
Wang, Huamao, Yang, Jun and Yao, Yumei (2019) Dynamics and Performance 
of Decentralized Portfolios with Size-Induced Fund Flows.  Quantitative 
Finance, 19 (6). pp. 885-898. ISSN 1469-7688. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/71037/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1080/14697688.2018.1550262

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/71037/
https://doi.org/10.1080/14697688.2018.1550262
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Dynamics and Performance of Decentralized Portfolios

with Size-Induced Fund Flows

Huamao Wanga,∗, Jun Yangb, Yumei Yaoc

aKent Business School, Parkwood Road, University of Kent, Canterbury, Kent CT2 7FS,
UK.

bCMRE Risk Management and Compliance Consultancy, 1083 HN Amsterdam,
Netherlands.

cIndependent, UK.

Abstract

We examine the implications of fund sizes for portfolio dynamics and per-

formance within a decentralized structure, where the chief investment of-

ficer optimally allocates capital to two fund managers who invest in mul-

tiple assets within their own asset classes. The managers experience fund

inflows/outflows depending on not only their investment performances but

also their fund sizes that are mainly driven by their optimal portfolios. We

characterize these practical features through a two-layer dynamic optimiza-

tion model where the managers maximize their size-dependent compensa-

tions. We solve the highly path-dependent optimization problem using a

simulation-projection method with a multidimensional grid search and pol-

icy iteration. Our analysis provides new interpretations on the controversial
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scale effects on fund performance, along with insights into portfolio dynamics

and management fees for bond funds and stock funds under different fund

ages.

Keywords: Dynamic Portfolio; Investment Analysis; Fund Performance;

Compensation Contract; Scale Economies
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1. Introduction

There is an enormous size of Total Net Assets (TNAs) managed by the

investment management industry. For example, the TNA of U.S.-registered

investment companies reached $19.2 trillion in 2016 and this phenomenal

size is mainly due to large capital inflows and asset appreciation.1 Fund sizes

matter in investment management since managers have incentives to attract

cash inflows in order to increase their TNA and compensations. Motivated

by the prevalent facts, we analyze the effects of fund sizes (scale effects) on

managers’ optimal portfolios and fund performance.

As fund sizes are large, the majority of funds delegate portfolios to multi-

ple asset managers for their professional knowledge,2 see, e.g., van Binsbergen

et al. (2008), Blake et al. (2013). Being consistent with this industry prac-

tice, we use a model of decentralized structure to study the scale effects on

the dynamics and performance of managers’ optimal portfolios.3. In addi-

tion to practical relevance, the decentralized structure makes it tractable to

solve the managers’ path-dependent dynamic portfolio choice problems with

multiple risky assets without incurring a serious ‘curse of dimension’. To the

best of our knowledge, this paper is the first one using a decentralized model

to reveal the insights into the effects of fund sizes on funds’ portfolios and

1See 2017 Investment Company Fact Book, available at https://www.ici.org/.
2There is a growing body of literature on the asset pricing implications of the delegated

intermediary investment structure, see He and Xiong (2013).
3Given the popularity of the decentralized structure, the implications of our analysis

are essentially applicable to the investment management divisions of the institutions like

banks, mutual funds, and pension funds with a decentralized structure locally or globally.
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performances. It contributes to the literature in the following ways.

First, we provide a theoretical model that captures the relationship be-

tween fund sizes and fund flows in a decentralized structure, which fills the

gap between the empirical studies and theoretical studies on funds’ scale ef-

fects. On the one hand, the empirical literature examines the response of

fund flows to the changes in fund sizes and finds that the fund size is one of

the key determinants of fund flows (e.g. Pollet and Wilson, 2008). Although

empirical methods are powerful in showing interesting findings, they have to

omit managers’ portfolio choice problems. On the other hand, prior theo-

retical studies assume that fund flows depend on funds’ performances (e.g.

Basak and Makarov, 2014; Koijen, 2014) and do not depend on fund sizes.

To capture the scale effects on funds, we model a size-induced specifica-

tion where the fund inflow/outflow responses to both portfolio performance

and fund size that are mainly driven by the manager’s optimal dynamic

portfolio weights. The mechanism is that the fund size affects the manager’s

portfolio weights through its dominant effect on the manager’s fund flows and

compensation. As a result, the fund manager makes portfolio decisions by

simultaneously considering the short-term compensation and the long-term

history of the fund size. This mechanism allows us to investigate the scale

effects on the portfolio dynamics, fund performance, and management fees.

Second, we study the portfolio dynamics of bond funds and equity funds

with the size-induced fund flows. For the portfolio dynamics of bond funds,

little is known in the literature although bond funds constitute a significant

part of the industry. We find that the bond manager diversifies portfolios

well but maintains a substantial allocation to Baa-rated bonds. The under-
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lying reasons are the close expected returns and substitutes in the bonds,

a slightly high expected return on Baa-rated bonds, and the mismatched

horizons between the long-maturity government bond and the short-term

compensation. For the stock portfolio, the holdings of value stocks are sen-

sitive to the changes in fund flows and the sensitivity enhances largely when

the fund age increases. The driving force is that more experienced managers

adjust their portfolio weights dramatically to hedge against the risk from the

fluctuations of fund flows and to maintain their reputations.

Third, we reveal new insights into the controversial scale effects by run-

ning regressions on the data realized from the managers’ optimal portfolio

dynamics in the calibrated model.4 For the bond funds, we find a positive

relationship between bond fund performance and its lagged fund size, which

implies that large sizes of bond funds bring cost advantages and is referred to

as ‘scale economies’. The economic force is that the bonds are close sub-

stitutes and large bond funds are not hampered by large market positions

and therefore they achieve scale economies. For the stock funds, the rela-

tionship becomes negative, which indicates the cost disadvantages of large

stock funds. In addition, the management fee, which is the ratio of a man-

ager’s compensation to the TNA, increases with fund sizes for both bond

and stock funds because fund managers have incentives to maximize their

compensations. Moreover, the old stock funds achieve scale economies since

4Evidence on size-performance relationship is controversial. The classical paper

(Carter, 1950) believe the advantages of large fund sizes such as more resources and lower

commissions. By contrast, recent work seems to support the cost disadvantage of large

stock funds (e.g. Chen et al., 2004; Pollet and Wilson, 2008).

5



more experienced managers attract more fund inflows by beating the bench-

mark, whereas the returns on young stock funds have a negative relationship

with fund sizes.

We also contribute to the large body of literature on portfolio choices and

hedging. Yang and Yang (2013) provide hedging strategies in an illiquid mar-

ket. Ting and Ewald (2013) study the performance of risk-minimizing hedges

in the Heston model. Palczewski et al. (2015) solve a problem of portfolio

optimization with transaction costs and state-dependent drift. Wang et al.

(2015) apply a dynamic portfolio strategy to hedge idiosyncratic risk. Ormos

and Urbán (2013) analyze the performance of log-optimal portfolio strate-

gies under transaction costs. González-Pedraz et al. (2015) introduce con-

ditional copulas and skew preferences to commodity portfolio choices. Nys-

trup et al. (2017) solve a dynamic portfolio choice problem in hidden market

regimes. Most papers in this field study one investor’s portfolio strategy. We

contribute to the literature by analyzing the dynamics of optimal portfolio

weights of two delegated stock and bond managers considering predictable

returns on multiple assets.

Finally, to obtain managers’ life-cycle dynamic portfolio strategies, we

solve the decentralized investment problem by applying the simulation-projection

method advocated by Brandt et al. (2005) along with a multidimensional

grid search and policy iteration. Extending this method to the decentral-

ized structure is not straightforward because of a number of risky assets

and the size-induced flow-performance specification. Given the highly path-

dependent optimization problem, analytical solutions seem unfeasible and

6



therefore we describe our numerical solution in Appendix A.5

The paper proceeds as follows. Section 2 presents the model. Section 3

analyzes portfolios. Section 4 discusses performances. Section 5 concludes.

2. Economic Setup and Investment Problems

2.1. Decentralized Structure and Financial Market

We first introduce a typical decentralized structure and a financial market

following van Binsbergen et al. (2008) before we describe our specification for

managers’ compensations. The Chief Investment Officer (CIO) of the asset

management company allocates funds between two market portfolios, and

then delegates the portfolios to two specialized bond and stock managers

who have professional knowledge and reallocate capital to multiple assets

within their asset classes.

The asset menu includes a government bond index, Baa- and Aaa-rated

corporate bond indices for the bond manager, and three stock portfolios

ranked on their book-to-market ratios, namely growth, intermediate, and

value stocks for the stock manager. The CIO’s asset menu includes, e.g.,

the Standard & Poor’s 500 Stock Index and the US Treasury Bond Index,

which are also benchmarks for measuring the managers’ relative investment

performance. In addition, the CIO and managers have access to a riskless

cash account.

5We provide a package of transparent Matlab programs producing numerical results

and robustness checks upon request. In the paper, we present many results obtained by

varying key variables, which show the strong robustness of our numerical solution.
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The vector Xt of predictors of risk returns include the short rate, the

10-year nominal government bond yield, and the log dividend yield of the

equity index. The dynamics of Xt is

dXt = −κXXtdt+ σ>Xdzt, κX ∈ R3×3, σX ∈ R(2k+3)×3, (1)

whereXt ∈ R3×1 and dz denotes a (2k+3)×1 vector of independent Brownian

motions. We consider k = 3 risky bonds and k = 3 risky stocks. The price

of risk, Λt, is affine in the state variable Xt:

Λt = Λ0 + Λ1Xt, Λ0 ∈ R(2k+3)×1, Λ1 ∈ R(2k+3)×3. (2)

There are 2k + 1 assets with prices denoted by Sj, j = 0, . . . , 2k. The first

asset is a riskless cash account whose price at time t is given by

dS0t

S0t

= rdt, (3)

where r is the constant instantaneous interest rate. The remaining 2k assets

in the menu are risky assets with the price dynamics

dSjt
Sjt

= (r + σ>j Λt)dt+ σ>j dzt, σj ∈ R(2k+3)×1, Sj0 = 1. (4)

Equation (4) shows that the expected excess returns σ>j Λt are an affine func-

tion of the predictor vector Xt, which captures time variation in risky asset

returns. Define the full volatility matrix as Σ ≡ (Σ1,Σ2, σX), where the load-

ings for the first k assets and the second k assets are Σ1 = (σ1, . . . , σk) and

Σ2 = (σk+1, . . . , σ2k) respectively.

The CIO’s investment opportunities consist of cash and benchmark SBit :

dSBit
SBit

= (r + η̄Bi)dt+ σ̄Bidz
Bi
t , SBi0 = 1, (5)
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where i = 1, 2 refers to bond and stock benchmarks. Following van Binsber-

gen et al. (2008), η̄Bi and σ̄Bi are the constant risk premium and standard

deviation as the CIO does not have security picking skills. Then the state

price density follows

dϕBt
ϕBt

= −rdt− λBdzBt , ϕB0 = 1, (6)

where λB =
[
η̄B1

σ̄B1

η̄B2

σ̄B2

]
and zBt =

[
zB1
t zB2

t

]>
.

2.2. The CIO’s Objective

Following the industry practice, we assume that the CIO has a long in-

vestment horizon T̂ years and acts in the best interests of the beneficiaries of

the company. The investment objective is to maximize the expected constant

relative risk aversion (CRRA) utility function over the terminal wealth WT̂

of the company:

max
θc,t∈Kc,t

E[u(WT̂ )] = max
θc,t∈Kc,t

E

(
W 1−γc
T̂

1− γc

)
, (7)

where γc denotes the risk aversion level and the portfolio weights θc,t ∈ R2×1

are the fractions of wealth invested in the bond and stock markets. The

constraint Kc,t includes the standard borrowing and short-selling constraints:

θc,t ≥ 0 and 1− 1>θc,t ≥ 0, where 1 is a 2-dimensional identity vector.

We denote the (gross) benchmark returns by RB
t ≡ (RB1

t RB2
t )> and the

return on cash by Rf
t . The dynamics of wealth with an initial W0 = 1 is:

Wt+1 = Wt[θ
>
c,t(R

B
t+1 − 1Rf

t+1) +Rf
t+1]. (8)
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2.3. The Managers’ Objectives

We introduce a size-induced fund-flow model to capture a significant em-

pirical fact and to study controversial scale effects on funds. The prior models

assume that fund flows depend only on fund performance (e.g. Basak and

Makarov, 2014; Koijen, 2014). Nevertheless, empirical studies highlight the

fact that the fund size is one of the key determinants of fund flows and they re-

port controversial scale effects on fund performance (e.g. Jain and Wu, 2000;

Pollet and Wilson, 2008). Motivated by these findings, we model the effects

of both fund performance and fund sizes on fund flows, which reflects the

practice that managers are concerned about not only their performances and

compensations at the current year but also the historical realizations of their

fund sizes driven by their portfolio weights. Therefore, our setup allows us

to investigate the scale effects on the portfolio dynamics, fund performance,

and management fees.

Denote the portfolio returns and benchmark returns for the manager i by

RAi
t and RBi

t . If the relative performance RAi
t /R

Bi
t is higher than a threshold

η > 1, the manager receives a fund inflow at a rate ft > 0, which depends

on both relative performance and fund size. The fund size is defined as the

natural logarithm of one plus the TNA in the previous year, following the

prevailing literature. By contrast, a manager who performances poorly incurs

a fund outflow at a rate ft < 0, which is sizable to the fund size.

f(RAi
t , R

Bi
t , TNAi,t−1) = ψ0 + ψ1R

Ai
t /R

Bi
t + ψ2 log(TNAi,t−1 + 1), if RAi

t /R
Bi
t > η,

ψ3 log(TNAi,t−1 + 1), if RAi
t /R

Bi
t ≤ η,

(9)

where ψ0 to ψ3 are parameters.
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Denote the portfolios (risk exposures) by θi,t ∈ Rk×1 for the manager i,

whose investment objective is to maximize the compensation as follows.

max
θi,t∈Kt

E[u(YiT )] = max
θi,t∈Kt

E
(
Y 1−γi
iT

1− γi

)
, (10)

subject to the path-dependent dynamic compensation scheme YiT :

YiT = κ0TNAi,T−1︸ ︷︷ ︸
base salary

+κ1(TNAi,T−1R
Ai
T + TNAi,T−1f(RAi

T , R
Bi
T , TNAi,T−1))︸ ︷︷ ︸

variable component (bonus)

= TNAi,T−1[κ0 + κ1(RAi
T + f(RAi

T , R
Bi
T , TNAi,T−1))], (11)

where κ0 to κ1 are parameters. The TNA is largely determined by the pre-

vious TNA and the optimal portfolios. In turn, the fund size and fund flow

affect the manager’s portfolio through our dynamic compensation scheme.

The constraint Kt includes the borrowing and short-selling constraints and

a risk limit σi,t =
√
θ>i,tΣiΣ>i θi,t ≤ 1.25σ̄Bi that prevents the manager from

deliberately taking high risk for the size-dependent compensation.

Note that our compensation scheme nonlinearly depends on the dynamic

fund size in the prior period and hence is path dependent. This is in contrast

to Koijen (2014), where the compensation is linearly proportional to the ini-

tial size TNAi,0 that can be normalized to one. Since the compensation here

is nonlinear and path dependent, an analytical solution to the optimization

problem seems unfeasible.

Therefore, we implement a simulation-projection method with a multidi-

mensional grid search and policy iteration to obtain the CIO and managers

portfolio strategies, see Appendix A. Within the decentralized investment

structure, we can solve their optimization problems separately. After solv-

ing the CIO’s problem (7), we solve each manager’s problem (10) with k = 3
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risky assets instead of 2k assets. If a decentralized structure was not adopted,

it would be infeasible to solve a highly path-dependent dynamic optimization

problem with 2k = 6 assets due to the serious ‘curse of dimension’.

2.4. Model Calibration and Parameter Values

We take the values of standard parameters from recent studies on insti-

tutional investors’ optimal portfolio choices and calibrate some parameters

to the targets that are consistent with prior studies.

We use the estimations of van Binsbergen et al. (2008) for the time-

varying financial market, see Table 1 here. The first six sources of risk are

due to the risky asset prices St in (4) and the last three sources come from

the state variables Xt in (1). The short rate is negatively correlated with

the expected returns of all assets, except for government bonds. The 10-

year bond yield negatively impacts on the expected stock returns, while it

positively impacts on the expected bond returns. The dividend yield is pos-

itively correlated with the expected returns of all assets. The autoregressive

parameters κX reflect the high persistence of the state variables.

Table 2 reports the instantaneous asset correlations and expected returns

implied by the model. The expected return spread between the Baa’s 0.096

and the Aaa’s 0.087 is 0.9% in the fixed income class while it reaches up to

5% between the value stocks’ 0.148 and the growth stocks’ 0.098 in the equity

class. The distinctive return spreads indicate homogeneous (heterogeneous)

expected returns on the bonds (stocks) that largely affect managers’ portfolio

dynamics discussed later. In addition, the correlations within asset classes

are high and range between 80% and 93%.
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Table 2. Implied Parameters.

Returns Correlations

Gov. bonds 0.090 1

Corp. bonds, Baa 0.096 0.82 1

Corp. bonds, Aaa 0.087 0.93 0.92 1

Growth stocks 0.098 0.17 0.33 0.25 1

intermediate stocks 0.131 0.19 0.39 0.29 0.87 1

Value stocks 0.148 0.18 0.41 0.29 0.80 0.92 1

This table gives the expected asset returns and their correlations implied by the model

using the parameter values from van Binsbergen et al. (2008). The assets include gov-

ernment bonds, Baa- and Aaa-rated corporate bonds, and three stocks ranked on their

book-to-market ratios.

Table 3. Calibrated Parameters for Compensation and Benchmarks

Symbol Value Symbol Value

Coefficient of fund flows ψ0 -0.79 Interest rate r 5%

Coefficient of fund flows ψ1 0.97 Pay-for-performance κ0 0.5%

Coefficient of fund flows ψ2 -0.04 Pay-for-performance κ1 1.4%

Coefficient of fund flows ψ3 -0.07 Performance threshold η 1.015

Bond Benchmark Stock Benchmark

Risk premium η̄B1 3.1% Risk premium η̄B2 5.4%

Volatility σ̄B1 9.5% Volatility σ̄B2 13%

This table summarizes the calibrated parameter values for managers’ compensation

scheme and benchmarks in the decentralized investment structure. The text presents

more details.

Table 3 summarizes the calibrated parameters for the compensation scheme
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and benchmarks. The two values of κ0 and κ1 are calibrated by two con-

ditions. First, they target a reasonable pay-for-performance sensitivity, i.e.

κ1/κ0 = 2.28, which is within the range of the 50th quantile and the 75th

quantile of estimates in Koijen (2014). Second, they make the model pro-

duce an average expense ratio ranging between 1.8% – 1.85% of the TNA,

which is in line with the leading practice (e.g. Huang et al., 2007).

About the calibration of fund flow coefficients, ψ0 and ψ1 are almost

from Koijen (2014), where ψ1 has to be large enough to ensure that there is

inflow fT > 0 when fund performance is higher than the relative performance

threshold η. The empirical negative relationship between fund sizes and fund

flows (e.g Pollet and Wilson, 2008) determines a negative ψ2. The value

of ψ3 is calibrated by the relationship that a 1% of fund size in the case

of underperformance results in a 0.07% of fund outflows. These settings

produce average inflows of 9% – 13% for bond funds and 11% – 18% for

equity funds that are consistent with the practice. The risk premiums (η̄B1

and η̄B2) and volatilities (σ̄B1 and σ̄B2) of bond and stock benchmarks are

calibrated to obtain the corresponding Sharpe ratios 32.6% and 41.5%. The

riskless cash pays an interest rate r = 5% per annum following the setup

in van Binsbergen et al. (2008) who use this rate and data from January

1973 to November 2004 to determine the unconditional instantaneous price

of risk, Λ0, whose value is taken as an input parameter in our computation.

Although this value of r seems high for the decade after the 2008 financial

crisis, it is reasonable as it is near both mean and median of the US 3-month

treasury bill during the history since 1973 until 2017.
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Figure 1. The CIO’s optimal portfolio allocations.

The figure displays the CIO’s optimal allocations to fixed-income and equity asset

classes versus the risk aversion. The allocation to cash is one minus the sum of

these quantities. The crosses of lines are expected as the risk aversion largely

influences portfolio choices.

3. Dynamics of Decentralized Optimal Portfolios

3.1. The CIO’s Optimal Portfolio

Figure 1 plots the optimal allocation of the CIO who has a T̂ = 10 years

horizon and a risk aversion level γc varying from 2 to 20. The circle, triangle,

and dashed lines represent the allocations to the fixed-income, equity, and

cash account.

The stock allocation decreases with the risk aversion, but the bond al-

location exhibits a hump-shaped pattern. When the CIO has a moderate

degree of risk aversion around γc = 5, the bond allocation approaches the
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peak, though it is still 10% less than the stock allocation. Meanwhile, the

CIO starts to raise cash holdings around the risk aversion γc = 5. Therefore,

we choose a moderate γc = 5 throughout the paper to highlight both bond

and stock managers’ portfolio dynamics respectively.

Note that the CIO affects the managers’ portfolios by allocating initial

wealth to the managers once according to the CIO’s optimal policy. Given

the initial wealth, the managers trade forward in time and determine their

optimal policies depending on the realized TNA and state variables. In short,

through deciding the initial funds for each market, the CIO influences the

managers’ portfolio dynamics.

3.2. The Managers’ Optimal Portfolios

The managers use the allocations from the CIO to make portfolios during

the life-cycles of funds. Figure 2 illustrates the portfolio dynamics of the bond

(stock) manager as the functions of the fund age in the left (right) panel.

The bond portfolio is well diversified over the life cycle. In year one, the

bond manager exclusively allocates wealth to corporate Baa-rated bonds,

which offer the highest expected returns (9.6%). The underlying economic

mechanism is that the manager wants to beat the benchmark for attracting

more fund inflows at early stages. This mechanism implies a positive rela-

tionship between fund flows and the allocation to Baa-rated bonds. When

the fund getting older, the manager diversifies the portfolio by holding 15%

10-year government bonds, 5% corporate Aaa-rated bonds, 20% cash and

meanwhile keeps a substantial 60% holdings in Baa-rated bonds. The un-

derlying reasons are homogeneous expected returns on the bonds and the

slightly high expected return on Baa-rated bonds, see Table 2.
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(a) The Bond Portfolio
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(b) The Stock Portfolio

Figure 2. The asset managers’ optimal portfolios as a function of the

fund age.

The bond manager (a) and stock manager (b) implement their optimal portfolios

depending on realized wealth levels and state variables after obtaining the CIO’s

initial fund allocation.

The stock manager takes a less diversified portfolio with predominant

value stocks, though the allocation to value stocks decreases slightly over

the life cycle. The manager allocates little capital to growth stocks because

of their low returns yet high volatilities. In the end, the portfolio on aver-

age consists of about 71% value stocks, 4% intermediate stocks, 25% cash,

and slight growth stocks. The underlying economic force is that the stock

manager faces markedly heterogeneous expected returns ranging from 9.8%

(growth stocks) to 14.8% (value stocks). Thus, the large allocation in value

stocks can potentially bet the benchmark and can attract more cash inflows.

The equity portfolio comprises value, intermediate, and growth stocks,

although the value stocks take a large proportion since the parameters for
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the time-varying market come from the estimations of van Binsbergen et al.

(2008) based on the data from January 1973 to November 2004 when the

expected return spread between the value stocks (14.8%) and the growth

stocks (9.8%) is large at 5%. We fix the parameters at the estimations for

the ten-year investment horizon following the practice of van Binsbergen et al.

(2008). A ten-year horizon is shorter than the average fund age of 15.7 years

reported by Chen et al. (2004). A shorter horizon does not change the large

allocation to the value stocks given the parameters that we use, as shown in

Figure 2 for the fund ages from 1 to 10 years. Admittedly, the growth stocks

rather than the value stocks can be dominant during some short periods of

time but integrating this case into the model will lead to a more complicated

dynamics portfolio model with Bayesian updates of parameter values, which

is beyond the scope of this paper. We study this interesting topic in another

paper, considering the complexity of the current model with the decentralized

structure with size-induced fund flows.

Meanwhile, the increasing cash holdings in the two sub-figures implies

that both managers are reluctant to put their reputations at risk and be-

comes more conservative when the fund becomes old. The career concern is

the underlying driving force. Previous studies on executive compensations

point out that asset managers with greater career concerns become more con-

servative and demand higher incentives to take risky strategies (e.g. Nohel

and Todd, 2005).

3.3. Scale Effects on Portfolio Dynamics

To examine the scale effects of fund flows on portfolio dynamics, Figure 3

displays the optimal allocations to bonds (stocks) in response to the changes
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in fund flows over the bond (stock) manager’s life cycle in the left (right)

panel. The figures are constructed by projecting the optimal allocations

along all paths on a second-order polynomial expansion in the state space.

A key observation is that the allocation to Baa-rated bonds increases

considerably in response to high fund inflows. For instance, at year six,

the optimal allocation to Baa-rated bonds rises by about 10% when fund

flows increase from -0.15 to 0.35. This feature confirms the aforementioned

economic mechanism for the large allocation to Baa-rated bonds as well as

the positive relationship between such allocation and fund flows. Another

observation is that the allocation to 10-year government bonds is hardly

affected by fund flows, because of the potential high mismatched risk from

long-maturity bonds and short-term compensations.

About the stock portfolios, the three sub-figures in Panel (b) of Figure 3

show that a rise in fund flows induces an increase in the holdings of growth,

intermediate, and value stocks. The relative changes of the growth stocks

and the intermediate stocks are noticeable, although their increases are small

compared with the increase in the value stocks. This is expected since the

expected returns of value stocks are dominant in the history data that are

used for the parameter estimations, as discussed in Section 3.2. Similarly, the

slight fluctuations of portfolio weights in the growth stocks and the interme-

diate stocks along the dimension of the fund age are reasonable considering

the small portfolio weights that are not closely related with the fund age.
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Figure 3. Portfolio dynamics versus fund flows over the life cycle.

This figure depicts the portfolios dynamics of the bond manager (a) and the stock

manager (b) in response to changes in fund flows over the life cycle of the fund.

We project the optimal allocations along all paths on a second-order polynomial

expansion in the state space. 21



Furthermore, the magnitudes of the increases in stock holdings become

larger as the fund age increases. For instance, the flow-induced allocation

spread for value stocks is 3% in year two, while the spread increases to

18% in year ten. This result reveals that a more experienced manager is

more sensitive to changes in fund flows. The underlying economic force

is that when the fund gets older, the manager has a greater incentive to

hedge against risk resulting from fund flow variation. Thus, the risk-averse

manager makes a larger adjustment in the holdings of value stocks that offer

the highest expected returns.

To reveal the effects of the TNA sizes on portfolio dynamics, Figure 4

presents the bond (stock) allocation sensitivities in response to changes in

TNA sizes in the left (right) panel. We measure the tilts in allocations as

the difference in the optimal weights when the TNA size varies from its

25th quantile to 75th quantile at a time point. A positive (negative) tilt

indicates an increase (decrease) in the asset weight if the fund size increases.

The portfolio weight of Baa-rated bonds increases in fund size whereas the

portfolio weight of value stocks reduces. These results imply that the fund

size matters to bond and stock funds, which will be analyzed later.

4. Implications for Scale Effects

We evaluate the scale effects of fund size through two perspectives: di-

rectly measuring the relationship between the TNA and investment returns,

and indirectly measuring the relationship between the TNA and management

fees. To demonstrate that our model captures these interesting relations, we

use a cross-sectional regression approach to the data produced by the model.
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Figure 4. Tilts in optimal portfolios induced by changes in TNA sizes.

This figure depicts the tilts in the optimal portfolios in bonds (a) and stocks (b)

in response to changes in TNA sizes. We measure the tilts in allocations as the

difference in the optimal weights when the TNA size varies from its 25th quantile

to 75th quantile. A positive (negative) tilt indicates an increase (decrease) in the

asset weight if the TNA size increases.

The fund’s gross investment returns (or management fees) are regressed

on various one-year-lagged fund characteristics as follows:

FUNDRETi,t = αi + βi,1LOGTNAi,t−1

+βi,2(LOGTNAi,t−1 −AV GLOGTNAi,t−1)2

+βi,3FLOWi,t−1 + βi,4MANAGFEEi,t−1

+βi,5LAGFUNDRETi,t−1 + εi,t. (12)

MANAGFEEi,t = αi + βi,1LOGTNAi,t−1

+βi,2(LOGTNAi,t−1 −AV GLOGTNAi,t−1)2

+βi,3FLOWi,t−1 + βi,4FUNDRETi,t−1

+βi,5LAGMANAGFEEi,t−1 + εi,t. (13)
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Following the literature, we define the variables as follows. FUNDRETi,t

and MANAGFEEi,t are the gross returns and management fees of fund i

in year t. The latter is a ratio of the compensation in (11) to the TNA.

LOGTNAi,t−1 measures the fund size, which is the natural logarithm of one

plus the TNA. AV GLOGTNAi,t−1 is the average size. FLOWi,t−1 is the rate

of fund flows in (9). LAGFUNDRETi,t−1 and LAGMANAGFEEi,t−1 are

prior-period returns and management fees.

4.1. Scale Effects on Fund Performance

There is a debate about the controversial empirical findings on the rela-

tionship between fund sizes and fund performances (e.g. Carter, 1950; Chen

et al., 2004; Pollet and Wilson, 2008). To analyze this relationship, we calcu-

late 30 sets of 4,000 trajectories of the 10-year investment process. For each

set, we estimate the cross-sectional regression (12) on the data produced by

the model and then report the averages over the life cycle.

Table 4 reports the cross-sectional distribution of the t-statistics for the

estimates of fund characteristics following the approach in the literature. We

find that the fund size is positively associated with bond returns (Panel A),

while it is highly negatively associated with stock returns (Panel B). The

underlying reason for the distinct scale effects on bond and stock funds is

the relatively homogeneous expected returns on bonds compared to stocks,

see Table 2 where the expected return spread in bonds is just 0.9%. Since

the three bonds are closer substitutes to each other, large bond funds are

not be hampered by large market positions and therefore they realize scale

economies (Philpot et al., 1998).
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In contrast, the scale effect erodes stock fund performance. In Panel B,

the values of t-statistics of LOGTNA are significantly negative and the values

of the quadratic term (LOGTNA − AV GLOGTNA)2 are positive. These

results indicate that when the fund size increases, stock fund returns decline

at an increasing rate, which is in line with the empirical results (e.g. Pollet

and Wilson, 2008). The different scale effects also support that multiple

assets funds can avoid the cost disadvantages of large stock funds.6

The stock manager attracts capital inflows by beating the benchmark.

The regression provides a strong support for this conjecture: the prior-period

fund flows are significantly and positively related to the subsequent stock

fund returns. In particular, the t-statistic of the term FLOW in the middle

quantile is 2.23, which is significant at the 5% level. This result implies

that a stock manager who performs better can distinguish herself from her

counterparts by selecting superior stocks and attracts more cash inflows. The

t-statistics of the term FLOW for the bond fund, however, is not evident

because of the close expected returns on bond investment opportunities.

4.2. Fund Performance and Fund Ages

The bond fund’s returns are significantly positively related to the past

returns but the stock fund does not show significant autocorrelation. We

conjecture that the autocorrelation is canceled out by two opposite underly-

ing forces across stock fund ages. To test this conjecture, we split the funds

into young and old subgroups using year six as the threshold in Table 5.

6Cummings (2016) reports that a fund with allocations to multi-assets captures scale

economies that are not captured by single-asset funds.
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Young stock funds’ returns are negatively correlated with their historical

returns. The median of the t-statistics of young stock funds’ lagged returns

LAGFUNDRET is -2.166. Suppose that young stock fund returns are hit

by a positive shock. Then their next year returns are expected to decrease

and they will attract less capital. The negative autocorrelation suggests that

the managers of young funds lack experience and abilities in dealing with

heterogeneous stock returns and volatile fund flows during start-up periods.

This implication is also illustrated in Panel B of Figure 3 where the tilt of

allocation to value stocks induced by fund flows in year two are small.

By contrast, the median of the t-statistics of LAGFUNDRET for old

stock funds is positive at 1.066. The opposite autocorrelations in stock fund

returns suggest that it is important to control for fund ages when examining

fund managers’ investment abilities and the characteristics of funds.

4.3. Scale Effects on Management Fees

We investigate the impact of fund sizes on management fees calculated as

a ratio of managers’ compensations to funds’ TNAs. The management fees

are regressed against fund characteristics including the fund size in (13).

The results in Table 6 show that the t-statistics of the size term LOGTNA

is positive and statistically significant, implying that the management fees

of both bond and stock funds increase with the fund size. This increas-

ing pattern is reasonable since managers’ compensations are proportional to

the sizes of funds that they manage. As (10) indicates, managers have the

incentives to maximize their compensations by making optimal portfolios.

Such incentives lead to higher management fees as managers achieve more

compensations in exchange for better professional management.
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In addition, the bond management fees are significantly and positively

related to fund flows, yet the relationship to fund returns is statistically in-

significant. These results imply that capital inflows mainly contribute to the

management fees and bond returns have negligible effects on bond manage-

ment fees. In contrast, returns on the stock funds are the main driving force

for the increasing management fees of stock funds, as can be seen from the

statistically significant and positive t-statistics across their quantiles.

4.4. Management Fees and Fund Ages

Turning to the effects of fund ages on management fees, we split the funds

into young and old subgroups depending on whether the fund age is smaller

or larger than six years old. Table 7 presents the results.

Fund sizes demonstrate different effects on the management fees of bond

funds and stock funds. For the management fees of bond funds (Panel A),

the aforementioned positive scale effects still hold after controlling for fund

ages. The t-statistics values of the quadratic terms are significantly positive

for both young and old bond funds.

Panel B shows that the stock management fees increase with respect to

the average fund size at a decreasing (increasing) rate for the young (old)

funds. The 50th quantiles of the t-statistics of the quadratic terms are -1.212

and 1.082 respectively. Moreover, there is a significant positive relationship

between fund flows and management fees in the old stock funds, while this

relationship is insignificant for the young stock funds since the managers

of young stock funds lack experience in taking the advantages of fund sizes.

These features lead to large compensations and management fees to the man-

agers of mature stock funds.
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5. Conclusion

Despite the prevalence of fund size in empirical studies on fund flows and

fund performance, little is known about the scale effects of size-induced fund

flows on the dynamics of different managers’ optimal portfolios and their fund

performances in a theoretical model. To the best of our knowledge, this is the

first paper to address the scale-related portfolio implications theoretically in a

dynamic setting. The managers experience dynamic fund flows that depend

on not only the relative performance, but also the total net assets under

management. This innovative ingredient in our model reflects the empirical

fact of size-dependent fund flows.

We contribute to the literature in three ways. First, we solve the highly

path-dependent portfolio optimization problem and analyze the dynamics of

optimal life-cycle investment strategies for bond and stock funds separately.

Second, we provide new explanations for the debate over the controversial

empirical findings on scale economies of funds through the lens of a theoretical

optimization model within the decentralized management structure. Third,

we reveal further implications of our optimal solution for the two types of

fund management fees and fund ages.

Appendix A: Model Solution

We describe our method of solving the highly path-dependent multi-

period portfolio optimization problem. A package of transparent Matlab

programs producing all numerical results and more robustness checks is pro-

vided upon request. In fact, the results that we present in the paper, such

as those obtained by varying risk aversions/fund ages/fund flows or control-
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ling for young and old funds, and the detailed quantiles of regression results,

demonstrate the strong robustness of our numerical solutions.

In the decentralized structure, the CIO first decides the optimal wealth

between different markets and managers. Then the managers implement

their optimal investment policies forward. For both agents, we use the

simulation-projection method proposed by Brandt et al. (2005) along with

a multidimensional grid search and policy iteration. The idea is to approx-

imate conditional expectations by projecting the variables of interests on a

second-order polynomial basis of state variables. The projection coefficients

are estimated by cross-sectional regressions across simulated paths of asset

returns and state variables.7

We simulate N = 120, 000 paths of state variables and asset returns,8 as

defined in equation (1) and (4), over T̂ = 10 years. We discretize the space

[0, 1]×[0, 1] for the CIO’s θc,t(i)-grid of portfolio weights, where i = 1, 2 refers

to the bond and stock benchmarks. For asset managers i = 1, 2, we discretize

the space [0, 1]× [0, 1]× [0, 1] for their θi,t(k)-grid of portfolio weights, where

k = 1, 2, 3 refers to the risky assets of each manager. The remainder is

invested in the cash account.

For the CIO: the CIO’s investment problem and budget constraint are

formulated by (7) and (8). We normalize the initial wealth to be one, W0 = 1,

without loss of generality. For each point of θc,t(i)-grid, we run an OLS

7The approach is inspired by the American options pricing of Longstaff and Schwartz

(2001).
8Our robust check shows that raising the number of simulation paths does not improve

the accuracy of numerical results at a reported level.
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regression of N simulated utilities of WT̂ on a basis function of state variables,

i.e.,

Et=T̂−1,T̂−2,...,0

(
W 1−γc
T̂

1− γc

)
' α(θc,t(i))

>f(ϕBt ),

where α(θc,t(i)) ∈ RN×1 are regression coefficients and the basis function

f(ϕBt ) is:

f(ϕBt ) =


1 ϕBt,1 (ϕBt,1)2

1 ϕBt,2 (ϕBt,2)2

...
...

...

1 ϕBt,N (ϕBt,N)2


t=T̂−1,T̂−2,...,0

.

The fitted value of regression provides the approximations of conditional

expectations.

Since α relies on portfolio weights, we then repeat the procedure of re-

gression for a grid search of portfolio weights θc,t(i). We select the optimal

weights that maximize the expected utility in each period and along each

path. The grid search method is robust and avoids several convergence is-

sues that could occur when iterating to a solution based on the first-order

conditions (van Binsbergen and Brandt, 2007). Follow the same procedure,

we iterate backward recursively and store the optimal weights at t = 0. Dur-

ing the recursion, we obtain the realized values of utility function by iterating

over the optimal policies in the following periods. Note that we use policy

iteration rather than value function iteration to keep numerical stability.

For the managers: the managers maximize their compensations de-

pending on relative investment performance and fund sizes, which is char-

acterized by (9) to (11). Since their portfolio weights depend on the TNA,
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we construct a TNA(l)-grid, l = 1, . . ., L, with an exponential growth rate

between the grid points. For each value of TNA(l) and each point of θi,t(k)-

grid, we run similar procedures of regression on another basis function given

below. Since the time-varying investment opportunities are captured by the

state variables Xt, the basis function here is the second-order polynomial

expansion of Xt including cross terms:

f(Xt)t=T̂−1,T̂−2,...,0
=

1 X1,1 X2,1 X3,1 X2
1,1 X2

2,1 X2
3,1 X1,1X2,1 X1,1X3,1 X2,1X3,1 X1,1X2,1X3,1

1 X1,2 X2,2 X3,2 X2
1,2 X2

2,2 X2
3,2 X1,2X2,2 X1,2X3,2 X2,2X3,2 X1,2X2,2X3,2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 X1,N X2,N X3,N X2
1,N X2

2,N X2
3,N X1,NX2,N X1,NX3,N X2,NX3,N X1,NX2,NX3,N


.

Then we iterate backwards through time and follow the similar procedures

of grid search and policy iteration within the managers’ constraint set Kt
described in Section 2.3.

The method produces the optimal portfolios at all (N ×L) grid points at

each t. The last step is to start from the initial wealth and to interpolate over

the map from the TNA(l)-grid to the optimal θ∗i,t(k) that are stored during

the backward recursions. Note that the CIO affects the managers’ portfolios

through optimally allocating initial wealth. Depending on the initial wealth,

the managers determine their optimal policies forward in time along with N

paths. Finally, we report the average to illustrate the dynamics of portfolios.

Appendix B: Solution Verification and a General Utility

In this section, we examine the questions of solution verification and a

general utility function.
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Appendix B.1: Solution Verification

To verify the correctness of our solutions to the optimization problems

of the CIO and managers, we can show that the optimization problems are

convex problems and then the solutions are optimal. We discuss the CIO’s

problem only to save the space as the discussion on managers’ problems is

similar.

We re-formulate the CIO’s maximization problem (7) as an equivalent

standard form of a convex minimization problem below.

min
θc,t∈Kc,t

f(WT̂ ) = min
θc,t∈Kc,t

E

(
−W 1−γc

T̂

1− γc

)
,

subject to the standard borrowing and short-selling constraints Kc,t that are

re-formulated as:

g1(WT̂ ) = −θc,tWT̂ ≤ 0, g2(WT̂ ) = −(1− 1>θc,t)WT̂ ≤ 0.

The function f is a strictly convex function since the power utility function

W 1−γc
T̂

/(1−γc) is a well-defined strictly concave function of WT̂ . The function

gi, i = 1, 2, in the inequality constraints are affine in WT̂ and hence they are

convex as well.

For a convex minimization problem, there are the following well-known

theories: (1) If a local minimum exists, then it is a global minimum. (2)

For each strictly convex function, if the function has a minimum, then the

minimum is unique. Therefore, the optimal solution obtained from our algo-

rithm is the unique global optimal solution. In addition, Figure 5 portrays

that the solutions we found are the correct solutions to the equivalent convex

problems with the CRRA utility and the more general hyperbolic absolute

risk aversion (HARA) utility given by (14).
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Figure 5. The convex problems and their minimization solutions of

stock weights to minθc,t∈Kc,t E[−U(WT̂ )].

The red circles indicate the optimal solutions for the utility function U being (a) the

constant relative risk aversion (CRRA) utility with γc = 5 and (b) the hyperbolic

absolute risk aversion (HARA) utility (14) with a = 10, b = 0.4, γh = 1−γc = −4.

Appendix B.2: A General Utility

Our model and solution method can be applied to mathematically more

complex models by extending the utility to a broad class of hyperbolic ab-

solute risk aversion (HARA) utility. We discuss the CIO’s problem only to

save the space and the way of extending managers’ problems is similar.

We consider the HARA utility below, see, e.g., Ingersoll (1987).

U(WT̂ ) =
1− γh
γh

(
aWT̂

1− γh
+ b

)γh
, (14)

where a > 0. The relative risk aversion increases with WT̂ if b > 0 for γh 6= 1.

The general class of HARA utility includes many special utilities. It is linear

and risk neutral if γh = 1, quadratic if γh = 2, exponential if b = 1 and
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Figure 6. The CIO’s optimal portfolio allocations with the HARA util-

ity.

The figure displays the CIO’s optimal allocations to fixed-income and equity asset

classes by using the HARA utility (14) with a = 10, b = 0.4 γh = 1− γc versus the

γc in (7). The crosses of lines are expected as the risk aversion largely influences

portfolio choices.

γh → −∞, power if γh < 1 and a = 1 − γh, and logarithmic if a = 1 and

γh → 0. For the last two cases, they turn to the CRRA utility if further

b = 0.

We illustrate an example of the HARA utility in Figure 5 and Figure 6.

Figure 5 displays that the CIO with the HARA utility takes more stock

allocations than the CIO with the CRRA utility. Comparing with Figure 1

with the CRRA utility, Figure 6 shows that the CIO with the HARA utility

makes more allocations to the risky fixed-income and equity asset classes.
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