University of

"1l Kent Academic Repository

Otero, Fernando E.B., Johnson, Colin G., Freitas, Alex A. and Thompson,
Simon (2010) Refactoring in Automatically Generated Programs. In: 2nd
International Symposium on Search Based Software Engineering, 7-9th
September 2010, Benevento, Italy.

Downloaded from
https://kar.kent.ac.uk/71014/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/71014/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Refactoring in Automatically Generated Programs

Fernando E. B. Otero, Colin G. Johnson, Alex A. Freitas, aindo8 J. Thompson
School of Computing
University of Kent
United Kingdom
{F.E.B.Otero,C.G.Johnson,A.A.Freitas,S.J. Thompgkent.ac.uk

Abstract—Refactoring aims at improving the design of ex- where the goal is to improve the design quality of a system
isting code by introducing structural modifications without based on a set of software metrics. After formulating the
changing its behaviour. It is used to adjust a system's desig yafactoring as an optimisation problem by defining the
in order to facilitate its maintenance and extendability. Snce uti tati h t d fitnestid
deciding which refactoring to apply and where it should solution r_epresen ation, search opera o_rs and fitnessounc
be applied is not a straightforward decision, search-based Several different methods can be applied to the problem of
approaches to automating the task of software refactoring bve ~ automated refactoring—e.g. hill climbing, simulated aaine
been proposed recently. So far, these approaches have been ijng and genetic algorithms. So far, the idea of automatic
applied only to human-written code. Despite many years of tefactoring has been applied only to human-written code.

computer programming experience, certain problems are vey
difficult for programmers to solve. To address this, researbes Genetic Programming (GP) [3], [4] is an evolutionary

have developed methods where computers automatically crea t€Chnique, based on Darwin’s principle of natural selectio
program code from a description of the problem to be solved. which aims at automatically evolving computer programs.

One of the most popular forms of automated program creation |n the GP context, a computer program is a solution to the
is called Genetic Programming (GP). The aim of this work 1 oh1em at hand, which can be represented as a mathematical

is to make GP more effective by introducing an automated fi f instructi bit
refactoring step, based on the refactoring work in the sofvare ~ €9Ualion, a sequence or Instructions or an arbitrary com-

engineering community. We believe that the refactoring sie bination of input values. GP uses the principle of natural
will enhance the ability of GP to produce code that solves selection to find solutions to complex problems by evolving

more complex problems, as well as result in evolved code that jnitially poor solutions into near-optimal ones using a set
is both simpler and more idiomatically structured than that ¢ yenetic operators and a fitness measure. In recent years
produced by traditional GP methods. . .

GP has been applied to a number of problems of practical
_ Keywords-refactoring; genetic programming; automated de- sjgnificance, and has produced a number of solutions to
sign improvement; problems that arauman-competitivis]—for example with
a GP algorithm producing a solution comparable with one
which has been patented.

Software systems undergo incremental changes over time In this work, we aim at testing the hypotheses that
in order to deal with new requirements. Since the originaladding in an automated refactoring step will enhance the
design is not prepared for every new requirement in generahbility of the evolutionary process in GP to produce code
the addition of functionality brings the risk of degrading that solves more complex problems than traditional GP
the quality of the design (structure) of the system. Amethods; and that by adding in the refactoring step the
common approach to mitigate this risk involves the use okcode evolved is simpler and more idiomatically structured—
refactoring. Refactoring aims at improving the design ofand therefore more readily understood and analysed by
existing code by introducing structural modifications with ~ human programmers—than that produced by traditional GP
changing its behaviour. The motivation for refactoring themethods. The research will draw upon work in the software
code of a system is that a well-designed system is generallgngineering community in automatically applying refaetor
easier to maintain and extend. Refactoring is now a coréng steps that have proven effective for human software
part of software engineering practice, and is supported bgngineers. Furthermore, it will automatically identify st
the inclusion of refactoring tools in well-used integratedrefactoring steps prove to be most effective during the GP
development environments. While refactoring can help tgrocess in order to apply these explicitly in future GP runs.
improve a software design, deciding which refactoring to
apply and where it should be applied is not a straight forward Il. METHODOLOGY
decision. Essentially, a GP algorithm consists of a population of

Recently, search-based approaches to automate the agandidate solutions to the target problem and an iterative
plication of refactoring have been proposed [1], [2]. Theseselection process that mimics an evolutionary process. A
approaches cast the refactoring as an optimisation prgblentraditional GP involves four main steps, as illustrated in

I. INTRODUCTION

within an individual, dubbedode duplication refactoring
This refactoring consists on improving the structure of an
individual by identifying duplicated code, encapsulatiihg

as a single instruction and replacing each occurrence by the
single instruction. The encapsulation of the duplicatedeco
could help the evolutionary process by preserving useful
blocks of code from the effects of genetic operators, as
well as providing a more compact structure for the individ-
uals. For example, in a symbolic regression problem where
individuals represent arithmetic expressions, an indiaid
corresponding to the expressiaf (zxx) — (2% (v xx))'—

with 2 and y representing numeric variables—undergoing
the code duplication refactoring would be transformed to
‘y+ E — (2% E)). In this case, the variablé&Z would

encapsulate the expressign: % x)’.
A variation of the code duplication refactoring is the

(@) (b) example offunction extraction where a program is refac-

_ _ . . _ _ tored so that a code block is removed from its context and
B o e o o e demseimiy ePlaced by a function call. The biock of code removed
step. forms the body of that function. As with the code duplication

refactoring, the function extraction could provide a way of

forming blocks of code—or modules—for the evolutionary
Figure 1(a). Firstly, a population of random programs isprocess to reuse, something which has already been shown
generated. The remaining stages form an iterative loop. Th® be useful in GP [6]. A complementaanfold refactoring
programs are evaluated, e.g. by running them on a set of testep will also be investigated, which has the opposite effec
data and measuring the resultant performance on the probleai the code duplication and function extraction refactgsin
at hand—this measurement is called the fithess score. Basdthe unfold refactoring replaces a variable or a function
on this fithess score a number of the fitter programs areall by the corresponding encapsulated expression, altpwi
chosen to form a basis for the next generation—these arexpression to evolve independently from that point on.
called the parent programs for the next generation. This
next generation is then created by performing mutation and
crossover steps on programs chosen from the set of parent$] O. Seng, J. Stammel, and D. Burkhart, “Search-based-dete
This loop continues until a particular fitness value is found ~ Mination of refactorings for improving the class structuofe

or until a particular number of iterations have been carried object-oriented systems," iRroceedings of the Genetic and
P Evolutionary Computation Conference (GECCO 2008CM,

out. 2006, pp. 1909-1916.
The core idea in this work is to explore the addition of

a refactoring stepinto the genetic programming iteration. [2] M. O'Keeffe and M. O. Cinnéide, “Search-based refaigr
That is, there will be an additional loop in which refactayin an empirical study,"Journal of Software Maintenance and
; . Evolution: Research and Practiceol. 20, no. 5, pp. 345-364,

steps drawn from a catalogue of such steps will be appliedto ,55q
individuals of the population. The contrast between thid an
traditional GP is illustrated in Figure 1(b). These refaictg [3] J. Koza,Genetic Programming: On the Programming of Com-
steps will be based on traditional software engineering, an puters by Means of Natural SelectionMIT Press, 1992.
developed to take into account factors that are important fo . .

P P [4] W. Banzhaf, P. Nordin, R. Keller, and F. Francor{@enetic

GP (e.g., reducing the amount of unused code). Programming—an introduction: on the automatic evolutidn o

Given that programs are generated by an evolutionary pro- computer programs and its applicatiansMorgan Kaufmann,
cess in GP, the introduced refactoring step adopstsaach- 1998.
basedapproach to automatically carrying out refactorings.
Individuals are selected from the population and undergo &! J- Koza, M. Keane, M. Streeter, W. Mydlowec, J. vu,
. . - and G. Lanza,Genetic Programming IV: Routine Human-
refactoring step, checking whether the preconditionstiat t

:]] .] Competitive Machine Intelligence Kluwer Academic Pub-
refactoring obtain, and if so, applying the refactoring. lishers, 2003.

Initialisation

Population
Initialisation
Refactoring

REFERENCES

[1l. ONGOING WORK [6] J. Koza, Genetic Programming II: Automatic discovery of
As a first case study, we are currently working on im- reusable programs MIT Press, 1994.
plementing a refactoring step to replace duplicated code

