΓ is computable solely from the outputs of the QZ decomposition, we can obtain

MΓΠ only after finding H and F (see equation (8c)).

Given MΓΠ, E and Π are computed column by column (i.e., innovation by innovation)

in (11). Because some elements in Π and E are zero due to the two zero restrictions, for
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the i-th column (or equivalently for the i-th innovation) of (11),

0 =



Π1,i

...

Πk,i (= 0)

...

ΠM(S+1),i


+ MΠE





0

...

Eji

...

0


+



C.i

0

...

...

0




(14)

where M in subscripts is the number of equations and hence M (S + 1) is the number

of rows in Π.

From the k-th set of equations in (14)

0 =

[
MΠE

]
kj

Eji +

[
MΠE

]
kj

Cji +

[
MΠE

]
k¬j

C¬ji (15)

which gives the values of the non-zero elements of E. From the remaining equations in

(14),

0 = Π¬ki +

[
MΠE

]
¬kj

Cji +

[
MΠE

]
¬k¬j

C¬ji

−
[

MΠE

]
¬kj

([
MΠE

]
kj

\
[

MΠE

]
k¬j

C¬ji + Cji

)
(16)

which gives the non-zero elements of Π.

Here we assume that [MΠE]kj is invertible, which, however, is not necessarily true in

general. The economic meaning of its invertibility is discussed in Section 3.

2.3.5 Solution

The solution algorithm computes key matrices sequentially. The basic structure is as

follows:

1. Obtain submatrices form the outputs of the QZ decomposition (9) and (10).
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2. Obtain H and F from (17).

3. Obtain MyΓ, MΓΠ and MΠE from (13b), (8c) and (12), respectively.

4. Obtain E and Π from (18) and (19).

5. Obtain G and J from (20).

H and F : As in Sims (2002), it turns out that the H and F matrices are derived

independently from the G and J matrices, based on the coefficient on κt−S in (5) (see

the Appendix for details). Therefore, they are exactly the same as in perfect information

models.

F = −ZH
uϕ\ZH

uκ = Zϕs/Zκs (17a)

H = −Zκs

(
ΩA

ss\ΩB
ss

)
/Zκs (17b)

E and Π: From (15) and (16), the non-zero elements of E and Π are

Eji = −
[

MΠE

]
kj

\
[

MΠE

]
k¬j

C¬ji − Cji (18)

Π¬ki = −
[

M−1
ΠE

]
¬j¬k

\C¬ji (19)

where MΠE can be obtained from (8c) and (13) with the solution of H and F . Note that

H and F can be computed without referring E, Π or MΠE. Since [MΠE]kj is assumed

to be invertible,
[
M−1

ΠE

]
¬j¬k

is also invertible.
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J and G: From the definition of Γ (8a),

Γ :=



J0

G0

...

JS

GS


= MΓΠΠ (20)

Note that, with H and F matrices, MΓΠ are recovered from (8c).

D: From a given economic model (3) it is obvious that

D = −A

 0

G0

 (21)

3 Assumptions

In this section, we discuss three assumptions. Assumptions 1 and 2 in the following are

the same as in the solution method for perfect information models, while Assumption 3

is specific to imperfect information models. This subsection omits discussion about the

Blanchard-Kahn condition, which is automatically satisfied by Assumption 1.

3.1 Assumption 1: ZH
uϕ is Invertible

Klein (2000) shows that this assumption is a generalisation of the condition derived in

Blanchard and Kahn (1980). Boyd and Dotsey (1990) makes it clear that the Blanchard-

Kahn condition, which counts and compares the numbers of unstable roots and jump

variables, is a necessary but not sufficient condition for the existence of a unique solution;

they provide a counter-example that satisfies the Blanchard-Kahn counting condition but

does not have a stable solution. Intuitively, an invertible ZH
uϕ means that we can always
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find the values of jump variables such that the expectation of ut+1 is a zero vector in

any states (TVCs). Heuristically, ZH
uϕ maps jump variables ϕt to unstable roots ut, and

its inverse maps ut to ϕt. See King and Watson (1998) for an intuitive exposition.

The existence of the right inverse of ZH
uϕ entails the existence of jump variables,

while the non-existence of its left inverse implies non-uniqueness of jump variables.10

Note that typically non-uniqueness causes sunspot equilibria.

3.2 Assumption 2: akk and bkk are Not Zero at the Same Time

If akk and bkk are zero at the same time, it implies that there exist row vectors X such

that 0 = Xξ; indeed, X is (a scaler multiple of) the k-th row of Q (see also Sims (2002)).

The existence of such row vectors generically implies either of the following:

(a) If Xξ is indeed zero, then some equations are not linearly independent of the

others. Essentially, there are fewer equations than endogenous variables. At least one

equation can be expressed as a linear combination of others, and such a linear combina-

tion is X.

(b) If Xξ is non-zero, clearly there is an internal contradiction. One such example is

a two-equation, two-variable non-dynamic model with no state variables:

ϕ1,t = αϕ2,t + ξt

ϕ1,t = αϕ2,t + ξt + ηt

Obviously, both do not hold at the same time for non-zero ηt. Since the QZ decomposi-

tion is merely a linear transformation, this implies that there is an internal inconsistency

in the original system of equations (3).

10See Uhlig (2000) for a treatment of non-uniqueness.
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3.3 Assumption 3: [MΠE]kj is Invertible

This condition is specific to imperfect information models, though it is analogous to the

equation (40) in Sims (2002).11 Intuitively, if it is not invertible, then the information

structure is not consistent. Note that the inverse of [MΠE]kj, if it exists, maps the

j-th set of expectation errors to the k-th set of innovations to which some endogenous

variables cannot respond. Hence, if the inverse of [MΠE]kj exists, then expectation errors

can equate both sides of the equations for any realisation of innovations.

A non-invertible [MΠE]kj appears in the following example. Suppose that all produc-

tion factors and all demand components are decided before observing today’s technology

shock. In this case, output varies depending on the realisation of technology, while de-

mand cannot respond to it. Thus, the goods market does not clear at any price. One

important lesson from this is that a researcher must construct consistent models; an

arbitrarily specified information structure may have internal inconsistencies.

4 Properties of the Solution

By construction, of course, any solution generated by the algorithm satisfies the following

two solution principles (two zero restrictions): that is, (i) if the k-th time t variable yk,t

is determined without observing the i-th time t − s innovations ξi,t−s, then yk,t cannot

respond to ξi,t−s (i.e., ∂yk,t/∂ξi,t−s = 0 given κt−S), and (ii) if the expectation operator in

the j-th equation has an information set that includes ξi,t−s, ξi,t−s cannot be the source

of the expectation error in the j-th equation. In addition, as mentioned in Introduction,

11Note, however, that Sims’ condition is related to time t+1 expectation errors, while our discussion

in the following is related to time τ expectation errors (τ < t).
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invariant dynamic parts, H and F matrices, imply that imperfect information models

inherit qualitative nature of the corresponding perfect information model: specifically,

(a) dynamic stability property is not affected by information structure, and (b) the direct

effect of imperfect information on IRFs lasts for only first S periods after an impulse,

and then IRFs show sudden jumps.

The rest of this section briefly discusses other interesting features.

4.1 Inference

First, the maximum possible information set at time t (perfect information) is { κt−j,

ξt−j} ∞
j=0 (not includes {ϕt−j}∞j=0). Importantly, the algorithm does not allow inference.

If the information set of economic agents in a model includes all current and past jump

variables {ϕt−j}∞j=0, then the economic agents can infer most hidden information, which

reduces an imperfect information model to the corresponding perfect information model

in most cases. Hence, one natural interpretation of imperfect information is that agents

have to make future decisions in the current period, as in sticky price models.

4.2 Noisy Information Models

Second, the algorithm can easily deal with noisy information models. Suppose an AR(1)

shock process At follows

ln At+1 = ρ ln At +
√

1 − ηξob
t +

√
ηξuo

t (22)

where ξob
t and ξuo

t are the observable and unobservable components of innovation, respec-

tively, and (1−η)/η is the signal to noise ratio. This technique allows us to parameterise

the extent of imperfect information.
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5 An Example

5.1 Standard RBC Model

To demonstrate the quantitative effects of imperfect information, we consider the stan-

dard RBC model under imperfect information, focusing on impulse response functions

(IRFs) and second moments.

The main economic motivation is to address an overly high Corr (Yt − Ht, Yt) in the

standard RBC model. Under the plausible parameter range, the standard RBC model

predicts an almost perfect correlation between labour productivity Yt − Ht and output

Yt, but the correlation is only slightly positive in the data.

Hence, we modify the standard RBC model by adding imperfect information related

to the labour market. The relevant equations are

0 = bHt − Wt − λt (23a)

0 = Yt − Ht − Wt (23b)

where Yt, Ht, Wt, λt are output, working hours, wage and the marginal utility of con-

sumption, respectively. All endogenous variables are measured as deviations from their

steady-state values in percentage terms. b is a constant, which represents (a multiple of)

the elasticity of marginal disutility of labour. The first equation is of the representative

household (HH) − the FOC with respect to labour supply −, while the second is of firms

− it equates the marginal product of labour Yt−Ht to wage.12 The set of state variables

12Note that since all endogenous variables are represented as log-deviations from their steady state,

Yt−Ht is the deviation of ”output divided by labour hour” (i.e., labour productivity). The Cobb-Douglas

production function implies that the marginal product of labour is (1 − α) times labour productivity,

which means that the percent change of labour productivity is exactly the same as that of the marginal
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under perfect information is {Kt, At, ξt}, where Kt and At are capital and technology

at the beginning of time t, respectively, and ξt represents the innovation on technology.

Note that At is regarded as an endogenous crawling variable, and there is only one iid

exogenous variable ξt. That is to say, At is treated as a stock variable.

Assuming that today’s innovation affects today’s output,

Yt = At+1K
α
t H1−α

t

ln At+1 = ρ ln At + ξt

where ρ is a parameter that governs the persistence of technology shock.

5.1.1 Case I: HH Decides Labour Supply before Observing Innovations

In this case, (23a) does not hold. Instead, the labour supply decision is governed by13

0 = E

[
bHt − Wt − λt

| Kt−S−1, At−S−1, ξt−S−1

]

Since Ht cannot react to past innovations, for s = 0, 1, · · · , S,

∂Ht

∂ξt−s

= 0 given Kt−S, At−S

[Figure 1 here!]

Figure 1 shows the impulse response functions where S = 5, which means that the

household decides its labour supply five quarters in advance.

There are several points worth noting here:

product of labour. In other words, in the Cobb-Douglas production function, Yt − Ht represents both

the percent deviations of labour productivity and marginal product of labour.

13Exactly speaking, information set is {Kt−j , At−j , ξt−j}∞j=S+1, but only {Kt−S−1, At−S−1, ξt−S−1}

suffices to determine the state of the economy.
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• Labour hours do not move for the first S periods. That is, ∂Ht/∂ξt−s = 0 for

s = 0, 1, · · · , S.

• Labour productivity (Yt − Ht) and investment show unusual movements for the

first S periods. However, after S+1 periods, all endogenous variables follow (linear

combinations of) AR(1) processes. This is one example of the proposition that the

direct effect of imperfect information lasts for only S periods after an impulse.

• Corr (Yt − Ht, Yt) is lower than under perfect information (around 0.91), but only

slightly.

5.1.2 Case II: Firms Decide Labour Demand before Observing Innovations

In this case, (23b) does not hold. Instead, the labour demand decision is governed by

0 = E

[
Yt − Ht − Wt

| Kt−S−1, At−S−1, ξt−S−1

]
Since Ht cannot react to the innovations, for s = 0, 1, · · · , S,

∂Ht

∂ξt−s

= 0 given Kt−S, At−S

The results are not very interesting in terms of economics.

• The IRFs are almost the same as in the Case I, except for wage (hence, the figure

is omitted).

• Corr (Yt − Ht, Yt) is lower than under perfect information, but only slightly.

However, this experiment demonstrates that, to find a solution, it is not enough

to specify which endogenous variables are determined with imperfect information; a

researcher must also specify which information sets are imperfect. This is evident in

that the results of Cases I and II are not the same.
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5.1.3 Case III: HH Decides Wage before Observing Innovations but Accom-

modates Labour Demand

This case can be regarded as a version of the sticky wage model. The representative

household fixes wage before observing innovations, and it commits itself to supplying

labour to accommodate labour demand.

In this case, (23a) does not hold. Instead, the labour supply decision is governed by

0 = E

[
bHt − Wt − λt

| Kt−S−1, At−S−1, ξt−S−1

]

Since Wt cannot react to the innovations, for s = 0, 1, · · · , S,

∂Wt

∂ξt−s

= 0 given Kt−S, At−S

The results are interesting:

• The volatility of labour is much higher, and Corr (Yt − Ht, Yt) is much lower than

under perfect information.

• Given the standard deviation of the innovation, both output and labour are more

volatile.

• The variance-covariances of most variables other than labour and labour produc-

tivity do not change significantly.

The intuition behind these results is quite simple. Without imperfect information,

when there is a positive productivity innovation, wage increases, which discourages firms

from hiring more labour. As a result, labour does not increase significantly. Indeed, an-

other failure of the standard RBC model is that it predicts too low labour volatility rela-

tive to output volatility. During a boom both Yt and Ht increase, while Yt−Ht increases
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because the increase in Ht is not large enough. Consequently, both Yt and Yt − Ht in-

crease in a boom, which is the (one possible) mechanism behind a high Corr (Yt − Ht, Yt)

in the standard RBC model.

However, if wage is determined without seeing a positive innovation, it does not

change quickly; hence, firms are not discouraged from using more labour. Consequently,

in a boom both Yt and Ht increase, while Yt − Ht does not increase very much because

the increase in Ht is large enough. Hence, the model predicts a low Corr (Yt − Ht, Yt).

Indeed, in the otherwise standard RBC model with one-period wage stickiness, the

predicted relative volatility of labour almost matches the data. Under the standard

parameter set, Corr (Yt − Ht, Yt) is negative for S ≥ 2.

[Table 1 here!]

Table 1 shows the summary table of the selected second moments for one-period wage

stickiness (S = 1). One-period wage stickiness significantly improves the labour volatility

and correlation between labour productivity and output, while it slightly deteriorates

the model performance in terms of the relative volatility of investment.

[Figure 2 here!]

Figure 2 shows the comparison of selected impulse response functions between perfect

and imperfect information models. The salient differences appear only in the first period.

In the sticky wage model, both labour and output jump in the first period, and the

size of the jumps are the same, hence, the labour productivity does not change in the

first period. Note that the Cobb-Douglas production function implies that the labour

productivity is always equal to wage.

[Figure 3 here!]
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Figure 3 shows the relative volatilities and correlations for different degrees of im-

perfect information (i.e., for different values of S). As S increases, Corr(Yt − Ht, Ht)

decreases.

Case III again reveals one computational requirement; simply specifying the infor-

mation set in each equation is not enough to find a solution. A researcher must also

specify which variables are determined without observing perfect information. This is

evident in that the results of Case I and III are not the same.

5.1.4 Conclusion for RBC under Imperfect Information

Adding one-period wage stickiness is quantitatively enough to overcome the two draw-

backs of the standard RBC model − where (a) labour volatility is too small and (b) the

correlation between labour productivity and output is too high − without deteriorating

other dimensions of the model performance. This example shows the possibility that

the information structure has significant quantitative effects.

6 Conclusion

This article has developed an algorithm for linear rational models under imperfect infor-

mation. Imperfect information is important because it includes many interesting classes

of models such as sticky information and noisy signal models.

The algorithm exploits two observations: (1) if an endogenous variable yk,t is de-

cided without observing an innovation ξi,t−s, then yk,t is not affected by ξi,t−s (i.e.,

∂yk,t/∂ξi,t−s = 0 given κt−S); (2) if the information set in the j-th equation includes ξi,t−s,

then ξi,t−s cannot be the source of expectation error in the j-th equation (Es,ji = 0).

The solution is defined by these two zero restrictions, and it turns out that they are
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enough to determine unique solutions.

The state space representation chosen in this algorithm is the set of crawling variables

and current and past innovations. This representation reveals that the dynamic parts of

the solution (i.e., the H and F matrices) are the same as under the corresponding perfect

information models. Invariant H and F matrices imply that (a) the dynamic property,

such as sunspot or saddle-path stability is not altered by information structure, and

(b) impulse response functions are not (directly) affected by the information structure

after the first S periods, where S is such that the minimum information set in a model

has all the information up to time S. These findings show that qualitatively imperfect

information models inherit the properties of their perfect information counterparts.

However, as the RBC example demonstrates, quantitatively imperfect information

may be important. Hence, it is desirable to check for robustness in terms of the in-

formation structure, and our Matlab programme offers an easy way to conduct such

experiments. Once structural equations are obtained, then the additional inputs to the

algorithm are only two zero-one matrices.
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Appendix

A Extension of Uhlig’s Theorem 3

Proposition 1 (Extension of Uhlig’s Theorem 3) To find a m×m matrix X that solves

the matrix polynomial

ΘnXn − Θn−1X
n−1 − · · · − Θ1X − Θ0 = 0 (24)

Given m × m coefficient matrices {Θn′}n
n′=0, define the nm × nm matrices Ξ and ∆ by

Ξ =



Θn−1 · · · Θ1 Θ0

I 0 0

. . .
...

0 I 0


, ∆ =



Θn 0 · · · 0

0 I 0

...
. . .

0 0 I


and obtain the generalized eigenvalues λ and the generalized eigenvector s such that

λ∆s = Ξs. Then, s can be written as

s =



λn−1x

...

λx

x


for some x ∈ Rm, and

X = ΩΛΩ−1

where Ω = [x1, · · · , xm] and Λ = diag(λ1, · · · , λm).

Proof. Almost identical to Uhlig (1999).
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B Matrix Operations

To pick up and drop out columns and rows from a matrix, as in the main text, we define

(i) [A].x as columns x of a matrix A, (ii) [A]x. as rows x of a matrix A, (iii) [A].¬x as

the columns remaining after the elimination of columns x, and (iv) [A]¬x. as the rows

remaining after the elimination of rows x, where x is the name of a set of columns or

rows. The brackets are used simply because they often clarify notations, and often can

be omitted (i.e., [B].¬y = B.¬y). The dot . implies all rows or columns (e.g., B.. = B).

It is quite easy to show the following formulae:

[AB] = [A].¬x [B]¬x. + [A].x [B]x.

[AB].¬y = [A] [B].¬y

[AB]¬x. = [A]¬x. [B]

[AB]¬x¬y = [A]¬x. [B].¬y

An example for the first formula is a11 a12

a21 a22


 b11 b12

b21 b22

 =

 a11

a21

[
b11 b12

]
+

 a12

a22

 [
b21 b22

]

=

 a11b11 a11b12

a21b11 a21b12

 +

 a12b21 a12b22

a22b21 a22b22

 =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22


where x = 2.

Note that this notation is consistent with other matrix subscripts; for example, the

rows of Zsκ are related to stable roots s and its columns are related to crawling variables

κ.
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C Invertible ZH
uϕ Implies Invertible ZH

sκ

Proposition 2 For an invertible matrix Z, which is partitioned as

Z =

 Z11 Z12

Z21 Z22


if Z11 is invertible, then [Z−1]22 is also invertible.

Proof. Define

ZL :=

 I 0

−Z21Z
−1
11 I



ZR :=

 I −Z−1
11 Z12

0 I


Note that ZLZZR has full rank because all of ZL, Z and ZR have full rank, and note

that I 0

−Z21Z
−1
11 I


 Z11 Z12

Z21 Z22


 I −Z−1

11 Z12

0 I

 =

 Z11 0

0 Z22 − Z21Z
−1
11 Z12


Hence, G := Z22 − Z21Z

−1
11 Z12 must have full rank.

For a full rank matrix with an invertible upper left submatrix, the well-known formula

tells us  Z11 Z12

Z21 Z22


−1

=

 Z−1
11 + Z−1

11 Z12G
−1Z21Z

−1
11 −Z−1

11 Z12G
−1

−G−1Z21Z
−1
11 G−1


Note that the RHS exists since we know that both Z11 and G are invertible. Thus,

[Z−1]22 is invertible.

Since Z is unitary, Z−1 = ZH , which implies G−1 = [Z−1]22 = ZH
22. Since ZH

22 has

full rank, its conjugate transpose Z22

(
=

[
ZH

22

]H
)

also has full rank. This proposition is

very useful; e.g., some final results in Klein (2000) can be significantly simplified.
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D Full Derivation

This section provides the full derivation. For the notation, see the main text.

D.1 QZ Decomposition

Applying the QZ decomposition to (3)

0 = ΩAZHyt+1 + ΩBZHyt + QHCξt + QHDξt+1 + QHEξt,S

=

 ΩA
ss ΩA

su

0 ΩA
uu


 st+1

ut+1

 +

 ΩB
ss ΩB

su

0 ΩB
uu


 st

ut



+

 QH
s.

QH
u.

Cξt +

 QH
s.

QH
u.

 Dξt+1 +

 QH
s.

QH
u.

Eξt,S (25)

where st and ut are stable and unstable roots, respectively, such that st

ut

 :=

 ZH
sκ ZH

sϕ

ZH
uκ ZH

uϕ


 κt

ϕt


D.1.1 Unstable Roots and Transversality Conditions (TVCs)

Imperfect information requires a slightly careful treatment of TVCs. Focussing on the

lower half of (25)

0 = ΩA
uuut+1 + ΩB

uuut + QH
u.Cξt + QH

u.Dξt+1 + QH
u.Eξt,S (26)

Iterating it forward

lim
l→∞


(

−ΩB
uu\ΩA

uu

)l

ut+l

+
∑l−1

s=1

(
−ΩB

uu\ΩA
uu

)s (
ΩB

uu\QH
u.

)(
Cξt+s + Dξt+1+s + Eξ̃t+s,S

)


= −ut −
(

ΩB
uu\QH

u.

)
Cξt −

S∑
l=0

(
−ΩB

uu\ΩA
uu

)l (
ΩB

uu\QH
u.

)
Eξ̂t+l,S (27)
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where

ξt+l,S =



ξt+l

...

ξt+1

ξt

...

ξt+l−S



= ξ̂t+l,S + ξ̃t+l,S :=



0

...

0

ξt

...

ξt+l−S



+



ξt+l

...

ξt+1

0

...

0


where A\B = A−1B and A/B = AB−1.

There are many information sets, under each of which TVCs must be satisfied. −

that is, TVCs are (seemingly) tighter under imperfect information. However, if the

perfect information counterpart satisfies TVCs, corresponding imperfect information

models also satisfy them automatically due to the law of iterated linear projection.14

Thus, the same logic as in the perfect information case holds; because
(
−ΩB

uu\ΩA
uu

)l → 0

as l → 0 by construction, the expected value of ut+l explodes for any non-zero value of

the RHS of (27), which contradicts the TVCs. Note that the inside the limit operator

in the LHS shows the expected value of ut+l (the realisation of ut+l plus expectation

errors) times
(
−ΩB

uu\ΩA
uu

)l
. Hence, the RHS of (27) must be zero.

14There are two comments. First, (27) must hold for any realisation of κt−1 and ξt−s for s = 0, 1, · · · .

Hence, it is not possible that TVCs hold under imperfect information but not under perfect information.

Second, if an information set does not include, for example, ξi,t−s then the relevant expected value of

ut+s is the RHS with setting ξi,t−s = 0. Hence, if TVCs hold for the full information set, they hold for

non-full information sets as well.
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Therefore,

−ΩB
uuut = −ΩB

uuZ
H
uκκt − ΩB

uuZ
H
uϕϕt

= QH
u.Cξt + ΩB

uu

S∑
l=0

(
−ΩB

uu\ΩA
uu

)l (
ΩB

uu\QH
u.

)
Eξ̂t+l,S

= QH
u.Cξt +

S∑
l=0

(
−ΩA

uu/Ω
B
uu

)l

QH
u.Eξ̂t+l,S (28)

Substituting our ”guess solution” (4) into (28),

0 =

(
ΩB

uuZ
H
uκ + ΩB

uuZ
H
uϕF

)
κt + ΩB

uuZ
H
uϕGξt,S + QH

u.Cξt

+
S∑

l=0

(
−ΩA

uu/Ω
B
uu

)l

QH
u.Eξ̂t+l,S (29)

D.1.2 Stable Roots

Similarly, from the upper half,

0 = ΩA
ss

(
ZH

sκκt+1 + ZH
sϕϕt+1

)
+ ΩA

su

(
ZH

uκκt+1 + ZH
uϕϕt+1

)
+ΩB

ss

(
ZH

sκκt + ZH
sϕϕt

)
+ ΩB

su

(
ZH

uκκt + ZH
uϕϕt

)
+QH

s. Cξt + QH
s. Dξt+1 + QH

s. Eξt,S (30)

Again, by substituting (4) into (30), after some manipulation,

0 =

(
ΛA

sϕFH + ΛA
sκH + ΛB

sϕF + ΛB
sκ

)
κt

+ΛA
sϕGξt+1,S + QH

s. Dξt+1 + QH
s. Cξt

+

(
ΛA

sϕFJ + ΛA
sκJ + ΛB

sϕG + QH
s. E

)
ξt,S (31)

Though the definitions of ΛA
sκ, ΛA

sϕ, ΛB
sκ and ΛB

sϕ are (10) in the main text, the following

definition may be more useful. ΛA
sκ ΛA

sϕ

ΛB
sκ ΛB

sϕ

 :=

 ΩA
ss ΩA

su

ΩB
ss ΩB

su


 ZH

sκ ZH
sϕ

ZH
uκ ZH

uϕ

 (32)
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D.2 Expansion of ξt+1,S and ξt,S

Expanding ξt+1,S and ξt,S in (31) and (29),

0 =

(
ΛA

sϕFH + ΛA
sκH + ΛB

sϕF + ΛB
sκ

)
κt

+

(
ΛA

sϕG0 + QH
s. D

)
ξt+1

+

(
ΛA

sϕG1 +
(
ΩA

ss/Zκs

)
J0 + ΛB

sϕG0. + QH
s. E0. + QH

s. C

)
ξt

+

(
ΛA

sϕG2 +
(
ΩA

ss/Zκs

)
J1 + ΛB

sϕG1. + QH
s. E1.

)
ξt−1 + · · ·

+

(
ΛA

sϕGS +
(
ΩA

ss/Zκs

)
JS−1 + ΛB

sϕGS−1. + QH
s. ES−1.

)
ξt−(S−1)

+

( (
ΩA

ss/Zκs

)
JS + ΛB

sϕGS. + QH
s. ES.

)
ξt−S

0 =

(
ΩB

uuZ
H
uκ + ΩB

uuZ
H
uϕF

)
κt

+
S∑

s=1

(
ΩB

uuZ
H
uϕGs +

(∑S−s
k=0

(
−ΩA

uu/Ω
B
uu

)k

QH
u.Ek+s

) )
ξt−s

+

(
QH

u.C + ΩB
uuZ

H
uϕG0 +

(∑S
k=0

(
−ΩA

uu/Ω
B
uu

)k

QH
u.Ek

) )
ξt

Since these matrix equations must hold for any realisation of κt, ξt−τ for τ =

−1, 0, 1, · · · , S,

0 = ΛA
sϕFH + ΛA

sκH + ΛB
sϕF + ΛB

sκ (33a)

0 = ΩB
uuZ

H
uκ + ΩB

uuZ
H
uϕF (33b)

0 = ΛA
sϕG0. + QH

s. D (34a)

0 = 0 (34b)

0 = ΛA
sϕG1 +

(
ΩA

ss/Zκs

)
J0 + ΛB

sϕG0 + QH
s. ES. + QH

s. C (35a)

0 = ΩB
uuZ

H
uϕG0 +

(
S∑

s=0

(
−ΩA

uu/Ω
B
uu

)s
QH

u.Es

)
+ QH

u.C (35b)
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0 = ΛA
sϕGs+1 +

(
ΩA

ss/Zκs

)
Js + ΛB

sϕGs + QH
s. Es (36a)

0 = ΩB
uuZ

H
uϕGs +

(
S−s∑
k=0

(
−ΩA

uu/Ω
B
uu

)k
QH

u.Ek+s

)
(36b)

for s = 1, · · · , S − 1

0 =
(
ΩA

ss/Zκs

)
JS + ΛB

sϕGS + QH
s. ES (37a)

0 = ΩB
uuZ

H
uϕGS + QH

u.ES (37b)

D.3 Dynamic Parts (H and F )

Since (33a) and (33b) do not include G, J , D, E or Π, these two matrix equations can

be solved for H and F independently. Thus, assuming ZH
uϕ has a (right) inverse,15

F = −ZH
uϕ\ZH

uκ = Zϕs/Zκs

H = −Zκs

(
ΩA

ss\ΩB
ss

)
/Zκs

Note that the H and F matrices are the same as in the corresponding perfect information

model.16

15Remember that an invertible ZH
uϕ implies an invertible ZH

sκ.

16For the F matrix, note

ZHZ =

 ZH
sκ ZH

sϕ

ZH
uκ ZH

uϕ


 Zκs Zκu

Zϕs Zϕu

 =

 ZH
sκZκs + ZH

sϕZϕs ZH
sκZκu + ZH

sϕZϕu

ZH
uκZκs + ZH

uϕZϕs ZH
uκZκu + ZH

uϕZϕu

 =

 I 0

0 I


Looking at the lower left element

ZH
uκZκs + ZH

uϕZϕs = 0

−ZH
uκZκs = ZH

uϕZϕs

−ZH
uϕ\ZH

uκ = Zϕs/Zκs

Also, remember that

Z−1
κs = ZH

sκ − ZH
sϕ

(
ZH

uϕ\ZH
uκ

)
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D.4 Zero Restrictions on E and Π

Vertically concatenating matrix equations (35a)-(37b) in pairs,

0 =

 0 ΛA
sϕ

0 0

 Γ1 +

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 Γ0 +
S∑

k=0

 0 0

0 −ΩA
uu/Ω

B
uu


k

QH (Ek + C) (38a)

0 =

 0 ΛA
sϕ

0 0

 Γs+1 +

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 Γs +
S−s∑
k=0

 0 0

0 −ΩA
uu/Ω

B
uu


k

QHEk+s (38b)

for s = 1, · · · , S − 1

0 =

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 ΓS + QHES (38c)

Note that

0 =

 0 0

0 −ΩA
uu/Ω

B
uu





 0 ΛA
sϕ

0 0

 Γs+2 +

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 Γs+1

+
∑S−(s+1)

k=0

 0 0

0 −ΩA
uu/Ω

B
uu


k

QHEk+s+1



=

 0 0

0 −ΩA
uuZ

H
uϕ

 Γs+1 +
S−s∑
k=1

 0 0

0 −ΩA
uu/Ω

B
uu


k

QHEk+s (39)

and that ΩA
ss is invertible by the reordering of QZ decomposition.
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Subtracting (39) from each of (38),17

0 =

 0 ΛA
sϕ

0 ΩA
uuZ

H
uϕ

 Γ1 +

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 Γ0 + QHEk + QHC (40a)

0 =

 0 ΛA
sϕ

0 ΩA
uuZ

H
uϕ

 Γs+1 +

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 Γs + QHEk+s (40b)

for s = 1, · · · , S − 1

0 =

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 ΓS + QHES (40c)

and again vertically concatenating these equations,

0 = MyΓΓ + Q (E + C)

Γ :=


Γ0

...

ΓS

 , E :=


E0

...

ES

 , C :=

 C0

0

 , Q :=


Q 0

. . .

0 Q



MyΓ :=



Φ Λ0A

. . . . . .

0 Φ Λ0A

Φ


, Φ :=

 ΩA
ss/Zκs ΛB

sϕ

0 ΩB
uuZ

H
uϕ

 , Λ0A :=

 0 ΛA
sϕ

0 ΩA
uuZ

H
uϕ



Note that since Φ is invertible, MyΓ is also clearly invertible. Hence,

0 = Γ + MyΓ\Q (E + C)

= MΓΠΠ + MyΓ\Q (E + C)

where (7) is used to derive the second line. Hence,

0 = Π + MΠE (E + C) (41a)

MΠE := (MyΓMΓΠ) \Q (41b)

17Though this process is not necessary, it reduces the computational burden.
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In the following, we compute E and Π column by column.

Π.i = MΠE (E.i + C.i)

Remember that some elements in Π.i are zero due to imperfect information, while some

elements in E.i are non-zero. For example,

0 =



Π1,i

...

Πk,i (= 0)

...

ΠM(S+1),i


+ MΠE





0

...

Eji

...

0


+



C.i

0

...

...

0




(42)

D.4.1 E Matrix

From the k-th set of equations in (42)

0 =

[
MΠE

]
kj

Eji +

[
MΠE

]
kj

Cji +

[
MΠE

]
k¬j

C¬ji

Hence, assuming [MΠE]kj is invertible,

Eji = −
[

MΠE

]
kj

\
[

MΠE

]
k¬j

C¬ji − Cji

D.4.2 Π matrix

From the other equations in (42), we eliminate the expectation errors Eji.

Π¬ki =

[
MΠE

]
¬kj

([
MΠE

]
kj

\
[

MΠE

]
k¬j

C¬ji + Cji

)

−
[

MΠE

]
¬kj

Cji −
[

MΠE

]
¬k¬j

C¬ji

=

([
MΠE

]
¬kj

([
MΠE

]
kj

\
[

MΠE

]
k¬j

)
−

[
MΠE

]
¬k¬j

)
C¬ji

= −
[

M−1
ΠE

]
¬j¬k

\C¬ji
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The vector Π¬ki and Πki = 0 can be vertically merged to recover Π.i, and the vectors Π.i

are horizontally concatenated to recover full Π matrix. Note that an invertible [MΠE]kj

implies an invertible
[
M−1

ΠE

]
¬j¬k

. Not surprisingly, Cji does not affect the coefficient

matrix Π.i, because the j-th set of equations does not hold for the i-th innovation in any

case; it only affects the expectation error Eji.

D.5 Other Matrices (J, G and D)

D.5.1 J and G Matrices

To obtain the J and G matrices, from (7),

Γ :=



J0

G0

...

JS

GS


= MΓΠΠ

D.5.2 D Matrix

From the A matrix in a given model (3),

D = −A

 0

G0


which always satisfies (34a). It can be shown that the j-th rows in D are zeros if the

j-th equation does not include t + 1 dynamic jump variable (see the next section).
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E A Comment on the D Matrix

The direct derivation of the D matrix from (34a) is a bit tricky, and requires careful

attention concerning non-square matrices ΛA
sϕ and QH

s. . Also, it is perhaps not intuitive.

In this article, we exploit an ex post relationship (21), and here we show that it always

satisfies (34a), which, in turn, reveals an important intuition.

First, we define dynamic and non-dynamic jump variables: ϕt+1 = [(ϕd
t+1)

T (ϕn
t+1)

T ]T .

Note that the coefficients on the non-dynamic jump variables ϕn
t+1 in A matrix must be

zero by the definition of ”non-dynamic”.

Ayt+1 :=


Aκκ Aκϕd 0

Aϕdκ Aϕdϕd 0

Aϕnκ Aϕnϕd 0




κt+1

ϕd
t+1

ϕn
t+1


where ϕd

t+1 is the vector of dynamic variables, such as consumption in the Euler equation.

The submatrices in G0 and QH are defined as

G̃0 :=

 0

G0

 :=


0

G0,ϕd.

G0,ϕn.



QH :=

 QH
s.

QH
ϕ.

 , QH
s. :=

[
QH

sκ QH
sϕd QH

sϕn

]
, QH

u. :=

 QH
uf κ

QH
uf ϕd QH

uf ϕn

QH
uiκ QH

uiϕd QH
uiϕn


where uf and ui imply finite and infinite unstable roots, respectively.

Focussing on the second term of (34a)

QH
s. D = QH

s. AG̃0 =

[
QH

sκ QH
sϕd QH

sϕn

]


Aκκ Aκϕd 0

Aϕdκ Aϕdϕd 0

Aϕnκ Aϕnϕd 0




0

G0,ϕd.

G0,ϕn.


=

(
QH

sκAκϕd + QH
sϕdAϕdϕd + QH

sϕnAϕnϕd

)
G0,ϕd. (43)
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For the first term of (34a) note that ΛA
sϕ is the sϕ-th elements in ΩAZH , i.e.,

ΛA
sϕ =

[
ΩAZH

]
sϕ

=
[
QQHΩAZH

]
sϕ

= [QA]sϕ

=




QH

sκ QH
sϕd QH

sϕn

QH
uf κ

QH
uf ϕd QH

uf ϕn

QH
uiκ QH

uiϕd QH
uiϕn




Aκκ Aκϕd 0

Aϕdκ Aϕdϕd 0

Aϕnκ Aϕnϕd 0




sϕ

=




∗

(
QH

sκAκϕd + QH
sϕdAϕdϕd + QH

sϕnAϕnϕd

)
0

∗ ∗ 0

∗ ∗ 0




sϕ

=

[ (
QH

sκAκϕd + QH
sϕdAϕdϕd + QH

sϕnAϕnϕd

)
0

]

where ∗ elements are irrelevant for our current interest. Hence,

ΛA
sϕG0 =

[ (
QH

sκAκϕd + QH
sϕdAϕdϕd + QH

sϕnAϕnϕd

)
0

] G0,ϕd.

G0,ϕn.


=

(
QH

sκAκϕd + QH
sϕdAϕdϕd + QH

sϕnAϕnϕd

)
G0,ϕd. (44)

(43) and (44) show that (34a) satisfies (21). The key to the solution is a sort of zero

restriction; A matrix has zero columns by the definition of ”non-dynamic” variables.

A further question is the consistency of D (i.e. whether the computed D always has

zeros at the proper positions?). Specifically, if the j-th equation does not have ϕd
t+1, it

should not have an expectation error due to ξt+1, and hence the row vector Dj. must

be zero; this zero restriction on D is analogous to that on E. This is surely satisfied

because the rows corresponding to non-dynamic equations in D (= AG̃0) is always zero

by the construction of A; i.e., the j-th row in A is zero if the j-th equation does not

include dynamic jump variables ϕd
t+1. For example, in the standard RBC model, all but

the Euler equation have zero rows in A and hence in D.
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What this section discusses is the correspondence between expectation errors and the

source of such errors. If, for example, expectation errors with respect to full information

up to time t appears in the equations without dynamic jump variables, then it is a

logical contradiction (expectation errors without their causes), and hence (34a) is not

satisfied. Conceptually, the consistency of the D matrix is parallel to the invertibility

of [MΠE]kj. As mentioned in the main text, the non-invertibility of [MΠE]kj implies an

incorrect specification of the information structure with respect to ξt+τ (τ = 0, 1, · · · , S).

Similarly, an inconsistent D (or the non-existence of a consistent D) implies an incorrect

specification of information structure with respect to ξt+1. Such inconsistency/non-

existence happens, for example, if a researcher puts an expectation operator on the

evolution of capital, rather than on the consumption Euler equation.
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Figure 1: Impulse response functions to a positive technology innovation of the standard

RBC model, in which labour supply is determined five periods in advance.
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Figure 2: Comparison of selected impulse response functions to a positive technology

innovation between standard RBC and RBC with wage stickiness.
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Figure 3: Effect of different degrees of imperfect information on selected second moments.
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