Genetic Programming Crossover: Does it Cross
Over?

Colin G. Johnson

Computing Laboratory
University of Kent
Canterbury, Kent, CT2 7TNF
England
C.G.Johnson@kent.ac.uk

Abstract. One justification for the use of crossover operators in Ge-
netic Programming is that the crossover of program syntax gives rise to
the crossover of information at the semantic level. In particular, a fitness-
increasing crossover is presumed to act by combining fitness-contributing
components of both parents. In this paper we investigate a particular in-
terpretation of this hypothesis via an experimental study of 70 GP runs,
in which we categorise each crossover event by its fitness properties and
the information that contributes most strongly to those fitness prop-
erties. Some tentative evidence in support of the above hypothesis is
extracted from this categorisation.

1 Introduction

Descriptions of genetic programming (GP) typically include a discussion of why
the crossover and mutation operators are used (see e.g. [1,12]). Such discussion
goes beyond saying that such operators are used because they are analogies with
biological processes: it gives a justification for why such operators are considered
to be effective in carrying out search.

Typically the explanation given for the crossover operator is something akin
to this. A crossover operator takes components of two successful parent solutions
and produces a new child solution which combines features of the two parents.
If “bad” features are combined, then the child will be selected out; however if
“good” features are combined, then the child will have higher fitness than either
of its parents and will have a high chance of being chosen by a selection algorithm

There is lots of experimental work which shows that GP is effective on par-
ticular problems (see e.g. the overview in [1], and that various versions of these
operators work better or worse in ways which are broadly consistent with the
above hypothesis. There is also theoretical work which provides some arguments
that GP works as hypothesised (see [6] for an overview). However there seems
to be little work which actually looks in detail at the results of operators in GP
runs.

The aim of this paper is therefore to do this. We will define more carefully
what is meant by “combining features”, and then check experimentally whether



successful crossovers do result from the combination of features. In particular,
the paper focuses on the results of crossover on the results of executing the
program, rather than just on the program code.

The remainder of the paper is structured as follows. The next section reviews
existing work in this area. A formalization of the ideas above is given, and an
experiment proposed. The results of runs of this experiment on seven different
test problems is given, and the results discussed. Finally, some weaknesses in the
definitions are explored and suggestions for future work given.

2 Background

This section reviews some relevant background on crossover. At the core of the
issues of interest is the distinction between the effect of crossover on syntax and
semantics. GP defines a biologically-inspired syntax for crossover, and we expect
that some notion of crossover in the semantics of the solution. It can be noted
that biology does the same; operators, after all, act directly on genotypes not
on phenotypes.

When the representation is simple, there is no conflict between the syntax
and the semantics. Consider, for example, a GA for timetables which uses a grid
of times and days as its representation for a particular room. Define (uniform)
crossover by taking each grid square in turn and taking at random the value
occupied by the first or the second parent; and define mutation by choosing
a grid square and choosing another value. Clearly crossover and mutation are
doing basically what is described in the above loose descriptions. There is no
complex syntax—semantics map in which this could be “lost”.

By contrast, in GP (and other more complicated representations, e.g. those
with epistatic interactions), this syntactic crossover gives no guarantee of con-
sequent semantic crossover. Two parents can both have regions of fitness, and
there can be no way to carry out a crossover between them so that the child con-
tains both regions. By contrast, in a simple GA representation, the fitness of a
particular part of the chromosome makes a particular contribution to aggregate
fitness, regardless of other parts. A sub-program that creates high fitness for
certain fitness cases in one program can fail to do so when placed in a different
context.

A number of authors have explored this connection, theoretically or exper-
imentally. Koza [5] discusses informal analogies with the schema theory for ge-
netic algorithms. This has been formalised further by Poli and Langdon [11, 6].
In particular, in [11], they carry out experiments to show the effect of different
crossover operators in terms of the amount of (genotypic) material exchanged.

A number of papers have explored variants on crossover. These are interesting
from the point of view of this paper not in terms of the results as such, but from
the evaluation methodology. For example, O’Reilly and Oppacher [9] explore the
idea of using hill-climbing to choose between a number of crossover-based moves;
Ryan [13] explores the idea of disassortative mating, where the two parents are
chosen using different criteria; and, Beadle and Johnson [2] explore the idea of



preventing crossovers where the semantics of the child are the same as one of
the parents. In all of these the influence of the variant of crossover is evaluated
indirectly, via its effect on fitness performance. Whilst this is valuable in terms
of evaluating the quality of the operator, and therefore whether it is sensible to
use it, it helps less with understanding whether the operator works as designed.

Our experiments below are one version of an attempt to do this at the phe-
notypic level. Our methods are similar to those carried out by Nordin, Banzhaf
and Francone [7, 8], in that they are statistical analyses of all the crossovers in
GP runs. In those papers, the aim is to study the fitness change in crossover;
their conclusions are that most crossovers have one of two outcomes: a large
reduction in fitness, or zero fitness change. In our work we similarly analyse a
large collection of crossovers, but the aim of the analysis is different.

3 Does Crossover Cross Over (in practice)?

The experimental results in the work discussed above are typically characterised
by a population-level approach to analysis: make a modification to the operator,
and see what the end result is. In the work below we take a different approach,
by looking at each time an operator is used and comparing the parents with
the child. Some informal analysis of this kind has been carried out by e.g. Koza
[5]. However this work simply takes a small number of particular examples of
parent /child triples and analyses them by hand.

The approach taken below is to gather a dataset consisting of certain mea-
surements made concerning every crossover that happens during a GP run. This
dataset is then analysed to examine hypotheses about why crossover works.

Informally stated, the hypothesis that we are examining is as follows:

Crossover hypothesis. Crossover works by combining features of the two par-
ents in the child. More precisely, in a successful crossover features in the
input-output behaviour of the program that contribute most strongly to the
fitness in each parent will contribute to regions of high fitness in the child

Exactly what is meant by “features” is left vague, and a number of possible
investigations are possible depending on the definition chosed. In the examples
below we will formalise this in one particular away (defining features as subsets
of the fitness cases), and then explore it in the context of symbolic regression.

4 Experimental Details

This experiment looks at the crossovers in a GP run, and studies whether
crossover leads to the combination of the strongest features in the two par-
ent programs. More formally, we look at whether the fitness cases that have the
strongest fitness in the child program overlap with those in the parent programs.



4.1 Methods

This experiment consists of the analysis of crossovers in a number of GP runs.
The GP system used was the TinyGP system ([12,10]). No modification has
been made to the GP code as such. However, a number of sections have been
added to the program to extract information about crossovers, and to analyse
that information. The modified version of the code can be downloaded from
http://www.cs.kent.ac.uk/people/staff/cgj/software.html.

For a particular crossover, let p1 and p2 represent the parents and ¢ the child.
Define f,1 and fp2 respectively to be the fitnesses of the parents, and f; to be the
fitness of the child. A crossover will be termed positive if (f. > fp1)&(fe > fp2),
negative if (fo < fp1)&(fe < fp2), and neutral otherwise. A crossover is said to
be syntactically-identical if the program text of pl and p2 are the same, and
fitness-case-identical if pl and p2 both produce the same values on all fitness
cases. Clearly all syntactically-identical crossovers are also fitness-case-identical.

The aim of the analysis is to investigate whether the strongest fitness con-
tributors in each parent both contribute to fitness in the child. This is measured
by considering the contribution to fitness of the fitness-cases in the parent and
the child; a crossover will be regarded as crossing over fitness if the strongest
contributors to fitness in both parents contribute towards the fittest parts of
the child. An idea of this is given in figure 1. This is formalised as follows. Let
the number of fitness cases be n. Take a proportion b (this will be 20% in this
experiment) and form a set of those fitness cases that rank in the top b x n, for
each of the parents and the child: call these sets s,1, sp2 and sc.

fx)

Parent 1

f(x)

Fig. 1. An example of a good crossover: the best parts of the parents are also found in
the best parts of the child.

Finally, calculate the amount of intersection between the sets representing
the fittest regions for the two parents and children. Let n1 = |sp1 N s¢| and
ng = |Sp2 N sc|. Define a lower threshold ¢ and an upper threshold wu; in this
experiment ¢ = bxn x 0.1 and u = bxn x 0.4 (these were chosen following some
initial informal experimentation; an future investigation will examine changes to
these parameter values).



Now define a 0-crosser to be a crossover where (ny < £)&(ng < £), i.e. where
regions that contributed most strongly to the fitness of both parents do not
contribute strongly to the fitness of the child. Similarly, a 1-crosser is defined
to be a crossover where ((ny < £)&(n2 > u))|((n1 > w)&(ne < ¢)), ie. one of
the fitness-contributing regions (i.e. subsets of fitness cases) from the parent is
important in creating the fitness of the child, and one is not. Finally, a 2-crosser
is a crossover where (n1 > u)&(ny > u), i.e. both of the regions that caused the
parents to be fit also cause the child to be fit. Note that this is not an exhaustive
partition of the space of all possible crossovers; we ignore the middle-ground
where there is a small amount of intersection between both. The results below
will distinguish between those 2-crossers where s,1 = sp2 = s. and those where
there are differences. This is to check that genuine information exchange is going
on, and that we are not just counting as 2-crossers only those crossovers which
are effectively identical at the relevant sample points. These are referred to as
2-crossers(S) in the case where the values at all the sample points are identical,
and 2-crossers(D) in the case where at least one is different.

We carry out these experiments on a set of one-dimensional symbolic re-
gression problems. These are mostly the one-dimensional problems used by Kei-
jzer [3], which in turn are taken from [4,14,15]. These functions are given in
Table 1.

Ref. Number Function Range Number of Steps
1. f(x) = 0.3z sin 27w [—2,2] 101

2. f(z) = 2% exp —z cosxsinz [0,10] 101

(sinz? cosz — 1)

3. flx)=>27,1/i [1,50] 50

4. f(z) =logx [1,100] 100

5. flz) =z [0,100] 101

6. f(x) = arcsinh(z) [0,100] 101

7. f(z) =sinz [0,6.2] 63

Table 1. The functions used for symbolic regression in the experiments

For each function, 10 runs of a GP system with parameters set as in Table 2
were carried out. These are the default values in the TinyGP system. Despite
this being an experiment purely concerned with crossover, we have retained
mutation in the system because the aim of the experiment is to study crossover
in the context of a “normal” GP run. Data from each crossover was stored and
subsequently analysed in order to obtain the results presented in the following
section.

4.2 Results and Discussion

Three sets of results are given. The first of these are in tables 3, 4, 5 and 6,
which gives the results for a number of measures from across the run. The num-
bers presented are means from the ten runs. The numbers in the proportions
tables represent the proportion of negative crossings which are 0O-crossers, 1-
crossers, et cetera, then the proportion of neutral crossings which are O-crossers,



Parameter Value

Population Size 100000

Crossover Probability 0.9

Probability of Mutation per Node 0.05

Number of Generations 100x population size

Selection type Size-2 tournament selection

Replacement Strategy steady-state

Problem Type 1-variable symbolic regression

Function Set +, —, X, + (protected)

Terminal Set z, constants (generated randomly in [—5, 5]

Table 2. Parameters used for the GP algorithm in the experiments.

1-crossers, et cetera. Note that these columns don’t add up to 1.0, as there are
some crossovers that don’t fit any of the 4 definitions.

Figure 2 shows the number of 0-, 1- and 2-crossers (of both types) over time.
These two sets of plots are generated by grouping the crossovers into blocks of
100, and counting the number of crossovers at each point in each block. These
numbers are then averaged across the ten runs at each point on the z-axis.
Typically an early spike of 1-crossers is followed by a spike of O-crossers, followed
in some cases by a large number of 2-crossers(D)s. It is difficult to draw any clear
conclusions from the patterns of behaviour in these graphs.

The most interesting results are in the tables of proportions. Our initial hy-
pothesis was that crossover works by bringing together the fitness-contributing
regions of each of the parents. If this were to be the case (as opposed to crossover
simply being a mutation operator), we would expect the proportion of crossovers
in the fitness-positive 2-crosser(D) category to be larger than those in the corre-
sponding negative section. This is confirmed in each experiment, as is the other
piece of supporting evidence, i.e. that the proportion of O-crossers in the negative
column is larger than in the proportion in the positive column.

However, it is noticeable that in each experiment, there are many crossovers
where the best fitness cases are brought together in the child (2-crossers) and
yet there is an overall decline in fitness.

5 Conclusions and Future Work

We have formalised the idea that a fitness-increasing crossover will combine the
best features of the two parents, and shown some tentative support that this is
what occurs when fitness-increasing crossovers happen. However, these experi-
ments are rather limited in scope, and there are a number of further experiments
and refinements which will be carried out in future work.

One important limitation of the definition that we have given is that a
crossover of the type depicted in figure 1 can occur, but it not recognised be-
cause one of the regions in the child is not in its best fitness-producing region.
Two approaches to these would be (1) to look at improvements in the strongest



Function 1 f(z) = 0.3z sin 27z

Total # of Crossovers:
# of Syntactically-Identical Crossovers:
# of Fitness-Case-Identical Crossovers:

Total # of positive crossovers
Total # of neutral crossovers
Total # of negative crossovers

Counts:

Negative Neutral
0-Crossers 37615 1466
1-Crossers 5696 6637
2-Crossers(S) 122797 26824
2-Crossers(D) 426317 202962
Proportions:

Negative Neutral
0-Crossers 0.053 0.006
1-Crossers 0.008 0.026
2-Crossers(S) 0.171 0.103
2-Crossers(D) 0.602 0.789

989711
97111
173643

22532
257685
709502

Positive
684

1786
1398
16845

Positive
0.033
0.085
0.066
0.733

Function 2 f(z) = 2® exp —z cos zsin z(sin 2 cos z — 1)

Total # of Crossovers:
# of Syntactically-Identical Crossovers:
# of Fitness-Case-Identical Crossovers:

Total # of positive crossovers
Total # of neutral crossovers
Total # of negative crossovers

Counts:

Negative Neutral
0-Crossers 42913 1598
1-Crossers 7046 6975
2-Crossers(S) 101285 15768
2-Crossers(D) 433855 170407
Proportions:

Negative Neutral
0-Crossers 0.058 0.007
1-Crossers 0.009 0.031
2-Crossers(S) 0.135 0.072
2-Crossers(D) 0.583 0.768

Table 3. Various measures from the crossovers (functions 1 and 2).

989963
103871
129642

23820
221973
744170

Positive
697

1940
1630
17022

Positive
0.032
0.087
0.072
0.700



Function 3 f(z)=>7_ 1/i

Total # of Crossovers: 990308
# of Syntactically-Identical Crossovers: 132284
# of Fitness-Case-Identical Crossovers: 148843
Total # of positive crossovers 24543
Total # of neutral crossovers 226276
Total # of negative crossovers 739489
Counts:

Negative Neutral Positive
0-Crossers 297101 14592 2171
1-Crossers 109637 80765 7365
2-Crossers(S) 30797 20490 2373
2-Crossers(D) 80522 63577 8385
Proportions:

Negative Neutral Positive
0-Crossers 0.400 0.066 0.094
1-Crossers 0.149 0.360 0.299
2-Crossers(S) 0.042 0.092 0.100
2-Crossers(D) 0.110 0.275 0.337
Function 4 f(z) =logx
Total # of Crossovers: 989741
# of Syntactically-Identical Crossovers: 118612
# of Fitness-Case-Identical Crossovers: 139199
Total # of positive crossovers 24339
Total # of neutral crossovers 210944
Total # of negative crossovers 754457
Counts:

Negative Neutral Positive
0-Crossers 302442 15531 2594
1-Crossers 125091 86635 6962
2-Crossers(S) 23559 16535 2766
2-Crossers(D) 54276 43396 6987
Proportions:

Negative Neutral Positive
0-Crossers 0.400 0.075 0.115
1-Crossers 0.166 0.411 0.285
2-Crossers(S) 0.031 0.079 0.110
2-Crossers(D) 0.072 0.204 0.282

Table 4. Various measures from the crossovers (functions 3 and 4).



Function 5 f(z) = /z

Total # of Crossovers: 989948
# of Syntactically-Identical Crossovers: 113295
# of Fitness-Case-Identical Crossovers: 127623
Total # of positive crossovers 27818
Total # of neutral crossovers 225301
Total # of negative crossovers 736827
Counts:

Negative Neutral Positive
0-Crossers 277874 11488 2079
1-Crossers 110455 79601 7312
2-Crossers(S) 27205 17420 2444
2-Crossers(D) 47924 50063 8710
Proportions:

Negative Neutral Positive
0-Crossers 0.377 0.051 0.081
1-Crossers 0.150 0.356 0.262
2-Crossers(S) 0.365 0.078 0.093
2-Crossers(D) 0.065 0.220 0.306
Function 6 f(z) = arcsinh(z)
Total # of Crossovers: 990366
# of Syntactically-Identical Crossovers: 105236
# of Fitness-Case-Identical Crossovers: 116170
Total # of positive crossovers 28481
Total # of neutral crossovers 226120
Total # of negative crossovers 735765
Counts:

Negative Neutral Positive
0-Crossers 220624 14599 2486
1-Crossers 101593 77143 7988
2-Crossers(S) 21078 15640 2353
2-Crossers(D) 59345 52766 9090
Proportions:

Negative Neutral Positive
0-Crossers 0.300 0.065 0.094
1-Crossers 0.139 0.339 0.270
2-Crossers(S) 0.029 0.071 0.089
2-Crossers(D) 0.081 0.232 0.317

Table 5. Various measures from the crossovers (functions 5 and 6).



Function 7 f(z) =sinx

Total # of Crossovers: 990024
# of Syntactically-Identical Crossovers: 188128
# of Fitness-Case-Identical Crossovers: 201428
Total # of positive crossovers 15187
Total # of neutral crossovers 201163
Total # of negative crossovers 773674
Counts:

Negative Neutral Positive
0-Crossers 125859 4270 742
1-Crossers 54842 29412 2306
2-Crossers(S) 49847 23109 871
2-Crossers(D) 88051 56990 5562
Proportions:

Negative Neutral Positive
0-Crossers 0.161 0.022 0.051
1-Crossers 0.070 0.150 0.155
2-Crossers(S) 0.065 0.114 0.058
2-Crossers(D) 0.115 0.278 0.361

Table 6. Various measures from the crossovers (function 7).

fitness-contributing regions in the parent or (2) replace the notion of a fixed pro-
portion of strongest fitness cases with a (perhaps adaptive) notion of a fitness-
improvement threshold. Another aspect to consider is the intrinsic easyness of
some fitness cases in certain problems.

The experiments above have been carried out on a limited domain (they are
all symbolic regression problems) and therefore it would be interesting to extend
this analysis to other problem domains. Also, it would be interesting to analyse
the different types of crossover at different times during the run (in more detail
than the time-series plots given in this paper).

A larger-scale criticism of this approach is that it is focused on the fitness
cases as individuals, and does not attempt to extract higher-scale features of the
problem. An alternative approach, such as studying a formal semantics of the
program [2], might be of use in approaching that question.

This paper has focused on this as an analysis approach. However, this could
be turned around and used as a way of creating more crossovers of the type
which appear to give positive results more frequently.

Finally, there are many other aspects of GP that that could be studied via
this general idea of instrumenting the activities that occur during a GP run.
The most obvious topic to tackle using this approach would be mutation.
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Fig. 2. The change over time in the evolutionary run of the proportion of each type of
crossover for each of the 7 functions. Mean over 10 runs.
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