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Malignant astrocytic gliomas such as glioblastoma are
the most common and lethal intracranial tumors. These
cancers exhibit a relentless malignant progression char-
acterized by widespread invasion throughout the brain,
resistance to traditional and newer targeted therapeutic
approaches, destruction of normal brain tissue, and cer-
tain death. The recent confluence of advances in stem
cell biology, cell signaling, genome and computational
science and genetic model systems have revolutionized
our understanding of the mechanisms underlying the ge-
netics, biology and clinical behavior of glioblastoma.
This progress is fueling new opportunities for under-
standing the fundamental basis for development of this
devastating disease and also novel therapies that, for the
first time, portend meaningful clinical responses.

Malignant gliomas are classified and subtyped on the
basis of histopathological features and clinical presenta-
tion (Fig. 1). The most common and biologically aggres-
sive of these is glioblastoma (GBM), World Health Orga-
nization (WHO) grade IV, and is defined by the hallmark
features of uncontrolled cellular proliferation, diffuse in-
filtration, propensity for necrosis, robust angiogenesis,
intense resistance to apoptosis, and rampant genomic

instability. As reflected in the old moniker “multi-
forme,” GBM presents with significant intratumoral het-
erogeneity on the cytopathological, transcriptional, and
genomic levels. This complexity, combined with a puta-
tive cancer stem cell (CSC) subpopulation and an incom-
plete atlas of (epi)genetic lesions driving GBM pathogen-
esis, has conspired to make this cancer one of the most
difficult to understand and to treat. Despite implemen-
tation of intensive therapeutic strategies and supportive
care, the median survival of GBM has remained at 12 mo
over the past decade.

In this review, we summarize current basic and trans-
lational challenges and highlight the striking scientific
advances that promise to improve the clinical course of
this lethal disease. These advances include a more com-
prehensive view of the altered genes and pathways in
glioma and how such alterations drive the hallmark
pathobiological features of the disease, the identification
of new molecular subtypes in GBM, an improved under-
standing of the cellular origins of the disease and how
CSCs may influence therapeutic responses, refined
model systems for use in research and preclinical experi-
mental therapeutics, and novel therapeutic strategies for
targeting keystone genetic lesions and their pathways.
For reasons of length, we have not discussed the ad-
vances in such important areas as tumor immunology,
the blood-brain barrier, and tumor imaging. For the first
time, there is a strong sentiment that meaningful thera-
peutic advances will soon flow from this explosion of
new molecular and biological knowledge; the remark-
able technological advances in genomics, proteomics,
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and model systems; and the systematic and accurate de-
velopment of small molecule drugs, therapeutic antibod-
ies, and the entirely new class of RNA interference
(RNAi)-based agents.

Classification and grading of glioma

The incidence of primary brain tumors worldwide is ap-
proximately seven per 100,000 individuals per year, ac-
counting for ∼2% of primary tumors and 7% of the years
of life lost from cancer before the age of 70. The common
gliomas affecting the cerebral hemispheres of adults are
termed “diffuse” gliomas due to their propensity to in-
filtrate, early and extensively, throughout the brain pa-
renchyma. These gliomas are classified histologically,
immunohistochemically, and/or ultrastructurally as as-
trocytomas, oligodendrogliomas, or tumors with mor-
phological features of both astrocytes and oligodendro-
cytes, termed oligoastrocytomas. Tumors are then
graded on a WHO consensus-derived scale of I to IV ac-
cording to their degree of malignancy as judged by vari-
ous histological features accompanied by genetic alter-
ations (Fig. 1; Louis et al. 2007). Grade I tumors are bio-
logically benign and can be cured if they can be
surgically resected; grade II tumors are low-grade malig-
nancies that may follow long clinical courses, but early
diffuse infiltration of the surrounding brain renders them
incurable by surgery; grade III tumors exhibit increased
anaplasia and proliferation over grade II tumors and are
more rapidly fatal; grade IV tumors exhibit more ad-

vanced features of malignancy, including vascular pro-
liferation and necrosis, and as they are recalcitrant to
radio/chemotherapy they are generally lethal within 12
mo. This review focuses on tumors of the astrocytic se-
ries, emphasizing grade IV GBM.

On the basis of clinical presentation, GBMs have been
further subdivided into the primary or secondary GBM
subtypes. Primary GBMs account for the great majority
of GBM cases in older patients, while secondary GBMs
are quite rare and tend to occur in patients below the age
of 45 yr. Primary GBM presents in an acute de novo
manner with no evidence of a prior symptoms or ante-
cedent lower grade pathology. In contrast, secondary
GBM derives consistently from the progressive transfor-
mation of lower grade astrocytomas, with ∼70% of grade
II gliomas transforming into grade III/IV disease within
5–10 yr of diagnosis. Remarkably, despite their distinct
clinical histories, primary and secondary GBMs are mor-
phologically and clinically indistinguishable as reflected
by an equally poor prognosis when adjusted for patient
age. However, although these GBM subtypes achieve a
common phenotypic endpoint, recent genomic profiles
have revealed strikingly different transcriptional pat-
terns and recurrent DNA copy number aberrations be-
tween primary and secondary GBM as well as new dis-
ease subclasses within each category (as discussed be-
low; Maher et al. 2006; Phillips et al. 2006). These
molecular distinctions make obvious the need to change
the current standardized clinical management of these
truly distinct diseases toward one of rational application

Figure 1. Chromosomal and genetic aberrations involved in the genesis of glioblastoma. Shown are the relationships between
survival, pathobiology, and the molecular lesions that lead to the formation of primary (de novo) and secondary (progressive) glio-
blastomas. Although histologically indistinguishable, these grade IV gliomas occur in different age groups and present distinct genetic
alterations affecting similar molecular pathways. For example, inactivation of p53 function occurs due to direct mutation in progres-
sive GBMs or INK4aARF mutation/decrease in expression or MDM2 amplification in de novo GBMs. Similarly, activation of the PI3K
pathway is achieved by several cooperative mechanisms, including EGFR amplification and mutation as well as PTEN mutation,
although underexpression of PTEN in the absence of mutation is frequently seen as well. See the text and Figure 2 for details on the
molecular function of implicated genes. (OE) Overexpressed; (amp) amplified; (mut) mutated.
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of targeted therapies to appropriate molecular sub-
classes.

Immunohistochemical markers are important and rap-
idly evolving tools in the classification and neuropatho-
logical diagnosis of malignant gliomas. Currently, the
most clinically useful and specific of these markers for
classification of gliomas are GFAP and OLIG2. GFAP is
universally expressed in astrocytic and ependymal tu-
mors and only rarely in oligodendroglial lineage tumors.
OLIG2, a more recently discovered stem/progenitor and
oligodendroglial marker, is CNS specific and is univer-
sally and abundantly expressed in all diffuse gliomas, but
is rarely expressed at such high levels in other types of
gliomas and CNS malignancies (Ligon et al. 2004; Rous-
seau et al. 2006). These markers thus serve as effective
tools for unequivocal identification of gliomas and their
distinction from non-CNS tumors while aiding the pa-
thologist in distinction of different glioma classes.

A recently expanded collection of novel markers has
emerged from numerous avenues of research and holds
potential to be deployed to improve classification and
inform the potential clinical course of glioma patients.
Of particular interest are newly discovered stem and pro-
genitor cell markers that, once clinically validated, may
aid in the differential diagnosis of these tumors as well as
monitoring their responses to therapy. Intensive re-
search efforts are attempting to uncover agents that may
target subpopulations of these cells with high tumori-
genic potential and increased resistance to current thera-
pies. Along these lines, the cell surface marker, CD133,
and other markers of stem cells, such as Nestin and
Musashi, have been shown to negatively correlate with
outcome parameters. These newly discovered markers
suggest that pathologists will soon have at their disposal
highly useful tools for improved clinical diagnosis and
classification of gliomas.

Immunohistochemical markers have also recently
been shown to aid in prediction of the clinical course for
certain classes of tumors. GBMs with intact expression
of the PTEN (phosphatase and tensin homolog deleted
on chromosome 10) and EGFRvIII proteins (for details,
see next section) correlated with increased epidermal
growth factor receptor (EGFR) inhibitor response and
progression-free survival compared with those tumors
expressing EGFRvIII but lacking PTEN (Mellinghoff et
al. 2005). Also, patients with EGFR protein expression,
mutant or wild-type, have been identified for the sake of
targeting EGFR therapy to the appropriate patient popu-
lation. Furthermore, a powerful and widely used molecu-
lar marker—combined loss of the short arm of chromo-
some 1 and the long arm of chromosome 19—is already
widely used in the management of oligodendroglial
gliomas, but its role in the evaluation of astrocytic glio-
mas such as GBM is not yet well defined (Reifenberger
and Louis 2003; Louis et al. 2007). With the wealth of
accumulating profiling and genomic data, an increase
in confidence is merited that useful diagnostic, prognos-
tic, and drug response biomarkers will be incorporated
into routine clinical management of GBM in the near
future.

Tumor biological processes and known underlying
genetic alterations in astrocytic gliomas

The classical genetic alterations in glioma target path-
ways governing cellular proliferation, cellular survival
(apoptosis and necrosis), invasion, and angiogenesis. The
following subsections cover these hallmark biological
processes and their links to specific genetic aberrations
and associated signaling pathways (Figs. 1, 2).

Cell cycle dysregulation and enhanced glioma cell
proliferation

Frequent mutations of cell cycle regulatory genes in
glioma have underscored the importance of these genes
in cellular proliferation and senescence. The RB and p53
pathways, which regulate the cell cycle primarily by gov-
erning the G1-to-S-phase transition, are major targets of
inactivating mutations in GBM. The absence of these
cell cycle guardians renders tumors particularly suscep-
tible to inappropriate cell division driven by constitu-
tively active mitogenic signaling effectors, such as phos-
phoinositide 3�-kinase (PI3K) and mitogen-activated pro-
tein kinase (MAPK).

The Rb pathway In quiescent cells, hypophosphory-
lated RB blocks proliferation by binding and sequestering
the E2F family of transcription factors, which prevents
the transactivation of genes essential for progression
through the cell cycle (Sherr and McCormick 2002).
Upon mitogenic stimulation, the activation of the
MAPK cascade leads to the induction of cyclin D1 and
its association with the cyclin-dependent kinases CDK4
and CDK6, as well as the degradation of the CDK2/cyc-
lin E inhibitor, p27Kip1 (Albanese et al. 1995; Lavoie et al.
1996; Aktas et al. 1997). These activated CDK complexes
in turn phosphorylate RB, enabling E2F transactivation
of its direct transcriptional targets governing S-phase en-
try and progression (Weinberg 1995; Frolov and Dyson
2004).

Gliomas circumvent RB-mediated cell cycle inhibi-
tion through any of several genetic alterations. The Rb1
gene, which maps to chromosome 13q14, is mutated in
∼25% of high-grade astrocytomas and the loss of 13q
typifies the transition from low- to intermediate-grade
gliomas (James et al. 1988; Henson et al. 1994). More-
over, amplification of the CDK4 gene on chromosome
12q13-14 accounts for the functional inactivation of RB
in ∼15% high-grade gliomas, and CDK6 is also amplified
but at a lower frequency (Reifenberger et al. 1994; Cos-
tello et al. 1997). RB activity is also frequently lost
through the inactivation of a critical negative regulator
of both CDK4 and CDK6, p16Ink4a (Serrano et al. 1993).
This gene is one of two transcripts generated at the
CDKN2A locus on chromosome 9p21 (in addition to
p14ARF [alternate reading frame p14]; see below), which
is predominantly inactivated by allelic loss or hyper-
methylation in 50%–70% of high-grade gliomas and
∼90% of cultured glioma cell lines (Jen et al. 1994;
Schmidt et al. 1994; Merlo et al. 1995; Costello et al.
1996; Fueyo et al. 1996). Consistent with its role as an
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important glioma tumor suppressor, p16Ink4a is also a
critical inhibitor of progenitor cell renewal in the sub-
ventricular zone of aging mice (Molofsky et al. 2006).

The importance of the inactivation of the RB pathway in
glioma progression is evidenced by the near-universal
and mutually exclusive alteration of RB pathway ef-

Figure 2. Genetic alterations characteristic of astrocytic glioma lead to aberrant activation of key pathways involved in mitogenic
signaling and cell cycle control. Certain proto-oncogenes (shown in green) such as EGFR and PIK3CA (p110�) are activated by
mutation, while other growth-promoting genes (also green) are commonly overexpressed. Tumor suppressor genes that are either lost
or inactivated by mutation are shown in red. Knowledge of glioma genetics has driven the development of therapeutic agents (listed
in blue boxes) that specifically target these pathways—both those intrinsic to the tumor cells and those that impact on the surrounding
endothelium and extracellular matrix to direct glioma angiogenesis and invasion. Direct signaling connections, such as post-trans-
lational modification of target proteins, are shown in solid lines, while dashed lines represent indirect or uncharacterized interactions.
The major mitogenic signaling modules downstream from RTKs (RAS-MAPK and PI3K-mTOR) and the cell cycle machinery are
frequently dysregulated in glioma and are highlighted (see the text for details). (AKT) Murine thymoma viral oncogene homolog;
(AMPK) AMP-dependent protein kinase; (c-src) sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog; (ERK) extracellular signal-
regulated kinase; (eIF4E) eukaryotic initiation factor 1; (4EBP1) eIF4E-binding protein 1; (HDAC) histone deacetylase; (mdm-2,4)
murine double minute 2,4; (MEK) mitogen-activated protein kinase kinase; (mTOR) mammalian target of rapamycin; (p90RSK) p90
ribosomal protein S6 kinase; (PLC�) phospholipase C�; (pRb) retinoblastoma protein; (RAF1) v-raf1 murine leukemia viral oncogene
homolog 1; (RAS) rat sarcoma viral oncogene homolog; (REDD1) regulated in development and DNA damage responses; (RHEB) Ras
homolog enriched in brain; (S6K1) p70 ribosomal protein S6 kinase 1; (TORC1,2) mTOR complex1,2.
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fectors and inhibitors in both primary and secondary
GBM (Schmidt et al. 1994; Ueki et al. 1996). However,
numerous in vitro and in vivo assays have demonstrated
that the neutralization of this pathway alone is insuffi-
cient to abrogate cell cycle control to the extent needed
for cellular transformation, suggesting that other impor-
tant cell cycle regulation pathways complement its ac-
tivities in preventing gliomagenesis (Holland et al.
1998a,b; Rich et al. 2001; Sonoda et al. 2001; Bachoo et
al. 2002; Huang et al. 2002; Uhrbom et al. 2002, 2005;
Xiao et al. 2002).

The p53 pathway The p53 tumor suppressor prevents
the propagation of cells with unstable genomes, pre-
dominantly by halting the cell cycle in the G1 phase or
instigating a program of apoptosis or proliferative arrest
(Vousden and Lu 2002). P53 achieves these ends prima-
rily through its function as a transcription factor: Upon
being post-translationally modified by various genotoxic
and cytotoxic stress-sensing agents, p53 is stabilized,
then binds and transcriptionally regulates the promoters
of >2500 potential effector genes (Hoh et al. 2002; Levine
et al. 2006). The best characterized of these effectors is
the transcriptional target CDNK1A, which encodes the
protein for the CDK2 inhibitor p21 (El-Deiry et al. 1993;
Harper et al. 1993). Although this gene has not been
found to be genomically altered in gliomas, its expres-
sion is frequently abrogated by p53 functional inactivity
as well as by mitogenic signaling through the PI3K and
MAPK pathways.

The p53 pathway is nearly invariably altered in spo-
radic gliomas: Loss of p53, through either point muta-
tions that prevent DNA binding or loss of chromosome
17p, is a frequent and early event in the pathological
progression of secondary GBM (Louis 1994; Louis and
Cavenee 1997). The importance of p53 in gliomagenesis
is also underscored by the increased incidence of gliomas
in Li-Fraumeni syndrome, a familial cancer-predisposi-
tion syndrome associated with germline p53 mutations
(Malkin et al. 1990; Srivastava et al. 1990). This genetic
linkage has been reinforced by a glioma-prone condition
in mice engineered with a commonly observed Li-Frau-
meni p53 mutation (Olive et al. 2004) as well as in
p19ARF-null mice, albeit at a low frequency (Kamijo et al.
1999).

The finding that a second promoter drives an alterna-
tively spliced transcript at the CDKN2A locus prompted
the discovery of an additional tumor suppressor gene
that is inactivated at this locus (Quelle et al. 1995). The
second protein encoded by CDKN2A, p14ARF, was sub-
sequently shown to be an important accessory to p53
activation under conditions of oncogenic stress due to its
neutralization of the p53 ubiquitin ligase, MDM2 (Ka-
mijo et al. 1998; Pomerantz et al. 1998; Stott et al. 1998;
Honda and Yasuda 1999), an oncogene originally discov-
ered amplified as double minute chromosomes in a spon-
taneously transformed murine cell line, and then later
found to be a key negative regulator of p53 during normal
development and in tumorigenesis (Fakharzadeh et al.
1991; Momand et al. 1992; Oliner et al. 1993; Jones et al.

1995; Montes de Oca Luna et al. 1995; Honda et al. 1997;
Fang et al. 2000; Honda and Yasuda 2000). Concordantly,
the chromosomal region containing MDM2, 12q14-15, is
amplified in ∼10% of primary GBM, the majority of
which contain intact p53 (Reifenberger et al. 1994). The
discovery of the MDM2-related gene, MDM4 (chromo-
some 1q32), which inhibits p53 transcription and en-
hances the ubiquitin ligase activity of MDM2, prompted
the finding that the p53 pathway is also inactivated by
the amplification of MDM4 in 4% of GBM with neither
TP53 mutation nor MDM2 amplification (Shvarts et al.
1996; Riemenschneider et al. 1999; Gu et al. 2002; Lin-
ares et al. 2003). Additionally, the recently discovered
tumor suppressor gene CHD5 (chromodomain helicase
DNA-binding domain 5), which maps to chromosome
1p36 and is therefore frequently hemizygously deleted in
those human gliomas that have 1p loss, has been shown
to maintain p53 levels by facilitating expression of
p19Arf (mouse p14Arf ortholog), and thus presents an ad-
ditional mechanism for inactivation of this critical path-
way (Bagchi et al. 2007).

Mitogenic signaling pathways Many mitogens and
their specific membrane receptors are present in overac-
tive form in gliomas. Proliferation of normal cells re-
quires activation of mitogenic signaling pathways
through diffusible growth factor binding, cell–cell adhe-
sion, and/or contact with extracellular matrix (ECM)
components. These signals are transduced intracellu-
larly by transmembrane receptors that typically activate
the PI3K and MAPK signaling pathways. In contrast, tu-
mor cells acquire genomic alterations that greatly reduce
their dependence on exogenous growth stimulation, en-
abling their inappropriate cell division, survival, and mo-
tility through the constitutive activation of these path-
ways. While gliomas overcome the normal impositions
on the control of mitogenic signaling through multiple
mechanisms, activation of receptor tyrosine kinases
(RTKs), discussed in detail below, appears to be the pre-
dominant mechanism.

MAPK Proliferation signals can be transduced by the
MAPK pathway by both integrins and RTKs. Integrins
are membrane-bound ECM receptors that mediate the
interaction between the ECM and the cytoskeleton.
Upon adhesion to ECM, integrins bind cytoplasmic an-
chor proteins that coordinate the binding of integrins to
actin filaments, thus creating a focal adhesion complex.
Multiple molecules of focal adhesion kinase (FAK) clus-
ter at these complexes and become activated by cross-
phosphorylation, whereupon FAK activates a signal
transduction cascade that leads to extracellular signal-
regulated kinase (ERK) phosphorylation either through
activation of Ras by the recruitment of the adaptor pro-
tein Grb2 and the Ras guanine nucleotide exchange fac-
tor SOS to phospho-FAK at the plasma membrane, or
through Src-dependent phosphorylation of p130Cas
(Schlaepfer et al. 1994, 1997; Schlaepfer and Hunter
1997). Ras-GTP in turn phosphorylates Raf kinase,
which phosphorylates MEK, which phosphorylates ERK,
which enters the nucleus and phosphorylates nuclear
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transcription factors that induce the expression of genes
promoting cell cycle progression, such as cyclin D1.
RTKs activate the MAPK pathway when activated by
growth factor signaling, mutation, or overexpression. As
discussed in more detail below, RTK activation results
in receptor dimerization and cross-phosphorylation, cre-
ating binding sites for adaptor protein complexes such as
Grb2/SOS, which in turn activates Ras. While constitu-
tively activated, mutated forms of Ras are found in ∼50%
of all human tumors, few Ras mutations have been
found in gliomas. Despite this, high levels of active Ras-
GTP are found in advanced astrocytomas (Guha et al.
1997), suggesting that a more relevant mechanism for
MAPK-dependent mitogenic signaling in GBM is
through inappropriate activation of RTKs and/or inte-
grins.

PI3K/PTEN/AKT The class I PI3Ks catalyze the
mitogen-stimulated phosphorylation of phosphatidyli-
nositol-4,5-bisphosphate [PtdIns(4,5)P2] to produce
PtdIns(3,4,5)P3. This creates docking sites for a multi-
tude of signaling proteins containing domains capable of
binding either to PtdIns(3,4,5)P3 itself or to the 5-dephos-
phorylated product, PtdIns(3,4)P2 (for reviews, see Van-
haesebroeck et al. 2001; Hawkins et al. 2006). The class
IA PI3Ks are heterodimers that are recruited to activated
RTKs and adaptor proteins via their regulatory subunit,
of which there are five isoforms encoded by three genes:
p85�, p55�, and p50� (PIK3R1); p85� (PIKR2); and p55�
(PIKR3).

Since the regulatory subunits appear thus far to be
functionally equivalent, the class IA PI3Ks are currently
defined by the catalytic isoform present: p110�, p110�,
and p110�, encoded by the PIK3CA, PIK3CB, and
PIK3CD genes, respectively (Hawkins et al. 2006). Evi-
dence for the importance of p110� in transformation de-
rives from the discovery of a vPIK3CA oncogene in avian
sarcoma virus with potent transforming activity in
chicken embryo fibroblasts (CEFs) (Chang et al. 1997).
PIK3CA gain-of-function point mutants have been de-
tected in a variety of cancers, including malignant glio-
mas such as GBM, in which the frequency of mutation
has been cited in some studies to be as high as 15%
(Samuels et al. 2004; Gallia et al. 2006). Elevated expres-
sion of the PIK3D gene has also been reported in GBM
(Knobbe and Reifenberger 2003; S. Kang et al. 2006).

In addition to p85 binding, the p110 subunits can also
be activated by binding to GTP-bound Ras (Rodriguez-
Viciana et al. 1994, 1996). Recently, the study of knock-
in mice bearing a p110� point mutant that is unable to
bind Ras has revealed that this interaction is essential
both for normal development and for Ras-driven tumori-
genesis, as assessed both by transformation of mouse
embryonic fibroblasts (MEFs) by H-Ras and using a
mouse model of K-ras-induced lung adenocarcinomas
(Gupta et al. 2007).

The action of class I PI3K enzymes is directly antago-
nized by the PtdIns(3,4,5)P3 3-phosphatase encoded by
the PTEN gene located at 10q23.3 (Li et al. 1997; Steck et
al. 1997; Maehama and Dixon 1998). PTEN is a major

tumor suppressor that is inactivated in 50% of high-
grade gliomas by mutations or epigenetic mechanisms,
each resulting in uncontrolled PI3K signaling in these
tumors (Knobbe and Reifenberger 2003; Ohgaki et al.
2004). In mouse models, brain-specific inactivation of
PTEN caused overgrowth of the mouse brain and aber-
rant proliferation of astrocytes both in vivo and in vitro
(Fraser et al. 2004). An elegant mouse model of astrocy-
toma has been developed in which the Rb family pro-
teins are inactivated by GFAP-directed expression of
SV40 T antigen (Xiao et al. 2002). In this model system,
PTEN inactivation was associated with increased angio-
genesis—a close parallel to the progression of high-grade
disease in humans coincident with loss of PTEN (Xiao et
al. 2002, 2005). While regulation of PI3K signaling is
critical to controlling cell growth and survival, a number
of recent studies have pointed to additional levels at
which PTEN may act to suppress transformation and
tumor progression. Differentiated and quiescent cells
harbor high levels of nuclear PTEN, which appears to
fulfill important roles in the maintenance of genomic
integrity, through centromere stabilization and promo-
tion of DNA repair (Shen et al. 2007). Importantly, a
number of PTEN point mutations found in familial can-
cer predisposition syndromes have no effect on enzyme
activity but instead lie within sequences important for
regulating PTEN localization. Analysis of such mutants
has confirmed that aberrant sequestration of PTEN into
either the nucleus or the cytoplasm compromises its tu-
mor suppressor function (Denning et al. 2007; Trotman
et al. 2007).

Of the many signaling proteins that are recruited to
the membrane and activated by binding to
PtdIns(3,4,5)P3, the phosphoinositide-dependent kinase
(PDK1) and Akt/PKB (also the cellular homolog of a viral
oncoprotein), are required for tumorigenesis in PTEN+/−

mice and for growth of PTEN−/− embryonic stem (ES)
cells as tumors in nude mice (Stiles et al. 2002; Bayascas
et al. 2005; Chen et al. 2006). In response to PI3K acti-
vation, PDK1 and the mammalian target of rapamycin
(mTOR, acting in the rapamycin-insensitive TORC2
complex) activate Akt via phosphorylation of two key
residues, T308 and S473, respectively (Mora et al. 2004;
Sarbassov et al. 2005). Assessment of the phosphoryla-
tion status of these residues is often the method of
choice for monitoring PI3K pathway activity in cell lines
and primary tumors, including GBM samples, 85% of
which have been reported to display activated Akt (Wang
et al. 2004). In addition to aberrant PI3K signaling, there
are a number of other possible mechanisms by which
Akt activation may become dysregulated in GBM.
PHLPP (PH domain leucine-rich repeat protein phospha-
tase), which dephosphorylates S473, is expressed at very
low levels in certain GBM cell lines, as is CTMP (C-
terminal modulator protein), which binds to Akt and in-
hibits its phosphorylation (Maira et al. 2001; Knobbe et
al. 2004; Gao et al. 2005). PIKE-A, a small GTPase highly
expressed in GBMs and glioma cell lines, binds directly
to phosphorylated Akt and enhances its anti-apoptotic
function (Ahn et al. 2004; Knobbe et al. 2005).
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Akt phosphorylates many proteins involved in the
regulation of cell growth, proliferation, metabolism, and
apoptosis. A recent study on v-H-ras-induced transfor-
mation of MEFs and skin carcinogenesis indicates that
activation of mTOR in the rapamycin-sensitive TORC1
complex via inhibition of the TSC2 tumor suppressor is
a key pro-oncogenic function of Akt (Skeen et al. 2006).
Since mutant H-ras is seldom seen in human tumors, it
will be important to determine whether Akt/TSC/
TORC1 signaling is similarly required downstream from
glioma-relevant perturbations, such as EGFR mutation
and overexpression and/or PTEN loss. Evidence that this
may indeed be the case is provided by the efficacy of
PI-103, a small molecule inhibitor of both p110� and
mTOR, which potently blocks the growth of glioma cell
lines and of U87EGFRvIII xenografts following subcuta-
neous injection in nude mice, without discernable tox-
icity to the animals (Fan et al. 2006). The use of TSC2−/−

cells, which display constitutive phosphorylation of the
TORC1 substrates S6K1 and 4E-BP1, revealed the exist-
ence of a negative feedback loop, whereby inhibitory
phosphorylation of the insulin receptor substrate (IRS-1)
by S6K1 causes a reduction in Akt activation (Harrington
et al. 2004; Shah et al. 2004; Riemenschneider et al.
2006; Shah and Hunter 2006). Treatment of glioma cells
with TORC1-specific inhibitors, such as rapamycin, dis-
rupts such feedback control, resulting in increased Akt
activity (Fan et al. 2006). Dual inhibition of PI3K and
TORC1 by PI-103 overcomes these problems and likely
explains its increased efficacy.

In addition, phosphorylation of the FOXO transcrip-
tion factors by Akt, which promotes their exclusion
from the nucleus, reduces the expression of a number of
important target genes, including the CDK inhibitors
p21WAF1/CIP1 and p27KIP1 (both of which are also directly
targeted by Akt) and the RB family member p130
(Medema et al. 2000; Kops et al. 2002; Seoane et al. 2004).
Given the recent data illustrating context-specific ac-
tions of FOXO on various targets in different cell types
and tissues, it may be prudent to validate these FOXO
targets specifically in glioma (Paik et al. 2007).

PI3K–MAPK–p53–RB pathway interactions While
the PI3K, MAPK, p53, and RB pathways are often con-
sidered as distinct entities, there is significant cross-talk
among the pathways that serve to reinforce the inappro-
priate regulation of any single pathway perturbation. For
example, because p53 enhances PTEN transcription and
represses the expression of p110� (Stambolic et al. 2001;
Singh et al. 2002), the loss of p53 in cells with constitu-
tively active RTK signaling can further potentiate PI3K
pathway activation. Therapies aimed at reactivating p53
in GBM may be compromised by MAPK and PI3K inter-
vention in the activity of p53 and its effectors. MAPK
signaling activates c-myc, which binds the miz-1 tran-
scriptional repressor to block p21 gene induction (Herold
et al. 2002; Seoane et al. 2002), while Akt impacts on p53
function by phosphorylation of Mdm2 (Zhou et al. 2001;
Shin et al. 2002; Feng et al. 2004) in addition to the direct
inhibition of p21 discussed earlier. Moreover, these path-

ways can negate each other: p53 can inhibit activated
FOXOs by inducing the expression of the kinase SGK1,
which phosphorylates and exports FOXOs from the
nucleus (You et al. 2004). Conversely, FOXOs can inhibit
p53 transcriptional activity by increasing its association
with nuclear export receptors that translocate it to the
cytoplasm (You et al. 2006). The recent finding that
Sprouty2, a gene involved in suppression of Ras signaling
during oncogene-induced senescence, is also a direct
transcriptional target of FoxO emphasizes the complex-
ity of cross-talk that exists between the Ras/MAPK and
PI3K pathways (Courtois-Cox et al. 2006; Paik et al.
2007). The complicated interplay among these critical
molecules highlights the need for detailed dissection of
the pathways that are aberrant in each tumor to accu-
rately guide the choice of combination therapies that can
simultaneously target multiple pathways.

RTKs Gliomas may activate receptor-driven pathways
by different mechanisms: overexpression of both ligands
and receptors leading to an autocrine loop, genomic am-
plification, and/or mutation of the receptor leading to
constitutive activation in the absence of ligand. TheEGF
and platelet-derived growth factor (PDGF) pathways play
important roles in both CNS development and glioma-
genesis, and targeted therapy against these potentially
critical signaling pathways is currently under vigorous
basic and clinical investigation.

EGFR EGFR gene amplification occurs in ∼40% of all
GBMs, and the amplified genes are frequently rearranged
(Libermann et al. 1984, 1985; Ekstrand et al. 1991; Wong
et al. 1992; Louis et al. 2007). An EGFR mutant allele
with deletion of exons 2–7 (known variously as EGFR-
vIII, �EGFR, or EGFR*) occurs in 20–30% of all human
GBM (and in 50%–60% of those that have amplified
wild-type EGFR), making it the most common EGFR
mutant (Sugawa et al. 1990; Frederick et al. 2000).
EGFRvIII is a highly validated glioma target as evidenced
by the capacity of activated EGFR mutants to enhance
tumorigenic behavior of human GBM cells by reducing
apoptosis and increasing proliferation (Nishikawa et al.
1994; Nagane et al. 1996; Huang et al. 1997; Narita et al.
2002) and to malignantly transform murine Ink4a/Arf-
null neural stem cells (NSCs) or astrocytes in the mouse
brain (Holland et al. 1998a; Bachoo et al. 2002). Thus,
EGFR has been a prime target for therapeutic inter-
vention in GBM with small molecule kinase inhibitors,
antibody-based immunotherapy and immunotoxins
(Lorimer et al. 1995; Mishima et al. 2001; Nagane et al.
2001; Jungbluth et al. 2003), and, more recently, small
interfering RNA (siRNA)-directed neutralization of ei-
ther wild-type EGFR or the unique junction present in
the EGFRvIII allele (Fan and Weiss 2005; C.S. Kang et al.
2006).

Transcriptional profiles of GBM with EGFR over-
expression have revealed distinct gene expression pro-
files that have enabled classification of molecular sub-
groups among phenotypically undistinguishable tumors
(Mischel et al. 2003). Along similar lines, immunohisto-
chemical studies have demonstrated that GBM could be
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stratified according to PI3K pathway activation status
and that these activation profiles are associated with
EGFRvIII expression and PTEN loss (Choe et al. 2003).
Such efforts to stratify patients appear to be important in
the optimal deployment of small molecule EGFR inhibi-
tors as only a small fraction of GBM patients show
meaningful responses to such agents (Rich et al. 2004;
Lassman et al. 2005). Thus far, in responsive cases, pa-
tients with coexpression of EGFRvIII (Mellinghoff et al.
2005) or wild-type EGFR (Haas-Kogan et al. 2005), to-
gether with PTEN presence or low Akt activation levels
in their GBM cells, exhibited the most favorable out-
comes to EGFR inhibitors. In accordance with findings
of multiple activated pathways in GBM, addition of the
mTOR inhibitor, rapamycin, has been shown to enhance
the sensitivity of PTEN-deficient tumor cells to the
EGFR kinase inhibitor, erlotinib (Fan et al. 2003; Goudar
et al. 2005; Wang et al. 2006). Consistent with enhanced
apoptosis resistance by EGFRvIII, activated EGFR has
also been shown to confer radio- and chemo-resistance to
GBM cells (Nagane et al. 1998; Chakravarti et al. 2002).
These experimental observations and the capacity of
EGFR inhibitors or dominant-negative EGFR-CD533 to
sensitize GBM cells to radiation and chemotherapeutic
agents (Nagane et al. 2001; Stea et al. 2003; Lammering
et al. 2004; Sarkaria et al. 2006) predict that disruption of
EGFR function at the time of ionizing radiation and sub-
sequent chemotherapy, instead of at the time of recur-
rence, would improve therapeutic outcome (Nyati et al.
2006). These results, coupled with the recent identifica-
tion of EGFR-activating ectodomain mutations in ∼14%
of GBMs that convey sensitivity toward erlotinib (Lee et
al. 2006), are beginning to detail tumor molecular pro-
files and therapeutic regimens that will best benefit pa-
tients with EGF receptor and downstream pathway ge-
netic lesions.

PDGF receptor (PDGFR) In addition to the EGFR sig-
naling axis, PDGFR� and its ligands, PDGF-A and
PDGF-B, are expressed in gliomas, particularly in high-
grade tumors, while strong expression of PDGFR� oc-
curs in proliferating endothelial cells in GBM (Herman-
son et al. 1992; Plate et al. 1992; Westermark et al. 1995;
Di Rocco et al. 1998). PDGF-C and PDGF-D, which re-
quire proteolytic cleavage for activity, are also frequently
expressed in glioma cell lines and in GBM tissues (Lok-
ker et al. 2002). In contrast to EGFR, amplification or
rearrangement of PDGFR� is much less common, and a
relatively rare oncogenic deletion mutation of PDGFR�
(loss of exons 8 and 9) has been described (Clarke and
Dirks 2003) that, similar to EGFRvIII, is constitutively
active and enhances tumorigenicity. Given the tumoral
coexpression of PDGF and PDGFR, autocrine and para-
crine loops may be the primary means by which this
growth factor axis exerts its effects. Supportive evidence
for a paracrine circuitry initiated by PDGF-B secretion
that enhances glioma angiogenesis has been shown
through stimulation of endothelial cells displaying
PDGFR�, in part, to express VEGF (Guo et al. 2003).
Besides glial precursor cells, NSCs in the adult subven-

tricular zone have been shown to express PDGFR� and
PDGF could stimulate these NSCs to form glioma-like
lesions in the mouse (Jackson et al. 2006). Furthermore,
mice transgenic for neural progenitor PDGF-B expres-
sion resulted in the formation of oligodendrogliomas and
forced elevation of PDGF-B levels increased overall tu-
mor incidence (Dai et al. 2001; Shih et al. 2004), sug-
gesting that targeted therapy against this pathway could
have therapeutic potential (Shih and Holland 2006).
To this end, an orally active kinase inhibitor of the
2-phenylaminopyrimidine class such as STI571 (ima-
tinib mesylate, Gleevec) has been shown to be a potent
inhibitor of these oncogenic loops (Kilic et al. 2000; Hag-
erstrand et al. 2006) and, when combined with hydroxy-
urea in a phase II study, has been shown to achieve du-
rable anti-tumor activity in some patients with recurrent
GBM (Reardon et al. 2005); in contrast, when used alone,
imatinib has demonstrated minimal activity in malig-
nant glioma (see below; Table 1; Wen et al. 2006).

RTK coactivation and cooperation One additional
potential explanation for the failure of EGFR and PDGFR
inhibitors to elicit significant clinical outcomes is that
additional RTKs may cooperate to provide a signaling
threshold that prevents the inhibition of mitogenic and
survival signals through the inactivation of any single
RTK. This hypothesis is supported by recent work that
demonstrates that multiple RTKs in addition to EGFR
and PDGFR are activated simultaneously in primary
GBM patient samples (Stommel et al. 2007), and onco-
genic signaling, survival, and anchorage-independent
growth were not fully abrogated until cell lines with en-
dogenous coactivation of RTKs were treated with phar-
macological agents or siRNAs targeting at least three
different receptors. Importantly, these effects were ob-
served irrespective of PTEN status, indicating that the
presence of this tumor suppressor may not be a critical
determinant of therapeutic success as long as upstream
signaling effectors are sufficiently inhibited. The discov-
ery of receptor coactivation or cooperation suggests that
tumor RTK profiling may be an important step in the
development of a personalized GBM therapeutic regi-
men. Another study (Huang et al. 2007) showed that
glioma cells engineered to overexpress EGFRvIII to lev-
els observed in GBM caused increased c-MET phos-
phorylation that was dependent on the kinase activity
and levels of this mutant EGFR. The cross-talk between
the receptors could be targeted with specific inhibitors to
both, resulting in enhanced cytotoxicity of EGFRvIII-ex-
pressing cells compared with either compound alone. It
appears that the initially disappointing clinical trials us-
ing RTK-targeted agents in GBM should be reanalyzed
with respect to the RTK activation profiles of the re-
sponders and nonresponders, and that future trials could
take RTK coactivation into account when selecting com-
bination inhibitor regimens.

Apoptosis

A hallmark feature of malignant glioma cells is an in-
tense resistance to death-inducing stimuli such as radio-
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therapy and chemotherapy. This biological property has
been linked to genetic alterations of key regulatory mol-
ecules involved in mitogenic signaling, most promi-
nently RTKs and the PI3K–PTEN–Akt signaling axis, as
well as regulatory and effector molecules residing in
classical cell death networks of both extrinsic (death re-
ceptor-mediated) and intrinsic (mitochondria-dependent)
apoptosis signaling pathways.

The “death receptors” are cell surface molecules that,
upon binding their cognate ligands, recruit adapter mol-

ecules to provide a molecular scaffold for the autopro-
teolytic processing and activation of caspases (for review,
see Lavrik et al. 2005). The most important death recep-
tor systems include TNFR1 (DR1/CD120a), TRAILR1
(DR4/APO-2), TRAILR2 (DR5/KILLER/TRICK2), and
CD95 (DR2/Fas/APO-1). Several lines of evidence sup-
port important roles of these death receptors in glioma
pathogenesis. First, various human glioma cell lines and
primary glioma-derived cell cultures are sensitive to
death ligand-mediated apoptosis in vitro and in xenograft

Table 1. Inhibitors being used in clinical trials and their targets

Inhibitor target Mono-therapy Combined therapy

RTK EGFR Erlotinib (Tarceva) Erlotinib + radiation,
erlotinib + temozolomide,
erlotinib + temsirolimus,
erlotinib + sorafenib

Gefitinib (Iressa) Gefitinib + everolimus
Cetuximab (Erbitux) Cetuximab + temozolomide

+ radiation
EGFRvIII and

amp wtEGFR
mAb 806

PDGFR Imatinib (Gleevec) (PDGFR, c-Kit,
Abl)

Imatinib + temozolomid,
imatinib + vatalanib
+ hydroxyurea,
imatinib + hydroxyurea

VEGFR and
multi-RTK

AZD2171 (VEGFR, PDGFR, c-Kit)
Vatalanib (VEGFR, PDGFR, c-Kit)
Sunitinib malate (PDGFR,

VEGFR1/2, c-Kit)
AEE788 (EGFR, VEGFR1/2)
ZD6474 (EGFR, VEGFR2/3)
Lapatinib (EGFR, HER2)
Sorafenib (RAF, VEGFR2/3,

PDGFR, c-Kit)
Sorafenib + temsirolimus,

sorafenib + (Temsirolimus,
Tipifarnib or Erlotinib)

Pazopanib (VEGFR, PDGFR, Kit) Pazopanib + lapatanib
Tandutinib (FLT3, PDGFR)

Ligand VEGF Bevacizumab (ligand) Bevacizumab + irinotecan
VEGF-Trap (ligand)

Signal transduction Akt Perifosine
PKC Tamoxifen Tamoxifen + bortezomib

Enzastaurin
mTOR AP23573

Everolimus Everolimus + temozolomide
Sirolimus
Temsirolimus Temsirolimus + temozolomide

+ radiation
Protein modification HDAC Suberoylanilide hydroxamic acid

(SAHA, Vorinostat)
SAHA + temozolomide

Farnesyltransferase Tipifarnib
Lonafarnib Lonafarnib + temozolomide,

lonafarnib + temozolomide
Depsipeptide

Other �v�3 Integrin Cilengitide Cilengitide + radiation
Steroid receptors Synthetic retinoids (e.g., all-trans

and 13-cis retinoic acid)
Proteosome Bortezomib (Velcade)
Sp1 transcription
factor

Tetra-O-methyl
nordihydroguaiaretic acid

Various drugable molecules and pathways implicated in glioma are being targeted by mono and combined therapeutic approaches. For
detailed information, see the text and htp://www.clinicaltrials.gov. (PKC) Protein kinase C; (HDAC) histone deacetylase.
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model systems in vivo (Weller et al. 1994; Roth et al.
1997; Shinoura et al. 1998; Nagane et al. 2000; Maleniak
et al. 2001; Rohn et al. 2001). Second, expression levels of
these death receptors and in particular of their corre-
sponding (antagonistic) decoy receptors may correlate
with susceptibility of glioma cells to death ligand-in-
duced apoptosis. A prominent example is the decoy re-
ceptor for CD95 ligand (CD95L), soluble decoy receptor 3
(DcR3). It is expressed on malignant glioma cell lines,
and its expression pattern correlates with the grade of
malignancy in human glioma specimens (Roth et al.
2001). Interestingly, infiltration of CD4+ and CD8+ T
cells and microglia/macrophages was significantly de-
creased in DcR3-driven xenografts, suggesting that
glioma cells may escape CD95L-dependent immune-cy-
totoxic attack by expressing a decoy receptor that neu-
tralizes CD95L by preventing its interaction with the
receptor (Roth et al. 2001).

The TRAIL death receptor system in particular has
gained considerable interest as a specific inducer of can-
cer cell apoptosis as its expression has been positively
correlated with survival of patients with primary GBM
(Kuijlen et al. 2006). In this regard, loco-regional admin-
istration of TRAIL inhibited growth of human glioma
cell xenografts (Roth et al. 1999) and acted synergisti-
cally with chemotherapeutic drugs (Nagane et al. 2000;
Rohn et al. 2001), in part through up-regulation of
TRAIL-R2 and Bak protein and down-regulation of the
caspase-8-specific inhibitor cFLIPs (LeBlanc et al. 2002;
Arizono et al. 2003; J.H. Song et al. 2003). In addition,
peptides derived from the second mitochondria-derived
activator of caspases (Smac), a potent antagonist of mem-
bers of the IAP family of caspase inhibitors, acted syner-
gistically with TRAIL to induce tumor cell apoptosis in
vitro and in vivo without demonstrable neurotoxicity
(Fulda et al. 2002). Mechanistically, these peptides abro-
gate IAP-binding activity and, consequently inhibition of
effector caspase-9, caspase-3, and caspase-7 activity
downstream from mitochondrial membrane disintegra-
tion, underscoring the importance of post-mitochondrial
caspase activation for apoptosis propagation in glioma
cell lines and its validity as a therapeutic target (Fulda et
al. 2002).

The role of the Bcl-2 family in gliomagenesis has also
been extensively studied. On the mechanistic level, clas-
sical anti-apoptotic Bcl-2 family members (BAK, BAD,
BID, BAX, BCL-XL, MCL-1) modulate apoptosis signal-
ing by preserving mitochondrial membrane integrity and
the release of cytochrome c, which effects the caspase
cascade and the apoptotic program (for review, see Green
and Kroemer 2004). On the clinical level, there is a cor-
relation between tumor grade and expression of several
anti-apoptotic Bcl-2 proteins (BCL-2 and MCL-1) (Weller
et al. 1995; Krajewski et al. 1997), and in general, this
Bcl-2 “rheostat” is shifted toward an anti-apoptotic bal-
ance during the transition from initial to recurrent GBM
(Strik et al. 1999). Additionally, Bcl-xL is up-regulated by
overexpression of EGFRvIII in glioma cells and this up-
regulation confers resistance to the chemotherapeutic
agent cisplatin (Nagane et al. 1998). In addition to their

classical roles, Bcl2 family members may contribute to
gliomagenesis through enhancement of migration and
invasion by altering the expression of a set of metalopro-
teinases and their inhibitors (Wick et al. 1998, 2001,
2004). Due to their central role and importance in apo-
ptosis signaling, neutralization of anti-apoptotic Bcl-2
proteins by antisense technology (Julien et al. 2000),
small molecules that block BcL2 interactions with other
families (Fesik 2005), or by viral-mediated delivery of
select proapoptotic members (Naumann et al. 2003),
may represent promising future avenues of therapeutic
intervention.

Necrosis

While highly resistant to therapeutic apoptotic stimuli,
GBM tumor cells exhibit the paradoxical propensity for
extensive cellular necrosis. Indeed, necrosis is the most
prominent form of spontaneous cell death in GBM, pre-
sented as foci of micronecrosis surrounded by broad hy-
percellular zones contiguous with normal tissue or by
parenchymal infiltrates (Raza et al. 2002; Brat and Van
Meir 2004). While limited blood supply and anoxia due
to a microthrombotic process has been identified as an
important cause of necrosis, the molecular basis for this
necrotic phenotype, particularly in the context of in-
tense apoptotic therapy resistance, has recently come
into focus with the discovery and characterization of the
Bcl2-like 12 (Bcl2L12) protein.

Bcl2L12 has been shown to be a potent inhibitor of
post-mitochondrial apoptosis signal transduction that is
significantly overexpressed in primary GBMs (Stegh et
al. 2007). Bcl2L12 is a proline-rich protein characterized
by a C-terminal 14-amino-acid sequence with significant
homology with the BH (Bcl-2 Homology) 2 domain found
in several members of the Bcl-2 protein family (Scorilas
et al. 2001). Enforced expression of Bcl2L12 in primary
cortical astrocytes inhibited apoptosis, and its RNAi-me-
diated knockdown sensitizes human glioma cell lines to
drug-induced apoptosis and reduces tumor formation in
an orthotopic transplant model in vivo (Stegh et al.
2007). The anti-apoptotic actions of Bcl2L12 relate sig-
nificantly to its capacity to neutralize effector caspase
activity downstream from mitochondrial dysfunction
and apoptosome activity, likely through specific interac-
tion with effector caspase-7 (Stegh et al. 2007). These
activities of Bcl2L12 are highly relevant to the necrotic
process in the light of studies showing that suppression
of caspase activity downstream from mitochondria redi-
rects the death program from apoptosis to necrosis (for
review, see Nicotera and Melino 2004), indicating that
post-mitochondrial caspase activation acts as a molecu-
lar switch between apoptotic and necrotic cell death
paradigms (for review, see Nicotera and Melino 2004).

In support of this model, germline deletion of post-
mitochondrial apoptosis signaling components, such as
the caspase activator Apaf-1, or blockage of effector
caspase maturation by pan-specific caspase inhibitors re-
sults in decreased apoptosis, yet causes an increase in
necrosis (for review, see Nicotera and Melino 2004).
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Mechanistically, oxidative phosphorylation and conse-
quently intracellular ATP levels decrease due to exten-
sive cytochrome c release and mitochondrial dysfunc-
tion, rendering cells unable to maintain ion homeostasis
and provoking cellular edema, dissolution of organelles,
and plasma membranes (for review, see Nicotera and
Melino 2004). That apoptosis and necrosis signaling
pathways are interconnected is evidenced by the ability
of enforced Bcl2L12 expression to provoke necrotic cell
morphology, as evidenced by substantial plasma mem-
brane disintegration and enhanced nuclear and subcellu-
lar organelle swelling in apoptosis-primed astrocytes
(Stegh et al. 2007). Therefore, up-regulation of Bcl2L12 as
a novel regulator of the apoptosis/necrosis balance in
glial cells may represent an important event in malig-
nant glioma pathogenesis.

Angiogenesis

GBMs are among the most highly vascular of all solid
tumors. Microvascular hyperplasia, the defining histo-
pathological phenotype of both primary and secondary
GBM, consists of proliferating endothelial cells that
emerge from normal parent microvessels as tufted mi-
croaggregates (glomeruloid bodies) accompanied by stro-
mal elements, including pericytes and basal lamina
(Stiver et al. 2004). Microvascular density, a measure of
microvascular proliferation, is an independent prognos-
tic factor for adult gliomas (Leon et al. 1996; Birlik et al.
2006). The idea that angiogenesis is rate limiting for tu-
mor growth, and therefore a rational therapeutic target,
is strongly supported by animal studies that have shown
that angiogenesis is vital for macroscopic solid tumor
growth (Folkman 2007).

One common feature in the transition from low-grade
or anaplastic astrocytomas to secondary GBM is a dra-
matic increase in microvascular proliferation. An
equivalently robust microvasculature proliferation phe-
notype is observed in primary GBM. Since there are
marked genomic differences between primary and sec-
ondary GBM (Maher et al. 2006), it is likely that different
genetic programs converge on a final common angiogen-
esis pathway involving HIF and non-HIF-dependent
downstream effectors that include positive (VEGF,
PDGF, bFGF,IL-8, SDF-1) and negative (thrombospon-
din1, thrombospondin2, endostatin, tumstatin, interfer-
ons) regulators of this process (Nyberg et al. 2005). A
comprehensive understanding of the molecular mecha-
nisms driving angiogenesis in GBM will be necessary for
the rational development and deployment of anti-angio-
genesis therapies. Increasingly, it is becoming evident
that tumor-associated angiogenesis is not simply a
physiological adaptation to hypoxia as a result of an in-
creasing tumor cell mass. Rather it appears to be the
result of critical genetic mutations that activate a tran-
scriptional program for angiogenesis with local tumor
oxygen status further modifying this response. The rela-
tive contributions of these two mechanisms are not yet
fully defined, but it is likely that both may operate to
different extents in different tumors or even in different

regions of the same tumor. Recently, a number of experi-
mental studies have shown that key glioma-relevant
mutations—including those in the PTEN, EGFR, and
CMYC genes—may act as an “angiogenic switch” by sta-
bilizing HIF-1� or one of its downstream targets, VEGF
(Watnick et al. 2003; Blum et al. 2005; Phung et al. 2006;
Shchors et al. 2006). The distinction between microvas-
cular proliferation being an adaptive response to hypoxia
or it being an epiphenomenon of critical genetic muta-
tions that also activate a cascade of proangiogenesis
pathways has clinical and therapeutic importance.

Another issue is the functional consequences of tumor
angiogenesis, with respect to tissue perfusion (Vogel et
al. 2004). Tumor microvessels are highly tortuous with
sluggish flow and diminished gradient for oxygen deliv-
ery and increasing susceptibility to thrombosis and mi-
crohemorrhages (Kaur et al. 2004). Thus, the GBM mi-
crovasculature proliferation may provide little support
in oxygen/nutrient delivery but rather paradoxically con-
tribute to further exacerbating a metabolic mismatch be-
tween the “supply and demand,” leading to progressive
hypoxia and eventually necrosis. This scenario is sup-
ported by the recent experience with anti-angiogenesis
drugs, where their limited clinical benefit seems to be
the result of “pruning” immature vessel growth and al-
lowing “normalization” of the pre-existing vasculature
(see below; Horsman and Siemann 2006). In addition to
the poor vascular architecture, endothelial cells associ-
ated with the tumor vasculature fail to form tight junc-
tions and have few associated pericytes or astrocytic foot
processes leaving the integrity of the BBB compromised,
resulting in increased interstitial edema. Interstitial
edema may further compromise regional blood flow and
exacerbate tumor hypoxia leading to areas of necrosis. In
addition to these maladapted biophysical properties of
GBM microvasculature, specific genetic mutations in
GBM likely contribute to compromised tumor bioener-
getics, specifically the shift in energy reduction from oxi-
dative phosphorylation to glycolysis (Elstrom et al. 2004;
Fantin et al. 2006). These interrelated mechanisms lead
to a level of metabolic demand that may exceed the abil-
ity of the cerebrovascular system to maintain adequate
blood flow to prevent hypoxia and necrosis. The histo-
logical evidence of thrombosis and degenerating vessels
with microhemorrhages are a common feature of GBM
and likely reflect these biological processes.

Anti-angiogenesis therapies The hypothesis that inter-
ruption of blood supply to the tumor will lead to regres-
sion or dormancy of the tumor has led to the develop-
ment of several drugs that target multiple steps in an-
giogenesis (Table 1; Fig. 2). Currently three approaches
are in advanced stages of clinical testing that aim to tar-
get VEGF/VEGFR signaling pathways: (1) monoclonal
antibodies directed against VEGF or its receptor(s) (Win-
kler et al. 2004; Vredenburgh et al. 2007), (2) small mol-
ecule inhibitors of VEGFR-2 tyrosine kinase activity
(Batchelor et al. 2007), and (3) soluble decoy receptors
created from VEFGR1 receptor that selectively inhibits
VEGF (Folkman 2007). A fourth approach targeting �V�3
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and �V�5 integrin receptors on endothelial cells (Nabors
et al. 2007) is also in early clinical trials as an anti-an-
giogenesis therapy in GBM.

Clinical studies, in which anti-angiogenesis drugs
have been used as “single” agents to treat GBM, have
shown little efficacy. This may reflect the fact that these
drugs have no direct effect on the pre-existing stable mi-
crovasculature that may be co-opted to support tumor
growth especially at the infiltrating tumor edge. Recent
data, however, suggest that anti-angiogenesis drugs may
be more effective when combined with cytotoxic
therapy (Table 1). Recently a single-arm phase II study of
bevacizumab (Avastin; Genetech, Inc.) (Vredenburgh et
al. 2007), a recombinant, humanized monoclonal anti-
body targeting VEGF, plus irinotecan (CPT-11) in pa-
tients with recurrent high-grade gliomas reported dra-
matic rates (63%) of radiographic response and a near
doubling of 6 mo and median progression free survival
(PFS) in the patients with GBM (30% and 20 wk, com-
pared with historical controls of 15% and 9 wk). The
therapeutic benefits in the setting of combination
therapy (radiation and/or conventional chemotherapy)
could be attributed to (1) improved drug delivery because
of improved vascular flow, (2) improved drug penetration
into the tumor because of reduced interstitial pressure,
and/or (3) improved radiation/chemotherapy response as
a result of reducing tumor hypoxia. Hypoxia is well
known to create radiation resistance and reduce efficacy
of chemotherapies (Semenza 2003). Overall, the early
clinical data for the anti-angiogenic drugs when used in
combination with radiation or conventional chemo-
therapies is encouraging. The possibility that anti-angio-
genic drugs may enhance intratumoral concentration of
conventional chemotherapeutics raises the intriguing
possibility that these drugs may improve the efficacy
profile of some of the currently available drugs. A pos-
sible mechanism for such synergy could be enhanced
drug delivery, although off-target drug effects and/or
poorly understood pharmacological mechanisms remain
possibilities. The full benefit of anti-angiogenesis will
derive from an improved understanding of the molecular
basis of tumor angiogenesis process, how tumor cell me-
tabolism drives angiogenesis versus cooptation of nor-
mal brain microvascular networks, and definition of
those patients that are likely to benefit from various
types of anti-angiogenic therapies operating on different
levels of the process.

Tumor cell invasion

Infiltration throughout the brain is prominent feature of
low- and high-grade malignant glioma (Lefranc et al.
2005) and is the principal basis for the lack of surgical
cure. In >90% of cases, the recurrent tumor develops
immediately adjacent to the resection margin or within
several centimeters of the resection cavity. Invasion by
glioma cells into regions of normal brain is driven by a
multifactorial process involving cell interactions with
the ECM and with adjacent cells, as well as accompany-
ing biochemical processes supportive of proteolytic deg-

radation of ECM and active cell movement. These pro-
cesses bear a striking resemblance to the robust inherent
migration potential of glial cells during embryogenesis
(Hatten 1999).

The most frequent route of invasion of glial tumor
cells is along white matter tracts and basement mem-
branes of blood vessels. Whether this route offers a path
of least resistance or there are biochemical substrates
that mediate adhesion and promote migration, or both, is
unclear. Invasion and migration of glial tumors differs
from other tumors where local spread is very limited and
dissemination occurs hematogenously or via the lym-
phatic system. In fact, glioma cells lack the ability to
penetrate the basement membrane of blood vessels
(Bernstein and Woodard 1995), and cells gaining access to
the blood through a disrupted blood vessel within the
tumor are unable to establish robust tumor growth out-
side the CNS. The molecular basis for this curious in-
ability of glioma cells to metastasize outside of the CNS
is not known and warrants further investigation.

Several genes involved in glioma invasiveness have
been identified and include members of the family of
metalloproteases (MMP) and their endogenous tissue in-
hibitors (TIMPs). Expression of MMP-2 and, to a lesser
extent, MMP-9 correlate with invasiveness, proliferation
and prognosis in astrocytomas (M. Wang et al. 2003).
Other non-MMP proteases, including urokinase-type
plasminogen activator (uPA) (Landau et al. 1994; Yama-
moto et al. 1994a,b) and cysteine proteases (e.g., cathep-
sin B) (McCormick 1993), are elevated in high-grade ma-
lignant gliomas (for review, see Uhm et al. 1997). Despite
these findings, the role of proteases in glioma invasion
remains unclear since low-grade astrocytomas infiltrate
diffusely throughout the brain, despite relatively normal
levels of the proteases.

Integrins, especially �V�3 complexes, are elevated in
GBM and appear to be relevant to processes of glioma
invasion and angiogenesis (Kanamori et al. 2004). Several
studies have also reported potential novel glioma inva-
sion genes. Invasion inhibitory protein 45 (IIp45), a po-
tential tumor suppressor gene on chromosome 1p36, is
frequently down-regulated in GBMs. Its product inhibits
invasion through the binding of IGFBP2 (S.W. Song et al.
2003). In contrast, IGFBP2 promotes invasion in GBM by
up-regulating a panel of genes involved in invasion, one
of which is MMP-2 (H. Wang et al. 2003). Other proteins
are overexpressed in invasive areas of GBM, such as an-
giopoietin-2, which in addition to its involvement in an-
giogenesis also plays a role in inducing tumor cell infil-
tration by activating MMP-2 (Hu et al. 2003). Ephrin re-
ceptors and their ligands, the ephrins, mediate
neurodevelopmental processes such as axon guidance
and cell migration and in glioma have been shown to
regulate migration and invasion. Compared with low-
grade astrocytoma or normal brain, GBMs, in particular
the migratory tumor cells, overexpress EphB2 (Hu et al.
2003). Intriguingly, EphA2 overexpression has been
linked to poor survival in GBM (Liu et al. 2006).

Other novel invasion- and migration-associated genes
have been identified using oligonucleotide microarray
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technology (Demuth and Berens 2004; Tatenhorst et al.
2004) on RNA isolated by laser-captured microdissection
of cryostat sections from human glioma biopsy tumor
cores and invasive edges. These genes include P311, a
68-amino-acid polypeptide that has been described in
embryonic neuronal migration (Studler et al. 1993);
death-associated protein 3 (DAP3), which has been
shown to confer protection from Fas-induced, ionizing
radiation-induced, and streptonigrin-induced cell death
(Kissil et al. 1999); and FN14, which encodes a cell sur-
face receptor for the tumor necrosis factor superfamily
member named TWEAK, all of which have functionally
been shown to modulate glioma cell migration and apo-
ptosis (Taylor et al. 2000; Mariani et al. 2001; Wiley and
Winkles 2003).

Since migrating glioma cells show increased levels of
phosphorylated Akt, PI3K inhibitors have been tested
experimentally on these cells, resulting in a decrease in
migration and an increase in apoptosis sensitivity (Joy et
al. 2003). In conjunction with this, PTEN mutation has
been implicated in an invasive phenotype, not only as
contributing to deregulated PI3K signaling but also in its
ability to stabilize E-cadherin and modulate cell matrix
adhesion complexes (Kotelevets et al. 2001). These find-
ings highlight the multitude of ways that gliomagenic
lesions effect a broad spectrum of the tumor phenotypes
ranging from aberrant cell proliferation to invasion and
resistance to apoptosis.

Frontiers in glioma research and therapy

Genomic profiles of GBM

Copy number analysis Comparative genomic hybrid-
ization (CGH) analysis of astrocytic tumors has revealed
numerous recurrent copy number alterations (CNAs),
pointing to the existence of many additional oncogenes
or tumor suppressor genes beyond the handful of classi-
cal GBM mutation targets described in the previous sec-
tions. Conventional and array-based CGH (aCGH) pro-
filing have cataloged the multitude of recurrent CNAs,
including gains/amplifications of 1p34-36, 1q32, 3q26-
28, 5q, 7q31, 8q24, 11q, 12q13, 13q, 15p15, 17q22-25,
19q, 20p, and 20q and losses/deletions of 3q25-26, 4q,
6q26-27, 9p, 10p, 10q, 11p, 11q, 12q22, 13q, 14q13,
14q23-31, 15q13-21, 17p11-13, 18q22-23, 19q, and 22q
(Reifenberger et al. 1994; Nishizaki et al. 2000; Hui et al.
2001; Burton et al. 2002; Nutt et al. 2003; Misra et al.
2005; Nigro et al. 2005; Phillips et al. 2006). These high-
resolution studies also revealed new molecular markers
of glioma that complement and extend histological (as-
trocytoma, oligodendroglioma, and GBM) (Kotliarov et
al. 2006) and tumor grade classifiers (Nishizaki et al.
2000). This is particularly evident for primary and sec-
ondary GBMs, which are histopathologically indistin-
guishable yet show dramatically different patterns with
the majority of recurrent CNAs being unique, rather
than overlapping between the two entities. Analysis of
these patterns using an unsupervised classification algo-
rithm, termed genomic nonnegative matrix factorization

(gNMF), showed that primary and secondary GBMs seg-
regate distinctly into two classes, and that secondary
GBM can be further stratified into two subgroups with
different times to progression from low-grade to second-
ary GBM (Maher et al. 2006). Some of the recurrent ge-
nomic alterations have been shown to be prognostic—
loss of 6q or 10q or gain of 19q is associated with shorter
survival, while loss of 19q tracks with long-term survival
(>3 yr) (Burton et al. 2002). Current efforts are now di-
rected toward identifying the clinically relevant genes
residing in these loci—efforts strongly motivated by the
discovery of molecular signatures of drug response in the
clinic (Haas-Kogan et al. 2005; Hegi et al. 2005; Melling-
hoff et al. 2005).

Transcriptional profiling Gene expression profiling has
proven to be a highly effective method to obtain global
signatures reflecting the biological state of the tumor
and underlying pathogenic mechanisms and providing
markers for use in diagnosis and clinical management.
Initial applications of transcriptional profiling to GBM
confirmed that defined gene signatures could be used to
classify different histological grades (Rickman et al.
2001; Godard et al. 2003; van den Boom et al. 2003).
Indeed, among nonclassical lesions, classification by
gene expression signatures more accurately predicted
survival than standard pathological evaluation (Nutt et
al. 2003). More recently, even among histologically in-
distinguishable GBMs, expression profiling was able to
classify GBM into subgroups with different overall sur-
vival. Although further validation studies are needed to
confirm that these signatures can be used prospectively,
these studies suggest that gene expression profiling rep-
resents a useful approach in classifying categorize GBM
(Liang et al. 2005).

In addition, given the observed intratumoral heteroge-
neity in GBM, these studies have provided important
biological insights into the pathogenesis of GBM. When
histologically distinct lesions from the same patient
were compared, the gene signatures from these lesions
more closely resembled each other than lesions from
other patients, suggesting that they arise from a common
precursor and share a common molecular life history (Li-
ang et al. 2005). Such analyses have implicated angiogen-
esis, immune cell infiltration, and extracellular remod-
eling as drivers of differences between tumor subtypes
(Godard et al. 2003; Liang et al. 2005). In a few cases,
these studies have facilitated the identification of spe-
cific genes that predict survival, such as FABP7, DLL,
and ASPM (Liang et al. 2005; Horvath et al. 2006; Phil-
lips et al. 2006) and permit one to predict the clinical
response to EGFR kinase inhibitors (Haas-Kogan et al.
2005; Mellinghoff et al. 2005). These studies suggest that
further characterization, validation, and application of
this technology will provide improved metrics for prog-
nostication and choice of therapy.

Current status of targeted therapy in GBM

While surgery remains the primary intervention, several
early-phase clinical trials of targeted therapies in high-
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grade glioma have been completed or are underway ei-
ther singly or in combination with standard chemo-
therapy and/or radiation therapy (for a detailed review,
see Sathornsumetee et al. 2007 and references therein). A
listing of such agents is presented in Table 1 (compiled
from http://www.clinicaltrials.gov). The compendium of
GBM agents reflects the prevalence of alterations in
EGFR, such as the EGFRvIII deletion mutation (Scott et
al. 2007) and PDGF signaling and modulators of PI3K
signaling, as well as the prominence of biological pro-
cesses such as angiogenesis and invasion. Clinical out-
comes in these trials are often difficult to interpret and
are best considered in the context of standard therapy.
The mainstay of initial treatment for GBM has changed
little over the last 25 yr and is based primarily on exter-
nal beam radiation delivered conformally to the tumor
volume, now commonly determined by both MRI con-
trast-enhancement and surrounding T2 signal hyperin-
tensity (Walker et al. 1978, 1980). In conjunction with
surgery and medical management, radiation therapy
doubles median survival to 12 mo and extends 2-yr sur-
vival to 10%, with little added benefit from conventional
chemotherapies (Shapiro et al. 1989; Fine et al. 1993;
DeAngelis et al. 1998; Stewart 2002). More recently, a
notable randomized prospective study demonstrated the
first clear survival benefit for chemotherapy in the treat-
ment of GBM: The oral alkylating agent temozolomide
(TMZ), given concurrently with radiation and continued
thereafter, was found to extend median survival to 15 mo
and 2-yr survival to 26% (Stupp et al. 2005). Supporting
the concept of molecularly informed clinical manage-
ment, further analysis revealed that the survival benefit
was largely restricted to those patients whose tumors
showed epigenetic silencing of the DNA repair gene
MGMT: Median survival was extended to nearly 2 yr
when MGMT was methylated, whereas little benefit was
seen in patients with tumors expressing MGMT (Hegi et
al. 2005). It is tempting to speculate that MGMT-medi-
ated DNA repair may itself be considered a potentially
valuable therapeutic target for the 50% of patients that
express the MGMT gene (Hegi et al. 2006).

Clinical trials of single-agent-targeted therapies typi-
cally recruit from the molecularly heterogeneous group
of patients who have tumor relapse following radiation
and other therapies. The difficulties in interpreting out-
comes, whether radiographic response to treatment or
overall survival, are well documented (Grant et al. 1997).
Several studies have established the validity of 6-mo pro-
gression-free survival (PFS6), determined radiographi-
cally, as a meaningful endpoint in defining response to
treatment: A PFS6 of 15% or less has been estimated as
a benchmark for inactive therapy (Wong et al. 1999; Ball-
man et al. 2007). In comparison, TMZ given at first re-
currence in GBM yields a PFS6 of 21% (Yung et al. 2000).
In this challenging patient group, the initial results of
the EGFR inhibitors erlotinib and gefitinib in single-
agent trials have shown little activity overall, although a
modest response may be seen in the subset of patients
with intact PTEN (Prados et al. 2003; Rich et al. 2004;
Mellinghoff et al. 2005). Interpretation may be compli-

cated by variable EGFR inhibition in tumors treated by
erlotinib and gefitinib, as measured by abundance of
phosphorylated EGFR, Akt, and Erk (Lassman et al.
2005). Phase II single-agent trials for inhibitors of
PDGFR (imatinib), RAS (tipifarnib), and mTor (temsiro-
limus) have shown minimal activity overall in GBM as
well, although further analysis of tumor material and
clinical parameters from sporadic responders may indi-
cate prognostic features (Chang et al. 2005; Galanis et al.
2005; Cloughesy et al. 2006; Wen et al. 2006; Franceschi
et al. 2007). VEGF/R inhibitors and multitarget tyrosine
kinase inhibitors with anti-VEGFR potency are theoreti-
cally attractive agents for attacking GBM, particularly in
combination with therapies that have direct tumor cy-
totoxicity. A recent trial of AZD2171, a multikinase in-
hibitor with pan-VEGFR, c-Kit, and PDGFR selectivity,
demonstrated primary effects of tumor vasculature “nor-
malization”: namely, a reduction in contrast-enhancing
tumor volume and surrounding edema that Batchelor et
al. (2007) were able to link to vessel pruning and recon-
stitution of the blood-brain barrier through analysis of
perfusion MRI and model systems. It remains to be seen
whether these potent effects on tumor vasculature may
be vividly improving the patient’s MRI without impact-
ing progression of the underlying tumor. Nonetheless,
VEGF inhibition is likely to have a useful role in com-
bination therapy (Vredenburgh et al. 2007). While tar-
geted inhibitors have shown little durable effect as
monotherapies, their specificity and generally modest
side effect profiles facilitate combination together and
with conventional cytotoxic agents. Table 1 lists cur-
rently active clinical trials investigating combined thera-
pies. Although there is reason to believe that certain
combinations will be effective in certain patients, the
added complexity presents a challenge to clinical trial
design, patient stratification and logistics.

Evidence for glioma origins

There is growing evidence that only a minor population
of cells in solid tumors, including primary brain tumors
(GBM, medulloblastoma, and ependymoma), are capable
of forming a tumor when orthotopically transplanted
into an immunocompromised mouse (Singh et al. 2004).
The concept of the brain CSC (Reya et al. 2001) is based
on the observation that only a small fraction of primary
leukemic (AML) cells are capable of initiating and sus-
taining clonogenic growth and inducing leukemia in im-
munocompromised mice (Lapidot et al. 1994; Bonnet
and Dick 1997). Importantly, these leukemic subclones
shared the same cell surface markers (CD43+, CD38−) as
“normal” human hematopoietic stem cells (HSCs),
while the progeny of these leukemic clones, the blast
cells, often expressed more differentiated lymphoid or
myeloid lineage markers and were not capable of produc-
ing leukemic disease. At present it is unclear whether
the CSC derives from a normal stem cell compartment
or from a more differentiated progenitor that dedifferen-
tiates into a stem cell-like state is not yet clear. The
identification of the “cell of origin” remains an area of

Furnari et al.

2696 GENES & DEVELOPMENT

 Cold Spring Harbor Laboratory Press on December 18, 2018 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


active research for both hematological malignancies
(Passegue et al. 2003) and solid tumors (Al-Hajj et al.
2003; Singh et al. 2004; Sanai et al. 2005; Taylor et al.
2005; Patrawala et al. 2006; Li et al. 2007; O’Brien et al.
2007; Prince et al. 2007).

The CSC hypothesis was independently proposed for
GBM (Singh et al. 2003) and pediatric gliomas (Hemmati
et al. 2003). There were two critical findings from these
studies. First, only a minor population of cells identified
in cell cultures, from a variety of primary CNS tumors
(including GBM, medulloblastoma, ganglioglioma, epen-
dymoma, and pilocytic astrocytomas) was able to self-
renew and form clonogenic neurospheres. These self-re-
newing brain tumor cells were identified (Singh et al.
2003) by the expression of the cell surface marker,
CD133+ (1%–35% of total population). In contrast, the
CD133− population failed to proliferate and remained as
an adherent monolayer and expressed mature lineage-
specific markers. Second, CD133+ tumor neurospheres
under NSC culture conditions expressed the stem cell
marker Nestin and, upon exposure to serum, differenti-
ated into a mixed population of neurons (Tuj1+), astro-
cytes (GFAP+), and oligodendrocytes (PDGFR�+), which
mirrored the mixed cell types found in the original pa-
tient’s tumor. These observations provide support for a
hierarchical CSC hypothesis, suggesting that only
CD133+ brain tumor cells can self-renew and undergo
lineage-specific differentiation.

Subsequently, substantial enrichment of the tumor-
forming ability of FACS-sorted CD133+ cells (as few as
100 implanted cells were able to produce orthotopic tu-
mors) following in vitro expansion of these cells was re-
ported (Singh et al. 2004). In contrast, CD133− cells failed
to form tumors, even following injection of a much
larger cell innoculum (105 per injection). The orthotopic
tumors mirrored the original tumor heterogeneity, with
CD133+ cells forming a minor fraction and the CD133−

cells failing to form tumors on serial transplantation.
These data suggest that loss of CD133 expression reflects
an “irreversible” loss of cellular ability to propagate a
tumor. Whether CD133+ cells are only important for tu-
mor initiation and are less critical for tumor progression
will require a genetic strategy, similar to that used to
monitor skin stem cells in vivo using a doxycyline-in-
ducible H2B-eGFP reporter tag that enabled selection of
CD133+ cells over time (Tumbar et al. 2004).

There is now substantial evidence for the enrichment
of in vivo cancer-forming ability of CD133+-expressing
cells for GBM (Singh et al. 2004; Bao et al. 2006a; Pic-
cirillo et al. 2006) and more recently in colon cancer
(O’Brien et al. 2007; Ricci-Vitiani et al. 2007). There are,
however, a number of reports that suggest a less clear
distinction between the ability of CD133+ and CD133−

cells to form orthotopic tumors (Bao et al. 2006b; Sakari-
assen et al. 2006; Beier et al. 2007; Zheng et al. 2007). For
example, it has been reported recently (Beier et al. 2007)
that CD133− cells isolated from primary GBM tumors
were equally capable of forming orthotopic tumors as the
CD133+ subpopulation, while under the same condi-
tions, none of the secondary GBM tumors (zero of seven)

produced viable neurosphere cultures. They also re-
ported that for four out of 11 primary GBM tumors,
CD133− cells grew as an adherent monolayer yet were
able to produce orthotopic tumors. Similarly, CD133−

primary GBM tumor cells, maintained as an adherent
monolayer by addition of serum to stem cell culture me-
dia, were also able to produce highly infiltrative ortho-
topic tumors (Sakariassen et al. 2006). These data suggest
that even brief ex vivo manipulations may alter the mo-
lecular and phenotypic properties of freshly isolated tu-
mor cells, may complicate the conclusions that can be
drawn from these sorts of experiments, and point at the
need for studies using directly isolated tumor cells from
fresh specimens and immediate implantation into im-
munocompromised mice. While the GBM-stem cell idea
is in its infancy and many questions remain, its potential
for our understanding of tumor development and therapy
design and selection is exciting indeed.

Genetically engineered models of glioma

There is little debate of the importance of murine mod-
els in advancing our understanding of the complex biol-
ogy of gliomas. Various types of in vivo model systems
have been developed and utilized, including traditional
orthotopic xenotransplants with established human
glioma cell lines and, more recently, with primary hu-
man glioma cells enriched for surface expression of
CD133 (Singh et al. 2004). There is great interest in the
further development of the CD133 primary tumor model
system as this appears to be superior in recapitulating
well the diffuse infiltrative nature of the primary human
disease. Whether the CD133 primary tumor system will
prove to be a more accurate biological model or be more
predictive in drug testing than xenotransplant models
with established cell lines is an area of significant cur-
rent investigation.

In recent years, important advances have been made in
the construction of genetically engineered mouse (GEM)
models harboring glioma-relevant mutations or combi-
nations of mutations. In several cases, such GEMs pre-
dictably develop gliomas with many of the features of
the human disease (Table 2; Weissenberger et al. 1997;
Uhrbom et al. 1998; Kamijo et al. 1999; Holland et al.
2000; Reilly et al. 2000; Dai et al. 2001; Ding et al. 2001,
2003; Rich et al. 2001; Sonoda et al. 2001; Bachoo et al.
2002; Uhrbom et al. 2002; Xiao et al. 2002; Weiss et al.
2003; Holmen and Williams 2005; Zhu et al. 2005; Char-
est et al. 2006; Tchougounova et al. 2007). Given the
experimentally tractable nature of the mouse, these
glioma-prone GEM models are beginning to shed light on
a number of key issues such as, for example, the glioma
cell of origin (Zhu et al. 2005), the ordering of mutations
and whether such events underlie various glioma sub-
types (Hu et al. 2005), the cooperative and epistatic re-
lationship of such mutations, and the complex hetero-
typic interactions between the evolving tumor cell and
the host microenvironment, among other issues central
to the problem of gliomagenesis. With further refine-
ment, there is now increasing evidence that these GEM
model systems will provide an additional vantage with
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which to test the timing, dosing, and combination of
drugs in the pipeline and assist in the development of
drug response biomarkers (Momota et al. 2005; Xiao et
al. 2005).

Each of the GEM models in Table 2 offers distinct
advantages and limitations for certain types of experi-
mental inquiry. In particular, these models are ideal for
investigation of biological mechanisms underlying tu-
morigenesis and for the functional validation of candi-
date genes identified through large-scale genomic analy-
sis of tumor specimens. The need for accurate models is
perhaps most acute in preclinical testing, where experi-
mental data often determine the fate of a drug in devel-

opment. Although additional study is needed, it is
widely anticipated that refined GEM models of glioma
should enable the identification of tumor maintenance
genes and the testing of agents targeting such mission
critical lesions, thereby identifying key targets, the best
agent, and the right patient population (i.e., genotype)
(for review, see Sharpless and Depinho 2006). Thus,
GEM models may allow for culling of ineffective drugs
and improved clinical trials design for those entering
phase I/II clinical trials. In addition, the availability of
refined GEM models that evolve through stages may
help define the tumor grade where an agent or combina-
tion of agents may be most effective.

Table 2. Mouse and human models of gliomagenesis based on genetic alterations found in astrocytic glioma

Tumor classification Genetic pathway/method Promoter Study

Transgenic and
knockout GEMs

Low-grade astrocytoma Ras/tg GFAP Ding et al. 2001
Src/tg GFAP Weissenberger

et al. 1997
Nf1 + p53/ko — Reilly et al. 2000
floxNf1 + p53/ko GFAP-Cre Zhu et al. 2005

Anaplastic astrocytoma Ras/tg GFAP Ding et al. 2001
Nf1 + p53/ko — Reilly et al. 2000
Src/tg GFAP Weissenberger

et al. 1997
Rb/SV40 lg T PTEN/ko GFAP Xiao et al. 2002
floxNf1 + p53/ko GFAP-Cre Zhu et al. 2005

Glioblastoma Nf1 + p53/ko — Reilly et al. 2000
floxNf1 + p53/ko GFAP-Cre Zhu et al. 2005
FIG-ROS + Ink4aArf ko Ad-Cre Charest et al. 2006

Low-grade
oligodendroglioma

Arf/ko — Kamijo et al. 1999

v-erbB/tg S100� Weiss et al. 2003
Ras + EGFRvIII/tg GFAP Ding et al. 2003

High-grade
oligodendroglioma

v-erbB/tg + Inka/Arf ko S100� Weiss et al. 2003

RCAS virus Glioblastoma Ras + Akt Nestin Holland et al. 2000
Ink4aArf ko + Ras RCAS GFAP/Nestin Uhrbom et al. 2002

Low-grade
oligodendroglioma

PDGFB Nestin Dai et al. 2001

Ink4a, Arf, Ink4aArf ko
+ PDGFB RCAS

GFAP/Nestin Tchougounova
et al. 2007

Anaplastic
oligodendroglioma

Ink4aArf ko + PDGFB RCAS Nestin Dai et al. 2001

Ink4a, Arf, Ink4aArf ko
+ PDGFB RCAS

GFAP/Nestin Tchougounova
et al. 2007

Mixed oligoastrocytoma Ink4aArf ko + PDGFB RCAS GFAP Dai et al. 2001
Glioblastoma Tet-off KRAS + Akt Nestin Holmen and

Williams 2005
Retroviral Glioblastoma PDGFB Mixed Uhrbom et al. 1998
Astrocyte and

NSC transgenesis
High-grade gliomas Inka/Arf ko/EGFRvIII retrovirus GFAP and Nestin Bachoo et al. 2002

NHA transformation Anaplastic astrocytoma hTERT, H-ras, HPV E6 and E7 — Sonoda et al. 2001
Anaplastic

astrocytoma-glioblastoma
hTERT, H-ras, SV40 T/t-Ag — Rich et al. 2001

Temporal and compartmental transgene expression in somatic cells was achieved by nestin and S100� (glioneuronal progenitor cells)
and GFAP (differentiated astrocytes) promoters. In general, the cell of tumor origin in knockout GEMs is unknown. (GEMs) Geneti-
cally engineered mice; (RCAS) replication-competent avian sarcoma-leukosis virus long terminal repeat (LTR) with a splice acceptor;
(NHA) normal human astrocytes; (tg) transgene; (ko) knockout; (Nf1) neurofibromatosis 1; (floxNf1) LoxP-flanked Nf1 gene excised by
Cre recombinase; (hTERT) human telomerase reverse transcriptase; (HPV E6 and E7) human papillomavirus oncoproteins; (SV40
T/t-Ag) simian virus 40 large and small T antigens; (Ad-Cre) adenovirus expressing Cre recombinase; (FIG-ROS) fused in glioblastoma-
Ros oncogene.
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While current efforts are focused on the development
of GEMs harboring signature mutations in human
glioma, there remains a great utility for models engi-
neered with nonstereotypical lesions that yet capture as-
pects of human disease behavior and appearance, includ-
ing invasion, angiogenesis, necrosis, and tumor–ECM in-
teractions. Novel therapies developed to block these
biological pathways could be tested in such a model.
Similarly, a model that recapitulates the genetics but
lacks several of the clinical features of the tumor can be
valuable. For example, a tumor driven by PDGF (Dai et
al. 2001) could be used to study the downstream targets
and the biological consequences of neutralization of the
pathway. Finally, inducible and conditional models are
gaining popularity as ideal systems for the somatic acti-
vation of genes in specific cell populations and for the
assessment of genetic lesions in tumor progression and
maintenance.

The recently developed glioma-prone GEM models
have been notable for recapitulating most of the cardinal
histological features of the human disease. That said, a
fully accurate genocopy and phenocopy of the human
disease has yet to be developed in which the most com-
mon mutations are engineered, genome instability is
rampant, and orthologous acquired events are docu-
mented. Nevertheless, current models have provided im-
portant lessons for understanding the nature of gliomas:
(1) Loss of a single tumor suppressor gene or overexpres-
sion of an oncogene is insufficient to induce high-grade
gliomas with high penetrance; (2) modifying mutations
are important in gliomagenesis; (3) cell-of-origin and the
mutations or set of mutations in such cells plays a sig-
nificant role in transformation; (4) dysregulating various
family members of a pathway or regulatory machinery
may have similar biological consequences; and (5) the
mutation or combination of mutations has stark effects
on a given state of differentiation.

Thus, while further refinement is needed, these GEM
models have afforded opportunities to better understand
many enigmatic aspects of human glioma development
and therapy. Given the wealth of new data anticipated
from The Cancer Genome Atlas (TCGA) (Hanauer et al.
2007), for which GBM is one of the select cancer types to
be analyzed, a key challenge will be to assign the
plethora of newly discovered cancer-associated genetic
alterations with cancer relevance. Here, mouse models
can serve two key roles: First, they can be used in com-
parative oncogenomics to identify loci/genes that are
commonly targeted in cancer development across evolu-
tion, and second, they can serve as relevant model sys-
tems to validate genes as well as determine whether new
genes cooperate (or not) with specifically engineered mu-
tations—ultimately allowing for the placement of ge-
netic lesions into certain pathways and the testing of
drugs targeting these activities.

Future directions

The progress and depth of understanding of the biology
and genetics of glioma, together with truly manipulable

experimental models, now offer very real opportunities
for the development of effective targeted therapy. De-
spite significant gaps in our understanding, a wealth of
information now exists about the clinical and biological
behavior of the tumors, the genetic pathways involved in
gliomagenesis, and the nature and role of signature al-
terations in these pathways. The challenge now is to
integrate all of this knowledge in an interdisciplinary
way to fully understand this disease and how its signa-
ture heterogeneity contributes to its intractability. For
example, the relatively poor response of GBM patients to
EGFR inhibitors, together with emerging data showing
that those who do respond have specific genetic combi-
nations, suggests that a pathway targeting approach re-
quires a more thorough understanding. Moreover, the
fact that even those patients who do respond to these
therapies eventually progress suggests that the evolution
of therapeutic resistance is a hallmark feature in their
effectiveness. This raises critical questions as to which
genetic alterations should be targeted as drivers of tumor
maintenance, which should be ignored because they are
initially needed for tumor establishment, and which
drive the glioma stem cell niche, thus providing a reser-
voir from which such therapeutic resistant cells can
emerge (Bao et al. 2006a). These studies, along with new
data that will emerge from the TCGA initiative, will
likely transform our understanding of genetics underly-
ing GBM.

To fully understand the relevance of this niche in driv-
ing therapeutic resistance (Bao et al. 2006a), many criti-
cal questions remain to be answered, including whether
CD133+ cells are equivalent to the actively proliferating
tumor cells seen on routine histological analysis or rep-
resent a quiescent population that is activated by ex vivo
manipulations. It is also not yet clear whether there is a
prognostic correlation between CD133+ and patient out-
come, and if CD133+ cells are selectively spared by ra-
diation and chemotherapeutic drugs. Finally, it is not
clear whether de novo CD133+ cells are preferentially
found in the neurovascular niche, as was recently pro-
posed based on in vitro studies (Calabrese et al. 2007).

Beyond the stem cell issue is the emerging data noted
above regarding RTK coactivation that provides a ratio-
nal explanation for the feeble ability of RTK inhibitor
monotherapy to effect durable clinical responses in GBM
patients, in that the inhibition of a single RTK is insuf-
ficient to block signaling through critical growth and
survival pathways (Huang et al. 2007; Stommel et al.
2007). This suggests that RTK profiling will be necessary
to rationally determine an appropriate combination of
inhibitors that will achieve a significant clinical out-
come. Thus, a systematic study of combination RTK
therapies in cancers harboring specific RTK coexpression
patterns represents an important next step in the design
of new clinical trials, and the secondary analysis of such
tumor samples will yield valuable insight into mecha-
nisms of response and resistance. Because FDA-approved
RTK inhibitors already exist and additional novel drugs
are under development, this treatment paradigm may be
implemented in a relatively timely fashion for GBM and
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other cancers that are currently highly refractory to vir-
tually all existing therapies.

Our ability to isolate and culture neural and CSCs,
astrocytes and oligodendrocytes and the creation of
faithful models of this disease coupled to enormous ad-
vances in genomic characterization of gliomas and ex-
quisite functional validation of causative mutations of-
fer the very real prospect of rapid and thorough preclini-
cal testing of compounds and other agents to directly
answer these questions. By identifying the weaknesses of
the tumor, useful treatments for patients with these dev-
astating diseases will become a reality.
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