University of

"1l Kent Academic Repository

Maria, Michael (2018) Supercontinuum in the practice of Optical Coherence
Tomography with emphasis on noise effects. Doctor of Philosophy (PhD)
thesis, University of Kent,.

Downloaded from
https://kar.kent.ac.uk/71011/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/71011/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

UNIVERSITY OF KENT
DOCTORAL THESIS

Supercontinuum in the practice of Optical
Coherence Tomography with emphasis on

noise effects

Author: Supervisor:
Michael MARIA Professor Adrian PODOLEANU

Examiners:
Professor Roy TAYLOR
Professor William WADSWORTH
Professor Chao WANG

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Applied Optics Group

School of Physical Sciences

December 13, 2018


https://www.kent.ac.uk/
https://research.kent.ac.uk/appliedoptics/
https://www.kent.ac.uk/physical-sciences/

Declaration of Authorship

I, Michael MARIA, declare that this thesis titled, “Supercontinuum in the

practice of Optical Coherence Tomography with emphasis on noise effects”

and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a re-

search degree at this University.

Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

Where I have consulted the published work of others, this is always
clearly attributed.

Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my

own work.
I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have

contributed myself.

Signed:

Date:




ii

141

If A is success in life, then A = x + y + z. Work is x, play is y and z is keeping

e
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Albert Einstein
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Supercontinuum in the practice of Optical Coherence Tomography with
emphasis on noise effects

by Michael MARIA

Optical Coherence Tomography (OCT) is an imaging modality which
has proven, since the early 1990s, its incredible potential. Nowadays, nu-
merous fields of medical investigation, such as Ophthalmology, Dermatol-
ogy or Cardiovascular imaging, would not be the same without the diagnos-
tic tools bring by OCT. This tremendous development has been supported
by industry support through improvement of dedicated components such
as lasers, cameras and optics.

A great example of this development is the evolution of Supercon-
tinuum (SC) sources. Due to the extremely broad spectrum cover by SC
sources, their high power density and high spatial coherence, it seems obvi-
ous to use them for driving OCT systems. However, an intensity noise issue
arising from the SC sources has been reported as a limitation for OCT and
needs to be addressed.

The aim of the work presented in this thesis is to create a link between
the world of Optical Coherence Tomography and Supercontinuum physics
in order to understand the origins and the impact of SC source intensity
noise into the OCT systems. This work is of importance as it helps to op-
timize the usefulness of the current generation of SC sources. Also, this
work is a part of the work necessary for developing a new generation of SC
sources which completely addresses the intensity noise limitations. More
precisely, a part of the work presented deals with an optimization of the as-
sociation SC source and OCT. The second part of the results is an attempt
for improving this association by using a new SC source design.
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Chapter 1

Introduction

1.1 Context of the Thesis

Optical Coherence Tomography (OCT) is an imaging modality used
nowadays in numerous biomedical and non-biomedical applications. By
measuring depth reflectivity profiles of scattering samples, OCT allows to
reconstruct 3D representations of semi-transparent media. Optical coher-
ence tomography relies on optical interference [1], which is an optical effect
known for centuries. Among the first famous descriptions are the experi-
ments of Thomas Young with his famous two slits system (1801) or the ether
experiments by Michelson and Morley (1887). The first image produced us-
ing OCT [2] is however much younger and was done at the Massachusetts
Institute of Technology in 1991, by the group of Professor James Fujimoto.
In this first paper, they demonstrated the first cross-sectional image of a hu-
man retina based on measuring echo amplitude of a light beam compare to
a known reference path. However, even though this is considered as the
first demonstration of OCT, is not the earliest application of low coherence
interferometry to investigate eye properties. Fercher’s group at the medi-
cal University of Vienna was already measuring eye ball length using low
coherence interferometry principle back in 1988 [3].

Since those first investigations, 27 years ago, OCT has followed an amaz-
ing development, which have spread among the academic and industrial
world. A recent report [4] has shown the exponential growth in the num-
ber of publications related to OCT from the first paper in 1991 up to 2015.
Nowadays, OCT is the main topic of an important number as large as 3000

publications a year in general and specialised peer-review journals. In terms
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of industrial impact, the number of companies selling OCT systems has
reached 44 companies in 2015 from countries such as United States, France,
Germany and United Kingdom. This evolution has been supported by the
development of Fourier Domain Optical Coherence Tomography (FD-OCT).
Indeed, the earliest OCT systems were based on the Time-Domain (TD)
principle. Though TD-OCT had its role, impressive at the time, it had sev-
eral limitations, mainly in terms of its speed. This made the transition of
OCT to clinic challenging. Most of these limitations were cleared by the
improvements brought by FD-OCT, which first stones have been placed by
[5, 6] in 1993 and 1995. Those experiments used a Spectral Domain-Low Co-
herence Interferometer as a sensor for distance investigations. A few years
later, FD-OCT has been proposed using the same principle together with a
lateral scanning. With FD-OCT a speed increase of more than 100 fold com-
pared to TD-OCT has been possible [7, 8, 9]. Also, FD-OCT has brought
an improvement in terms of image quality as the achievable signal to noise
ratio is 20 dB higher compared to the initial TD-OCT principle [7, 8, 9].

In 2017, FD-OCT is almost always preferred to TD-OCT. Within FD-
OCT, two main streams have emerged. The first one, Spectral Domain-OCT
(SD-OCT) consists in using a broadband light source and a spectrometer as
a detection unit. The second trend is called Swept Source-OCT (SS-OCT),
where a fast tunable light source is used together with a fast photodiode as a
detector. The two modalities can be applied to the same samples (eye, skin,
organs, arteries ...) but one will be preferred compared to the other depend-
ing on the expected system performance. Indeed, SD-OCT will be preferred
if the main targeted parameter is the high axial resolution. This is due to the
fact that only SD-OCT system can handle optical bandwidth large enough (>
200 nm) to obtain an axial resolution of a few microns. In SD-OCT, the opti-
cal bandwidth is equal to the spectral bandwidth of the source. Broadband
sources such as combination of super-luminescent diodes or supercontin-
uum source can offer more than 300 nm within two out of the three main
wavelength ranges used for OCT (800 nm, 1050 nm and 1300 nm). On the
other hand, SS-OCT is the method of choice if speed is the most important
factor. Tunable lasers can be swept at rates of a few hundreds of kHz up
to tens of MHz. On the contrary, SD-OCT systems are limited in terms of
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speed by the camera line rate used in the spectrometer, which is in the range
of a few tens of kHz up to a few hundreds of kHz. However, most of tun-
able sources suffer from smaller optical bandwidth compared to broadband
sources.

As written previously, the first image ever produced using OCT was an
image of the human retina measured in vitro [2]. Since that point in time, the
number of OCT ophthalmic applications has grown exponentially. In less
than 20 years, OCT has become a tool for daily routine use by ophthalmolo-
gists. In this field, OCT helps to diagnose and understand diseases such as
glaucoma [10, 11], macular degeneration [12, 13], retinal detachment [14, 15]
and many others pathologies. Also, new features have been added to the
original OCT. Among others, techniques like OCT-Angiography (OCTA) al-
lows seeing the blood vessels mapping by observing a difference between
the moving blood flow and the static tissue within the retina [16, 17] or
Adaptive Optics-OCT (AO-OCT) [18] helps to see the retina with extreme
lateral details by correcting for the eye aberration. Those new features,
though not yet embedded in commercial systems as yet will for sure in-
crease the usefulness of OCT within its clinical realm. Applications of OCT
in ophthalmic environments are currently representing the largest part of
the industrial market for OCT, with not less than 15 out of the 45 companies
developing commercial OCT systems [4]. The value of the OCT ophthalmic
market is nowadays reaching more than 500 M$ a year and it is constantly
growing.

The second most important field of application for OCT, in terms of re-
search and industrial impact, is cardiovascular imaging. The main target is
the investigation of plaques within artery, which is a key criterion for under-
standing and preventing heart attacks [19, 20]. This field is of high impor-
tance and was the second, within all the possible OCT applications to see the
release of a dedicated commercial product in 2004 [4]. Also, cardiovascular
OCT applications have seen a significant improvement with the democrati-
sation of swept sources within the OCT community. The much higher speed
of operation of SS-OCT system compared to SD-OCT have helped to reduce
the imaging time from minutes to almost a second for a full 3D scan of an

artery area. Today, the market of cardiovascular OCT application is about
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100 M$ a year shared between 5 companies [4].

A third prolific field of OCT development is dermatology. From the
early stage, OCT has been considered as the equivalent of biopsy but with-
out the need of an invasive cut. This is clearly an advantage for dermatol-
ogy where many diseases concerning skin affect the superficial layers and
are investigated by tissue biopsy. Indeed, the conventional procedure for
dermatologists involves the analysis of a tissue biopsy under a microscope.
Such procedure is costly, time ineffective and truly unpleasant for the pa-
tient. Similar results compared to biopsy can be obtained using OCT with no
need for an invasive cut. Several demonstrations of OCT in skin cancer de-
tection at have been shown over the years [21, 22]. Again, technology such
as OCT angiography [23] or Optical Coherence Elastography [24] bring new
useful features for cancer detection. Even though OCT is a possibly useful
tool for dermatology, a certain resistance from the medical community is to
be noticed to accept the technology in their daily routine. This resistance
might be explained by a too important price of OCT systems and also by
not enough demonstration of skin diseases diagnostic using OCT. Then, in-
dustrial development of OCT for skin imaging has been slower than for eye
imaging or cardiovascular imaging. Currently, 6 companies are working on
OCT for skin investigation but one of them is clearly dominating the market
[4]. However, most of the companies on this market are young, less than 5
years old, so it is too early to judge either they will take-off or not.

Finally, in addition to the three main fields of OCT applications men-
tioned above, numerous other domains are considering the interest of bring-
ing OCT as an imaging modality. Within the biomedical imaging commu-
nity, fields that OCT has benefited are gastro-intestinal investigation [25],
dentistry [26] or neurology [27]. Meanwhile, other applications in non-
biomedical world have demonstrated the great potential of OCT. Among
those, Art and its conservation [28], industrial quality inspection or even
more recently [29], the fast-growing field of 3D-printing [30].

This non-exhaustive list proves OCT as an important imaging modality
for several fields. This high interest for OCT, from both the scientific com-
munity and industry, is due to the fact that OCT is filling a gap in terms
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of axial resolution versus imaging penetration. A very popular sketch, in-
spired from [31, 32], is illustrating in Figure 1.1 the OCT imaging modal-
ity abilities in resolution versus imaging penetration. The main strength of
OCT has been to be able to provide an intermediate modality between the

Confocal Microscopy and Ultrasound Imaging.
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FIGURE 1.1: Representation of the imaging penetration ver-

sus axial resolution observed in medical imaging devices

(Confocal Microscope, OCT: Optical Coherence Tomography).
Adapted from [31, 32]

The important development of OCT finds its origins in the support and
contribution from the industrial world. Many companies have developed
dedicated components answering exact OCT needs. A first great example is
the improvement of cameras in the Near Infra-Red region, which has led to
the emergence of SD-OCT. A second important improvement for SD-OCT
is the evolution of Supercontinuum (SC) light sources. A supercontinuum
source is an ultra-broad optical source relying on non-linear frequency con-
version, which can address the wavelength ranges used in OCT. Actually,
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FIGURE 1.2: Example of a spectrum obtained from a SC source

based on a Silica photonic crystal fibre. The dashed areas indi-

cate the wavelength region of Titanium Sapphire laser (green),
SLD at 1300 nm (black) and SLD at 1550 nm (red).

SC sources cover much broader spectral range compared to the one acces-
sible with common spectrometers. An example of a spectrum measured
from a fibre-based SC source designed for OCT is shown in Figure 1.2. This
spectrum spans from around 600 nm up to beyond 1700 nm with a high av-
erage power of 4-5W. Such a spectrum is useful for OCT applications in the
800 nm range for eye imaging, in the 1300 nm region for skin imaging and
at 1550 nm and 1700 nm for Non-Destructive Investigation of sample with
less water content. As a comparison of spectral bandwidth covered, the
dashed squares in Figure 1.2 indicate the typical bandwidth available from
other sources than SC source used in OCT system. However, from the first
attempts to use a SC source in OCT, a high Relative Intensity Noise (RIN)
has been reported. Since then, important efforts have been dedicated by the
SC scientific community and the SC industry towards reducing the noise

below acceptable levels. Numerous successes of OCT using commercially
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available low noise SC sources have been reported over the last 5 years.

This thesis has been written within the time-line of the project called
Ultra-wide Bandwidth Photonics Devices, Source and Applications funded
by the European Union (Marie Curie Actions). The aim of the project is to in-
vestigate the usefulness of SC sources for biomedical imaging applications.
More particularly, the aim of the current thesis is to evaluate the useful-
ness of the current generation of SC sources for Ultra-High Resolution-OCT
(UHR-OCT). Of particular interest, is the noise impact of a SC source on the
performance of an OCT system driven by such a source.

1.2 Content of the Thesis

The present thesis is structured in three main parts. Chapter 2 and
Chapter 3 are introductions for the different concepts used in the subse-
quent chapters. Chapter 2 is dedicated to OCT and Chapter 3 to the SC
source. Then, Chapter 4 is dedicated to signal processing involved in OCT.
Of particular interest is the Master/Slave Interferometry (MSI) method and
its specific signal processing to ensure ultra-high resolution. Finally, Chap-
ter 5, Chapter 6 and Chapter 7 deal with the topic of SC noise in OCT. Below

is a semi-detailed description of each chapter content.

Chapter 2: Optical Coherence Tomography - Definition

This chapter defines a set of important concepts and parameters con-
cerning SD-OCT, essential in the understanding of the thesis. Important
concepts, such as white light interferometry and definitions such as the sig-
nal to noise ratio and axial resolution are introduced as they are used all
along the thesis.

Chapter 3: Supercontinuum light source — Definition

Supercontinuum light sources together with OCT constitute the back-
bone of this thesis. Therefore, it is important to understand several defini-
tions and parameters in order to have a good understanding of the thesis.

Again, this chapter is an introduction containing some important definitions
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of the supercontinuum physics. Here, the main non-linear effects involved
in SC generation, such as the concept of a Photonic Crystal Fibre (PCF) or

different SC generation mechanisms are presented.

Chapter 4: Signal Processing in Optical Coherence Tomography

This chapter is a description of the processing procedures required in
order to analyse the raw data delivered by an OCT system. A first part
describes the common SD-OCT analysis. Then, the Master/Slave Interfer-
ometry (MSI) analysis procedure is presented. By mixing mathematical de-
scription with analysis of experimental data, a clear step by step presenta-
tion is shown. Finally, a comparison of conventional SD-OCT with MSI is
proposed regarding the main metric tools used by the OCT community.

Chapter 5: Optimization of supercontinuum design for noise reduc-

tion in ultra-high resolution optical coherence tomography

This chapter provides an analysis of noise from SC sources and their
impact on the OCT performance. Noise from laser sources limits the achiev-
able SNR and therefore needs to be carefully understood. This chapter pro-
poses a method for analysing the noise in the OCT images using the hard-
ware of an OCT system alone. This is an advantage as noise analysis of
SC sources usually requires complex and expensive hardware. In addition,
two parameters of SC sources are optimized. Such an analysis is useful as
it helps a SC source user to optimally operate his system and it is also inter-

esting for SC source design.

Chapter 6: Femtosecond pumped all-normal dispersion fibre super-

continuum for ultra-low noise operation

In this chapter, the initial results of an on-going study are presented,
where a low-noise SC source is built and tested into an UHR-OCT system
operating in the 1300 nm. This new SC source relies on the concept of pump-
ing a PCF, with an all normal dispersion profile, using an ultra-short pulse.

This new design generates a SC from several non-linear effects that are more
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deterministic. Also, a discussion on possible improvements of this first pro-
totype is presented. The initial experimental results show that such a source
offers similar noise properties compared to SLD source but with broad spec-
tral bandwidth.

Chapter 7: Q-switch pumped supercontinuum light source for ultra-

high resolution optical coherence tomography — A low-cost alternative

This chapter compiles the results obtained in using a low-cost SC source
for UHR-OCT. In order to reduce the total cost of an OCT system it is nec-
essary to reduce the cost of the most expensive components. In the case
of SD-OCT, the light source and the spectrometer are the most expensive
components. Here, a new light source is proposed. This source is a SC
source which relies on a Q-Switched laser architecture for pumping a Highly
Non-Linear Fibre (HNLF). This pump laser results in a much lower cost
source, less than 15 % in comparison to a conventional SC source for OCT.
To demonstrate the usefulness of this source, a pulse to pulse stability anal-
ysis together with a complete OCT characterization (sensitivity + images) is
proposed. Finally, it is shown that such a source can be useful if a longer
exposure time, compared to current SD-OCT state of the art systems can be

employed.

1.3 Results communication
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- A.Bradu, N. M. Israelsen, M. Maria, M. ]. Marques, S. Rivet, T. Feuchter
and O. Bang, " Recovering distance information in spectral domain interfer-
ometry," Nature Scientific Reports 8, Articles Number 15445 (2018). https:
//www.nature.com/articles/s41598-018-33821-0

- M. Jensen, N. M. israelsen, M. Maria, T. Feuchter, A. Podoleanu and
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Chapter 2

Optical Coherence Tomography -
Definition and Theory

2.1 Introduction

Optical Coherence Tomography (OCT) is an imaging modality based
on the optical effect called interference [1]. Even though OCT is a relatively
young field with its first report in the year 1991 [2], it represents nowadays
a very hot topic for academia and industry with thousands of reports a
year [3]. The current chapter aims to introduce the required background
for understanding this thesis. It starts with the introduction of low coher-
ence interferometry and shows how is possible to use it to infer distances.
Then, important concepts related to OCT and more specifically to Spectral-
Domain-OCT (SD-OCT) are presented.

2.2 White Light Interferometry

2.2.1 Concept of temporal coherence

White light interferometry, also called low coherence interferometry, is
a metrology tool which uses the property of temporal coherence of a light
source [4]. Temporal coherence refers to the phase relationship which exists
when considering the electric field from a source at two distinct points in
time. In case of a completely temporally incoherent source, no phase rela-
tionship is kept between two instants ¢; and ¢, and the electric field expres-

sion is unpredictable. On the contrary, if considering a coherent source, the
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electric field is deterministic and its expression at ¢, can be inferred from its
expression at ¢; (assuming ¢, > ¢; ). An intermediate status exists between
coherent and incoherent, which is partially coherent. A partially coherent
source maintains a deterministic electric field over a relatively short period
in time and then experiences a random phase change [4].

Mathematically, the coherence property of a light source is described
through the temporal coherence function G(7) of the source electric field as

G(t)=(E*(t)E(t + 1)), (2.1)

where <> denotes the time averaging, 7 is the correlation lag variable and
* the complex conjugate notation. Then from Equation 2.1, the coherence
time 7. can be calculated as

=[P ar @2
where the ratio g(7) = G(7)/G(0) is the complex degree of coherence. The
complex degree of coherence is a parameter with absolute values between
0 and 1. An ideal perfect coherence corresponds to |g(7)] = 1 while an
incoherent source corresponds to |¢(7)| = 0. The coherence time 7, is linked
to the coherence length of the source /. through

l. = cte, (2.3)

where c is the speed of light in vacuum.

Finally, a very important property regarding the temporal coherence of
a light source is the link between temporal coherence function and Power
Spectral Density (PSD). The two functions are conjugate variables by Fourier
Transform (FT) operation

+o0
S(v) = / G(r)e *™ dr, (2.4)
where v is the optical frequency variable.

Equation 2.4 is important as it establishes a connection between the ex-
tension of the two functions along their coordinates. Thus, the broader the
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source PSD, the shorter its coherence length. This property is key in the high
axial resolution selection of OCT systems along the optical path coordinate,
where high resolution is achievable by using a broadband optical source.

2.2.2 White Light Interferometry Definition

Figure 2.1 represents an amplitude-splitting interferometric system in
its simplest form. Light is supplied by a polychromatic light source, charac-
terized by its spectral shape S(w), central frequency w, and frequency band-
width Aw. The light is split into two paths by a splitting device BS. The
lengths of the two paths are L and L + 6l. After free space propagation, the
light along each path is reflected back towards BS by the mirrors M; and M,.
The two fields are superposed on the detector. Interference takes place only
when 4l is shorter than a certain path interval, called the coherence length of

the source. Following a similar formalism as in [5] and adapted to a simpler

MM'I

BS

Light Source !
[S(w), wg, Aw]

<
<

v

L+ 8l

Detector

FIGURE 2.1: Simplified sketch of an amplitude-splitting inter-
ferometer based on a light source, two mirrors and a detector.

situation, the light from the optical source can be described by its electric
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field as
Esource = EO (W) X ei(kZ_Wt), (25)

where £ is the wavenumber of the light, w is the frequency of the light, and
for simplification we consider the wave propagation confined along the z
direction, with z the path travelled. ¢ is the time variable and Ej is the
amplitude of the electric field. For ease of identification, let the electric field
Er be the so-called reference field, travelling along a round trip reference
path, from BS to mirror ; and back towards the BS, of length 2L. Let us
also consider the field in the sample arm, as sample field, characterized by a
Eg, travelling from BS towards mirror M, and back towards the BS, along
a round trip optical path of length 2(L + §l). Also, let the BS splitting ratio
be 0.5. Considering Rp and Rg as the power reflectivities of mirrors placed

in the reference and sample arm respectively, Er and Eg can be written as:

Ep(w) i(kL—wt
Er(w) = x \/Rp x kL=, (2.6)
V2
and 5
Es(w) = f/(;’) x \/Rg x e'kLFoh-uwt), (2.7)

For simplicity, let us assume that there are no losses in the reference path,
in which case /Rr = 1. Let us also assume that there are no losses in the
sample arm and that the scattering centre in the sample is replaced by a
mirror of reflectivity Rg = 1. Later will return to considering the sample
with its own reflectivity.

It is important to mention that considering k as a constant in Equation
2.6 and Equation 2.7 is equivalent to assuming no dispersive effects in the
interferometer paths. A more accurate representation should be to consider
kr(w) and ks(w). A more complete description will be presented in section
2.7.1.

Detectors used in low coherence interferometry are sensitive to the op-
tical intensity and not to the electric field. The link between optical intensity
and electric field can be approximated by

I(w) < |B(w)|. (2.8)
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The detector is exposed to the superposition of the two electric fields Er and
Eg, which are both function of w, recombined at the splitting device and it
is integrating over a given time (brackets denote time averaging). Then, the

signal per pixel is

Ipetector (@) < ((En(w) + Bs(@))?) = (En(w) + Bs(w)) x (En(w) + Es(w))").

(2.9)
By combining Equation 2.9 with the expressions from Equation 2.6 and
Equation 2.7:

I(w) < ((BR(w) + E3(w) + Er(w)Es(w) + Es(w)Ex(W))). (2.10)
This can be simplified to:
I(w) o< S(w) x (1 + cos(2861)). (2.11)

Equation 2.11 describes the fact that the signal detected at the output of
the interferometer is a modulated version of the source spectrum where the
modulation periodicity is governed by the mismatch in length between the
reference and sample paths. Low coherence interferometry principle is at
the heart of OCT technology as it allows to locate the position in depth in
the sample of scattering centres along the optic axis oriented along OZ.

2.2.3 Measuring depth reflectivity profile using white light

interferometry

The above description of Low coherence interferometry, concluding
with Equation 2.11, has been built from an interferometer with a mirror as
the reflector in the sample path. A sample can be approximated by a se-
ries of discrete reflectors distributed along the depth dimension. This leads
to a modification of the expression for the electric field Eg, if assuming N

scattering centres along the axis OZ, each of reflectivity Rg,and located at a
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distance (L + 6l,,) from BS:

N

E |
Es(w) = OJ(;’) X Y /Ry x /ALt (2.12)

n=1

Considering the sample path electric field and repeating a similar pro-
cess as in section 2.2.2, the detected signal at the output of the interferometer
can be written as:

N

[Detector(w) X S(w) X RT + Z RSn
n=1

n

N
+S(w) x Y v/ RpRsy x cos (2301, (2.13)
+ S(w)

N
< Z vV RsmRsn X cos (28(dl, — 0l,,))

n#m=1

Equation 2.13 can be separated into 3 terms:

- S(w) x [ZnNzl RSH] represents a DC signal which is a summation of
contributions from all reflectors along a line in depth within the sample plus
a contribution due to the mirror in the reference path.

-S(w)x 2N V/RrRg, % cos (2661,,) represents the interference between
the light from the reference path and the light reflected by all reflectors
within the sample. This term, called interference term, is the useful part
of the signal for OCT analysis. Its amplitude is large compared to the auto-
correlation term as Ry is much larger than Ryg.

- S(w) x ZnN;émzl VRsmRsy, % cos(28(dl, — 6l,,)) is a term which de-
scribed the interferences occurring between light back-scattered by all the
scattering centres along a line in depth within the sample. The amplitude of
such a signal is relatively small as Rg, is small inside the sample. Usually,
samples such as eye and skin present power reflectivity in the range of 10~*
to 107° [5]. This term is called the auto-correlation term or self-interference
term.

Similarly, to the previous section, the signal detected at the output of
the interferometer, given by Equation 2.13, provides information on the
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depth positions of the scattering centres in the sample. Also, from Equa-
tion 2.13, not only the positions can be inferred but also the strengths of the
reflected signals are accessible through Rg,. All Rg, coefficients are mixed
together because the power reflectivities of the sample reflective centres are
assumed to be very small. Then, it is fair to consider that the optical power
incident on the sample is not decrease from reflective centre to the next one
over the 1 mm depth of the imaging system capabilities. The power reflec-
tivities R, are governed by local variations of the index of refraction within
the sample investigated [6].

2.3 Low coherence interferometry + Scanning sam-
ple = OCT

2.3.1 Optical Coherence Tomography Definition

Optical coherence tomography is an imaging modality obtained by the
association of a low coherence interferometry system and a lateral scanning
device [2]. As shown by section 2.2.3, the positions and the power reflec-
tivities of each reflective centres can be measured using low coherence in-
terferometry (Equation 2.13). With the addition of lateral scanning device,
a 3-dimensional representation of a sample can be obtained by measuring
low coherence interferometry signal along two lateral dimensions.

Two sub-categories of OCT systems exist. Time-Domain-OCT (TD-OCT)
and Fourier Domain-OCT (FD-OCT). The first one, TD-OCT, is the original
method presented in [2], where the sample reflectivity profile r, = VRsn
is built by scanning the reference arm of the interferometer, which means
that the depth reflectivity profile is measured depth point by depth point.
Then, similar axial scans are acquired at several lateral locations on the sam-
ple. The characteristic components of a TD-OCT system are a broadband
light source, an interferometer and a photodiode as a detection unit. In
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the last 15 years, TD-OCT was almost replaced by Fourier domain (FD)-
OCT, methods that are much faster and present better sensitivity than TD-
OCT [7]. The second sub-category of OCT technology, Fourier Domain-
OCT (FD-OCT), is nowadays the most spread technique within the commu-
nity. Within FD-OCT, two trends have emerged, Spectral Domain-OCT (SD-
OCT) and Swept-Source OCT (SS-OCT). Both methods are based on the fact
that depth-domain and the wavenumber-domain are conjugate variable by
Fourier Transform (FT) operation. Spectral domain-OCT relies on a broad-
band source and a spectrometer while SS-OCT relies on fast tunable laser
and a photodiode. Both methods offer much higher image quality and ac-
quisition speed than TD-OCT [8, 9, 10].

However, TD-OCT has an important advantage in comparison with the
FD-OCT system in terms of lateral resolution. TD-OCT is compatible with
adjusting the focus position for each depth investigated, a procedure termed
as dynamic focusing [11].

This thesis is dedicated to the use of supercontinuum light source in SD-
OCT. Therefore, the following parts of this chapter are dedicated to describe
particular features of SD-OCT. Some of the concepts are also applicable to
SS-OCT and even to TD-OCT.

2.3.2 Optical Coherence Tomography terminology (A-scan,

B-scan, en-face or C-scan)

When considering images obtained from an OCT system (FD-OCT and
TD-OCT), it is usual to use a particular set of denominations describing the
dimensions represented by the image. Let z, y, 2 be a 3-dimensional referen-
tial with = and y axes oriented along the lateral dimensions and z along the
depth dimension. Data obtained from an OCT system is a measure of the
depth information profile of the sample at a given lateral location. Then, this
corresponds to a reflectivity measurement at + = constant and y = constant
with the information along the z-axis. Such 1-dimensional scan along depth
is called an A-scan. An example of an A-scan measured from a skin sample
is presented in Figure 2.2 (b). Then, the beam can be scanned along either

the z or y dimension. By recording and stitching A-scans acquired along a
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lateral direction, a 2-dimensional view of the sample can be obtained. Such
a 2D transverse representation is called a B-scan. Figure 2.2 (c) is an exam-
ple of B-scan, made of 500 A-scans, measured from a skin sample. Finally, it
is possible to record a volume by moving the beam along both a fast and a
slow axis. Here, the fast axis corresponds to the acquisition of B-scan as pre-
viously and the slow axis is perpendicular along the fast direction. In that
case, the volume is made of an assembly of B-scans. From such a volume, it
is possible to extract an image which corresponds to a slice of the sample at
a given depth. This particular view is called a C-scan or en-face view. Figure
2.2 (d) is an example of C-scan extracted from a volume representing a skin

sample.

X A-scan

Amplitude [dB]

B-scan

C-scan

FIGURE 2.2: Definition of the scanning terminology depend-
ing on the coordinate axes represented in an image.

The data acquisition sequence is an important parameter of an OCT
system. Nowadays, with additional features such as OCT-Angiography or
Spectroscopic-OCT, it is common for certain applications that a C-scan is the
most effective way to analyse an image. In that situation it is necessary to
acquire and process a full volume of data to obtain this representation. This
is time-consuming as most of the processed data are not used for displaying
a single C-scan. A good example in this respect is the en-face view of the
retinal blood vessel distribution [12, 13] which is extremely useful for oph-
thalmologists. Then, it is interesting to develop alternative techniques for

modifying the imaging sequence. This topic will be discussed in Chapter 4.
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2.3.3 Spectral-Domain OCT (SD-OCT)

Spectral domain OCT allows creating three-dimensional representation
of a scattering sample by using a broadband optical source and a spectrome-
ter as a detection unit. Sources such as Super-Luminescent Diode (SLD), Su-
percontinuum (SC), Solid State Laser (SSL) can be used considering that one
of the main criteria of SD-OCT is the optical bandwidth of the source. The
detection unit is a spectrometer that accomplishes the operation of diffract-
ing (dispersing) the spectrum onto the array of pixels of a linear camera.
This highly reduces the contribution of shot noise, leading to a much higher
Signal to Noise Ratio (SNR) compared to TD-OCT [5]. Typically, a SNR im-
provement of around 20-30 dB is observed from TD-OCT to SD-OCT. Op-
timally, a spectrometer dedicated to SD-OCT should be built with a good
balance between spectral resolution and spectral bandwidth. The different
parameters of the source and detection unit are discussed in section 2.8 and
section 2.6 of this Chapter 2.

The main advantage of SD-OCT compared to TD-OCT is that it is a
single shot interrogation method. Using SD-OCT, no depth scanning of the
reference path is required. This means that a single interrogation of the
sample is enough to build a complete depth reflectivity profile at a given
lateral position. This advantage, in comparison with TD-OCT, offers a speed
increase of around 100 folds when using a system operation with line-rate
of few tens of kHz [8, 9, 10]. Even more, SS-OCT systems, due to the fast
laser wavelength swept, can operate up to the MHz regime. This increase
in speed is one the two reasons why FD-OCT (SD-OCT and SS-OCT) are
nowadays much more used in comparison to TD-OCT.

A typical SD-OCT system is sketched in Figure 2.3, in a bulk configura-
tion and in a fibre-based configuration. The light from a broadband source
is split into two paths by either a bulk beam splitter (BS) or a directional
coupler (DC). The first path, commonly called the reference path, consists
in a fixed-length free-space propagation of light. The second path, called
the sample path, is made of a free space part, a scanning system and a lens
acting as an objective for focusing the light beam onto the sample. Then,
the light reflected by the reference mirror and the sample recombine at the
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FIGURE 2.3: Typical configuration of a SD-OCT system. Bulk
configuration (a) and fibre-based configuration (b).
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splitting device and their spectral interference is translated by the spectrom-
eter into a modulated signal. The interference signal consists of a DC signal
superposed with a modulated signal corresponding to different scattering

centres within the sample (see Equation 2.11 and Equation 2.13).

2.4 Noise definition in OCT and Signal-To-Noise
Ratio

A SD-OCT system is affected by different sources of noise, which can
limit the achievable Signal to Noise Ratio (SNR). The SNR is a measure of
the contrast between the useful information within the image compared to
the background noise. Limiting the SNR has the direct consequence of re-
ducing the final image quality obtained from the OCT system. Image qual-
ity reduction leads to lower visual contrast. Then, it is important to properly
control the different parameters within the system which might play a role
in the overall noise behavior of the system.

2.4.1 Source of noise in SD-OCT

There are several noise sources in an SD-OCT system as described in

[14] and summarized below:
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Read (r) and detector (d) noise o7, ,: It is due to the different electronic

components used in the SD-OCT system. In the notation, the (r) denotes
the noise added when reading the signal. Read noise can be seen as noise
created at the digitization stage of the analogous signal. The second letter of
the notation (d) represents the detector noise, the noise created within the
camera of the spectrometer. In such detectors, the thermal fluctuations can
randomly transfer electrons from the valence band to the conduction band

of the semiconductor material.

2 .
shotnoise*

Shot noise o It is due to the random arrival of photons at the

detector. This random arrival leads to a random temporal generation of
photo-electrons in the detector. Shot noise can be expressed as

T hotnoise = % x % X (asvsBs + oy ) (2.14)
where p is the spectrometer efficiency, 7 is the quantum efficiency of the
camera, 7 is the camera exposure time, h is the Planck constant, v, is the
central frequency of the light source, F is the optical power at the interfer-
ometer input, N is the number of pixel on the camera, o, and «, are the
ratios of the light coupling back into the fibre while returning from respec-
tively the sample and the reference mirror, v, and , are the fraction of the
total power Fj in respectively the sample path and the reference path of
the interferometer, R and R, are the power reflectivities of the sample and
the reference mirror respectively. Commonly, when using a SC light source
which provides high average power, R, is the total reflectivity of a system
consisting of a mirror and a neutral density filter. The neutral density fil-
ter is necessary to avoid saturation of the detector. Shot noise is the less
limiting operation regime for an SD-OCT system and corresponds to a max-
imum SNR. Ideally, any imaging modality should operate under shot noise
limited detection.

Relative Intensity Noise %, y: It is characterizing the excess noise in the

system. Mainly the excess noise is dominated by RIN which is due to the
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light source intensity fluctuations in time. Similarly, to the shot noise ex-

pression, RIN can be expressed:

x —% % (agysRs + e Ry),  (2.15)

2
) (1+H2)x(ﬂ) y N 1P}

ORIN = 2 hVO Ae ff N2
with ITis the degree of polarization of the light source and Avesy = | /5755 %
cAA

5 is the source effective line-width with ¢ the speed of light, \? is the light
source central wavelength and A\ is the light source optical bandwidth. It is
assumed for this definition of RIN that the system is free from what could be
described as environmental RIN. Environmental RIN would include noise
contributions such as mechanical instability of the components in the sys-
tem and temperature fluctuations. Such variations lead to variation of the
coupling of light into the interferometer and therefore create additional in-

tensity fluctuations.

2.4.2 Signal to noise ration in SD-OCT

It is common to assume that the power returning from the sample back
into the interferometer is much smaller compared to the power considered
in the reference path. Then, if similar coupling coefficients o, and «, are
considered,

asYs Rs + e Ry =y, R, (2.16)

The tool for noise consideration, not only in SD-OCT but also in SS-OCT
and TD-OCT, is the SNR. For ease of identification let’s denote Piympie =
Pyvys and P,y = Fy,. Then, the SNR of an SD-OCT can be expressed as

2
1 T
N2 (ﬂ> X a/sPsampleRs X arPreer

2
SNR _ <SSDfOCT> _ hvo
SD—-OCT — P) - 3 e
Ototal 1 o2 + o0t Pres Rr + A+112) [ pn N refitr
N r+d huvg N 2 hvg Aeff N2
(2.17)

2.4.3 Consideration for optimal noise SNR of an SD-OCT

As described above, noise in SD-OCT has different origins. The dif-

ferent contributions are not equal in amplitude and might affect the SNR
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with various impacts. Since the early stage of SD-OCT, important techno-
logical improvements have led to a generation of highly sensitive detectors
which show low detector noise [15, 16]. Thanks to such low noise detectors,
SD-OCT systems are nowadays able to achieve shot noise limited detection.
Nevertheless, if a source with high intensity fluctuations is used, the system
might be within the RIN limited regime. It has been shown in many re-
ports that the optimal regime for maximizing the SNR is shot noise [17, 18].
This is achieved when the conditions of Equation 2.18 and Equation 2.19 are
fulfilled:

2
O shotnoise PNT Oy PT@fRT
- > 1, 2.18
Uf d hvg N ( )
and
O shotnoise _ hl/g 2 Aeff

> 1. (2.19)

0%,y pn 1+ 12, PR,
Under those conditions, the expression of the SNR can be simplified as a
shot noise limited expression:

2
-
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(2.20)
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As a conclusion regarding noise in SD-OCT, it is crucial to understand that
not all SD-OCT configurations can fulfill Equation 2.18 and Equation 2.19
for shot noise limited SNR. Indeed, a system driven by a noisy optical source
will have high RIN from the source, leading to an SNR below the shot
noise limited regime. This is the case when using supercontinuum lasers
as sources in OCT. This problem is addressed in Chapter 5, Chapter 6 and
Chapter 7 of this thesis.

2.5 OCT characteristic values

As with any scientific field, the OCT community has a list of parameters
and definitions which are essential to understand. It often happens that peer
review papers use these without recalling their complete definitions. This
section provides a description of the required terms for understanding this

thesis and other documents in the literature.



Chapter 2. Optical Coherence Tomography — Definition and Theory 33

2.5.1 Sensitivity

The first parameter of this list is the so-called Sensitivity. Sensitivity
represents the ability for an OCT system (TD-OCT or FD-OCT) to image
weak signals within the sample. Signals returning back from the sample
are potentially weak, both due to the limit of optical power applied to the
sample and also because of the light attenuation while propagation into the
sample. The physical definition of Sensitivity is the attenuation value to
consider in the sample path of the interferometer, given a mirror as the sam-
ple, in order to achieve a SNR equal to 1 [5]. However, this measurement is
not straightforward to implement as the typical minimum reflectivity mea-
surable is around 100 dB. A popular way of estimating the Sensitivity is by
measuring a SNR, using a mirror in the sample path, where a given atten-
uation has been added to avoid camera saturation. Then, the sensitivity S
can be obtained has

S[dB] = SNR[dB] + Attenuation [dB]. (2.21)

Several parameters can cause a decrease in Sensitivity. For example, a non-
optimized collection of the light returning from the sample path. However,
if considering carefully the different hardware issues, the main limiting fac-
tor of Sensitivity is the noise in the system. The optimal working point
of an OCT system is shot noise dominated regime as it is the only regime
which see the SNR increases while Pg.sincreases. Any other regime such
as electronics noise dominated regime or RIN dominated regime leads to
non-optimal Sensitivity values. The shot noise limited Sensitivity, for a
given power applied on sampled Psg,pe, is deduced from Equation 2.20
and Equation 2.21 as

S[dB] = 10 x log ’;% % Cty Paampte Rs | + Attenuation [dB]. (2.22)
0

2.5.2 Axial resolution in SD-OCT

Optical Coherence Tomography relies on low coherence tomography

and therefore offers one main advantage compared to conventional microscopy
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techniques. This advantage is the disconnection between axial and lateral
resolution. Indeed, while the microscopy resolutions, in all dimensions, are
linked to the objective Numerical Aperture (NA), only the transverse reso-
lution of an OCT system is linked to the objective NA. For low coherence
interferometry based systems, the resolution in depth is governed by the
coherence length of the optical source.

The OCT system axial resolution corresponds to the width of the point
spread function (PSF) in the z-domain and is equal to half the coherence
length of the source. As described by Equation 2.4, temporal coherence and
PSD are linked via a FT operation. Then, the axial resolution Az of an SD-
OCT system is calculated as

Ax = _ FWHM [FFT [S(k)]. (2.23)

2
where FWHM] ] represents an operator measuring the Full Width at Half
Maximum, iFFT is the inverse Fourier Transform operation and S(k) is the
source PSD.

From the early stage of OCT, Super-Luminescent Diode (SLD) sources
have been used in OCT systems as they are relatively cheap with a smooth
Gaussian spectrum and with broad spectrum (few tens of nanometres). In
such a case, the Fourier relation between the spaces z and k leads to a rela-

tion as described in [5]

1
NN

with (%) is called the coherence function and its width at half maximum is

(k—kq)

X e_[ = & y(z) = FA (2.24)

S(k) =

related to the coherence length of the source. Within this assumption of a

Gaussian PSD, Az the axial resolution can be calculated as

o~

e 2In(2) X2 2¢/In(2)
Ar=g === XX\ " T Ar

(2.25)

where ). is the central wavelength of the PSD and A is the source spectral
bandwidth. Even though the two expressions of Equation 2.25 are correct,
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it is much more common to obtain the wavelength information from an op-
tical source rather than the wavenumber one. The term 4/In(2) comes from
the estimation of the FWHM of ~(z).

When discussing an axial resolution in SD-OCT, it is important to un-
derstand that since the early days of OCT technology the number of sources
available have dramatically increased. Nowadays, the list of sources in-
cludes super-luminescent diodes, solid state lasers or SC sources. The large
bandwidth made available by several new concepts has created a new OCT
tield referred to as Ultra-High Resolution-OCT (UHR-OCT) [19]. In some
cases, the source spectrum is so broad that it exceeds the spectrometer band-
width. In such cases, the axial resolution of the SD-OCT system is less than
that determined by the coherence length of the source, it is instead deter-
mined by the spectrum width utilized by the spectrometer. An overview of

the sources available for SD-OCT is presented in section 2.8.

2.5.3 Lateral resolution consideration in OCT

As described above in section 2.5.2, the lateral or transverse resolution
of an OCT system depends on the objective numerical aperture. The equa-
tions governing the lateral resolution are those established for confocal mi-
croscopy or conventional optical microscopy [20]. The lateral resolution is
then linked to the spot size (along the lateral direction) of the focused Gaus-
sian beam. The expression of the lateral resolution Az of an OCT system is
given by
22 1
T NA’
where NA = D/2f is the numerical aperture of the objective with D the

Az = (2.26)

diameter of the beam on the objective and f the focal length of the objective
lens. The NA of an objective is an indication of the capacity for the objec-
tive to collect light from a point source. The higher the NA, the larger the
maximum angle from a point source from which the objective can collect
photons. As shown in Equation 2.26, the higher the NA the better the OCT
lateral resolution. However, it is important to consider a second parameter
called the Depth of Focus.
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The depth of focus is a measure of the distance around the minimum
beam waist position, where the beam waist is smaller than twice its min-
imum value. Physically, it characterizes the length where a tight focus is
maintained. Mathematically, it is calculated as twice the Rayleigh length z,
and can be expressed as

TAx? 2\, 1

DoF — 2z, — _ .
o= =N, T 1 S Na2

(2.27)

It is noticeable that the DoF varies with the inverse square of the objective
NA. Then, using high NA objective leads to a reduction of the DoF of the
objective. While designing an OCT system, there is a balance to consider
regarding the choice of the objective between lateral resolution and depth of
focus. The better the lateral resolution of the system, the smaller the distance
out of which the lateral resolution is maintained. A popular sketch inspired

from [5] describes this effect in Figure 2.4.
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FIGURE 2.4: Schematic of the balance between Rayleigh
length and lateral resolution for high and low numerical aper-
ture of the objective lens. Adapted from [5]
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2.6 Spectrometer for SD-OCT

2.6.1 Spectrometer concept

A spectrometer is a detection unit used for measuring the spectral in-
tensity distribution of light. The physical effect behind the spectrometer
principle is diffraction. By diffracting the light before detection, the spectral
shape of the input light is accessible. A spectrometer is composed from five
elements. The first is the slit and is placed at the input port of the spectrom-
eter. The second element is the collimation lens. The third is the diffraction
grating. The focal length of the collimation lens is chosen in such a way that,
together with the Numerical Aperture (/N A) of the fibre (the fibre core is act-
ing as the slit), a parallel beam illuminates as many lines as possible on the
diffraction grating. It is important to illuminate as much lines as possible on
the grating in order to ensure a spectral resolution as small as possible and
therefore an optimal imaging range (see section 2.6.4). The diffraction grat-
ing is the element of the spectrometer responsible for diffracting the light.
A diffraction grating can be either in transmission or reflection. Assuming a
monochromatic beam, the angle at which the light exits the diffraction grat-
ing follows the rule given by Equation 2.28 and Equation 2.29 (according to
the sketch shown in Figure 2.5).

d x [sin(f,,) — sin(60;] = mA, (2.28)
which gives the exiting angle 0, as:
.1 mA .
0,, = sin v +sin(6;) | , (2.29)

where 0; is the angle of incidence of the beam on the diffraction grating, 6,,
is the exiting angle at diffraction order m, X is the wavelength of the light,
m is the order of diffraction consider and d is the distance between two
lines within the grating usually called grating spacing. Commonly, if using
non-blazed grating, spectrometers in OCT operate with the first order of
diffraction as higher orders have weaker intensities. The fourth element of

the spectrometer is the focusing lens which focuses the light on the detector.
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A telescope system is created by the collimation lens and the focusing lens.
When designing the spectrometer, it is important to ensure that the image
of the input slit of the spectrometer by the telescope is smaller than the pixel
size on the detector. Pixel intensity leakage can significantly reduce the ef-
ficiency of the spectrometer. Finally, the last element of the spectrometer is
the camera. In a conventional SD-OCT system, this camera is a line-scan
camera. A line-scan camera is a detector using a single line of pixels, which
is read at a rate of a few tens of kHz to a few hundreds of kHz. Consid-
ering OCT typical wavelength, silicon detectors are used from 600 to 900
nm while InGaAs detectors are used from 1000 to 2000 nm. A typical pixel
size of 5 - 10 um is achieved in Silicon camera and 20 - 30 um for InGaAs
cameras. Nowadays, the number of pixels are generally of 4096 - 8192 for
silicon cameras and 2048 - 4096 for InGaAs cameras [15, 16].

Diffraction /
grating /' /s’

Grating groove
~

~

FIGURE 2.5: Sketch of light diffraction by a diffraction grating
for a monochromatic light at wavelength .
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A typical transmission diffraction grating based spectrometer designed
for OCT application is presented in Figure 2.6. Commonly, an OCT inter-
ferometer is based on a fibre coupler in order to divide and recombine the
light. Assuming this fibre-based configuration, the slit of the spectrometer is
the core of the optical fibre connected to the input of the spectrometer. Most
of the time this will be a single mode fibre as a homogeneous illumination
is required on the grating. This fibre is placed at a distance corresponding
to the focal length of the collimation lens in order to obtain a parallel beam
of diameter D. The diameter D is influenced by the focal length f; and the
fibre NA. It is important to ensure a beam diameter large enough to illumi-
nate a large number of lines on the DG [21]. Therefore, as the N A is fixed
for a given fibre, the focal length of the collimation lens need to be chosen
for maximizing the illumination of the grating. The limitation in beam di-
ameter for a spectrometer is the dimension of the grating effective area. The
grating effective area is the area of the grating over which the manufacturer
ensures the grating line density within a small margin. The expression for

D (in air) is given by the NA expression as:

D
21
Then, the collimated beam hits the DG and the light is diffracted accord-
ing to Equation 2.29. The focusing lens L, is placed at an intermediate dis-

NA = sin(ff) = (2.30)

tance to the grating in order to collect the light contained in the first order of
diffraction. This intermediate distance is a balance between the lens diame-
ter and the diameter of the beam after the DG. However, it is important to
consider the problem of intensity leakage from pixel to pixel due to defocus-
ing of the beam on the camera caused by geometrical aberrations. Indeed,
geometrical aberrations degrade the focusing properties of the lens, espe-
cially if the edges of the lens are used. Finally, the last element, the line-scan
camera, detects the light and provides a measure of the intensity which is a
representation of the intensity per non-equally spaced wavelength slot. The
choice of the components of the spectrometer is done in consideration of the
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expected specifications and requirements of the imaging system. For exam-
ple, in the case of UHR-OCT, where large optical bandwidth are consid-
ered, one would prefer to use mirrors for collimation and focusing instead
of lenses in order to obtain low chromatic effects. Also, reflection based
grating would be preferred compared to transmission based one for if very
high efficiency is required.

Slit:
Optical fibre Focusing:
core Lens L2

Collimation:

Lens L1 Grating

Detector:
Line scan camera

FIGURE 2.6: Configuration of a transmission DG-based spec-
trometer commonly used in SD-OCT.

Such a spectrometer is characterized by several parameters. The basic
ones are:
- Spectrometer Efficiency: It represents the power efficiency of the spectrom-
eter. Due to the different lenses and the different orders of diffraction, a
spectrometer involves a certain amount of losses.
- Spectral Bandwidth: It is the span of wavelengths which is detected by the
spectrometer. Ideally, this bandwidth has to be equal to the source band-
width or smaller. Operating with a spectrometer bandwidth larger than the
source bandwidth will lead to a limited imaging range for the SD-OCT sys-
tem (see section 2.6.3).
- Spectral Resolution: It describes the sampling properties of the spectrom-
eter and also influences the imaging range (see section 2.6.3) of the SD-OCT

system.
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2.6.2 Issue of spectrometer non-uniformity in &

As mentioned above, the data from the spectrometer are measured
along the pixel line of the camera. The wavelength distribution along the
pixel line can be deduced through the grating Equation 2.29 and geometri-
cal optics considerations [22]. Then, considering the parameters of Figure
2.5 and Figure 2.6, the wavelength distribution is:

with w the pixel size, j is the pixel position, z. the distance between the
first pixel to the middle of the pixel line and f, the focal length of the fo-
cusing lens L2. Such distribution is non-uniform in wavelength. However,
SD-OCT relies on the conjugate link between axial position (or depth) and
wavenumber. It is then required that the signal is converted in wavenum-
ber units through the hyperbolic relation £ = 27/X. As the data are ini-
tially non-uniform in wavelength, the wavenumber distribution is also non-
uniform and needs to be corrected before FFT. The direct consequence of
the data non-uniformity in wave-number is observed within the phase of
the interference equation (Equation 2.13). The wavenumber non-uniformity
makes the interference phase non-linear in wave-number and leads to a
non-Transform limited PSF for the SD-OCT system [23].

Numerous techniques have been proposed in order to correct for this
non-uniform distribution of wave-number. Hardware modifications of con-
ventional spectrometer designs [24, 25] have shown encouraging results.
However, the most popular method is based on phase extraction and extrap-
olation of data [17]. A complete description of this procedure is proposed
in section 4.4.4. By using a calibration procedure prior to imaging, complete
correction of the non-uniformity can be achieved and transform limited PSF
is obtained. In addition, dispersive effects can also alter the phase linearity.
This point is discussed in section 2.7.1 of this chapter.
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2.6.3 Sensitivity decay with depth

When using a spectrometer in SD-OCT, a discrete vector is built which
represents the spectral shape of the interference signal. The discrete nature
of this vector comes from the pixel line of the camera. Each pixel on the
line is detecting a slot of frequency/wavelength equivalent to more or less
the spectrometer resolution. Due to the finite slot dimension and the Gaus-
sian beam illuminating the spectrometer, a sensitivity decay of the SD-OCT
system is observed with depth [26]. This decay, or fall-off, R(z) can be ex-

pressed as
R(z) = sinc® (1) x e @ (2.32)

where 1) = 7 (ﬁ) and p = d,A/A. z denotes the depth dimension and A is
the spacing between pixels. The sensitivity decay with depth corresponds
in wavenumber domain to a drop of the fringes visibility at large depths
(fast modulation frequency). It is necessary to consider the decay care-
fully while designing a spectrometer. Large spectrometer bandwidth leads
to large spectrometer resolution and important sensitivity decays. Then, a
clear analysis of the SD-OCT spectrometer together with the overall imag-

ing requirement is necessary to fully optimize the system performance.
g req y Yy op Yy P

2.6.4 Imaging depth of an SD-OCT

As introduced by section 2.5, a SD-OCT system uses a spectrometer in
order to measure an interferogram. In the case of SD-OCT, it is a discrete
vector where the interferogram is encoded in the pixel line of the detector.
Due to this discrete nature and due to the fact that OCT is a modulation
decoding problem, the Nyquist theorem [27] needs to be considered. Then,
for a given sampling resolution ;) of the signal, the maximal and minimal
imaging depth achievable (in air) by an SD-OCT system is

)\2
40\

£ 2w = & (2.33)

Such description of the imaging depth is valid only for a correctly de-
signed spectrometer, more precisely for a spectrometer which uses a large
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number of lines on the diffraction grating. Indeed, if the number of lines
used is too low, it will become the dominant effect on the imaging range
calculations.

It was mentioned in section 2.6.1 that the spectral bandwidth has to be
ideally equal to the source bandwidth or smaller but not larger. This re-
quirement can be explained through the imaging depth £z,,,,. Indeed, if
considering a spectrometer bandwidth larger than the source bandwidth,
the spectrometer resolution ;) is larger compared to small bandwidth case.
Then, the imaging depth is limited compared to what could be achieved
for a given source bandwidth. However, when designing a spectrometer,
two additional parameters need to be considered. The first one, is the spec-
trometer sensitivity decay with depth discussed in section 2.6.3. The second
one is related to the sample under investigation. As an example, the light
can penetrate through skin up to 2 mm. In this situation, an imaging range
much larger than 3 mm seems not well suited. Similarly, spectrometers in
the 800 nm region allow an imaging range around 1 mm while the retina
thickness is less than 300 um. If a very long imaging range is required, a
SS-OCT system would be more suited as an imaging range within the cm
scale is easily achievable [28, 29]. This is because the equivalent parameter
to spectral resolution in SS-OCT is the light source line-width which can be
within a few pm compared to a few tens of pm for the best spectrometer.

2.7 Other important aspects of SD-OCT

2.7.1 Dispersion issue in SD-OCT

Dispersion is a well-known effect arising in optical system due to the
frequency dependence of the index of refraction of any material. Due to this
dependency, wavelengths propagate at different group velocities and follow
slightly different optical paths[30]. Within an OCT system dispersion effects
can cause significant degradation of the axial resolution by broadening the
PSF [14]. Such degradation is even more problematic if UHR is targeted as
larger optical bandwidths are used. This degradation manifests as a chirp-

ing effect on the CS modulation. Mathematically, the chirp corresponds to
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a non-linearity within the phase of the CS modulation. It is common to

observe the effect of dispersion by decomposing the propagation constant

term into a Taylor series [14] as
0

B(w) = Blan)+ 00| (w—wo)+

wo

1 o
24 += b

(w—wp)™.

(2.34)
Within this decomposition each order has a particular influence on the axial
resolution of the OCT system [14]
- B(wp) adds a constant phase term which does not influence the PSF.
- 2—5 modifies the coherence length as . pispersion = é—G where ng = (g—f)_l
is the group index. The first order term shift the position of the coherence

1 028
3 owz| Wwo)

function and decreases its width.

- The second order term % is responsible for Group Velocity Dispersion
(GVD) in the system which broadens the PSE. The chirping effect mentioned
earlier is due to this second order term. Also, due to the energy conversation
principle between CS in the k-domain and axial profile in the z-domain, a
SNR reduction is observed due to GVD.

- High orders of dispersion (>2), contribute much less to the distortion of
the PSF. However, if targeting UHR-OCT, it is important to compensate for
such terms. Typical UHR-OCT reports consider dispersion compensation
up to the 6 — 7% orders.

Over the years, numerous methods have been proposed to compensate
or cancel dispersion in OCT systems. A first consideration is to analyse the
factors responsible for dispersion effects, originating from the system itself
or from the sample investigated or from both.

When dispersive effects are only due to mismatch of material in the
interferometer itself (propagation through glass such as lenses or fibre of
the OCT system), several methods can be used for dispersion compensa-
tion. The easiest one is certainly the duplication of elements on each path
of the interferometer. Doing so, dispersive effects become negligible, but
such solution can be expensive. An alternative to this initial solution is

to measure the material mismatch between the sample and reference paths
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and to insert a block of glass corresponding to the same mismatch. How-
ever, even though hardware dispersion compensation solutions are avail-
able, they have been overtaken regarding efficiency by software-based so-
lutions. Indeed, dispersion effects act as a non-linear term within the phase
of the interference signal. Then, a proper corrective term can be added to
the phase of the CS in order to cancel non-linearity due to dispersion. This
principle is shown on section 4.5.4. Such methods are now popular and
have shown that transform limited PSF can be obtained [23, 31].

In the case of dispersion arising from both the sample and the interfer-
ometer, it is complicated to obtain an accurate compensation. In that case,
most of the time, the compensation consists in a correction of an average of
the dispersion by optimizing a metric function [23]. Recently a report pro-
posed to assume a linear evolution of the dispersion within layered struc-
tured such as skin and obtained satisfactory correction [32].

Finally, a different method is that where the dispersion is not compen-
sated but simply cancelled. This is achieved for system dispersion by us-
ing Master-Slave Interferometry (MSI) [33] (see Chapter 4). Also, quantum-
optical coherence tomography [34] and intensity correlation optical coher-
ence tomography [35] have been proposed for complete cancellation of dis-
persion from both the sample and the system.

2.7.2 Mirror terms issue

Earlier in this chapter, Equation 2.13 has been used to describe the sig-
nal at the output of a low coherence interferometry system. In that case, a
sample consisting of N reflective centres at axial positions J,, were consid-
ered. Let’s assume now that the sample consists of only two reflective cen-
tres at axial positions £ and with a power reflectivity Rs; and Rgs. Also,
it is considered here only the interference term so no DC term neither auto-

correlation term. Then,

IDetector X S(w) X/ R.Rg1xcos (2601)+S(w)x v/ R, Rga % cos (—2501) . (2.35)

After dedicated signal processing described in Chapter 4, the depth reflec-
tivity profile is obtained by iFFT of the interference signal. It is important
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to notice here the even nature of the cosine function. The Fourier Transform
(FT) of a cosine function is

(0(z + 0l) + 0(z — 0l)) < cos(kdl). (2.36)

DN | —

After iFFT operation of Equation 2.35:

Ipetector % (\/RRRSI +y/ RRRSQ) X 5(2—1—(51)—1—% (\/ RuRsi +/ RRRSQ) %8 (2—0l).
(2.37)

Due to the parity of the cosine function, it is not possible to differentiate,
within the depth reflectivity profile, between signal arising from negative or
positive path difference. From Equation 2.37, the signal from each reflector
contributes to the positive and negative delta functions. This effect results in
operating the SD-OCT signal using only half of the imaging range available
(either the positive side or the negative side). This results in the situation de-
scribed by Figure 2.7, where the zero-axial position has to be placed outside
the sample of investigation. If not, overlaps between positive and negative

axial positions create of false representation of the sample.

z=0 outside of the sample

FFTICO) liFFT[I(k)|

A-scan Profilez=0 A-scan Pr:inIe z=0
(blue) (red)

FIGURE 2.7: Illustration of the mirror term effect and the re-
quirement for the positioning of the zero-axial position out-
side of the sample.
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2.8 Light sources for SD-OCT

2.8.1 Super-Luminescent Diodes

SLDs are one for the simplest source for OCT. An super-luminescent
diode is basically a laser diode without a lasing cavity. Then, the stimulated
emission regime is never reached and the light emitted is only based on Am-
plified Spontaneous Emission (ASE) [36]. SLDs are available for the three
main wavelength ranges for SD-OCT applications (800 nm, 1050 nm and
1300 nm). Semiconductor alloys such as Indium-Phosphide (InP), Gallium-
Arsenide (GaAs) or Gallium-Nitride (GaN) are commonly used. Typically,
super-luminescent diode bandwidth are limited by the gain of the mate-
rial [36], leading to maximal bandwidth around 100-120 nm. The total out-
put power can be from few mWs to several hundreds of mWs. In order to
overcome the bandwidth limitation of super-luminescent diode, it has been
shown that stitching 3 to 4 spectra from different SLDs can be used as an
ultra-broad source for UHR-OCT [37].

2.8.2 Solid State Lasers

Solid state laser is a denomination for a type of laser which relies on
pumping a bulk crystal (doped or not) using a high-power laser [38]. This
category, when considering application to OCT, comprises laser such as Ti-
tanium Sapphire source and Chromium based source. Solid state lasers for
OCT are available in the 800 nm and 1300 nm wavelength range. In the 800-
nm region, Titanium sapphire laser is certainly the best option. Titanium
sapphire lasers are centered around 800 nm with bandwidth as large as 300
nm together with high power (>100s mW), very high spatial coherence and
low intensity noise. Alternative sources exist for this wavelength region
which are based on chromium crystal but proposed less interesting param-
eters. The first UHR-OCT proposed by [19] used a Titanium sapphire laser.
In the 1300 nm region, many options based on pumping a Chromium type
crystal exist. The broadest solid state laser for OCT in the 1300 nm range is
a chromium based source called Cr4+: Forsterite [38] which covers several

hundreds of nm around 1280 nm. The total output power is larger than 100
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mW. All solid state lasers offer very interesting properties for OCT and have
attracted interest due to the need of large optical bandwidth. However, solid
state lasers are bulk, complex and very expensive laboratory equipment. A
few of those mentioned here have been proposed as a reliable commercial
product. Even more, none have been implemented into commercial OCT

system.

2.8.3 Fibre-based source

Broad light source can be obtained by pumping optical fibre with in-
tense short pulse. Such source is often called Supercontinuum (SC) light
source, though it is an inaccurate denomination. Supercontinuum is a gen-
eral description for any spectral broadening occurring due to non-linear ef-
fects in material including bulk material, optical fibres, liquid and gases [39].
A more accurate denomination would be fibre-based SC. Most of the time,
fibre-based SC relies on pumping a Highly Non-Linear Fibre (HNLF) using
a short optical pulse with pulse length in the ps or ns regime [40]. Typically,
in the practice of OCT, the HNLF is a Photonic Crystal Fibre (PCF) made of
silica. Fibre-based SC sources have been used in the early stage of SD-OCT.
However, their pulse to pulse fluctuations have significantly limited their
usefulness [41]. Since these first attempts, important progresses have been
made in understanding the mechanism of SC generation in fibre and several
low noise SC sources have been proposed. Concepts such as tapering the
optical fibre or increasing the pulse repetition rate have been investigated.
Since then, SC source have been used successfully in numerous OCT appli-
cations [17, 18]. Supercontinuum light sources exist as commercial turn key
product with repeatable and robust design [42, 43].

2.9 Conclusion

This chapter aims was to introduce a number of concepts and param-
eters of importance when discussing OCT technology. Most of them are

used along the thesis without new definition. However, a short summary
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is sometime proposed, at the beginning of a chapter, regarding a particular

topic to help the reader.
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Chapter 3

Fibre-based Supercontinuum -

Introduction

3.1 Introduction

A Supercontinuum (SC) light source is a broad optical source based
on non-linear frequency broadening caused by an intense wave propagat-
ing into a non-linear medium. The first demonstration of a SC light source
was reported on 1970 [1] where a ps pulse broadened over the entire visible
range into a borosilicate glass. This first demonstration was based a bulk
glass as the non-linear medium, however nowadays SC can be generated
in many different ways by pumping gases, liquids or glass. The limitation
regarding the medium used is that material with low non-linearities will
require pumping at much higher peak power.

A major revolution in SC generation was to use optical fibre as the non-
linear medium. Due to the confinement of light within the small fibre core,
long length of interaction is achieved. Even more, the use of Photonic Crys-
tal Fibre (PCF) for SC generation was a game changing [2] because of the
dispersion engineering. Nowadays, PCF-based SC sources are available as
robust and reliable commercial products which are use in many different
applications such as material processing [3, 4] or medical imaging [5, 6].

This Chapter 3 aims to provide a short introduction to the concepts of
PCF, SC generation mechanisms and optical non-linear effects in fibre. This
Chapter 3 remains relatively simple as it is just introducing the concepts
used in other Chapter of the thesis which are discussing how SC sources are

used into OCT systems.
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3.2 Optical fibre - Definition

An optical fibre is a dielectric waveguide which presents a circular sym-
metry. In a first approximation, the physical principle behind an optical fi-
bre can be seen using a geometrical description. Figure 3.1 is a simplified
representation of the optical fibre concept. A material of refractive index
n; (red) is surrounded by a second material of index of refraction n, (grey).
The material with refractive index n; is called the fibre core and the material
with refractive index n, is called the fibre cladding. Usually, the two mate-
rials of the fibre core and the cladding are similar and the refractive index
difference is obtained by doping the material of the fibre core in order to in-
crease its refractive index. The refractive index difference is measured using
the refractive index change as A ~ (n; — ny) /n1« 1. As an example, for sil-
ica based fibre A is typically within 0.001 to 0.02. The light guidance occurs
through total internal reflection inside the fibre core only if n; > n,. Also,
a condition exists regarding the maximum input angle at the fibre facet. If
assuming an external medium with unity refractive index (n.,=1).The max-

imum angle 0; for total internal reflection is defined as

I a—)
sin (0;) = viiT \/n? —n3. (3.1)

Negt

Buffer/Jacket

Cladding Core

FIGURE 3.1: Geometrical description of light propagation into

an optical fibre based on trapping the light within the fibre

core using slightly larger index of refraction for the core mate-
rial.



Chapter 3. Fibre-based Supercontinuum - Introduction 57

The simple geometrical model proposed above is enough to introduce
the basic concept of an optical fibre. For a more complete description, one
would prefer to use the electromagnetic wave guided model. This model
uses Maxwell’s equations to determine the electric and magnetic field ex-
pressions within the fibre. Then, the light propagation is described using a
modal formalism. In that case by solving the Helmholtz equation [7], each
solution of the equation is called an optical mode. A mode can be described
as an electric field distribution which intensity profile does not varies while
propagating into the fibre. The number of modes N allowed to propagate
in the core of the fibre (considering a step index fibre) is :

2 1 2
N =~ V? with V=~ g % Tﬂa\/n% —n3, (3.2)

with V' is the normalized frequency characterising the fibre, X is the light
wavelength and a the fibre core radius. For V' < 2.405, an optical fibre an
optical fibre can supports one mode per polarization.

Operating with single mode behavior (N = 2, one mode per polariza-
tion) in fibre used in imaging is often important to avoid important losses

of power but also exploiting the spatial coherence properties of light.

3.3 Photonic crystal fibre

Supercontinuum generation requires a balance between dispersion and
strong non-linear effects [8]. As mentioned above, optical fibres are ideal for
SC generation due to the long interaction length inside the small fibre core.
In addition, PCF fibres are well suited because of the dispersion tailoring
described below. All the SC sources used during this thesis are fibre-based
and rely on pumping a Highly Non-Linear Fibre (HNLF), commonly a Pho-
tonic Crystal Fibre (PCF), with an intense relatively short optical pulse.

In the case of a PCF, the confinement and guidance of light within the
core of the fibre can be obtained by two mechanisms. The first one is the
photonic band gap effect [9]. In that situation, the guidance of light is en-
sured by forbidding the light to propagate through the fibre cladding. The
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photonic band gap effect is used in hollow core fibres where the light is con-
fined within an air hole based core [10]. The second effect used for light
guidance in PCF is the effective index mechanism [11]. This effect relies on
creating a total internal reflection, similar to the one used in conventional
step index fibres but using a pure glass. This is obtained by creating a re-
fractive index difference between the solid core of a PCF and the air holes
structure of the cladding. If the diameter d of the air holes is much smaller
than the wavelength of the light, the effective index of refraction is only the
average of the material and the air structure. However, if the holes diameter
is within the dimension of the wavelength of the light then the effective re-
fractive index is equal to the average refractive index between air and silica.
During the research described in the thesis, the SC sources used are based on
solid core PCF which uses the effective index guidance mechanism where
the holes diameter is in the same range as the wavelength of light (d ~ ).

Figure 3.2 is a representation of a fibre facet appearance of a solid core
PCF (b) in comparison with a step index fibre (a). The solid core PCF is
based on a hexagonal air-hole structure characterised by the holes diame-
ter d and the pitch A (distance between the centre of two holes). One hole
is missing at the centre of the structure in order to create a high index of
refraction position which is then acting as the core of the fibre.

Both fibre concepts rely on the refractive index difference between core
and cladding in order to guide the light. Then, the light is well guided
only if the core has a higher refractive index compared to the cladding. An
illustration of the index of refraction profile of a solid core PCF together
with a step index fibre is presented in Figure 3.3. In the case of the PCF, the
air-holes structure creates a effective index of refraction lower compared to

the central point of the fibre (missing hole position).
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FIGURE 3.2: Sketch of a fibre facets for a conventional step
index fibre with (ncore>nciadding) (@) and a solid core PCF with
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FIGURE 3.3: Refractive index profile for a step index fibre (a)
and a solid core PCF (b).
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3.4 Optical effects (Linear and non-linear)

3.4.1 Dispersion

Dispersion is a linear effect occurring in any material and is related to
the variation of the index of refraction which is frequency dependent [12].

It is common to describe the propagation constant 3(w) as a Taylor series as:

B 10%8 2 10"p n

Bw)=4 (wo)+% . (w—wo)+ 2 02 . (w—wo) +"'+ann 5 (w—wo)".

(3.3)

Within Equation 3.4 several terms can be extracted and identified as 5, =

98 wo = & = v, is the inverse group velocity and 3, = %% = BS—i is
wo

the Group Velocity Dispersion (GVD).

The measured of dispersion within an optical system is generally done
through the GVD which is denoted with two parameters, D (with unit is
psnm—".km™ ") and 3, (with units s>.m~!), where both parameter are linked

as:
2me

D) = =5 % () (3.4)
with c the speed of light, A the wavelength of light.

Dispersion in a single mode optical fibre can be divided into two con-
tributions, the material dispersion and the waveguide dispersion. The ma-
terial dispersion is defined by the material used for the fibre (Silica, chalco-
genide glass, ...). The waveguide dispersion is linked to the geometry of
the fibre. Step index fibre, graded index fibre or PCF do not show the same
waveguide dispersion [11]. Depending on the value of D two regimes ex-
ist, the normal and anomalous regime. The normal regime corresponds to
D < 0 and the anomalous regime corresponds to D > 0.

An interesting property of a PCF is that the dispersion profile can be
engineered. As stated above, in the case of a holes diameter similar to the
wavelength of the light, the effective index is dependent on the optical field
distribution. Short wavelengths are more confined than longer wavelengths
which lead to a smaller index of refraction difference between cladding and
core for short wavelengths (the effective index of the cladding is decreasing

with wavelengths). Then, the diameter of the core can be tuned to control
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Dispersion D [ps.nm™~ 1. km~1]

avelength [nm]

FIGURE 3.4: Dispersion regime definition versus wavelength
with a sketch of dispersion curve of a PCF used for SC gener-
ation around 1060 nm.

the dispersion profile of the fibre. Doing so, the Zero Dispersion Wave-
length (ZDW) can be shift to different wavelength (from 1300 nm up to 780
nm). The key advantage of shifting the ZDW is the availability of high peak
power lasers at wavelength around 1060 nm or 1550 nm which is important
for efficient non-linearities within the fibre. Supercontinuum generation is
possible if a good balance exists between non-linear effects and dispersion
within the HNLF. High dispersion leads to fast broadening of the optical
pulse and then weak non-linear interactions. So, close to zero dispersion is

necessary around the wavelength of the pump laser of the SC source.

3.4.2 Losses

Losses in optical fibre can be categorized into three contributions, the
scattering losses, the absorption losses and the confinement losses [13]. Then,
the power at the fibre output which is a function of the fibre length L can be
calculated as:

Poutput(L) = Pinput X exrp [_ (ascatte'ring + Aapsorption + aconfinement) L] (35)
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The first type of losses, the scattering losses, are to be attributed to the
interaction of light with particle within the fibre. First, the Rayleigh scatter-
ing is a linear optical phenomenon which happens due to interaction of the
light with particles which are much smaller than the wavelength of light.
Rayleigh scattering losses vary with 7. A second type of scattering in fibre
is the Mie scattering which is caused by imperfections within the fibre with
size similar or larger compared to the wavelength. Confinement losses are
the losses caused by leaking of the optical mode into the cladding of the
fibre.

3.4.3 Self Phase Modulation / Cross-Phase Modulation

While propagating into a medium, for example silica glass in the case
of the optical fibres considered in the thesis, an intense optical pulse locally
modifies the index of refraction. If considering the effect of a strong optical
radiation, the index of refraction can be re-written as:

n (wa ](w)) = Niinear (W) + nnon—linearl(w) (3.6)

where n (w, I(w)) is the index of refraction considering its linear and non-
linear term and I(w) o |E(w)|? is the pulse intensity at a given frequency.
The additional contribution to the index of refraction leads to a local modi-
fication of the phase of the pulse. Such an effect is called Self Phase Modula-
tion (SPM) [13, 14, 15]. Under normal dispersion regime, SPM is responsible
for a symmetric spectral broadening of the optical field around its central
frequency. This broadening has the advantage to be highly coherent (low
noise). In the case of anomalous dispersion, SPM participates to the cre-
ation of Solitons.

So far, only a monochromatic radiation of frequency w has been consid-
ered. In reality, the lasers used for SC generation are spectrally broad (few
nm to few tens of nm). In that case, it is possible that the light at a frequency
wy influences the light at a frequency w, through a non-linear effect called
Cross-Phase Modulation (XPM). In that case, the phase modification of the

light at w, is caused by the light at w; and vice-versa.
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3.4.4 Modulation Instability

Modulation Instability (MI) is a non-linear effect which consist in a
break-up of a continuous or quasi continuous optical radiation into a train
of ultra-short pulses [13, 16] . It arises in optical fibre due to the inherent
noise present into any light source. Such noise leads to local variation of the
pulse spectral shape which can trigger local SPM effect and spectral broad-
ening. Under normal dispersion regime such local maxima are not of an
issue as they are rapidly broadened leading to a smoother spectral shape.
However, under anomalous dispersion condition those local maxima are
compressed and hence create some SPM effect. This leads to a break-up of
the initial radiation into a train of ultra-short pulses with duration in the
tens of femtosecond. This train of ultra-short pulse is responsible for a spec-
tral broadening of the initial radiation. Modulation instability is naturally
considered as a noisy effect due to its origin (amplification from quantum

noise).

3.4.5 Optical Wave Breaking

Optical Wave Breaking (OWB) is a non-linear effect occurring under
normal dispersion regime. It is due to the superposition in time of different
frequency components of the pump pulse [17, 18]. It is cause by the chirp
induced by SPM while an intense pulse propagate through the PCFE. Optical
Wave Breaking contributes to the spectral broadening of a SC generated us-
ing coherent effect as described by section 3.5.2. Similarly to SPM, OWB is
a coherent process which can be used for low noise SC generation.

3.4.6 Raman Scattering

Raman Scattering is an inelastic optical effect which can be simply de-
scribed as an energy transfer from a light beam to the material by the cre-
ation of an optical phonon (vibration of the crystal lattice) in which the light
is propagating [19]. This energy transfer is due to the scattering of the light
by the material inhomogeneity. This energy transfer leads to a wavelength
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shift of the light towards longer wavelength (lower energy). Raman scatter-
ing is responsible for the spectral shift of solitons so it plays an important
role in SC generation.

3.4.7 Solitons

A soliton is a type of wave which is created through the balance of
anomalous dispersion and SPM [20]. While anomalous dispersion tends
to shift the long wavelength towards the rear of the impulse and the short
wavelength to the front, SPM is doing the exact opposite. Then, the two
effects are balanced into a stable or periodically stable solution (along the
propagation) called solitons. Solitons correspond to analytic solutions of
the propagation equation of a pulse into the fibre (Non-Linear Schrédinger
Equation). Solitons have the particularity to propagate inside the fibre core
with either no temporal broadening or with periodical broadening and com-
pression pattern depending on the solitons number. The solitons number N

can be calculated as: )
N2 — ’YPOTO

B Ie]

with 7 is the non-linearity parameter of the fibre, F, is the optical peak

(3.7)

power, Tj is the input pulse length (FWHM) assuming a Gaussian shape
and f3, is the second order term of the dispersion Taylor expansion. A fun-
damental soliton, which can propagate infinitely with no spectral or tem-
poral change (if neglecting other effects such as losses and Raman scat-
tering), has a soliton number N = 1. If N is larger than one, this corre-
sponds to higher order soliton which have periodical pattern of compres-
sion/broadening during their propagation into the fibre.

Solitons are responsible for the broadening of the SC towards infra-red
wavelengths. The short pulse length (< 100 fs), large spectral bandwidth
and high peak power of solitons permit some energy exchanges between
wavelength of the soliton itself through Raman Scattering effect. Basically,
this can be understand as a shift of the solitons short wavelengths energy
towards the longer wavelengths. In addition, it is noticeable that solitons
behave chaotically so that they collide, interact and exchange energy which
then all together also contribute to the energy exchange within the soliton
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wavelengths energy transfers. This tends to contribute to the high pulse to
pulse fluctuations of SC source based on solitons [8, 21]. Also, this creates
higher noise at the red-edge of the generated supercontinuum which can be

problematic if used in a system such as OCT.

3.4.8 Dispersive Waves

A dispersive wave is a generated when the spectral extension of a soli-
ton (generally close to the ZDW of the fibre) reaches the normal disper-
sion regime and if a phase matching relation exists between the solitons
wavelength and shorter wavelength located within the normal dispersion
regime. Under this condition an overlap exists between the solitons wave-
length and the shorter wavelength which leads to energy transfer from the
soliton to the shorter wavelength wave as they are group velocity matched
[13]. Dispersive waves generation efficiency is influenced by the same pa-
rameters that influence the soliton creation. So, it is influenced by several
parameters such as the peak power of the solitons, the pulse length of the
solitons and the central wavelength of the soliton. In parallel to the Solitons
red-shift effect through Raman Scattering, dispersive waves are blue-shifted
[13]. Dispersive waves are important in SC generation as they are responsi-
ble for the blue extension of the SC. This portion of the SC source is the one
used when considering OCT at 800 nm or in the visible range.

3.5 Fibre-based SC generation mechanism

When considering fibre-based SC generation, two important parame-
ters are to be considered, the optical fibre and the pump laser. The optical
fibre is modifying the SC generation mechanism and SC output through
its dispersion profile. The dispersion profile can be either normal, anoma-
lous or both depending on the wavelength considered and the optical band-
width of the pump laser. The pump laser is also influencing the SC gener-
ation mechanism and SC output through the achievable peak power and
the pump wavelength. For example, a SC can be generated by pumping
an optical fibre nearby its Zero Dispersion Wavelength (ZDW) if the fibre
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possesses one. In that case, the pump wavelength can be either within the
normal or anomalous regime. Also, the driving mechanisms will be differ-
ent depending on the pump pulse duration (fs, ps, ns or even continuous
wave pumping). If a fibre with an all-normal dispersion profile is used, a
SC can be generated and its noise properties will be affected by the pump
pulse duration. Low noise operation is obtained only if short pulse are used,
in the case of long pulse Raman scattering might raised the noise level [22].

In the course of this thesis two types of SC source have been used. The
tirst one is a SC source where the pump is a 1064 nm mode-locked laser with
a pulse duration in the range of 10 ps. In that case, the fibre used is a PCF
with a ZDW located around 1040 nm. Below the ZDW the fibre shows a
normal dispersion and above the ZDW an anomalous dispersion. The sec-
ond SC source used during the course of the research is a source based on
a fs-laser with a wavelength of 1064 nm and a tunable pulse duration as
short as 170 fs. For this second type of SC, the fibre is a PCF with an all nor-
mal dispersion profile. The two mechanisms describing the SC generations

mentioned above are presented next.

3.5.1 ps pumped and fibre with ZDW

The first type of SC source relies on pumping a PCF nearby its ZDW
with a ps-long high intensity pulse [8]. The SC generation is initiated by
MI which breaks up the pump pulse into a train of Solitons. Then, those
solitons experience a complex dynamic which tends to red-shift them to-
wards longer wavelength though Raman Scattering [23? ]. The frequency
shift experienced by each soliton is governed by their instantaneous peak
power, central wavelength and pulse duration. In addition, the speed of the
red-shift of each soliton is related to its own peak power. Then, high peak
power solitons shift faster (central wavelength shift) and crash back into
slower, low peak power, solitons. Those solitons collisions are responsible
for high power solitons taking away power from lower power solitons. In
parallel of the solitons dynamics and as described above, dispersive waves
are generated by solitons on the blue side of the pump and through disper-
sive waves trapping effect are shifted towards shorter wavelengths [23? ].

In addition to those different process, losses due to propagation in the PCF
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have to be considered. Finally, the red spectral extension of such SC source
when considering a silica based PCF is stopped at a wavelength around 2.3
pm to 2.4 um as the silica losses there become too high. The correspond-
ing blue edge reached is around 500 - 600 nm which corresponds to the GV
match of the longest wavelength reach on the red side of the SC.

3.5.2 fs pumped and ANDi fibre

The second type of SC source used in the course of the thesis is based on
pumping a PCF which dispersion is measured in the normal regime over a
wavelength range spanning from around 600 nm up to more than 1400 nm.
The pump laser used is a femtosecond laser with variable pulse length from
170 fs to 1 ps. Considering this SC source design, the spectral broadening
is initiated by the SPM effect triggered by the high intensity pulse from the
femtosecond laser [22]. Then, OWB effect is triggered and contributes to ad-
ditional spectral broadening. Such SC source spans from 700 - 800 nm up to
1450 nm [22]. The red-edge of the SC is at much shorter wavelengths com-
pared to the first SC source described in section 3.5.1 because the confine-
ment losses of the ANDI fibre are very high after 1450 nm. This SC source
is generated only through coherent and deterministic effects which makes
it potentially very interesting for OCT applications. Chapter 7 is dedicated
to investigate the usefulness of such SC source for OCT application.

3.6 Conclusion

This Chapter was dedicated to give a short introduction to important
concepts regarding optical fibre, non-linear effects and SC generation. Sim-
ilarly to the previous Chapter about OCT theory, small summaries are pro-

vided at the beginning of each Chapter when required.
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Chapter 4

Signal processing in optical

coherence tomography

41 Introduction

Optical Coherence Tomography (OCT) and Ultra-High Resolution-OCT
(UHR-OCT) are based on the physical phenomenon called interference (sec-
tion 2.2.1). Then, OCT is equivalent to a problem of frequency decomposi-
tion/identification. The frequencies of the interference fringes are linked
to the position of scattering centres within the sample (decomposition) and
the amplitudes of the fringes are linked to the power reflectivities of the
scattering centres. The OCT processing can be divided into three blocks.
The first block is the pre-processing of the raw data towards the frequency
analysis. It comprises processing steps such as noise and background cor-
rection, apodization and optional processing such as resampling and disper-
sion compensation. The second block is the frequency analysis itself which
can be done using Fast Fourier Transform (FFT) or correlation. Finally, the
third block is the data displaying generally obtained using logarithmic rep-
resentation.

In this Chapter, a description of the mathematical processing used in
OCT and UHR-OCT is proposed. Two processing methods are described,
the conventional FFT based Spectral Domain-OCT (SD-OCT) algorithm and
the Master/Slave Interferometry (MSI) based OCT algorithm. In both case,
the mathematical description is supported by experimental data in order to
show step-by-step the status of the processing.
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4.2 OCT system definition

A typical SD-OCT system relies on three main parts. The first one is
the broad optical source. If considering UHR-OCT, it is required that the
axial resolution is within few microns, therefore it is required to operate
with bandwidth A\ as large as possible (see section 2.5.2). Typically, in
the 800 nm range, a bandwidth of at least 300 nm is required [1]. In the
1300 nm range, due to the variation of the axial resolution with the central
wavelength the bandwidth needs to be larger to achieve UHR (AX > 300
nm)[1]. The bandwidth increase requirement while the central wavelength
increase comes from the fact that axial resolution in OCT scales with band-
width in wavenumber units. The second element constituting the SD-OCT
system is the interferometer. Again, if UHR-OCT is targeted, it is important
that the component involved are able to operate with a bandwidth of a few
hundred of nanometres. In that case, the directional coupler and the optics
need to be chosen accordingly. For example, it is wise to use reflective ele-
ments such as parabolic collimators instead of transmissive elements such
as lenses. Finally, the last element is the spectrometer. As described in sec-
tion 2.6, the spectrometer is used to disperse the broad signal into a line of
photo-detectors.

M1

SC Source
+

Filter

Disp
scanner

Spectrometer

oBJ

FIGURE 4.1: Sketch of the SD-OCT used for the results pre-

sented in the thesis: C1, C2: Parabolic collimators; Disp: Dis-

persion compensation block; M1: Flat mirror; OBJ: Objective;
DC: Directional coupler.
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Figure 4.1 is a sketch representing the UHR-OCT system used during
the word described in this thesis. The SD-OCT system is Michelson inter-
ferometer with an ultra-broadband 50/50 directional coupler (DC) splitting
the light, from a Supercontinuum (5C) source filtered around 1270 nm (NKT
Photonics A/S) [2], into a reference path and a sample path. The split-
ting ratio of the DC coupler is maintained between 45 % and 55 % over
the entire wavelength range of the system. The reference path consists of
a reflective collimator (C2 — Thorlabs RC04APC — P01), a dispersion com-
pensation block (Thorlabs LSM02DC), and a flat mirror (M1). The sam-
ple arm consists of a reflective collimator (C'1 - Thorlabs RC04APC — P01),
a set of galvanometer-based XY -scanners (Thorlabs GV SM002/M) and a
scan-lens. All the optics described here are selected for optimal operation
with large optical bandwidth centered around 1300 nm, then they are either
based on reflective components or using special coating for this wavelength
region. The spectrometer is a Cobra 1300 (Wasatch Photonics) which is a re-
flective based grating spectrometer[3] with an optical bandwidth covering
from 1070 nm to 1470 nm based on a line-scan camera (Sensor unlimited
GL-2048) [4] operating at a maximum line-rate of 76 kHz.

Figure 4.2 is an example of the data obtained at the output of the SD-
OCT system described by Figure 4.1. Such signal is often call a channelled
spectrum (CS). Each spectrometer readout /(p) consists in a one dimen-
sional discrete vector of length P with A, is the amplitude in counts of pixel
p.

I, =[A1, As, As, .  A)] . (4.1)

4.3 General considerations

The amplitude A, of Equation 4.1 is representation of the photo-current
that is proportional to the intensity of the light detected by the pixel p to
which corresponds a wavenumber value k,. When considering raw data
from the spectrometer, the spacing in wavenumber units between two pixels

is not necessarily identical along the pixel line. Considering a mirror in the
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FIGURE 4.2: Example of the typical readouts measured by the
spectrometer considering a DC signal and a signal with inter-
ference.

reference path of the interferometer with a power reflectivity Rz and an
object in the sample path with n reflective centres of power reflectivities
Rg,. The spectrometer readout can be expressed as shown by Equation 4.2

N
I(k,) o [S(kp) x |Rr+ Y Ry
n=1
B N
-+ >< Z RRRSn X COS (k’ X 2 (ZR — an) + q)dlsp(k )))]

N
+ | S(k,) % Z V RspnRsm % cos (ky X 2(Zsn — Zsym) + @disp(kp))] ,

n#m=1

(4.2)

where S(k,) is the discrete power spectral density, Zy, is the length of the ref-
erence path of the interferometer, Zs,, and Zg,, are the lengths of the sample
path considering the reflective centres n and m respectively. The additional
term @ p;,,(k,) in the phase of the cosine functions is accounted for the dis-

persive effects in the system.
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In order to simplify the description and the comprehension of the pro-
cessing steps, a system where the sample is a mirror placed at a distance Zs
from the fibre facet is considered. Then, the processing steps will be applied

on a simplified version of Equation 4.2, given by:
I(ky) o< [S(kp) [Rr + Rs]] + [S(ky) % cos (ky x 2 X 20 + Ppisp(kp))] . (4.3)

with 2y = Zr — Zg is the optical path difference between the reference path
and the sample path of the interferometer. Also, in that context, the autocor-

relation term disappears as the sample consists in a single reflective centre.

4.4 Conventional OCT dedicated processing

In this section, the step-by-step signal processing algorithm required
to plot an axial reflectivity profile (A-scan) is presented. This algorithm is
dedicated to a conventional UHR-OCT system which relies on Fast Fourier
Transform (FFT) operation. It includes compulsory steps such as resam-
pling and dispersion compensation and also some highly-recommended
steps such as apodization and background subtraction. Figure 4.3 is a flow
chart of the steps required for a FFT based A-scan.

CS x-axis CS x-axis .
. . Detector noise Background
conversion from conversion from 4 —} . 3
) correction correction
Pixel to 1 to k

Fast Fourier N Dispersion .
e ‘-« compensation Pl

Depth reflectivity profile

FIGURE 4.3: Step by step signal processing procedure required
for FFT based SD-OCT.
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4.4.1 Axis conversion from pixel position to non-uniform
wavelength and non-uniform wavenumber distribu-
tion

Equation 4.3 is a function of k, as OCT relies on the Fourier conjuga-
tion between wavenumber space and axial position space. However, spec-
trometers are often designed and characterised using wavelengths. As de-
scribed in section 2.6.2 of the thesis, the pixel distribution corresponds a
non-uniform distribution of wavelength X (the tilde notation describes the
non-uniform nature of the distribution). Several methods are available to
map the wavelength distribution along the pixel line of the spectrometer.
Among them the spectral calibration using multiple laser lines is one the
easiest. This method relies on using a series of narrow laser lines in order
to map the wavelength distribution along the pixel line of the spectrome-
ter. Then, a polynomial fit is used to describe continuously the wavelength
as a function of the pixel position. The spectrometer used in the course of
this thesis has been characterized by the manufacturer (Wasatch Photonics
- United States) using a series of 8 narrow laser lines. Equation 4.4 is the
resulting pixel to wavelength polynomial function as

A(p) = Co x p’ + Cy x p' + Cy x p* + C5 x p°, (4.4)

with Cyp = 1.06789 x 103 [nm], C; = 2.04954 x 10! [nm], Cy = —2.02466 X
107% [nm] and C3 = —1.16410 x 10~? [nm]. It is important to notice that the
wavelength distribution is non-linear with the pixel number (see section
2.6.2).

The data need to be expressed as a function of wavenumber, instead of
wavelength, before FFT operation. The relation between wavelength and
wavenumber is k = 27/A . The distribution % is non-uniform due to the

non-uniformity of \ and Equation 4.3 can be re-written as

I (l?;) x [S(l;:) X [Rg + RS]} + [S(l;:) X cos (2 X kX 29+ @Disp(/;:))} . (4.5)
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4.4.2 Detector noise correction

The processing of section 4.4.1 has led to Equation 4.5 which described
the spectrometer readout in the wavenumber space. Section 2.4 has de-
scribed the different noise contributions within the SD-OCT system which
are within any OCT signal. The first contribution to compensate for is the
detector noise. This source of noise includes several types of noise such
as the dark noise and the electronic noise. The first one, dark noise is to be
attributed to random generation of electrons within the detector due to ther-
mal fluctuations. The second type of noise, the electronic noise, is the noise
generated at the digitization of the analogous signal through the different
electronic components within the detecting unit.

As any source of noise, the detector noise cannot be cancelled but only
approximately compensated for. Thermal control of the detection unit re-
duces it but is not simple to implement. A digital minimization of its effect
can be obtained by subtracting an estimation value from the spectrometer
readout. The detector noise can be measured by operating the detection
unit at room temperature with no light (optical source off) and recording a
series of spectra. In this case, the detector noise estimation per pixel can be
approximated as the standard deviation of the time series of spectra:

2

O-Detector(];:) = O-INoLight(];?). (46)

Then, after correction of detector noise
ID@t@Ctm"(]%) =1 (];> - 0-2Detector<]%)' (47)

Figure 4.4 is showing an example of detector noise signal recorded at
an exposure time of 20 ps (green). Also on Figure 4.4, a spectrometer read-
out with and without detector noise correction are shown. The corrected
readout lies a few counts below the uncorrected values as the detector noise

values are relatively small for short exposure time such as 20 ps.
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FIGURE 4.4: Example of detector noise signal (green) and the
effect of its correction on a spectrometer readout (blue and
red).

4.4.3 Background correction

While considering OCT imaging conditions using white light interfer-
ometry, it is important to understand that there is a large amplitude differ-
ence between the signal returning from the reference path of the interfer-
ometer and the signal returning from the sample path of the interferometer.
This difference is to be attributed to the difference in power reflectivity of the
mirror in the reference path (Rz) and the power reflectivities to investigate
in the sample path (Rs,). Most of the time, it is assumed that R >> Rg,,.

Then, the first term from Equation 4.5 can be simplified as
S (k;) X Rp> S (k;) x Rs => S (k:) [Rp+ Rs] ~ S (k;) % Rp.  (4.8)

Equation 4.8 assumes that within a spectrometer readout, recorded from
a real sample, the signal amplitude is dominated by the signal returning
from the reference path of the interferometer. This contribution is seen as
a DC component which need to be corrected in order to better exploit the
dynamic range of the OCT system. Regarding this DC signal, it is fair to

assume that it is quite stable. This means that the signal is not varying in
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time except for noise within the system. It is then possible to compensate
for the background signal by a subtracting an approximated reference sig-
nal 7,. fe,,ence(l;:) =5 (l%) X Rp. Similarly, to the detector noise compensation,
an average of few hundreds of readouts, acquired from the reference path
of the interferometer only, is a good approximation for I,. fermce(l}). The

background corrected signal can be calculated as

IBackgroundCorrected ( k) = IDectectorCorrected ( k) - [Reference (IF%) . (49)

This background subtraction modified Equation 4.5, if considering also the

detector noise correction, as

IBackgroundCorrected(k) 0.8 S(k) X CoS <2 X ]27 X 2o + (I)Disp(l;') . (410)

Figure 4.5 is an example the reference signal measured as an average of
500 readouts measured from the reference path of the interferometer (red).
Also, shown in Figure 4.5, are the readouts with and without the back-
ground correction. The corrected signal (thick blue line) shows a reduced

DC component as it is almost centred around 0 counts.

_|—Signal background uncorrected | _

4000 } |—Background Signal
_ —Signal background corrected
(2]
= 3000 |
A
[N leuﬂ “‘N“‘Hh“
3 U U ‘\’r‘ y
%— 1000 B ‘H’“‘J““‘l‘i““”' ‘lll,)'ll N
g
-1000
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FIGURE 4.5: Example of reference signal (red) and the effect
of its correction for a given readout (blue: uncorrected — blue
thick: corrected).
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44.4 Resampling

From Figure 4.3, the next step in the processing algorithm is the one
called resampling. Resampling is a re-organization of the readout array,
originally non-uniformly distributed in wavenumber (k), into a uniformly
distributed array . This non-uniformity is expected due to the design of the
spectrometer [5]. If operating with non-uniform k distribution, the OCT will
experience a broaden and varying axial resolution with the axial position
[6].

Several methods have been proposed to obtain a uniform wavenumber
distribution prior to FFT operation. From hardware point of view, spec-
trometer with linear in wavenumber output have been proposed [7]. Also,
completely new techniques which do not rely on FFT operation for fre-
quency analysis exist. Among those is the Master/Slave Interferometry
(MSI) described later on this chapter in section 4.6 or the non-uniform dis-
crete Fourier Transform technique [8]. Nevertheless, the most popular method
available is the digital correction. The method used during the thesis is de-
scribed below. It relies on measuring the spectrometer wavenumber distri-
bution during a calibration step prior to imaging followed by an interpola-
tion step.

The present method is based on phase analysis of readout and interpo-
lation within spectrometer readout. The first step is to acquire two readouts,
at two axial positions z; and z,, separated by few hundreds of pm using a
mirror as the sample. The two interference signals I 2 pc de (k:;l (p)) after
detector correction (DC), background correction (BC) and assuming power

reflectivity for the mirror R,, = Ry = 1 can be expressed as

I (Ka(9)) o S (kra(2)) [0 (2 % bea(®) % 251 + ®ping()) |, 411)

and
L (Ka(p) o S (ra(2)) [c0s (2 % bea(®) % 252 + ®ping(p)) |, 412)

where k. (p) is the non-uniform distribution of wave-number along the

pixel line of the camera. kre(p) is different from previously mentioned in
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this chapter. krel(p) is measured with no prior knowledge of the wavelength
distribution while % is calculated from the manufacturer wavelength cali-
bration of the spectrometer. This is an advantage of the resampling method
proposed, which also includes a spectrometer wavenumber calibration. Us-
ing a Hilbert transform operation on the two readouts, their phases can be

extracted and the phase difference is expressed as
(S — P @) = 2ha®)Az (413)

where qﬁh(,;;l(p)) and gbh(@@)) are the phase of I3 pc.4c (k:;l (p)) and 15 pe de (k:;l (p))
respectively. With Az = 2z, — 2z is the axial position difference. Figure 4.6

is showing the phases of I j. 4. <lg;;l (p)) and [ pc 4c (k:;l (p)), together with

the phase difference calculated from Equation 4.13.

—|— Phase interference signal - ZS1 B
30001 | phase interference signal - Z, ]
Phase Difference
= 20001
S,
2 1000}
8
T
©
oc ot
-1000 |
0 500 1000 1500 2000

Pixel

FIGURE 4.6: Extracted phase of the readout measured at zg;
(red) and zg2 (blue) together with the calculated phase differ-
ence (green).
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Using a single narrow laser or a narrow band-pass filter, it is possible
to obtain a wavelength value (Ax,0un) characterising a single pixel within
the pixel line. Then, the wavenumber distribution can be calculated for the
entire pixel line using the expression of Frel (p) from Equation 4.13 as

21 —~

k(p) = + Kret(p)- (4.14)

)\known

It is interesting to see that the dispersion term has been cancelled by the
phase difference calculation. Then, the resampling step is addressing only
the non-uniformity induced due to the spectrometer design.

Figure 4.7 is a plot the wavenumber distribution obtained using the
proposed resampling method and the data obtained from the spectrometer
manufacturer (Equation 4.4). The difference between the two distribution is

calculated as

LR
ex(p) =100 x |k S\(p)/ 5 : (4.15)
The two wavenumber distributions are relatively close. The difference € (p)
along the pixel line between the two methods is always smaller than 0.5 %.
The largest difference is observed at the beginning of the pixel line where
the signal is the weakest. Weak signals make the phase reading less accurate
and therefore weaken the method accuracy.

This first step is concluded with an estimation (relatively accurate) of
the wavenumber distribution along the pixel line of the camera. Such dis-
tribution is still non-linear (the spacing of wavenumber from pixel to pixel
is not the same along the pixel line). Then, the second step of the calibration
procedure consists in an interpolation of point within the phase of the read-
out at equidistant wavenumber positions. The new uniform wavenumber
distribution is

l;} i - ];3 irstPixe
LastPizel FirstPizel % <p _ 1) (416)

k<p) = ]%LastPi:vel + N

From Equation 4.16, an interpolation within the spectrometer readout can
be performed at each k(p). Numerous interpolation methods can be used

and will differ in terms of speed versus efficiency. Typical software used in
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FIGURE 4.7: Wave-number distribution obtained from exper-
imental calibration (blue) and manufacturer data (red) also
with the computed error (green).

the OCT community such as Matlab or LabVIEW include interpolation pos-
sibilities such as spline, nearest, linear or cubic. Within this thesis, a spline
interpolation method is used as it represents an interesting compromise be-

tween efficiency and speed. The resampled readout can be expressed as
Iesampled(k) o< S(k) % cos (2 x k X 2z + Ppisp(k)) - (4.17)

As described in section , From Equation 4.17, the depth reflectivity pro-
file can be obtained by calculating the inverse FFT of Igcsampica(k) as

I(z) o< Real iFFT [ csampiea(k)]] o< [FFT [S(k)]| ® 0 (2 % zp) . (4.18)

The resampling step is crucial for FFT based OCT. A depth reflectivity
profile with relatively good precision can be obtained after resampling. The
accuracy of such depth reflectivity profile depends on the amount of dis-
persion left uncompensated within the system. Figure 4.8 is an example of
a depth reflectivity profile obtained after iFFT of a readout characterising
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FIGURE 4.8: Depth reflectivity profile obtained from a readout
corresponding to a mirror located at an axial position of 200 m
before (red) and after resampling (blue).

a mirror placed at an axial position of 200 pm. It is clear that the resam-
pling procedure followed by a conventional FFT operation has narrowed
the width of the peak in the z-domain compared to the case of direct FFT of
raw data. As described by section 2.5.2, the OCT axial resolution is charac-
terised by the width of the Point Spread Function (PSF) obtained by imaging
a mirror. In the present example, the peak width is around 10 -15 um, which
is far above the Fourier Transform limit expected value from an OCT sys-
tem driven by a SC source. From Figure 4.5, the FWHM of the PSD seems
to be around 200 nm centred around 1300 nm which corresponds to a FT
limited width around 5 pm (in air). The large difference between the ex-
pected PSF width and measured width indicates the presence of dispersion
within the system. A FT limited PSF can be obtained only after dispersion

compensation.

4.4.5 Dispersion compensation - System dispersion

As described in the previous section, resampling only is not enough to
achieve Fourier Transform limited PSE. A part of the non-linearity within
the interference fringes phase is indeed due to dispersive effects within the
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OCT system. The dispersion within the system is arising from two sources,
the interferometer dispersion and the sample dispersion. Equation 4.17 can
be written as

TResamplea(k) o< S(k) % cos (2 x k x 20 + Ppisp—int (k) + Ppisp—sampie(k, 2)) 5

(4.19)
where @ p;,,—int (k) is the constant dispersion in depth arising from the inter-
ferometer and @ p;sp—sampic(k, 2) is the depth dependent dispersion arising
from the sample. In the case considered in this chapter, with a mirror as the
sample, the sample dispersion is non-existent and only a constant disper-
sion need to be compensated for. Similarly, to the resampling phase analy-
sis, the phase of the Equation 4.11 or Equation 4.12 can be extracted using a
Hilbert transform and is written as

¢Il,2(k'rel(p) =2X kT@l(p) X Z515 1 ¢Di8p*iﬂt(p>' (420)

Then, using the expression of kre(p) OF Equation 4.13, the dispersion term
can be calculated as:

¢Disp—int(p) = QS]LQ(]Z;;(]?) =2 X kg (p) X 281 - (421)

This operation is possible only if the axial positions of the mirror zg, , are
known. So far only the difference between the two positions was used. To
obtain the axial position of each position, it requires a simple measurement
done while acquiring each signal. First, one needs to approximate the posi-
tion of the null axial position which can be measured while the interference
fringes disappear (the cosine function of Equation 4.3 almost equal 1) by
using a micro-metric translation stage to match the reference path and the
sample path. Then, the two signal required for resampling are recorded

with an estimation of their axial position.
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Finally, the expression of Equation 4.21 is fitted with a j* order polyno-
mial function 3°7_, ¢;k7 and subtracted to the phase of the resampled read-
out as

=1

J
IResampled(k) X S(k’) X COoS (2 x k x 20 + (I)Disp—int(k) — chk’j> . (422)

Figure 4.9 is showing the depth reflectivity profile, considered in the
previous sections, obtained after resampling and dispersion compensation.
The Fourier transform limited PSF, calculated as the iFF'T of the source
PSD (section 2.5.2), is also displayed. The width of the peak of Figure 4.9
is close to its Fourier Transform limited value. A difference in the range of
500 nm is obtained between measured width and its limited value. Such
difference falls within the accuracy of the resampling error (Figure 4.7) or
the system configuration changes (temperature, polarisation, ...) affecting

the interference fringes.
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FIGURE 4.9: Depth reflectivity profile obtained from a readout

corresponding to a mirror located at an axial position of 200

pm after dispersion compensation (blue continuous) and the
FT limited PSF (black dashed).

It is noticeable that after the dispersion compensation the peak has been
shifted in the z-domain. It appeared initially (before dispersion compensa-

tion) at an axial position of 200 pm and shifts to an axial position of 150 pm.
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This shift is due to the first order dispersion Taylor expansion term added
to the phase of the spectrometer readout. Such a shift is expected because of
the dispersion effect on the system (section 2.7.1) and also it is not a prob-
lem for the following step of the processing as all eventual peaks within the
imaging range would shift by the same 50 um. Also, as shown by Figure
4.9, the PSF is not symmetric with important side lobes. This is due to the
non-smooth spectral shape of the source PSD (Figure 4.5) and also because
the two edges of the PSD are not equal to 0 (see figure 4.5).

4.4.6 Windowing

As described in the previous section, the ultra-broad spectrum comes
with a non-smooth spectral shape leading to side lobes on the PSF. Of course,
a hardware solution can be used for spectral shaping of the source PSD.
However, such correction is hard to implement due to the particular fil-
ters required. Then, the most common technique for correcting the non-
Gaussian spectral shape is to apply digitally a window function on the spec-
trometer readout prior to FFT operation. Numerous options exist such as
Hanning, Hamming or Tukey. The window function is applied by simply
multiplying the readout by the window expression. Then, Equation 4.22 is
modified as

Iwindowea(k) o< W (k) x S(k) x cos (2 x k X zp), (4.23)

where W (k) is the expression of the window function.

During the thesis, two window functions have been widely used. The
first one is the Hanning window and the second one the Tukey window.
Equation 4.23 and Equation 4.24 are representing the respective expression

of a Hanning window and a Tukey window

Whanning(k) = % X (1 — cos (%)) , (4.24)
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l><[cos( (a — ))] 0r0<n§%
WTukey: 1f07” <n<NX (1 %)
[1+cos(7r><(j—%—% 1))] for N(1-%) <n<N,

(4.25)
where N is the length (equal to the number of pixel of the readout) of the
window W. Figure 4.10 is showing the effect of a Hanning window function
applied on the previous readout after dispersion compensation. The side
lobes effect previously observed in Figure 4.9 are no longer affecting the
PSE.

- - Transform Limited PSF =
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—
o
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Normalized Amplitude [a.u]
o
o

140 145 150 155 160
Axial Position [um]

FIGURE 4.10: Normalized depth reflectivity profile obtained,

from a readout corresponding to a mirror located at an axial

position of 200 pm after Hanning windowing and its FT lim-
ited PSE.

An important parameter to consider while applying a window function
is that the bandwidth will be reduced as the window function must be nar-
rower than the source PSD. Then, an increase of the axial resolution value
is to be expected as shown if comparing Figure 4.9 and Figure 4.10. After
windowing, the measured width is broader by around 1 jzm compared to
the FT limited width.
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4.5 Complex Master-Slave UHR-OCT dedicated pro-

cessing

This section is supported by Appendix A, which is an open access paper published
during the PhD. This paper is describing the theoretical background for understanding
MSI and CMSI. It is also explaining the reason for switching from MSI to CMSI.

This section is dedicated to the method called Complex Master/Slave
Interferometry (CMSI). The CMSI is an extension of the Master/Slave In-
terferometry (MSI) first proposed in [9]. The new denomination "Complex"
comes from the fact that CMSI uses complex formalism in opposition to the
original MSI which uses only real number. The idea behind the MSI prin-
ciple is to avoid the FFT operation required in conventional FD-OCT. The
FFT operation is used in FD-OCT as a decomposition/identification tool
for the interference fringes at the output the interferometer. Such decom-
position/identification can also be obtained using a comparison operator.
Indeed, each axial position within the imaging range of the interferometer
is associated with a certain frequency of the fringes oscillations. Then, it is
possible to compare the inference fringes with a set of oscillations describ-
ing discretely all the axial positions which can be imaged with the OCT
system. If there is a match between a frequency of the interference signal
with the oscillations describing the imaging range, the comparison signal
will be high at the matching position. In opposition, if no match is detected
the comparison signal will remains low at all axial positions.

A parallel can be made between the conventional FD-OCT and the MSI
principle. In FFT based OCT, the interference signal measured by the in-
terferometer has to be decomposed on a basis of single frequency sine and
cosine functions which represent the frequency kernel of the system. The
single frequency condition comes from the fact that wavenumber £ and axial
position z are direct conjugate variables by Fourier Transform operation. As
shown in section 2.6.2 a readout from the interferometer is non-uniformly
distributed in wave-number and needs to be resampled before FFT opera-
tion. In the case of the MSI based system, the idea is to operate with a kernel

of sine and cosine function which represent the non-uniform wavenumber
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distribution of the OCT system. In that situation, the cosine and sine func-
tions are no longer single frequency function but chirped functions. Then,
MSI based OCT can be described as a FD-OCT modality which is using
an adapted kernel for frequency decomposition/identification. By operat-
ing with a kernel made of non-uniform functions, MSI allows to skip some
of the processing steps required from the algorithm of section 4.4, namely
the dispersion compensation from the interferometer and the resampling of
data into equal wavenumber slots. Master/Slave Interferometry belongs to
the group of FD-OCT as it does not require any scanning of the interfer-
ometer reference path in depth during imaging. However, in opposition to
common FD-OCT, the depth reflectivity profile is not obtained after a single
FFT operation but after a series of N comparison operations.

The original MSI method relied on comparing the interference signal
with a series of pre-measured spectra. Those spectra were acquired prior to
imaging using a mirror at the sample position [8, 9, 10, 11, 12, 13, 14]. In the
numerous reports on MSI, those spectra are called Masks. From an exper-
imental point of view, the Masks are acquired by translating the reference
mirror by micro-metric steps using a translation stage and then saved on a
computer. The maximal distance separating two Masks has to be smaller
than half the coherence length of the source [9]. However, it is more inter-
esting to use smaller steps in order to ensure a correct sampling of the peaks
in the z-domain.

The new CMSI method is based on a similar concept of comparison of
shapes used in MSI. Nonetheless, instead of experimental Masks a set of
theoretical Masks is used [15, 16]. The Mask set is generated by measuring
the system properties affecting the interference signal uniformity. The CMSI
Masks generation procedure involves the measurement of the spectrometer
wavenumber distribution and the dispersion effect arising in the interfer-
ometer. This new way of Mask generation has solved numerous drawbacks
of the original MSI as described in Appendix A.

Both MSI and CMSI show a certain number of advantages compared
to FFT based OCT. First, the most important point is that MSI and CMSI

do not require the resampling of data in equal wavenumber slots. Indeed,
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resampling is the computation time bottleneck of SD-OCT system. The sec-
ond advantage of MSI and CMSI is the tolerance to dispersion arising from
the interferometer [13]. The dispersion from the system is affecting both
the readout measured with a sample and the Masks. Then, the comparison
operation is tolerant to the chirping effect caused by dispersion. A third ad-
vantage is the computation methodology used to obtain a depth reflectivity
profile. In the case of FFT based OCT, the entire imaging range is computed
and processed while the sample might occupy only a fraction of it. In the
MSI principle, each point of the depth reflectivity profile is obtained sepa-
rately. It is then possible to compute only the imaging range required for
a given sample. It is also noticeable that such property is ideal for parallel
computing and GPU processing. Finally, due to this depth by depth pro-
cessing, an en-face image can be produced with no need for processing a full
volume as in SD-OCT.

The MSI and CMSI principle have been proposed in multiple FD-OCT
configuration such as SD-OCT [13, 15], Swept source OCT [9, 10, 11, 12, 14,
15] and Full field-OCT [8]. Also, recent demonstrations of application of the
CMSI based OCT have been reported [16, 17, 18].

4.5.1 Mathematical summary

It is proposed in here a short summary of the mathematical definition
of the MSI and CMSI mathematical background. A complete description is
proposed in Appendix A.

Master Slave Interferometry

Following a similar formalism compared to section 4.4 and demon-
strated in Appendix A, the MSI depth reflectivity profile is approximated

as
—+00

MS1(z) x Maxg [/

—0o0

I (k) M (k e z> d/%] , (4.26)

where Maxg is an operator measuring the maximum value of the integral

along the lag variable axis, z is the axial position, & is the non-uniform
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wavenumber distribution of light along the pixel line, I(k) is the interfer-
ence signal describing the sample reflectivity profile, M <l~€ + K, z) is the
mask characterizing the axial position z and K is the correlation lag vari-
able. The latest reports on MSI used the dot product operation, which is the
calculation of the correlation only at its maximum value (K=0), to approxi-
mate the MSI signal so Equation 4.26 is calculated as

—+00

MSI(2) /

I (k;) M (k z) dk. 4.27)
Equally to section 4.4 and also described in Appendix A the depth charac-
terization of an OCT system is a convolution between the system depth PSF
with the sample complex reflectivity profile. If considering as a sample a

flat mirror located at an axial position z,, the MSI signal is equivalent to

A (k) QXMH , (4.28)

MSI(z) = Real [(5 (z —20) @ FT 1

with A (l;;) o« E? corresponds to the interference envelope and k! corre-
sponds to the inverse function of the distribution k.

As shown by Equation 4.28 and described in Appendix A, the origi-
nal MSI allows to measure the depth reflectivity profile of a sample with no

resampling and no interferometer dispersion compensation. However, such

dk

measurement is not perfect as the PSFis not FT limited as FT {|A <l§:> %% a(k2)

",

FT [A (l?:)} . Operating with a PSF broader than its transform limited value

corresponds to wasting some of the source optical bandwidth.

Complex Master Slave Interferometry

The CMSI has been developed in order to address the drawbacks of the
original MSI. However, CMSI has to keep the advantages such as no need
for data resampling, tolerance to dispersion from the interferometer and
customized sampling possibilities. To do so, the Masks set has to be modi-
fied in order to obtain a FT limited PSF. The experimental Masks leading to
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Equation 4.28 can be model as

Mezperimental </;;, z) = S(l;:) X exp [z X (2 X kX 2+ GDisp <l§:>>} . (4.29)

The new expression for the synthesised Masks at an axial position z is then

(see Appendix A)

Meserimonn (8:2) = 25 s cap i (2B 2 4 600 ()] . 430

Similarly, if considering a dot product operation as the comparison operator

and if using the Masks of Equation 4.30, Equation 4.28 becomes
MSI(2) x Real [5 (2 — 2) ® FT [A(/%)H . (4.31)

From Equation 4.31, the depth reflectivity profile is now obtained with a
FT limited PSF. The expression of Equation 4.31 can be identified to the one
of 4.4 with a convolution product between reflectivity profile of the sample
and the Fourier transform of the source PSD.

4,5.2 CMSI Flowchart

The CMSI processing necessary to obtain a depth reflectivity profile can
be divided into two steps. The first one, called Master step, is dedicated to
the generation of a chosen number of Masks from a set of a few experi-
mental measurements. This step occurs prior to imaging, so the computing
time used is not affecting the OCT imaging rate. Those Masks are gener-
ated based on a procedure described in section 4.5.3. The second step of
the CMSI procedure, called the Slave step, is the imaging step itself. This
imaging step includes the acquisition of readouts by the spectrometer and
the comparison operation for frequency analysis. A flow chart describing

the CMSI procedure is proposed in Figure 4.11.
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FIGURE 4.11: Flowchart of the CMSI procedure for generating
a depth reflectivity profile.

4.5.3 Theoretical generation of adequate Masks

The first step of the CMSI procedure is the generation of Masks. The
Masks generation starts with a phase analysis of several experimental read-
outs recorded at several axial positions using a mirror as a sample. Exam-

ples of two experimental Masks are shown in Figure 4.12.
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FIGURE 4.12: Example of experimental Masks recorded at ax-
ial positions of 100 pm (a), 500 pm (b).

The masks generation is based on reading the phase of few experimen-
tal readouts in order to infer the non-uniformity induced by the spectrom-
eter and also the non-uniformity induced by dispersive effects within the
interferometer. In order to read the phase of those experimental readouts,
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an algorithm based on complex formalism is used. Following a similar for-
malism as before, the readouts shown in Figure 4.12, can be mathematically

approximated as

I@Q:as@jxcw<2x%xz+¢mm(ﬂ+¢mw(gn, (4.32)

where ¢,q,4 (2) is an additional phase term representing the eventual changes
occurring in the system when recording the readouts. This additional phase
term has been added to the readout expression because of the original MSI
procedure described in Appendix A. Indeed, the MSI method relied only
on experimental Masks which are recorded during several tens of minutes.
During such a long-time frame, vibrations or temperature fluctuations have
to be taken into account in the readouts expression.

The conversion from real formalism to complex formalism is obtained
using a FFT operation, a filtering technique and then an inverse FFT op-
eration of the readout. The real part of the FFT of the readout leads to
the representation shown in Figure 4.13 (a). This is the typical represen-
tation of an axial profile obtained if considering a non-uniform distribution
of wavenumber. The axial profile is symmetric around the zero-axial posi-
tion but the peak localization is very poor due to the broadness of the peak.
The filtering step consists in zeroing FFT [I (l;;)} for the entire negative
side of the axial position axis and also a small part of the positive side in
order to cancel the DC components. The effect of the filtering technique is
illustrated on Figure 4.13 (b). Finally, the inverse FFT operation is applied
to the filtered signal. The complex Masks can be expressed as:

0 for axial position < 0
I <l~g) — {iFFT { 0 for 0 < axial position < DC\,; | . (4.33)

FET |1 (k)]
From Equation 4.33, the phase extracted of a readout can be approximated

as

Ocaperimentat masks (Fr2) =2 X k% 2+ Grana(2) + 60y (K) . (4.39)
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FIGURE 4.13: Illustration of the conversion from real formal-
ism to complex formalism by using FFT operation and filter-
ing.

For ease of notation and in order to match the notation of Appendix A, let’s
denote g <l§:> —92%xk h (fc) = ODisp (l%) Then, Equation 4.34 is the sum

of three functions. Two of them g (l;:) and h (l;;) vary with k while the last
one ¢,qnq(2) is independent of k. Due to the fact that Orand(2) £ f (l~c>, the

derivative of Equation 4.34 according to k can be written:

OPerperimental masks (lz;v Z) B dg (fc) Oh (]%) 4
7 = o0 ><2+W- (4.35)

The derivative operation of the phase according to k has cancelled the con-
tribution of the random phase term ¢,4,4(2). Also, a linear relation is es-
tablished between the phase derivative and the axial position. Figure 4.14
shows the phase derivative evolutions versus the axial position for different
pixel positions on the camera.

As shown in Figure 4.14, the evolutions of the phase derivative with the
axial positions are effectively linear (expected from Equation 4.35). This be-
haviour is very well demonstrated for pixels 500, 1000 and 1500. However,
the linear evolution is not clear regarding the pixel 100. A large variation oc-
curs at axial position of 600 pm, which is due to the weak signal amplitude
at this position on the pixel line (see Figure 4.12). Such weak signal tends to
make the phase analysis less accurate.

For each pixel, a linear fit is applied on the phase derivative evolution
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FIGURE 4.14: Phase derivative evolution versus the axial po-
sition considering four different pixels

with the axial position. The linear fits can be described for the pixel position
i as
By identification of terms in Equation 4.35 and Equation 4.36, the gradient

- . . o ag(k .
a; <k> of the fit functions represent an estimation of % and the y-axis

crossing point b; (l%) is an estimation of aha—(;). Then, by integrating a; (l%

and b; (l%) according to k, the functions g (l%) and h <l~c> can be retrieved.
Figure 4.15 (top) and Figure 4.15 (bottom) display the functions g (Z:) and
h (l?:) obtained after numerical integration.

It is noticeable that both functions g (l?:) and h (l%) display irregular
variations at short wavelengths. Those non-regularities are due to the weak
signal amplitude (red plot of Figures 4.15).
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Using the two functions g (l?:) and h <l§:>, a Mask at any axial position
z can be built free from the effects of the random phase term and free from
the source PSD:

Mo (5.2) = agag“) cenfix (s () <= +n ()] @)

The Masks built from Equation 4.37 are ideally matching the system
properties and therefore represents the ideal kernel for the frequency anal-
ysis of the imaging step of the CMSI based OCT. In addition, the spectral
shape has been completely cancelled leading a FT limited PSF as the CMSI
signal depend on FT [A (l%)} instead of FT [|A (l%) |2] Finally, the axial po-
sition is no longer a discrete experimental parameter but a mathematical
variable.

Figure 4.16 (b) shows the synthesised Mask corresponding to the axial
position 100 pm compared to the experimental Mask recorded at an axial
position of 100 pm (Figure 4.15 (a)). A Hanning window function has been
applied to both Masks.
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FIGURE 4.16: (a) Experimental Mask measured at an axial po-
sition of 100 um, (b) Theoretical Mask generated correspond-
ing to the axial position 100 pm.
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4.5.4 Depth reflectivity profile calculation using CMSI

Similarly, to the original MSI (Equation 4.26), a depth reflectivity profile
based on CMSI can be calculated using the Masks produced with the proto-
col of section 4.5.2. Then, the depth reflectivity profile, using a dot product

operator for comparison, is computed as

+o00

MSI (2) / I <k> % Miyymihesised <k:z> dF. (4.38)

—0o0

Assuming the same situation of section 4.4.6 where the sample consid-
ered is a mirror located at an axial position of 200 pm, a CMSI based A-scan

is shown in Figure 4.17:
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FIGURE 4.17: CMSI based A-scan considering a mirror located
at an axial position of 200 pm. (blue): Measured PSF, (red) FT
Limited PSF.

The CMSI based A-scan shows a peak located at an axial position around
200 pm as expected from the mirror location. The peak width is however
broader compared to the FT limited width. This indicates that the current
CMSI algorithm used for Masks generation is not yet optimal and needs to

be improved.
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4.6 Comparison between conventional OCT and

MSI - Discussion

A first metric which can be used to compare CMSI based OCT and FFT
based OCT is the Sensitivity. As described in section 2.5.1, the sensitivity is
a metric related to the ability for a system to image weak signals from the
sample. Considering that an identical set of readouts is used for compar-
ing the sensitivity obtained using the CMSI and the FFT based A-scans, any
difference has to be attributed to the method itself. Figure 4.18 is a compar-
ison of the Sensitivity decays with axial positions measured with the two
methods for an exposure time of 20 ps and 4 mW of optical power on the
sample. Both methods show a Sensitivity value around 95 dB at shallow ax-
ial positions. This is a few dB below the theoretical values achievable under
those conditions (Theoretical Sensitivity, calculated as in [19], around 100
dB). No particular differences are observable, the CMSI based decay seems
a bit higher than the FFT based one at shallow axial position and then the
trend is inverted at larger axial positions. However, the differences are very
small so it is hard to conclude on the advantage of one method. The fact that
the two methods are concluding equally, when using the exact same data,
regarding the system sensitivity is important as it informs on the fact that
the comparison approach used for the CMSI is equally good regarding the
noise behavior.

The second metric which is important to conclude on when comparing
two OCT techniques is the axial resolution. The axial resolution obtained
using FFT based OCT is described by Figure 4.10 and the measured axial
resolution, corresponding to the peak FWHM, after resampling and disper-
sion compensation is 4.2 pm (in air). As illustrated in Figure 4.10, this ax-
ial resolution value is very close to the FT limited value, with a difference
smaller than 500 nm. In the case of the CMSI technique, the axial resolu-
tion is illustrated in Figure 4.17 and the FWHM is approximately 5.3 pm
(in air). The axial resolution measured using CMSI is broader by around 1.5
pm compared to the FFT limited values. This difference can be explained by
errors within the Mask generation during the CMSI procedure. It is impor-

tant to consider that the CMSI Masks generation is a protocol applied to a
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FIGURE 4.18: Sensitivity versus axial position measured using
FFT based OCT procedure and CMSI based OCT procedure.

set of experimental readouts with no optimization. No optimization means
that the Masks generation is done without adjustments. In opposition, the
FFT based procedure includes an optimization at the dispersion compen-
sation step where the order of the polynomial function is set iteratively to
obtained a PSF as close as possible compared to the FFT limited PSE. Also,
an optimization is done at the calculation of k/;;l (p) where the parameter
Az is adjusted to optimise the resampling effectiveness. Finally, the results
presented in this chapter are based on the early development of the CMSI
procedure and therefore might not be optimal. However, a difference of 30
% between measured axial resolution and theoretical axial resolution is still
encouraging if considering that no resampling neither dispersion compen-
sation has been used.

Finally, a clear difference is observed regarding the time for computing
the axial profiles using the two procedures. The study of the exact tim-
ing difference has not been conducted during this investigation. However,
when simply comparing the time for computing a single depth reflectiv-
ity profile, a clear advantage is demonstrated for the FFT based technique.

When using the same computer, the same data and the software Matlab,
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the time for the calculation of a single FFT based A-scan is shorter than a
second. In the case of the CMSI based A-scan the time is above a few sec-
onds. This can be simply explained by the fact that the FFT based A-scan is
based on built-in function such as FFT operation or Spline interpolation and
therefore is relatively fast to compute. In the other hand, the CMSI based
A-scan is built using conventional numerical integration which are not op-
timized for fast computation. A recent report on CMSI has investigated the
computation speed of both CMSI and FFT method [16]. The conclusion of
the study is that CMSI can be as fast or even faster compared to FFT based
method. This is obtained if particular care is taken regarding the number
of points considered in the A-scan and the use of optimized processing tool

(matrices based computation).

4,7 CMSI continuation

The idea behind this chapter was to introduced the methods called
CMSI and to compare it to the gold standard of FFT based OCT. As men-
tioned above, the CMSI is relatively new and requires some more work in
order to be fully equivalent to the FFT based processing. Two types of work
need to be completed regarding the CMSL

The first category includes tasks related to establish a clear equivalence
between the CMSI results with the FFT based ones. To do so, the first task
is to confirm that the CMSI procedure is dealing similarly with noise com-
pared to the FFT based one. A second task is to investigate why the pro-
posed CMSI algorithm displays a broader PSF compared to the FFT based
procedure. Certainly, this broader PSF is due to the Masks generation. Error
such as integration errors or cancellation of the random phase term by phase
differentiation needs to be investigated. Finally, the CMSI method relies on
a set of few experimental readouts, so it is necessary to study the influ-
ence of those readouts on the CMSI accuracy. For example, an investigation
on parameters such as the minimal number of experimental readouts, the
distance between those readouts, the required signal amplitude for correct

phase reading need to be conducted.
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The second category of work which have to be done to pursue the CMSI
project is to validate the possibility of functional CMSI based OCT. Cur-
rently, OCT angiography, Spectroscopic OCT and Doppler OCT are very
common within the OCT community. Then, it is important for the CMSI to

be able to be used for the same type of applications.

4.8 Conclusion

In this chapter, the signal processing procedures for computing an SD-
OCT A-scan are described. Two methods are detailed: FFT based OCT and
CMSI based OCT. Using the FFT based procedure, a well localized A-scan
with high signal to noise ratio and narrow width is obtained. The resulting
axial resolution is very close to the theoretical limit determined by the FT of
the source PSD. Considering the CMSI procedure, a well localized A-scan
with high SNR is obtained. However, the axial resolution is not FT limited.
More work is required to establish a correct correspondence between CMSI
and FFT. However, recent reports on the CMSI procedure have shown en-
couraging application possibilities using the advantages of the CMSI proce-
dure such as the tolerance to dispersion and the custom sampling in depth.
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Chapter 5

Optimization of SC source design
for noise reduction in UHR-OCT

5.1 Introduction

Nowadays, Supercontinuum (SC) are more than interesting laboratory
laser systems. Commercially available turn-key systems exist, customized
on: (i) low noise, (ii) enhanced optical density within a given wavelength
region or (iii) overall spectral flatness [1, 2]. With an ultra-broad spectrum
covering often more than what a spectrometer can detect, together with a
high-power density and good beam quality, SC sources are ideal for UHR-
OCT in the visible or near infra-Red region. This is despite the fact that
initially, the relatively large intensity fluctuations have led to too much noise
in the OCT system. The large intensity noise from SC source has limited the
usefulness of the SC source in OCT applications. However, in the last couple
of years, a resurgence of interest in the SC sources for OCT applications is
recorded. Low noise SC sources have been applied successfully to produce
ocular images [3], dermal images [4] and internal organ images [5]. This
has been possible through important progresses and understanding of noise
sources in the SC generation mechanism.

In this chapter, an analysis of noise from SC sources is performed us-
ing conventional SD-OCT hardware. First, the method used is described
by showing that a shot noise limited detection regime is achievable, when
using a SC source for UHR-OCT in the 1300 nm range. This is done by care-
fully adjusting the signal in the reference path of the interferometer. Then,

SC parameters are varied, such as the peak power at the Highly Non-Linear
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Fibre (HNLF) and the pump laser repetition rate. Doing so, it is shown how
a SC source can be optimized for reducing its noise impact into the OCT

system.

5.2 Summary of Noise in UHR-OCT

A complete description of noise and related issues for OCT applications
is provided in section 2.4. However, in order to facilitate the understanding
of this chapter, a brief summary is presented below.

Noise in OCT can be separated into 4 main contributions [6]. The first
one is the electronic noise arising from the digitization of the analogue sig-
nal measured by the spectrometer. The second type of noise is the dark
noise, which is due to the generation of electrons through random thermal
fluctuations within the camera quantum well. Later in this chapter, these
two contributions will be assembled into one and denoted detector noise.
The third type of noise is the so-called shot noise, arising in the system be-
cause of the random arrival of photons into the detector. Finally, the last
contribution is the Relative Intensity Noise (RIN), which is attributed to the
intensity fluctuations of the optical source in time. Other source of intensity
fluctuations can cause similar effect than RIN in the system. Variations of
parameters such as light coupling from free space to fibre, polarization of
the light, mechanical stability of the system lead to variation of the light in-
tensity detected by the OCT detector. However, it is assumed here that such
variations are negligible.

An interesting point to remember when discussing sources of noise in
SD-OCT is that their evolution is dependent on the optical intensity. Table
5.1, based on [6], describes the evolution of the different types of noise with
the optical power. A and A’ are two constants including several parame-
ters such as the detector quantum efficiency, the exposure time, the central
frequency of the source and other parameters. A complete description of
the parameters involved is provided in section 2.4.1. F, is the optical power
at the input of the interferometer, N is the number of pixels of the detec-
tor, R, and R, are the power reflectivities of the object placed in the sample

path and reference path of the interferometer. 75 and +, are the fractions of
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power in the sample path and reference path of the interferometer respec-
tively and finally A.;; is the effective bandwidth of the detection unit. The
first contribution, the detector noise is not linked to the optical power. This
is expected as it is attributed to the thermal fluctuations and digitization of
the analogue signal. On the other hand, shot noise and RIN vary with the
optical power, linearly for the shot noise and with the square of the optical
power for the RIN. The different evolution with the optical power are at the
centre in what follows.

TABLE 5.1: Dependence of the different noise contributions to
the optical power.

Noise Type Theoretical expression Link to the optical power
Uﬁetector Uglectronics + U?larkz # f(PO)
O-?hotnoise A x Py % (IYSRS + ’YTRT) \ N x By
Ohin A" X PE X (s Ry + 7 1)? < N\ (N?Acpy) o P

5.3 Shot noise detection using a SC source in the

1300 nm range

The method used for noise analysis consists first in evaluating the ex-
istence of a regime where the shot noise dominates over the other sources
of noise. Then, the second part of the analysis is to characterize the por-
tion of the camera dynamic range over which such regime exists. An ideal
OCT system should operate within a regime dominated by shot noise [7],
as this would correspond to a maximized Signal to Noise Ratio (SNR). A
similar method was used to investigate an optimal working regime for any
OCT system [7, 8]. However, those reports assumed a noise independent on
the wavelength. Conventional optical sources such as Super-Luminescent
Diodes (SLDs) present RIN properties that are independent on wavelength.
This is not the case for the SC sources. Supercontinuum sources offer such
a broad spectrum that different non-linear effects are responsible for the in-
tensity fluctuations. For example, in the 1300 nm wavelength range ,used
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for the OCT experiments presented in this chapter, three effects are respon-
sible for the SC broadening and therefore for the amplitude fluctuations [9].
Close to the pump wavelength, around 1060 nm, the amplitude fluctuations
are principally caused by the pump laser amplitude fluctuations. Then,
around 1100 nm, the Modulation instability (MI) dominates. Modulation
instability is an amplification of quantum noise symmetrically around the
pump wavelength. Finally, towards longer wavelengths, the broadening
is due to solitons red-shifting by Stimulated Raman Scattering (SRS) and
solitons chaotic interactions. A description of these non-linear effects is pre-
sented in section 3.4. To overcome the wavelength dependency of the noise,
the analysis is performed in the z-domain (depth domain) instead of the k-
domain, which means that the analysis is performed after Fourier transform
of the OCT signals.

The noise characterization consists in evaluating the standard deviation
measured within the noise floor of a series of axial profiles. Figure 5.1 is
a representation of the principle of the noise measurement. The first step
is the Fourier transform of a full frame, containing 500 readouts from the
camera, that determines a given signal level. This leads to a frame of axial
profiles as shown in Figure 5.1(b). Then, the standard deviation is measured
along the position in the frame for a set of pixels within the noise floor of
the axial profiles. This leads to a vector of standard deviation values, whose
coordinates are 0y, 0y, 0s... on. Finally, the total noise measured is an
average of those standard deviation values.

The spectral shape of the SC sources used in this chapter can be de-
scribed as the upper part of a Gaussian curve centred within the spectrom-
eter pixel line. Then, all along this chapter, the maximum of this Gaus-
sian like curve, situated around pixel 1024 on the array detector, will be
used as the level indicator of signal on the camera as described by Figure
5.1(a). For example, a maximum reference path signal of 3000 counts means
that the signal contained in the reference path of the interferometer has its
maximum (located around pixel 1024) at a value of 3000 counts. Also, in
this chapter, only signal in the reference path of the interferometer are con-
sidered. Indeed, it is assumed that the signal in the reference path of the
interferometer is much stronger than the signal in the sample path (when
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considering imaging conditions). This is a correct assumption as when con-
sidering imaging conditions, the power reflectivity of the sample is smaller
by several order of magnitude compared to the power reflectivity of the ref-
erence mirror. Therefore, any optical noise in the system is mainly due to

the power fluctuations in the reference path of the interferometer.

A

Pixel used as a reference
for the signal level characterization
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FIGURE 5.1: Conceptual sketch for noise measurements

methodology: (a) Definition of reference path signal defini-

tion, (b) Definition of region of interest within a frame of A-
scans for calculation o14;.

Figure 5.2 shows the evolution of the total noise measured within a
frame of axial profiles while increasing the signal in the reference path of
the interferometer by steps of few hundreds of counts. Each point corre-
sponds to a given signal level on the camera. Both axis have been converted
to dB scale for ease of identification of regime. As stated above, the different
sources of noise evolve differently with the optical power, mainly linearly
for the shot noise and with the square of the power for the RIN. If con-
sidered in dB scale, a linear evolution in linear scale, will be represented

linearly with a slope of 0.5. Similarly, if considered in dB scale, a squared
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FIGURE 5.2: Representation of the total standard deviation
versus the maximum of the reference path signal. Red fit iden-
tifies the shot noise dominated regime (slope = 0.5) and the
yellow fit identifies the RIN dominated regime (slope = 1.0).

evolution will be represented linearly with a slope of 1. Two linear fits can
be identified in Figure 5.2, the red fit located in the middle of the dynamic
range and the yellow fit located at the end of the dynamic range. Equation
5.1 and Equation 5.2 are the equations describing the two linear fits as

Red linear fit : y; = 0.51 x x — 4.35, (5.1)

and
Yellow linear fit:y, =1.00 x z —9.17, (5.2)

Those two linear fits are obtained by an iterative procedure where, for
each case, the fit with the closest slopes compare to 0.5 and 1 are selected
respectively. The red fit, with a slope of 0.51 shows a goodness (R-square)
of fit of 0.94 while the yellow fit with a slope of 1.0 shows a goodness (R-
square) of fit of 0.93. High values of the goodness of fits clearly confirm
that different regimes exist when the signal level on the camera varies. The
last area on the dynamic range, located at the beginning of the x-axis, seems

almost flat. This indicates that the detector noise is dominating the total
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FIGURE 5.3: Example of B-scans measured from the forearm

skin of a healthy volunteer (power on sample of 4 mW). (a -

b - ¢ - d) B-scans measured with a maximum of the reference

arm signal (signal level on the camera) of 500, 1000, 2000 and
3000 respectively.

noise.

In order to demonstrate the impact of the concept of noise regime when
varying the signal on the reference path of the interferometer, a B-scans com-
parison together with a contrast analysis is shown in Figure 5.3 and Table
5.2. Figure 5.3 represents a set of B-scans acquired from the fore-arm of a
healthy volunteer using 4 mW of optical power on the sample and an ex-
posure time of 20 ps. Within the set of images of Figure 5.3, the signal on
the reference path of the interferometer is set to 500 counts (a), 1000 counts
(b), 2000 counts (c) and finally 3000 counts (d). The signal in the reference
path of the interferometer is controlled using a variable neutral density fil-
ter which does not alter the spectral shape of the source. All B-scans show
similar structural information. Different layers can be identified, such as the
stratum corneum and the epidermis. In case of high values of the reference
path signal, cases (c-d) of Figure 5.3, the backgrounds of the images seem
whiter, leading to a reduction of the visual contrast. Table 5.2 summaries the

calculated Michelson C'y; contrast from each B-scan. The Michelson contrast
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TABLE 5.2: Michelson contrast measured within the B-scans of
skin in Figure 5.3 when varying the signal in the reference arm
of the interferometer (Exposure time 20 pus — Power on sample
arm = 4 mW - Source: SuperK Extreme EXR9-OCT Repetition
Rate of 320 MHz.
Sreference arm [CtS] CM
500 0.36
1000 0.37
2000 0.33
3000 0.32
is calculated as
Cry — [ma:p - [mzn (5 3)
M [maz + [min7 .

where [ is the intensity signal of each pixel within the image, and where
Iynas and I, are calculated as an average of the 50 first highest and respec-
tively 50 first lowest intensity pixels within the image. This modification
of the original Michelson contrast is required for calculating a realistic con-
trast value. Indeed, if the real minimum and maximum of the image are
considered, a contrast of 0.99 is obtained which is unrealistic. All calculated
contrast values are comprised between 0.37 (Sgeferencearm = 1000 counts)
and 0.32 (Sgeferencearm = 3000 counts), which show that setting the signal in
the reference path of the interferometer too high on the dynamic range can
impair the image quality. Setting the signal too high, around 3000 counts,
clearly places the system into the RIN dominated regime (see Figure 5.2)
and then corresponds to the lowest contrast value of 0.32. To the contrary,
placing the signal too low can also lead to a non-ideal image quality. In the
present case, a value of 500 counts is close to the transition between detec-
tor noise dominated regime and shot noise dominated regime. Considering
only the noise plot of Figure 5.2 can lead to an uncertainty regarding the
noise regime, therefore a contrast analysis helps to select the best working
point for the system. In this study, a reference path signal of 500 counts of-
fers a contrast of 0.36 while a signal of 1000 counts offers a slightly better
contrast of 0.37. Ideally, an OCT system should operate far from the transi-
tion point between noise regime in order to ensure optimal operation.

So far in this chapter, the existence of noise dominating regimes (Shot
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noise and RIN) have been demonstrated for an OCT system driven by a SC
source used in the 1300 nm. Knowing that such regime exists can be used as
a noise measurement tool where the metric is the extension of each regime
over the dynamic range of the camera. The larger the extension of the shot
noise dominated regime the lower the RIN arising from the source is affect-
ing the system performance. Therefore, under similar operating conditions
one can compare light sources for OCT using this principle. An interesting
way of using this tool is to study the impact of the SC source parameters on
the overall noise evolution into the OCT system. Then, the noise analysis
can be used for comparing SC sources. Using it to compare SC sources is
interesting as it relies on the UHR-OCT hardware only, i.e. on an interfer-
ometer and a spectrometer. Usually, noise analysis of SC sources relies on
fast electronics and complex hardware [10, 11] in order to track the pulse
to pulse fluctuations within different wavelength bands. The method pre-
sented is also interesting compared to traditional methods for SC noise char-
acterization as it is a single shot interrogation of the noise impact into the
OCT. The more traditional methods are characterizing the source noise itself
without linking it to the impact in the OCT system. In the next two parts
of this chapter, two parameters of SC source design will be optimized using
the just presented method.

54 Optimizing the SC source pump peak power

As described in section 3.1, a SC source is made of two main elements;
the pump laser and the Highly Non-Linear Fibre (HNLF). The second of
those two, the HNLF is a passive component with specific parameters of
pitches and holes dimension controlling the dispersion profile of the fibre
[12, 13] (see section 3.2). The fibre properties determine the spectral broad-
ening of the SC through the launched peak power from the pump laser be-
fore reaching the power damage threshold [14]. Off course, the material
also influences the extension of a given SC as material losses have to be
considered. It has been shown that a peak power as high as possible is re-
quired when generating the SC, not only for extending the broadening but
also to reduce the intensity fluctuations [15]. This is due to the fact that the
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spectral edges of a SC are noisier than the central part, nearby the pump
wavelength. To understand this phenomenon it is necessary to remember
the SC generation steps described in section 3.4.

Initially, the high peak power pulse from the pump laser is split into
solitons by MI in the fibre. Then, the remaining broadening occurs through
the red-shifting of solitons by Stimulated Raman Scattering (SRS) and the
chaotic interactions solitons. From this initial number of solitons, it is easy to
understand that the higher initial number of solitons, the larger the number
of interactions and therefore the further away the red-edge of the SC in the
NIR. The spectral edge of the SC source in the IR side is then noisier in
comparison to the central part of the spectrum as it is generated from rare
interactions of solitons, at those long wavelengths, where the number of
solitons becomes low. It is then necessary to get the SC red-edge far away
for the wavelength range of use in the OCT system.

Figure 5.4 (a) describes the spectrum emitted by a SC source from 1200
nm to 2200 nm while the pump peak power is increased, from 10 % to 100 %
of the available peak power. This characterization consider only the red-side
of the SC as it is obtained using an Optical Spectrum Analyser sensitive from
1200 nm to 2600 nm. The SC red-edge clearly shifts towards longer wave-
lengths while increasing the peak power. Figure 5.4 (b) shows the position
of the red-edge, measured at a level of -75 dB, for peak power varying from
10 % to 100 % (as the source used offer a power control scaled in percent-
age). Table 5.3 is an indication of the conversion rate between percentage
and optical power. The red-edge varies from 1550 nm at 10 % peak power to
1950 nm at 100 % peak power. The position of the red edge does not evolve
linearly with the peak power because of the silica material losses increase
non-linearly toward long wavelengths. The longer wavelength achieved
for 100 % peak power is around 1950 nm. This is because the peak power
is not large enough, however further increase of peak power would lead to
very high average power and possible damage of the fibre.
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FIGURE 5.4: (a) Measured Infra-red side of a SC source (Type
SuperK Extreme EXR9 — R= 320 MHz) using an OSA and an
integrating sphere (A filter has been used to filter the wave-
lengths below 1200 nm). (b) Evolution of the red-edge posi-
tion (measured at -75 dB) versus the peak power of the pump

(measured in percentages).
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TABLE 5.3: Percentage to estimated values in kW conversion

of the pump peak power.
Values from SC source interface [%] Estimated Peak Power [k1V/]
20 0.3
40 0.6
60 0.9
80 1.2
100 1.5
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FIGURE 5.5: Total Standard Deviation versus the maximum
reference arm signal for several pump peak powers.

The previously introduced method for noise analysis (see section 5.2) is
applied to the pump peak power case study. The parameter which was var-
ied was the pump peak power presented in percentages with the estimated
correspondence of Table 5.3. Figure 5.5 is the total noise (in dB) versus the
maximum of the signal contained in the reference path of the interferome-
ter. As previously, the exact definition of the horizontal axis is the maximum
value (in dB) of the reference path signal measured in the central part of the
pixel line. From Figure 5.5 only, it is not obvious to see an improvement in
terms of noise. Though, it seems that a trend can be observed where the
noise decreases while increasing the peak power. The blue and pink curve,

representing respectively 100 % and 80 %, are clearly below the red curve
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which is the 20 % case. However, when considering the fit extractions used
to identify the dynamic range area where the shot noise dominates over the
other sources of noise, a clear trend can be seen. Figure 5.6 (a) is the plot
where only the fits of the shot noise dominated regime are displayed for
each peak power case. It is noticeable that the extent, in terms of camera
dynamic range, is increasing when the peak power increases. Starting all
from around 27 dB (500 counts - in linear scale). It is expected that all shot
noise fits start at the same location on the dynamic range as it is the transi-
tion from detector noise dominated regime to shot noise dominated regime.
However, all the shot noise fits terminate at a different positions, locating
the transition between shot noise and RIN dominated regime differently. In
the case of 20 % peak power, the transition is located at 30 dB (1000 counts),
while it is moving up to 31.7 dB (1500 counts) in the case of the 100 % peak
power. There is a difference of around 500 counts available for shot noise
limited operation if considering carefully the signal on the reference path
of the interferometer and the peak power at the HNLF. This represents a
higher SNR achievable in the high peak power configuration. Figure 5.6 (b)
is the complementary plot of Figure 5.6 (a), where only the RIN fits are plot.
Similar conclusions can be done from this plot, if the peak power increases
then the RIN dominated regime extension is limited. It is also interesting to
notice the difference in terms of the amplitude of the total noise measured
for the different peak powers. The method is measuring the total noise and
then inform about which source of noise is dominating over a certain area
of dynamic range. However, while shot noise is dominating there is still a
certain contribution of RIN, which means that a higher RIN case, such as
the 20 % peak power will show a slightly higher total noise compared to the
100 % peak power. In the present study, a difference of 1 dB can be observed
between the two extreme configurations (peak power at 20 % and 100 %).
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FIGURE 5.6: Extracted linear fits describing, for several pump

peak powers, the part of dynamic range where the system is

under the shot noise dominated regime (a) or the RIN domi-
nated regime (b).

FIGURE 5.7: Example of B-scans measured from the forearm

skin of a healthy volunteer (power on skin of 4 mW). (a—b -

¢ — d) B-scans measured with a pump peak power of 20 %, 40
%, 80 % and 100 % respectively.
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The influence of the peak power at the HNLF on the RIN level into the
OCT system can be evaluated through a noise analysis method but also by
direct B-scans comparison. Figure 5.7 shows a set of B-scans measured from
the fore-arm skin of a healthy volunteer. A power of 4 mW is used in each
case. The total output power of the SC source is higher than 100 mW even
for the 20 % peak power case, therefore a neutral density filter is used to
control the optical power injected into the OCT system. Four peak powers
are considered here, 20 % (a) - 40 % (b) - 80 % (c) and 100 % (d). The sig-
nal level in the reference path of the interferometer is set to deliver a signal
of around 1400 counts. This places the system in a regime where the 20 %
and 40 % cases should be RIN dominated while the 80 % and 100 % cases
should be shot noise dominated. The four B-scans display similar struc-
tural information without obvious differences neither structural nor visual
. A contrast analysis is required to conclude on an effective noise improve-
ment. Table 5.4 is a summary of the measured Michelson contrast (Cy,)
within the set of images. All four contrasts are similar, varying by less than
5 % which prevent to conclude on the real impact of such a small noise im-
provement. Nevertheless, it is important to consider that the Silica material
loss increases around 2.4 pm, and the current SC source red-edge is at max-
imum at a position of 1.95 pm. Then, for a Silica HNLEF, it is still possible to
increase the pump peak power to push the red-edge to longer wavelengths.
Then, the difference in the total noise increases in comparison to its current
value of 1 dB (total noise difference between 20 % and 100 % cases). In this
case, the influence of the pump peak power can be of importance . Also,
some techniques in OCT literature rely on the direct image SNR, for exam-
ple Speckle Variance OCT [16]. For such application, it is crucial to operate
within shot noise dominated regime in order not to disturb the variance

measurements due to large RIN.
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TABLE 5.4: Michelson contrast measured within the B-scans

of skin in Figure 5.7, when varying the pump peak power (ex-

posure time 20 um — Power on sample arm = 4 mW - Source:
SuperK Extreme EXR9-OCT 320 MHz.

Pump Peak Power [%] C)y

20 0.38
40 0.39
80 0.4
100 0.4

5.5 Optimization of SC source repetition rate

The second optimization proposed in this study is achieved via the in-
vestigation of the pump laser repetition rate importance for noise reduction
in OCT system. Commonly, the high peak power required for SC generation
is obtained through Mode-Locked (ML) lasers, which can provide from few
kWs to hundreds of kW peak power at repetition rates of hundreds of MHz
to GHz [17]. Other types of lasers can be used as pumps for SC generation,
such as Q-Switched lasers or continuous wave lasers. When designing a
pulsed laser, it is important to keep in mind the need of a balance between
peak power and average power. Optical components such as optical fibres
have a limit on acceptable average power before reaching a non-reversible
damaged threshold [14]. Therefore, if a very high peak power is required,
a limit has to be placed on the repetition rate in order to operate below the
damage threshold in average power. In the opposite, a peak power limit
needs to be set if very high repetition rate is considered. Regarding SC gen-
eration, this balance is crucial as the peak power it related to the spectral
broadening of the SC source. The higher the peak power, the further in the
infra-red the SC spectrum can be extended. This last point imposes a limit
on the repetition rate of a SC source. Currently, commercially available SC
sources use peak power within few kWs and repetition rates in the range of
20 MHz to 320 MHz [18, 19]. Then, the present study proposes to compare
4 SC sources, with repetition rates of 20, 40, 80 and 320 MHz, in terms of
noise into an OCT system operating in the 1300 nm range.

Figure 5.8 represents the total noise measured by the spectrometer when

varying the signal on the reference path of the interferometer for the 4 SC
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sources considered in this study. This measurement is similar to that used
in sections 5.2 and 5.3. Here, comparatively to the previous analysis of peak
power influence, a very clear trend is shown. The higher the repetition rate
the lower the total noise. A difference of up to 5 dB is obtained at large
signals in the reference path of the interferometer (2500 to 3000 counts). By
using the linear fit procedure described earlier in this chapter, Figure 5.9
(a) displays the extension of the shot noise dominated regime for each SC
source. As a first comment, there is no shot noise dominated regime in the
case of a 20 MHz SC source, which means that the RIN is the always the
dominant noise except for the detector noise regime (located at low signal
level around 200 — 300 counts). This is the worst-case scenario for an OCT
system. Then, when increasing the repetition rate, the total noise drops
significantly and the shot noise limited regime takes over. Though, it is
very limited at 40 MHz repetition rate, with an extension of only 2 dB (200
counts). Only the 80 MHz and 320 MHz repetition rates SC sources offer
a reasonable shot noise limited regime that starts from around 25 dB (400
counts) up to 30 dB (1000 counts) and 32 dB (1600 counts) respectively. This
noise improvement obtained by increasing the repetition rate comes from
the available number of pulses detected per readout of the spectrometer’s
camera (see Table 5.5). When doubling or quadrupling the repetition rate,
the number of pulses which are detected during a camera readout is also
multiplied. This increase of number of pulse from 400 (20 MHz) to 6400
(320 MHz) leads to an averaging of the intensity fluctuation from the SC
source and therefore a drop of the RIN contribution in the OCT system by
around 3 to 4 dB on the total noise measured.
TABLE 5.5: Number of pulses per camera readout, considering

an exposure time of 20 ps, for 4 different SC source repetition
rates.

Repetition Rate [M Hz] Pulses per camera readout

20 400
40 800
80 1600

320 6400
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FIGURE 5.9: Extracted linear fits describing, for several pump

peak powers, the part of dynamic range where the system is

under the shot noise dominated regime (a) or the RIN domi-
nated regime (b).

To complete this noise analysis, similarly to the previous study, a com-
parison of 4 B-scans is presented in Figure 5.10. Each B-scan is acquired with
a different SC source from the set previously mentioned. Each B-scan is ac-
quired from the forearm of a healthy volunteer using 4 mW power on skin
and using an exposure time of 20 ps. The comparison of the 4 images high-
light the importance of the repetition rate of the SC source in reducing the
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FIGURE 5.10: Example of B-scans measured from the forearm

skin of a healthy volunteer (power on skin of 4 mW). (a-b-c

-d) B-scans measured with a pump repetition rate of 20 MHz,

40 MHz, 80 MHz and 320 MHz respectively using an exposure
time of 20 ps.

RIN impact into the OCT system. When all images are displayed using the
same encoding of grey level, a direct difference in the background darkness
can be seen. The 20 MHz based image shows a much whiter background
compared to the images obtained at other repetition rates. In that case, the
background is almost as white as structure within the sample. At this repe-
tition rate, the noise is so important that it affects the structural information
of the OCT image. In opposition, the 320 MHz presents a quasi-black back-
ground with this grey level encoding, leading to a clear contrast between the
sample and the background. Table 5.6 shows the calculated Michelson con-
trast for the 4 B-scans of Figure 5.10. The same precaution as in section 5.2 is
taken regarding the minimum and maximum number calculations. Again,
differences between high and low repetition rates are observed for the con-
trast values, with an improvement of 0.09 point for the contrast between the
extreme cases of 20 MHz and 320 MHz, corresponding to almost 20 % (from
0.49 to 0.58). The two intermediate measurements (40 MHz and 80 MHz)
are at an equal contrast of 0.54. This equality can be attributed to the time
separation of the two images. Indeed, it is complicated to set the system in
exact same configuration except for the repetition rate. Small changes in op-

tical power, angle of incidence on the sample or sample itself might explain
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the non-varying contrast issue. This type of uncertainty confirms that the

noise measurement method is complementary to a contrast analysis.

TABLE 5.6: Michelson contrast measured within the B-scans of
skin in 5.10 when varying the pump repetition rate (exposure
time 20 ps — Power on sample arm = 4 mW.

Repetition Rate [MHz] C)y

20 0.49
40 0.54
80 0.54
320 0.58

5.6 Comparison of Noise Analysis method

Commonly, Sensitivity is the metric used to analyse OCT system qual-
ity when considering optical noise. Sensitivity represents the ability for a
system to measure weak signal which are generally coming from deep posi-
tions into the sample. A comprehensive definition of sensitivity is provided
in section 2.5.1. A relatively simple method to measure the sensitivity of a
system consists in replacing the sample to image by a Neutral Density Filter
(NDF) together with a mirror and measure the SNR obtained when the in-
jection is optimized. The sensitivity is then calculated as the summation of
the SNR and the optical density of the neutral density filter. This metric has
been used to compare optical sources used in OCT, however an important
drawback is that it relies on a non fixed parameter. Indeed, the injection
into the interferometer of the back-reflected light from the sample can vary
over time. This parameter makes the comparison sometimes inaccurate as

the system status varies from measurement to measurement.
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Interestingly, the proposed noise measurement method concludes on
similar differences in noise compared to a sensitivity analysis with each SC
source. However, it is not involving any optimization of injection making
it reliable, repeatable and much faster. Figure 5.11 is the sensitivity versus
axial positions obtained for the 4 SC sources used in the repetition rate case
study with an optical power of 4.5 mW on the sample. An NDF with and
attenuation of OD = 2 is used in a Michelson interferometer, corresponding
to a total attenuation of 40 dB. Sensitivity measured for all 4 SC sources are
around 90 dB or higher. In order to measure the sensitivities , the signal
in the reference path of the interferometer have been placed around 70 % of
the dynamic range (3000 counts). The maximal difference observed between
the 20 MHz and the 320 MHz is 5 dB, which is similar to the noise difference
presented in Figure 5.8.
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5.7 Discussion

A first important point is that the noise method proposed in this chap-
ter is qualitative. It relies on measurements of the total noise recorded by the
spectrometer and then on identifying intervals of dynamic range where a
single source of noise dominates, either shot noise or RIN. When SC sources
are compared using this method, it is important to consider that all noise
curves are acquired under given conditions. So, it might happen that the
system configurations were not identical on each measurement step. This
has been observed in the previous section where the quantitative evaluation
of the Michelson contrast deviates from the qualitative shot noise regime ex-
tension. Therefore, the noise measurement is useful in observing the trend
in the noise variation and not for quantitative noise evaluation. However,
the important aspect when dealing with noise in OCT is to be able to iden-
tify that the system operates under shot noise dominated regime while at
the same time operating with large power in the reference path of the in-
terferometer. This is important as detector noise is dominating at lower
reference path power.

Several times in this chapter, fitting procedures have led to conclusions
in terms of the noise regime (either shot noise or RIN dominated). Though,
it seems crucial to operate under shot noise dominated regime for SNR op-
timization. It is also good to observe that the difference between the two
regimes (shot noise and RIN) lies within small total noise difference. Rela-
tive Intensity Noise and shot noise regimes can be considered similar condi-
tion for imaging. Indeed, by extrapolating the fit of the shot noise obtained
for higher dynamic range value in Figure 5.9 (a) for example, for the case of
320 MHz SC source, the total noise will reach a value of 13 to 14 dB which
is only 1 to 2 dB lower compared to the RIN regime. Then, an OCT system
will see its SNR value increased by few dBs only if operating in shot noise
regime instead of RIN dominated regime. Such a small difference might not
impact the OCT image. Along the same interpretation, no significant differ-
ence can be seen by simple visual inspection of images acquired at different
peak powers at the HNLF (see section 5.3) even though the measured to-
tal noise indicates that they should be different. This few dBs higher noise
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might be tolerable for applications where other optical sources cannot offer
similar broad spectrum or high optical power.

Images and contrast analysis have been used in this chapter and some-
times contradict the total noise measurement by showing unexpected con-
trast variations. Such a behaviour is not abnormal, measuring the contrast
can be an inaccurate modality for direct comparison of images. The contrast
varies with the noise, which is the parameter we investigate, but also with
the signal returned by the sample. Therefore, changes on the sample, for
example changes in incident power or angle of incidence might affect the
signal backscattered and then the contrast calculated from the image. Still,
observing in parallel the total noise measurement and the contrast provide
information on how a noise improvement really contributes to the overall
image quality.

The results shown in this chapter help the design of SC sources dedi-
cated to OCT applications. By optimizing the peak power at the HNLF to-
gether with the pump repetition rate, complete shot noise limited detection
regime becomes possible. Such a source will be ideally suited for UHR-OCT
as it can offer the SC broadband advantage in conjunction with stability sim-
ilar to that of an SLD or a titanium sapphire lasers [7, 20]. To design this ideal
source, it is important to understand the connection between repetition rate
and peak power. Currently, the peak power used for the pump leaves some
room for improvement as the red-edge of the SC source is located 500 nm
before the material losses of silica which are problematic around 2.4 pm. In-
creasing the peak power might move the red-edge further away from the
OCT wavelength range of 1300 nm. This modification of peak power cor-
responds to an increase of the number of solitons created at the ignition of
the SC. This can reduce the noise into the OCT system but it requires to
consider carefully the average power into the HNLF in order to avoid fibre
damages. On the other hand, an increase of the repetition rate is also pos-
sible but with the same consideration of average power maximum. Then, a
possible option could be to play with the balance repetition rate and peak
power in a non-obvious way. So far, only increasing the peak power have
been proposed. But, from Figure 5.5 and Figure 5.8, it is noticeable that the
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pump peak power and repetition rate do not provide the same noise im-
provement. Increasing the repetition rate seems to be more advantageous
compared to increasing the peak power. Then, a solution where the peak
power is reduced together with an increase of the repetition rate seems in-
teresting. Indeed, increasing the repetition rate while decreasing the peak
power can lead to a large noise reduction and also to a decrease in the peak
power, avoiding fibre damages. Reducing the average power is not a prob-
lem for OCT, as the current average power is much higher than what is
required for OCT.

5.8 Conclusion

In this chapter a method for noise analysis in SD-OCT is proposed. This
method relies on identifying the part of the camera dynamic range over
which the shot noise or the RIN is dominating the total noise.

Then, the methods is used for comparing SC sources and observe the
impact of the pump laser peak power and repetition rate on the RIN contri-
bution. It is shown that the higher the peak power, the larger the extension
of the shot noise limited regime and therefore the lower the impact of the
noise arising from the source. Also, the effect of increasing the repetition
rate of the pump laser on the noise is demonstrated. High repetition rates
correspond to better averaging per readout leading to a decrease of the RIN
contribution to the total noise into the OCT system.

Each comparison of SC source parameters using the noise analysis method
is supported by images and contrast analysis. The two analysis agree on the
optimization parameters most of the time. Though, it seems that the meth-
ods based on images and contrast are sometimes less accurate than the noise
measurements. This is due to the fact that they can be affected by several
parameters including the SC noise but also by the system configuration or
the sample conditions.

Such a noise analysis method is interesting as it is based on the SD-
OCT hardware only, i.e. a spectrometer as the detection unit. In the case

of analysis of SC source noise this is an important advantage. Usually, SC
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noise measurement requires fast electronics (fast photo-diodes and fast os-

cilloscopes), which can be costly.

References

[1]

(2]

[3]

Supercontinuum NKT Photonics A/S (Denmark). http://www.
nktphotonics.com/lasers-fibers/product-category/

supercontinuum-lasers/,. Accessed: 2017-08-06.

Supercontinuum Leukos (France). http://www.leukos-systems.
com/spip.php?2rubrique28,. Accessed: 2017-08-06.

J. Yi, S. Chen, V. Backman, and H. F. Zhang. In vivo functional
microangiography by visible-light optical coherence tomography.
Biomed. Opt. Express, 5(10):3603-3612, Oct 2014. doi: 10.1364/BOE.5.
003603. URL http://www.osapublishing.org/boe/abstract.
cfm?URI=boe-5-10-3603.

W. C. Kuo, Y. M. Kuo, and S. Y. Wen. Quantitative and rapid esti-
mations of human sub-surface skin mass using ultra-high-resolution
spectral domain optical coherence tomography. Journal of Biophotonics,
9(4):343-350, 2016. ISSN 1864-0648. doi: 10.1002/jbio.201400153. URL
http://dx.doi.org/10.1002/jbi0.201400153.

K. K. Chu, C. U,, T. N. Ford, D. Cui, R. W. Carruth, K. Singh, L. Liu,
S. E. Birket, G. M. Solomon, S. M. Rowe, and G. J. Tearney. In vivo
imaging of airway cilia and mucus clearance with micro-optical coher-
ence tomography. Biomed. Opt. Express, 7(7):2494-2505, Jul 2016. doi:
10.1364/BOE.7.002494. URL http://www.osapublishing.org/
boe/abstract.cfm?URI=boe-7-7-2494.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher. Performance
of fourier domain vs. time domain optical coherence tomogra-
phy. Opt. Express, 11(8):889-894, Apr 2003. doi: 10.1364/0OE.11.
000889. URL http://www.opticsexpress.org/abstract.cfm?
URI=0e-11-8-889.


http://www.nktphotonics.com/lasers-fibers/product-category/supercontinuum-lasers/ 
http://www.nktphotonics.com/lasers-fibers/product-category/supercontinuum-lasers/ 
http://www.nktphotonics.com/lasers-fibers/product-category/supercontinuum-lasers/ 
http://www.leukos-systems.com/spip.php?rubrique28 
http://www.leukos-systems.com/spip.php?rubrique28 
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-5-10-3603
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-5-10-3603
http://dx.doi.org/10.1002/jbio.201400153
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-7-2494
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-7-2494
http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889
http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889

REFERENCES 133

[7]

[9]

[10]

[11]

[13]

W. Yuan, J. Mavadia-Shukla, J. Xi, W. Liang, X. Yu, S. Yu, and X. Li.
Optimal operational conditions for supercontinuum-based ultrahigh-
resolution endoscopic oct imaging. Opt. Lett., 41(2):250-253, Jan 2016.
doi: 10.1364/0L.41.000250. URL http://0l.osa.org/abstract.
cfm?URI=01-41-2-250.

X. Yao, Y. Gan, C. C. Marboe, and C. P. Hendon. Myocardial imaging
using ultrahigh-resolution spectral domain optical coherence tomog-
raphy. Journal of Biomedical Optics, 21(6):061006, 2016. doi: 10.1117/1.
JBO.21.6.061006. URL http://dx.doi.org/10.1117/1.JBO.21.
6.061006.

J. M. Dudley, G. Genty, and S. Coen. Supercontinuum generation
in photonic crystal fiber. Rev. Mod. Phys., 78:1135-1184, Oct 2006.
doi: 10.1103/RevModPhys.78.1135. URL https://link.aps.org/
doi/10.1103/RevModPhys.78.1135.

M. Klimczak, G. Sobon, R. Kasztelanic, K. M. Abramski, and
R. Buczynski. Direct comparison of shot-to-shot noise performance
of all normal dispersion and anomalous dispersion supercontinuum
pumped with sub-picosecond pulse fiber-based laser. 6:19284 EP —, 01
2016. URL http://dx.doi.org/10.1038/srepl9284.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot,
A. Ben Salem, M. Zghal, G. Genty, E. Dias, and ]J. M. Dudley. Real
time noise and wavelength correlations in octave-spanning supercon-
tinuum generation. Opt. Express, 21(15):18452-18460, Jul 2013. doi:
10.1364/0E.21.018452. URL http://www.opticsexpress.org/
abstract.cfm?URI=0e-21-15-18452.

P. Russell. Photonic crystal fibers. Science, 299(5605):358-362, 2003.
ISSN 0036-8075. doi: 10.1126/science.1079280. URL http://

science.sciencemag.org/content/299/5605/358.

A. Hartung, A. M. Heidt, and H. Bartelt. Design of all-normal dis-
persion microstructured optical fibers for pulse-preserving supercon-
tinuum generation. Opt. Express, 19(8):7742-7749, Apr 2011. doi:


http://ol.osa.org/abstract.cfm?URI=ol-41-2-250
http://ol.osa.org/abstract.cfm?URI=ol-41-2-250
http://dx.doi.org/10.1117/1.JBO.21.6.061006
http://dx.doi.org/10.1117/1.JBO.21.6.061006
https://link.aps.org/doi/10.1103/RevModPhys.78.1135
https://link.aps.org/doi/10.1103/RevModPhys.78.1135
http://dx.doi.org/10.1038/srep19284
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-15-18452
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-15-18452
http://science.sciencemag.org/content/299/5605/358
http://science.sciencemag.org/content/299/5605/358

REFERENCES 134

[14]

[15]

[16]

[17]

[18]

[19]

10.1364/0E.19.007742. URL http://www.opticsexpress.org/
abstract.cfm?URI=0e-19-8-7742.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Le-
ick, O. Bang, and A. Podoleanu. High energy supercontinuum sources
using tapered photonic crystal fibers for multispectral photoacous-
tic microscopy. Journal of Biomedical Optics, 21(6):061005, 2016. doi:
10.1117/1.JBO.21.6.061005. URL http://dx.doi.org/10.1117/
1.JBO.21.6.061005.

U. Moller, S. T. Serensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L.
Thomsen, and O. Bang. Power dependence of supercontinuum noise
in uniform and tapered PCFs. Opt. Express, 20(3):2851-2857, Jan 2012.
doi: 10.1364/0E.20.002851. URL http://www.opticsexpress.
org/abstract.cfm?URI=0e-20-3-2851.

N. U. Patarroyo, M. Villiger, and B. E. Bouma. Quantita-
tive technique for robust and noise-tolerant speed measurements
based on speckle decorrelation in optical coherence tomography.
Opt. Express, 22(20):24411-24429, Oct 2014. doi: 10.1364/OE.22.
024411. URL http://www.opticsexpress.org/abstract.cfm?
URI=0e-22-20-24411.

M. E. Fermann and I. Hartl. Ultrafast fibre lasers. Nat Photon,
7(12):1006-1006, 12 2013. URL http://dx.doi.org/10.1038/
nphoton.2013.319.

Supercontinuum  NKT Photonics, link = http://
www.nktphotonics.com/lasers-fibers/product/

superk—-extreme-supercontinuum-lasers/, note = Accessed:

2017-08-06, .

Supercontinuum thorlabs, link = https://www.thorlabs.com/
newgrouppage9.cfm?objectgroup_1d=10819, note = Accessed:
2017-08-06, .

W. ]J. Brown, S. Kim, and A. Wax. Noise characterization of super-

continuum sources for low-coherence interferometry applications. J.


http://www.opticsexpress.org/abstract.cfm?URI=oe-19-8-7742
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-8-7742
http://dx.doi.org/10.1117/1.JBO.21.6.061005
http://dx.doi.org/10.1117/1.JBO.21.6.061005
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-3-2851
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-3-2851
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-20-24411
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-20-24411
http://dx.doi.org/10.1038/nphoton.2013.319
http://dx.doi.org/10.1038/nphoton.2013.319
http://www.nktphotonics.com/lasers-fibers/product/superk-extreme-supercontinuum-lasers/ 
http://www.nktphotonics.com/lasers-fibers/product/superk-extreme-supercontinuum-lasers/ 
http://www.nktphotonics.com/lasers-fibers/product/superk-extreme-supercontinuum-lasers/ 
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10819 
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10819 

REFERENCES 135

Opt. Soc. Am. A, 31(12):2703-2710, Dec 2014. doi: 10.1364/JOSAA.
31.002703. URL http://josaa.osa.org/abstract.cfm?URI=
josaa—-31-12-2703.


http://josaa.osa.org/abstract.cfm?URI=josaa-31-12-2703
http://josaa.osa.org/abstract.cfm?URI=josaa-31-12-2703

136

Chapter 6

Femtosecond pumped with all
normal dispersion fibre SC source

for ultra-low noise operation

6.1 Introduction

In the previous chapter of this thesis, it has been shown that current
commercially available Supercontinuum (SC) sources are suitable for Ultra-
High Resolution Optical Coherence Tomography (UHR-OCT) at 1300 nm,
achieving shot noise limited detection under particular conditions. In terms
of applications, the use of SC for UHR-OCT has been demonstrated by nu-
merous reports over the last 5 years [1, 2, 3]. However, Relative Intensity
Noise (RIN) is still an issue for some highly demanding applications [4],
where achieving shot noise limited detection is essential. Indeed, such ap-
plications rely on intensity fluctuations and therefore are affected by inten-
sity noise. Due to their ultra-broad spectral bandwidth, SC sources rep-
resent an ideal choice for ultra-high axial resolution OCT. Therefore, over
the years, important efforts have been made within the SC community to
address the issue of high intensity fluctuations of SC sources. Several di-
rections have been investigated, such as tapering the Highly Non-Linear
Fibre (HNLF) for increasing the non-linearity of the fibre [5] or pumping
in different dispersion regime in order to modify the SC generation mech-
anism. Also, it has been shown that increasing the source repetition rate
of the pump laser might not reduce the RIN of the source itself but could
reduce its impact on the OCT system performance[6, 7] . More recently, it
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has been proposed to use a completely different SC generation mechanism
in order to avoid noise effects such as Modulation Instability and Solitons
dynamics [8, 9]. This concept relies on using an ultra short pulse to pump
a fibre with a dispersion profile located in the normal dispersion regime (3
< 0). Normal dispersion regime corresponds to a regime where the fibre
dispersion is negative regardless of the wavelength. Ideally, such a source
can offer an ultra-broad spectrum together with a level of stability compa-
rable to that of Super-Luminescent Diode (SLD) making it the ideal source
for UHR-OCT. In this chapter, a SC source based on an All-Normal Disper-
sion (ANDI) fibre is assembled for application to UHR-OCT in the 1300 nm
wavelength range. A noise analysis using the ratio of OCT signal over the
noise and quality assessment of images is presented. Then the noise proper-
ties of the newly developed source are compared with those of the current

state of the art SC sources for biomedical imaging application.

6.2 Supercontinuum generation summary

Chapter 3 of this thesis is entirely dedicated to describe the process of
SC generation and the different non-linear effects involved. Below, a short
summary of the two SC generation principles used in this chapter is pre-
sented.

The first SC generation principle presented here is the most commonly
used in fibre based SC source. It relies on pumping a HNLFE, a Photonic
Crystal Fibre (PCF), with a relatively long high peak power optical pulse
whose pulse width can be from a few ps to ns. The PCF is used due to the
easy control of the dispersion profile of the fibre. The PCF is designed in
such a way that its Zero Dispersion Wavelength is placed nearby the pump
laser wavelength. This is done in order to balance the non-linear effects and
the dispersive effects. A too high dispersion can indeed stretch the pulse
too quickly, leading to a quick drop of optical peak power and therefore less
effective non-linear effects. In the present case, the pump is at 1064 nm and
the ZDW of the fibre is at around 1040 nm. While considering the red side
of the SC, the mechanisms responsible for the broadening are first the mod-

ulation instability (which breaks the initial pulse into a train of solitons) and
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then a chaotic shift/interaction of solitons. Modulation Instability is an am-
plification of noise from the side bands around the pump wavelength [9].
Solitons are analytical solutions of the Non-Linear Schroedinger Equation,
their physical meaning corresponds to a short pulse which propagates into
the fibre seeing the dispersive effects and the non-linear effects compensat-
ing themselves [10]. A more extensive description of such effects is given
in section 3. Then, these solitons are red shifted through Stimulated Raman
Scattering effect and solitons chaotic dynamics. Typically, when using sil-
ica fibre as the HNLF, the SC red edge can be pushed towards wavelengths
as long as 2.4 pm. Beyond this point, the silica losses become very high
and the SC generation stops. The principle presented here is the type of
SC source used in chapter 5 and in other attempts of using SC sources for
OCT systems. Most of the early reports of UHR-OCT using SC light sources
have been done using such a SC source design. Then, the old conclusion
of SC source being too noisy for OCT is linked to these MI/Solitons based
generation.

The novel SC generation method relies on a HNLF with a dispersion
in the normal regime regardless of the wavelength considered. Such a dis-
persion property is obtained by ensuring a particular dimension for holes
and pitches distribution during the PCF manufacture. The pump laser used
in this low noise design is a femtosecond laser. Then, the non-linear ef-
fects responsible for the broadening are no-longer MI and solitons but Self-
Phase Modulation (SPM) and Optical Wave Breaking (OWB). As mentioned
above, MI and solitons are responsible for the noise properties of conven-
tional SC sources. This is due to the fact that these effects are based on
amplification of noise. On the contrary, SPM and OWB are deterministic,
not based on any random amplification. Self-Phase Modulation is an ef-
fect created by the time varying phase delay induced by the pulse intensity
through a Kerr effect phenomenon [10]. Optical Wave Breaking corresponds
to frequency generation through four waves mixing effects occurring when
different frequencies overlap in time during the pulse propagation into the
HNLF [11]. The proposed source concept has been demonstrated using a
pump at 1550 nm. Femtosecond lasers with extremely short pulse length
have been developed at this wavelength for telecommunication system. At
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1064 nm, though femtosecond lasers are available, the achievable pulse length

is longer and their cost is high.

6.3 Supercontinuum Sources

In this study, two SC sources are considered. The first one is a commer-
cially available SC source called SuperK Extreme (EXR9-OCT). This source
is based on the principle of pumping a HNLF nearby the ZDW, following
the design presented in Figure 6.1. Later in this chapter, this SC source is de-
noted ZDW-SC. Due to industrial secrecy considerations, it is not possible to
show the exact dispersion profile of the fibre in this manuscript. However,
Figure 6.2(a) displays a dispersion profile similar to that used for the ZDW-
SC. The ZDW is located around 1040 nm and the pump laser is at a wave-
length of 1064 nm. This means that the pumping occurs in the anomalous
dispersion regime. In opposition of normal dispersion, anomalous disper-
sion characterizes a regime where the dispersion of the fibre is anomalous.
A length of 10 ms of HNLF is used. The HNLF possesses a mode field diam-
eter of 4 to 4.5 pm. The pump laser is a Mode-Locked (ML) laser operating
at a repetition rate of 80 MHz with a pulse length of 10 ps. The repetition
rate of the pump is quadrupled using a pulse dividing scheme creating a
320 MHz repetition rate. The ML laser itself provides several mW of opti-
cal power at 1064 nm, which are then amplified through several stages of
fibre based amplification. Then, the pump delivers 4 W average power at
the input of the HNLF. The peak power used for SC generation is around
a few kW. An example of spectrum generated by the ZDW-SC is presented
in Figure 6.3 (red). Typically, the generated SC from the ZDW-SC spans
from 500-600 nm up to 1950 nm. The Power Spectral Density (PSD) shows a
locally flat spectrum, which is interesting for UHR-OCT as this would min-
imize the need for spectral shaping. Indeed, such spectral shape are easy to
correct using pure digital processing like windowing of the spectrum.

The second SC source used in this experiment is based on the principle
of pumping a HNLF with all-normal dispersion profile using an ultra-short
pulse within the femtosecond regime. Later in this chapter, this SC source is
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FIGURE 6.1: Simplified description of the two SC sources:
ZDW-SC (upper sketch) and ANDI-SC (lower sketch).
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FIGURE 6.2: Dispersion profile of the HNLF for: (a) ZDW-SC
and (b) ANDI-SC.

denoted ANDI-SC. This SC source is made of two components, both com-
mercially available through the company NKT Photonics A/S (Denmark),
but which have not been designed for this specific application. Therefore,
this SC source is an attempt to demonstrate the potential low noise opera-
tion of such a configuration as described in different reports coming from
the SC community [8, 9, 12] and using it into an UHR-OCT system in the
1300 nm wavelength region. The HNLF is a 50 cm silica PCF with an all-
normal dispersion profile as shown in Figure 6.2(b). The fibre has a mode
field diameter of 2 to 2.5 ym. The pump laser is again at 1064 nm. The
pump laser is a commercially available femtosecond laser from NKT Pho-
tonics A/S (Denmark). It is a ML laser operating at a repetition rate of 80
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FIGURE 6.3: Normalized PSD of the ZDW-SC and the ANDI-
SC measured using an integrating sphere coupled to photo-
detector and an oscilloscope.

MHz. A bulk compression is used that offers after compression a variable
pulse-width within the fs regime from 170 fs to 1 ps. The maximal aver-
age output power is around 4 W, leading to possible peak powers of a few
tens of kW for pumping the HNLE. The generated SC exhibits a relatively
non smooth PSD with many variations over the wavelength range of the
spectrometer, making it slightly uneasy to work with in UHR-OCT. Indeed,
such local variations of the spectral shape can distort the Point Spread Func-
tion (PSF) shape leading to a lower axial resolution compared to what can
be expected from the spectral bandwidth. Using this particular HNLF, the
longest achievable wavelength for the SC in the Near Infra-Red is located
around 1400 nm as the confinement losses become too important after this
wavelength (see Figure 6.4). Confinement losses are losses which can be
described as a propagation of the optical mode within the core and the
cladding of the fibre. By propagating into the cladding instead of the fi-
bre core, the mode experiences higher losses compared to a well confined
mode.
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FIGURE 6.4: Confinement losses of the ANDI fibre versus
wavelength.

6.4 Influence of pump peak power on the spectral

broadening

When considering a SC light source for OCT, and more especially for
UHR-OCT, the spectral extension of the SC is a key parameter. The larger
the available optical bandwidth the higher the achievable axial resolution.
The spectral shape of the optical source is also to be considered as it influ-
ences the shape of the PSF, which is related to the Fourier Transform (FT) of
the source PSD. The influence of these parameters is discussed in detail in
Section 2.5.2.

The SC broadening is governed by the peak power injected into the
HNLF, regardless of the type of SC (ZDW-SC or ANDI-SC). Higher peak
power corresponds to broader SC, which are however limited by light con-
finement losses or material losses [13]. Table 6.1 summarises the peak power
experimentally estimated, for the two SC sources mentioned above, at given
measured average power. To calculate the peak power, it is assumed that the
ZDW-5C pump has a Gaussian pulse shape while the ANDI-SC pump has
a sech? pulse shape. The peak power of the SC source pump is calculated
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according to:

P — { 0.94 if Gaussian pulse shape } " Prverage 61)

0.88 if sech? pulse shape X R

where Pp.,; is the pulse peak power, F,,, is the average power, 7, is the
pulse length and R is the laser repetition rate. The factors 0.94 and 0.88 are
different from one pulse shape to the other as they are linked to the evalu-
ation of the Full Width at Half Maximum of the pulse. The two SC sources
operate with quite different pulse peak power with a factor of twenty times
higher for the ANDI-SC. However, it is important to remember that the pro-
cesses involved for the two sources are completely different and the higher
peak power of the ANDI-SC is only due to the shorter pulse length.

TABLE 6.1: Calculated peak power of the pump lasers from
measured average power for the ZDW-SC and the ANDI-SC.

ZDW — SC ANDI — SC

7, = 10ps 7, = 170 fs
R = 320 MH~ R =80 MH=z

Pcwerage [mW] Ppeak: [kW] Paverage [mW] Ppeak [kW]

4000 1.5 850 95
3200 1.2 780 49
1600 0.6 515 33
800 0.3 450 29

The ZDW-SC used in this study is a commercial product dedicated to
OCT at 800 nm and 1300 nm, which has been built in order to provide a vari-
able output average power while maintaining a broad spectral shape. Then,
the available pump peak power variation range ensures that the spectral
extension is large for the different available pump peak power. Figure 6.5
shows the ZDW-SC spectral shape measured with a spectrometer sensitive
from 1070 nm to 1470 nm for peak power at 0.3 kW, 0.6 kW, 1.2 kW and
1.5 kW. While varying the peak power the signal on the camera is adjusted
in order to avoid saturation, then all signal level on camera look similar re-
gardless the peak power. These peak powers represent respectively 20 %,
40 %, 80 % and 100 % of the maximum peak power available the ZDW-SC.
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From those spectrometer measurements, no noticeable changes can be iden-
tified on the spectral shape. A measurement of the ZDW-SC used for this
study, obtained with an Optical Spectrum Analyser (OSA) covering 1200
nm to 2400 nm, is presented in Section 5.4. It is shown there that the higher
the peak power, the broader the SC generated, with a shift of the red-edge
position from 1550 nm at 20 % of the maximal peak power up to 1950 nm
for the 100 % maximal peak power.

In the case of the ANDI-SC source, the spectral shape behaviour is more
complicated. Indeed, low peak powers create SC in a regime where only
SPM is used for frequency broadening. This leads to the spectral shape pre-
sented in Figure 6.6(a-b) with large local variations in shape and amplitude.
Those shapes deviate from conventional OCT requirements of Gaussian like
intensity distribution. A direct consequence of the non-optimal spectral
shape is a distorted PSF in the Fourier domain resulting in a poor axial res-
olution. In addition, Figure 6.6 shows the spectral shape at a given point in
time, but large time fluctuations are also observed when low peak power are
used, making conventional spectral shape compensation technique almost
unusable. Such fluctuations are due to the fact that while using lower peak
powers, the dominant effect is SPM. However, SPM is directly depending
on the input power which is not perfectly constant. Even more due to the
current design of the injection into the PCF the large coupling instability
causes this SPM fluctuations to be very problematic. When the peak power
is increased, Figure 6.6(c-d), the spectral shapes become smoother and sta-
ble. In Figure 6.6(c-d), the peak power varies from 49 kW to 55 kW but the
red-edge is still located at 1.4 um. This is due to the increase of confinement
loss of the ANDI fibre as shown by Figure 6.4. Further increase of the peak
power cannot increase anymore the broadening but can improve the aver-
age power. Though, it is important to keep in mind that too high average
power might damage the fibre.
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FIGURE 6.5: ZDW-SC adjusted spectral shape evolution, seen
by the spectrometer, for different pump laser power level: (a)
800 mW, (b) 1600 mW, (c) 3200 mW and (d) 4000 mW corre-
sponding to peak powers of 0.3 kW, 0.6 kW, 1.2 kW and 1.5

kW respectively.
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FIGURE 6.6: ANDI-SC adjusted spectral shape evolution, seen

by the spectrometer, for different pump laser power level: (a)

450 mW, (b) 515 mW, (c) 780 mW and (d) 850 mW correspond-

ing to peak powers of 29 kW, 33 kW, 49 kW and 55 kW respec-
tively.
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6.5 Self-Phase Modulation issue

Self-Phase Modulation is a non-linear effect which occurs when an in-
tense short pulse propagates into a material. The high intensity of the pulse
modifies locally the index of refraction of the material and induces a modi-
fication of the pulse phase. This phase change tends to blue-shift the wave-
lengths a the back of the pulse and red-shift the wavelengths at the front
part of the pulse creating a frequency broadening of the optical spectrum
[14]. The advantage of such a broadening, compared to other mechanism,
is its high coherence (temporal stability) [8, 9]. However, even though SPM
broadening is a deterministic effect (low noise, highly coherent), it also comes
with an important spectral modulation of the intensity depending on the
wavelength considered [14]. This spectral modulation of the light intensity
is attributed to interferences between similar frequencies of the pulse expe-
riencing different time delays.

Depending on the periodicity of such intensity modulation in wavenum-
ber, a problem might appear when using such SC source in an OCT system.
Indeed, if the modulation frequency of the SPM fringes is within a simi-
lar frequency range compared to the OCT modulation, which characterizes
the depth information profile of the sample, corrupting peaks appear into
the OCT image. No distinction is possible between the SPM effects and
the useful signals arising from interference between sample and reference
light. In addition, the SPM intensity modulation highly depends on the sta-
bility of the pump laser. Any fluctuations in intensity of the pump, due to
laser instability or coupling into the HNLF, create a modification of the SPM
modulation frequency and amplitude. Then the corruption is no longer a
single peak into the A-scan profile but a wide area that corrupts a part of
the imaging range. This is equivalent to an increase in the noise floor when
considering the SC source and the OCT system association.

To illustrate the effect of SPM into an OCT image, Figure 6.7 shows
a particular configuration of the ANDI-SC source where the SPM effect is

dominant. To isolate the effect of SPM only, a spectrum is acquired by
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pumping the ANDI fibre with a relatively short pulse of 370 fs. The spec-
trum is measured without passing through the interferometer, so this mod-
ulation is only due to non-linear effect in the HNLE. The pulse length of the
pump laser is chosen longer than its minimal value in order to reduce the
peak power. Therefore, the broadening is dominated by SPM only and not
by a mix of SPM and OWB as described in Section 6.2. It would have been
possible to reduce the power (average and peak) using a neutral density
filter and reach the same SPM only broadening mechanism. Figure 6.7(a)
shows that the intensity modulation obtained from SPM is similar, in terms
of frequency, to that of a channelled spectrum modulation at the interfer-
ometer output with an approximate optical path difference close to 100 pm.
Then, if analyse with conventional OCT processing tool (FFT based), a peak
will appear at a depth matching the modulation frequency. However, the
power within the HNLF is not constant due to both fluctuations of the pump
laser and coupling into the HNLEF, therefore instead of seeing a single peak
in the z-domain (at a single depth), a portion of the imaging range seems
corrupted. This is due to a washing out effect of the fringes due to constant
variations of periodicity and amplitude of the SPM modulation that lead to
an overall increase of the noise floor of the A-scan profile as shown in Figure
6.7(b), which is an average over 500 readouts from the spectrometer.

Such a corruption is dramatic for an OCT system as the most impor-
tant part of the dynamic range is not usable for imaging. Indeed, due to
the inevitable effect of sensitivity decay with density of the modulation of
channelled spectra (see Section 2.6.3), the part of the imaging range with the
highest sensitivity is unusable. During the time attributed to this study on
the topic of low noise SC source, no solution has been found to eliminate the
SPM corruption effect. However, an optimization can be done to minimize
its effect. As described above, at relatively low peak power, SPM domi-
nates the broadening mechanism. In case of higher peak power, a second
non-linear effect called OWB needs to be considered. Then, the generated
spectrum becomes smoother as the fringes due to SPM disappear as shown
by the spectral shape evolution of Figure 6.6. Nevertheless, this high peak
power idea used for spectrum smoothing allows only to reduce the part of
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FIGURE 6.7: Illustration of the SPM fringes image corruption.

(a) Spectrum measured by the spectrometer for a SC generated

using a pump pulse length of 370 fs. (b) Average of the FFT for
500 spectra similar to (a) (dB scale).

the image corrupted and not to completely cancel the SPM corruption ef-
fect. Also, using high peak power around 50 kW creates an average power
of almost 1 W into the HNLE, which is close to the damage threshold at
the injection point. Figure 6.8 is an example of the corruption effect, on
the background of an OCT image compared to a non-corrupted image ob-
tained from a commercial SC source (ZDW-5C) in Figure 6.8 top. The ZDW-
SC source based image shows a homogeneous black background while the
ANDI-SC based image has a white portion from 0 to 150 pm depth range.
Even though, a SPM corruption is still observed, it is not covering an im-
portant part of the dynamic range and permits to use the ANDI-SC source
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for OCT.
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FIGURE 6.8: Illustration of the SPM corruption effect on the
upper part of an OCT B-scan.

6.6 Supercontinuum usefulness for optical coher-

ence tomography

So far, it has been shown that a SC source based on the principle of
pumping a HNLF with an all-normal dispersion profile and using a short
optical pulse (fs regime) can generate a SC covering a spectral range broad
enough for UHR-OCT. The results below describes a comparison between
the ZDW-SC and the ANDI-SC when used into an OCT system operating at
1300 nm.

Conventional signal processing procedure for OCT, applied to raw chan-
nelled spectra (CS) data, includes a dark signal correction, a subtraction of
the reference path signal, a normalization step, a linearisation of the data in
k-space, a dispersion compensation and finally an apodization or window-
ing. A description of these steps is done in the Chapter 3. All these steps
are done in order to achieve an optimal SNR after Fast Fourier Transform
(FFT) of the processed data. After signal pre-processing, ideally only the

modulated signal due to interferences should remain. This signal is centred
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and symmetric around zero and its edges (shortest and longest wavelength
detected) should be at zero. Figure 6.9 is an example of CSs acquired and
processed, from a mirror located at an axial position of 500 pm, using the
ZDW-SC (red) and the ANDI-SC (blue).
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FIGURE 6.9: Measured spectra, processed with dark correc-

tion, reference subtraction, normalization, resampling and

apodization, for the ZDW-SC and the ANDI-SC, with a mir-
ror at an axial position of 500 pm.

The two CSs after processing have a completely different shape. The
ZDW-5C based CS (red) shows the expected behaviour of a modulated sig-
nal centred and almost symmetric around zero and with edges at 0 counts.
The asymmetry of the modulation is due to small variation of the spectral
shape in time. In the case of the ANDI-SC, the CS (blue) shape is far from
ideal. It seems that, on top of the fast OCT modulation, due to the optical
path difference within the interferometer, another modulation with slower
frequency and much larger amplitude is imprinted on the CS. This slow
frequency modulation is due to the time varying amplitude of the source.
The amplitude of source is varying because of the previously mentioned
instability of the pump laser and coupling of light into the HNLF. The non-
optimal spectral shape is an issue and creates distortion of the PSF shape in

the z-domain.
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FIGURE 6.10: Example of A-scan profiles, for the ZDW-ASC
(red) and ANDI-SC (blue), measured with a mirror at an axial
position of 500 pm.

The following step in the OCT processing procedure is the FFT of the
CS. The FFT is used for identifying the different frequency components im-
printed into the CS. Then, the real part of the complex signal provides the
so-called A-scan, which is a characterization of the depth reflectivity profile
of the sample. Figure 6.10 displays a A-scans obtained by FFT of the two
processed CSs of Figure 6.9. There, the sample is a mirror located at an axial
position of 500 pm. The ZDW-SC curve (red) is a typical plot from an OCT
system which source presents relatively high RIN [6, 15] . The particularity
here is that the noise floor is not completely flat but with a negative slope
while the axial position increases. This is an illustration of the source RIN,
which creates a higher noise floor at shallow axial positions [6, 15]. In the
case of the ANDI-SC, the first point to observe is the previously mentioned
corruption described in Section 6.4. This means that even though the spec-
trum of Figure 6.6 (d) is not showing significant fringes effects from SPM,
the reduction of its impact is not perfect. However, the corruption stops af-
ter 200 um which left sufficient imaging range for OCT. After this corrupted
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part of the imaging range, the ANDI-SC based noise floor is almost com-
pletely flat with a difference of up to 15 dB, at shallow axial positions, com-
pared to the ZDW-SC. This noise floor flatness is similar to the one obtained

for an SLD, which operates at shot noise limited detection [6].
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FIGURE 6.11: (a) Evolution of the maximum values of the A-

scan peak similar to Figure 6.10 for the ZDW-SC and for the

ANDI-SC versus depth. (b) Evaluation of the rms noise versus

depth measured within the noise floor of the A-scans, similar
to Figure 6.10, for the ZDW-SC and for the ANDI-SC.

A similar measurement, compared to Figure 6.10, has been done while
the axial position is varied from 200 um to 1200 um. For each point on Fig-
ure 6.11(a), the maximum of the A-scan peak is extracted. The power on
the mirror in the sample arm is around 4 mW with an attenuation of 20 dB
(Neutral Density Filter with Optical Density of 2 placed in the sample arm
of the interferometer) in order to avoid camera saturation. The power in the
reference arm of the interferometer is similar for the two SC sources, gen-
erating a signal covering 60-70 % of the dynamic range of the spectrometer.
For both the ZDW-SC and the ANDI-SC, the maximum peak value starts
around 6000 counts with a slope of around -3000 counts/mm, which is ex-
pected due to the spectrometer decay (see Section 2.6.3). However, Figure
6.11 (b) is showing a quite different behaviour. Even though the signal on
the sample arm and reference arm has been maintained as close as possible

for each source, the ANDI-SC rms noise signal (measured within the noise
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floor of the A-scan) is almost all the time half of the one of the ZDW-SC. Fig-
ure 6.12 compiles those two results into one with the calculation of the SNR.
The ANDI-SC shows a SNR higher by 5-6 dB compared to the ZDW-SC.
Such an improvement in the SNR can affect significantly the overall image

quality of an OCT system and will be discussed in the next part of the chap-

ter.
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FIGURE 6.12: Evolution of the SNR versus depth for the ZDW-
SC and the ANDI-SC.

6.7 B-scans comparison

In order to investigate the usefulness of a low noise SC source for UHR-
OCT, a set of B-scans acquired in-vivo from the hand palm of a healthy vol-
unteer is presented on Figure 6.13. The system used is an UHR-OCT system
with a central wavelength of 1270 nm with a total bandwidth of 400 nm. The
power used on sample is 2 mW, the signal on the reference arm of the in-
terferometer is set to 3000 counts, representing 75 % of the camera dynamic
range. Such high signal on the reference arm of the interferometer placed
the OCT system in a regime where RIN is for sure influencing the noise
properties of the system if a ZDW-SC is used. Then, this help to observe if
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the noise improvement bring by the ANDI-SC is actually changing the im-
age quality achievable. Each image is made of 500 A-scans and each A-scan
is acquired at an exposure time of 20 ps. Such exposure time corresponds to

a fast camera line rate of 42 kHz.

FIGURE 6.13: In-vivo B-scans acquired from the hand palm

of a healthy volunteer using an optical power of 2 mW. (a-

b) ANDI-SC based B-scans (c-d) ZDW-SC based B-scans (scale
bar 500 pm).

Figure 6.13(a-b) are the ANDI-SC based images and Figure 6.13(c-d)
are ZDW-SC based images acquired from a similar skin location for com-
parison. As a first point to notice is the effect of the SPM corruption pre-
viously mentioned. The very upper parts of the ANDI-SC based images
Figure 6.13(a-b) are whiter than the images backgrounds. This is due to the
SPM corruption. As explained earlier this is due to the remaining SPM ef-

fects, whose modulation frequency falls within the OCT fringes frequencies.
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However, the part of the images concerned with this corruption is limited
and does not prevent the use of ANDI-SC for OCT. All four images show
similar structural information such as the stratum corneum, some sweat
glands or the demo-epidermal junction (DEP). The background of the ZDW-
SC images are whiter compared to the ANDI-SC as expected due to the in-
creasing noise floor of the axial profile shown in Figure 6.10. Finally, the
stratum corneum of the ANDI-SC based images seems blurred and not well
defined. This issue might come from the slow variation of the DC part of
the interference signal. Common OCT processing relies on removing a pre-
viously recorded DC spectrum from the interference fringes signal, but in
the present case this correction is not perfect as the DC is constantly varying
in time. It is assumed that this random time fluctuation is certainly due to
thermal instability within the fibre as the peak power used for generating
a broad smooth spectrum is close to the damage threshold of the fibre (see
Section 6.4).

6.8 Discussion

The idea behind this study was to confirm the effective noise improve-
ment obtained from an ANDI-SC source compared to a ZDW-SC source.
The progress in terms of noise from the source is obtained by replacing the
conventional HNLF, which possesses a dispersion within both the normal
and anomalous regime, by a fibre with all-normal dispersion. Also, the ps
pump is replaced by a laser with a shorter pulse, within the fs regime. This
two changes are done in order to generate a SC with completely different
non-linear effects. However, the maximal pulse length to not exceed for
operating with SPM and OWB instead of MI and solitons, was not clear in
the literature. Two reports [11, 12] stated that below 300 fs should be short
enough for the pulse length but not evidence was provided.

The choice has been made in this study to build this new SC source us-
ing only commercially available components. This choice was motivated by
two reasons. The first one was to keep the SC source design as close as pos-
sible to those described in the literature [8, 9]. This means that during the
study no particular care has been taken to improve the assembly made of an
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ANDI fibre/femtosecond laser presented. The second reason was the com-
ponents involved. The femtosecond laser and the ANDI fibre are individu-
ally very complex technologies. Therefore, it would not be possible within
the time frame of the project, to design and assemble from scratch a reliable
femtosecond laser and an efficient ANDI fibre. Then, the specifications of
the chosen components were not ideal. Indeed, due to the parameters of the
femtosecond laser used (shortest pulse length of 170 fs and repetition rate
of 80 MHz), the power within the HNLF was extremely high (Payerage = 1
W - Ppeak = 55 kW) when sufficient peak power was reached for broad SC
generation. This high power, especially considering the small Mode Field
Diameter of the HNLE, leads to instability of the coupling through thermal
effects. Complete deterioration of the fibre has been observed several times
along the project.

It should be considered for the comparison that the repetition rates of
the two SC sources used in the study are different. Indeed, the ZDW-5C
operates at a pulse repetition rate of 320 MHz while the ANDI-SC operates
at a lower rate of 80 MHz. During the OCT experiments, the exposure time
of the spectrometer camera is maintained constant (20 ps). Then, the higher
the repetition rate of the source, the higher the averaging of any intensity
noise arising from the source itself. A complete study of the SC repetition
rate influence on the noise into the OCT is done on Chapter 5 of this the-
sis. This averaging can be approximated, assuming that the noise follows a
normal distribution, as the square root of the ratio of repetition rates. In this
case, the repetition rate is the number of events creating a normal distribu-
tion. A difference of 3 dB ((320/80)!/2) is to be expected between the two SC
sources. Then, the difference between the two SC sources will not be 5-6 dB
as shown by Figure 6.13 but 8-9 dB.

As mentioned above, the ANDI-SC presented was assembled by putting
together a commercially available femtosecond laser and a HNLF will nor-
mal dispersion profile. It is then obvious to see a lot of possible paths for
improving such a SC source. One of the main problem observed was the
large instability of the SC source due to thermal effect into the HNLF. This
was largely due to the high average power in the fibre. Two possible solu-

tions can be proposed for this issue. First, a reduction of the repetition rate
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of the pump laser can be done in order to divide the average power. How-
ever, this might reduce the averaging effect of intensity fluctuations that can
lead to a higher noise in the OCT system. The second solution which could
reduce the instability problem is to use a shorter optical pulse (< 100 fs) for
the pump laser together with a smaller repetition rate. A shorter pulse can
offer a similar or higher peak power compared to the current one but at a
lower pulse energy. This average power reduction does not impair the use-
fulness of the SC source for UHR-OCT as the current average power of the
source is within the range of several hundreds of mW. Several reports ex-
ist on using optical pulses shorter than 100 fs at 1064 nm [16] as well as a
commercial product [17].

Finally, the coupling of light from the femtosecond laser into the HNLF
was based only on conventional optics such as lenses and mirrors. In ad-
dition, the HNLF used was a piece of bare fibre, then the coupling of light
from bulk optics into the very small core (2 pm) of the fibre was in that case
not optimal. A possible improvement would be to consider a system with
fibre connection from the femtosecond laser to the HNLF. Such connection
can be done by working with a femtosecond laser with fibre based output
or to work with a fibre based compression instead of bulk compression. An
injection back in an optical fibre back before splicing to the HNLF might be
a possible path, however the control of the pulse width will be challenging.
Indeed, the pulse from the pump has to be ultra-short so any propagation

into a dispersive material might broaden the peak in time.

6.9 Conclusion

In this chapter, a SC source with low noise properties is proposed. The
usefulness of such a source is analysed and also a comparison with a SC
source dedicated to OCT is presented. First, the concept of the source is
presented. The new SC source is based a pumping of a HNLEF, with an all-
normal dispersion profile, with a short pulse (hundreds of fs pulse width).
This source design changes the non-linear effects involved for SC genera-
tion from MI and Solitons to SPM and OWB. This is key for low noise op-
eration as the first two effects are very noisy while the last two are fully
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deterministic and coherent. However, during the source development sev-
eral drawbacks have been pointed out. First, the low noise source relies on
an assembly of commercial products which provides a non-optimal source
design. Mainly the pulse length used in this experiment is too long when
considering the balance of peak power and averaged power into the HNLE.
The peak power required for a broad SC generation using the current ANDI-
SC design leads to a high power (Pyyerage=1 W - Ppeak = 55 kW). This high
power is close to the damage threshold of the HNLE. Also, the femtosec-
ond laser used has a collimated output, due to the bulk compression. Such
a non-fibre based output is problematic as the HNLF has a core diameter
of 2 pym, making the injection of light potentially dangerous for the fibre.
Indeed, bad coupling of light with such a small focused beam creates dam-
ages to the fibre facet. However, even though the current SC source is far
from optimal, very interesting noise improvement have been observed for
the ANDI-SC. Even more, the ANDI SC source already offers better noise
properties regardless of the repetition rate advantage of the ZDW-SC.
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Chapter 7

Q-switch pumped SC source for
UHR-OCT - A low-cost alternative

7.1 Introduction

Optical coherence tomography is without any doubt one of the techno-
logical area where academic research and companies are working almost at
equivalent pace. Numerous efforts are done to continuously improve the
capability of the technique, offering more and more features such as func-
tional OCT [1, 2] or combination of modalities [3, 4]. In addition, a tremen-
dous work is performed to provide components specifically dedicated to
OCT applications.

A clear example of those efforts is the Supercontinuum (SC) source. Su-
percontinuum light sources have been considered useful to OCT from the
very early days of OCT development, as their available bandwidth is much
larger than that of any other optical source. However, the initial attempt to
use them showed quite noisy images, noise interpreted as due to large pulse
to pulse fluctuations. In the last 10 years, several companies and research
groups have investigated principles of low noise SC sources. Solutions such
as tapering of the non-linear fibre or increasing the pump repetition rate
have been proposed [5]. Nowadays, SC sources are considered as reliable
and stable enough for UHR-OCT for visible OCT [1] and NIR OCT in the 800
nm and 1300 nm [6] wavelength ranges. Since the stability issue has been
solved, a new trend in SC sources is the need of cost reduction. Supercontin-
uum sources are already of lower cost than other broadband light sources,

such as titanium sapphire lasers for example. Their cost still remains high
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and contributes largely to the high cost of the overall OCT system. A large
proportion of the high cost of the SC sources is due to the pumping laser that
need to pump a Highly Non-Linear Fibre (HNLF). Most of the time, when
considering SC design for OCT, a Mode-Locked (ML) laser is used. Mode-
Locked laser provides short optical pulses according to different principles
that increase the overall laser cost also they need to be largely amplified to
reach the peak power required for SC generation. All together this concept
of SC generation required many optical and electronics components, lead-
ing to an increase of the total cost of the source.

Mode-locked lasers are not the only type of laser used for pumping
the HNLF in the SC generation. Q-switched (QS) lasers are often used in
non-imaging application [7]. Due to their high peak power and relative
simplicity, a QS-SC could be very interesting to reduce the cost of the SC
source and therefore of the OCT system. In this chapter, a comparison of
two SC sources regarding their noise properties is proposed. The two SC
sources differ from the laser type used as the pump. The first one is a ML
pump laser commonly used in SC generation while the second one is a QS
pump laser allowing a much lower SC final cost. First, a pulse to pulse

stability comparison is shown followed by an OCT noise impact study.

7.2 Supercontinuum pumping using a Q-switched

laser

The Q-switched technique is one of the two main techniques used to
obtain a pulsed laser. It can be seen as an energy storing technique where
the cavity of the laser is disturbed, meaning that the cavity losses are very
high, by an active or passive component [8]. After a time, the cavity proper-
ties are changed to reach very low losses. A giant laser pulse is then gener-
ated, with a pulse length ranging from ns to ps. Q-switched lasers present
high energy per pulse up to several mJ [9]. Typically, repetition rates within
the hundreds of kHz are achievable and even a few MHz rates have been

obtained.
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The main advantage of the Q-switched laser technology is its relative
low cost and simplicity to reach sufficiently high peak power for SC gen-
eration. By providing directly long and high energy per pulse, no fur-
ther amplification is required for SC generation, reducing dramatically the
cost of optics and electronics components. However, depending on the
method used for Q-switching, several drawbacks can be pointed out es-
pecially when considering it for SC generation. The principal point of con-
cern, which is common to any Q-switched laser, is the low repetition rate.
The OCT has progressed to fast reading systems; therefore, several pulses
are necessary per each camera readout. In terms of noise, the OCT system
is highly sensitive to pulse to pulse fluctuations within the SC sources [5].
Therefore, a high repetition rate is necessary for averaging out any exces-
sive fluctuations [6]. Though, it is still interesting to investigate the potential
used of such a source for OCT.

7.3 Supercontinuum pumping using a Mode-locked

laser

Mode-locked lasers are used when very short optical pulses are needed,
as they can deliver pulse length in the ps and fs regime [10]. Mode-locking
is a technique which relies on the concept of phase synchronization of longi-
tudinal modes oscillating within the laser cavity. Any laser output is made
of a series of modes oscillating within the laser cavity [8]. Each mode os-
cillates within the cavity with a particular frequency and possesses its own
phase which can varies randomly. Mode-Locking consists of using passive
or active means to create a phase relationship between a number of modes
as large as possible. This phase relation allows to obtain a train of ultra-
short pulses [8]. When the laser cavity is short, a ML laser can pulsate at
rate from MHz to GHz rate [10]. However, ML lasers show low energy
when compared to a QS lasers. Then, when considering for SC generation,
an amplification stage is required to reach the necessary high pulse peak
power [11] to drive the HNLE. This amplification requirement is one of the
reason why the cost of a ML-SC tends to be higher than that of a QS-SC.
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7.4 Supercontinuum light sources

Two SC sources are used in this study, they are both available as com-
mercial product through the company NKT Photonics A/S (Denmark).

N

FIGURE 7.1: Pictures of the two SC sources: (a) SuperK Ex-
treme (ML-SC), (b) SuperK Compact (QS-SC).

The first SC source is a SuperK Extreme, labelled as EXR-9 [12], recom-
mended for OCT. This source is based on a principle described on section ??
where a ps long pulse is used to pump a HNLF close to the zero dispersion
wavelength situated at a wavelength around 1040 nm. The pump used is a
ML laser operating at a wavelength of 1064 nm with a pulse length of 7-10
ps and a repetition rate of 320 MHz. A fibre amplification is used to reach
an average power of 5 W at the input of the HNLFE. The generated SC has
a blue edge around 600 nm and a red edge at 2000 nm. The total output
power in the OCT wavelength range, from 1070 nm to 1470 nm, is about
1 W. A picture of the SC is shown in Figure 7.1 (a) and the source spectral
shape is presented in Figure 7.2.

The second SC source is a SuperK Compact [13], which is a low-cost
SC source with a total cost of around 10 % of the selling price of the firstly
described SC source. This SC generation is also based on pumping of a
PCF by a long optical pulse (pulse length of 1.6 ns). The pump is based
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FIGURE 7.2: Normalized Power Spectral Density (Power ver-

sus Wavelength) of the QS-SC (blue solid) and of the ML-

SC (red dashed) sources. Both spectra were measured using

an Optical Spectrum Analyser at the output of an Integrating
Sphere.

on a Q-switched architecture, more precisely a passive Q-switching using a
Cr4+: YAG crystal as saturable absorber. The repetition rate can be varied
from 1 Hz to 22.222 kHz, though as a drawback of passive Q-switching the
average power of the SC scales with the repetition rate [8]. At the highest
repetition rate of 22.222 kHz, the total output power is about 125 mW with a
power within the OCT wavelength range of around 30 mW. Similarly, to the
previous description, a picture of this SC source is shown in Figure 7.1 (b)
and the spectral shape is presented in Figure 7.2. Later in this chapter, the
Q-switched based SC will be denoted as QS-SC and the mode-locked based
SC as ML-SC.

7.5 Noise characterization using pulse to pulse mea-

surements

Supercontinuum light sources used in biomedical applications are of-
ten pulsed sources. Their repetition rate limits the reading rate in the OCT
system. At least one pulse per readout is required. In addition, amplitude

fluctuations from pulse to pulse limit the achievable Signal to Noise Ratio
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(SNR) and therefore the image quality [6]. A straightforward method for
characterizing pulse to pulse stability of an optical source consists in using
a fast photodiode (GHz) connected to an integrating sphere and an oscillo-
scope. If the detector is fast enough, the recorded voltage signal, for each
pulse, is proportional to its peak power [5]. The Relative intensity noise
(RIN) of the optical source is then calculated as

RIN = 7M. (7.1)
Hm

where o), is the standard deviation of the time series of local maximum in-
tensities within the pulse train and 1), is the average of the times series of
local maximum intensities within the pulse train. Figure 7.3 and Figure 7.4
describe the statistical properties of the pulse trains measured for the ML-SC
and the QS-SC respectively. Figure 7.3 (a-b) show the pulse train, measured
for the ML-SC at a wavelength of 1100 nm and 1450 nm, over a time of 0.2 ps,
corresponding to a train of 64 pulses. At a wavelength of 1100 nm, the pulse
train looks relatively stable, as shown in Figure 7.3 (c), which is a histogram
plot of the time series of the local maximum of the pulse train (indicated
by red dots in Figure 7.3 (a-b) or Figure 7.4 (a-b)). Indeed, Figure 7.3 (c)
presents a normal distribution for the pulse train maximum intensity time
series, which is usually an indication of low RIN [14]. In opposition, at a
wavelength of 1450 nm, the pulse train is unstable with amplitude fluctu-
ations almost equal to the full amplitude of the pulse train. This high in-
stability is confirmed by the histogram plot, shown by Figure 7.3 (d), where
the distribution is not anymore normal but looks more like a non-symmetric
Gaussian. This distribution asymmetry is an indication of high RIN in SC

source emission [14].
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FIGURE 7.3: Pulse to pulse noise measurements of the ML-

SC. (a-b): Example of pulse trains measured at central wave-

lengths of 1100 nm and 1450 nm respectively using a 10 nm

bandpass filter. (c-d): Histograms of the maximum pulse train

data series built from a 0.2 ps long pulse train. The wavelength
bands are selected using 10 nm bandpass filters.

In the case of the QS-SC source, the pulse to pulse measurements show
a different behaviour. Figure 7.4 (a-b) display examples of pulse trains, simi-
larly to Figure 7.3 (a-b), recorded over a time of 2 ms (45 pulses) for a central
wavelength of 1100 nm and 1450 nm respectively. Both wavelength pulse
trains exhibit relative good intensity stability. Figure 7.4 (c-d) confirm this
stable operation with a clear normal distribution. The sparse character of
the histogram plots shown in Figure 7.4 (c-d) is due to the lack of pulses
within the pulse train used for the histogram plot. The low repetition rate
of the QS-SC does not allow long records of data due to the maximum 2 ms
length setting of the available oscilloscope for reasonably small data size.
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Using similar measurements presented in Figure 7.3 and Figure 7.4, and by
covering the entire wavelength range of the OCT system a pulse to pulse
stability comparison can be obtained between the two sources. To do so, the
RIN is calculated using Equation 7.1 for the two SC sources. Figure 7.5 is a
summary of the RIN measured over the OCT wavelength range. As shown
by the pulse train analysis, the QS-SC source is much more stable than the
ML-SC source. Indeed, the QS-SC exhibits an almost flat RIN from 1100
nm to 1450 nm, whilst the ML-SC exhibits a constantly increasing RIN with
wavelength reaching values as high as 45 % at 1450 nm.
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FIGURE 7.4: Pulse to pulse noise measurements of the QS-

SC. (a-b): Examples of pulse trains measured at central wave-

lengths of 1100 nm and 1450 nm respectively using a 10 nm

bandpass filters. (c-d): Histogram of the maximum pulse train

data series built from a 2 ms long pulse train. The wavelength
bands are selected using 10 nm bandpass filters.
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FIGURE 7.5: RIN versus wavelength measured along the spec-
trometer range for both QS- SC (blue solid) and ML- SC (red
dashed).

Nevertheless, as mentioned above in this chapter, the ML laser and the
QS laser operate at different repetition rates. This difference needs to be
taken into account when operating into the OCT system. Indeed, it will de-
termine the number of pulses per readout of the camera and obviously, at
least a pulse is necessary per each readout. This demand adding the infor-
mation in Table 7.1 to that in Figure 7.5, which shows the number of pulses
per readout of the camera (close to the inverse of the camera frequency C7)
for the two considered SC sources. Whilst the ML-SC operates with thou-
sands of pulses, for instance of up to 64000 pulses per 150 x5 exposure time,
the QS-SC emits a few pulses only in the same time interval. This very large
difference in the number of pulses per readout can somehow contradict the
initial RIN versus wavelength measurement presented in Figure 7.5. The
effect of pulse to pulse stability is directly observable in the OCT image and
will be discussed in the next part of this chapter.
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TABLE 7.1: Calculated number of pulses per camera readout
for different exposure times ( T¢,)) for the ML-SC and QS-SC
sources. (', represents the camera reading rate.

SC Type T.up [ns] Cp[kHz] Pulses per Readout

ML 20 41.7 6400
ML 40 20.8 12800
ML 100 9.6 32000
ML 150 6.4 48000
QS 20 41.7 <1
QS 40 20.8 <1
QS 100 9.6 23
QS 150 6.4 4.6

7.6 Effects of SC noise on the OCT images

B-scan OCT images are built by assembling depth reflectivity profiles,
called A-scans, acquired by scanning the sample along a given lateral direc-
tion. Then, saying that the SC source noise affects the image quality of an
OCT system corresponds actually to the fact that the source noise disturbs
the reflectivity profile measurements. An A-scan is built by applying a Fast
Fourier Transform (FFT) operation to Channelled Spectrum (CS) acquired
by the spectrometer. An A-scan is then characterized by its peaks ampli-
tude, peaks width and its noise floor. It is common in the OCT community
to assume that the peak amplitude is dependent on the amplitude of the
modulation envelope contained into the CS. In opposition, the noise floor
is dependent only on the signal returning back from the mirror of the ref-
erence path of the interferometer. This assumption is justified as the signal
coming back from the sample is orders of magnitude smaller than the sig-
nal coming back from the reference mirror. Then, it is possible to investigate
how noisy is an optical source by observing the noise floor obtained for a
given signal in the reference path of the interferometer.

Figure 7.6 shows the noise floor for both SC sources and four different
exposure times. Each of the 500 noise floors is a readout of the spectrometer,
processed with dark signal and background subtraction, normalization, re-

sampling, windowing and finally subject to a FFT operation. When varying
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FIGURE 7.6: Noise floor of depth reflectivity profile, measured

with the sample arm of the interferometer blocked, using both

ML-SC and QS-SC sources at exposure times of 20 ps, 40 ps,
100 ps and 150 ps.

the exposure time the signal is kept at a similar level on the camera corre-
sponding to 50 % of the dynamic range (2000 counts). A few pixels from
the noise floor of Figure 7.6 are discarded, at an axial position of 180 um, as
they correspond to interference between the fibre-end reflection in the sam-
ple path and the reference path. A first observation is that the two groups of
curves in Figure 7.6, for the QS-SC and the ML-SC, are separated by around
20 dB. In the case of the ML-SC, due to the averaging over a high number
of pulses, the system is within the shot noise limited regime at around 100
ps (no improvement is seen in the noise floor from 100 ps to 150 ps expo-
sure time). For the QS-SC, the larger the exposure time the lower the noise
floor, suggesting that there is an influence of RIN in the OCT system. This
initial observation is confirmed by the sensitivity plots presented in Figure
7.7. The two groups of curves show a sensitivity difference of 20 dB, which

might seem important, especially considering the higher RIN of the ML-SC
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compared to the QS-SC. But again, the large difference in pulses per read-
out between the two sources gives the advantage to the ML-SC source when
considering OCT applications. Using the sensitivity formula in [15], theo-
retical shot noise limited sensitivity values of 100, 103, 107, and 109 dB are
obtained for exposure times of 20, 40, 100, and 150 ps, respectively, for 4 mW
power on the sample. These values assume a coupling back into the fibre of
70 % of the light returning from the sample and a spectrometer efficiency of
80 % (estimated, as we use a commercial spectrometer). The 100 and 150 ps
exposure time cases for the ML-SC source are close to the theoretical shot
noise limited sensitivity values as expected. The QS-SC sensitivity curves
lie 20-25 dB below the shot noise limited regime. An extrapolation of the
obtained data suggests that a shot noise limited regime could be foreseen
with the QS-SC for an exposure time of around 600 ps. However, too long
exposure time clearly impairs the system frame-rate. It is noticeable that the
150 ps QS-SC lies only a few dB below the 20 ps ML-SC case. At 20 ps expo-
sure time the camera line rate is around 40 kHz which is a common readout

speed reported in recent literature using InGaAs line-scan camera [16].
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FIGURE 7.7: Sensitivity decay with depth using both ML-SC
and QS-SC sources at exposure times of 20 ps, 40 ps, 100 ps
and 150 ps and considering 4 mW power on sample.
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Conventionally, OCT systems operate with an exposure time shorter
than 100 ps in order to minimize the effect of sample motion, common val-
ues of few tens of us can be found in the literature [17, 18]. Then, it is inter-
esting to compare the long exposure time noise behaviour of the QS-SC with
the ML-SC noise profile operating with short exposure time. This noise floor
difference in that case is less than 10 dB, which is an acceptable difference. A
drop of SNR is to be expected (10 dB) while using the QS-SC. Then, it seems
possible to use the QS-SC for UHR-OCT with long exposure time. As a com-
parison of the effect of this 10 dB difference in SNR, the spectrometer decay
with depth observed with any SD-OCT system is often comprised between
5-10 dB/mm but still acceptable contrast is obtained at axial positions larger

than 1 mm.

7.7 Axial resolution characterization
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FIGURE 7.8: Normalized Point Spread Functions (PSFs), mea-
sured with a mirror in a sample arm of the interferometer at an
axial position of 150 um, for both the ML-SC and the QS-SC.

The main characteristic of SC sources is their ultra-broad spectrum cov-
ering easily several hundred of nm. This point is of importance for OCT ap-
plication as it will define the axial resolution achievable by the system as de-
scribed in section 2.5.2. The two sources used in this chapter offer an optical
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bandwidth much larger than the spectrometer bandwidth. So, in both cases
the achievable axial resolution is mainly determined by the limited band-
width of the spectrometer and less dependent on the source spectrum itself.
Figure 7.8 is an example of normalized Point Spread Functions (PSFs), mea-
sured at an axial position of 150 pm, using the ML-SC and QS-SC sources.
The two PSFs show a Full Width at Half Maximum close to 5 ym (in air).

7.8 Example of Images - Non-Destructive Testing

From the results presented earlier in this chapter, it could be inferred
that the QS-SC source is suitable for OCT in cases where the exposure time
can be extended to values over 100 ps. Non-Destructive Testing (NDT)
is a field of OCT application where scanning speed is not necessarily the
main parameter. However, NDT sometimes requires UHR-OCT resolution
or longer central wavelength [19]. A source like the QS-SC is ideal for such
applications, as it provides exactly the same axial resolution than a conven-
tional SC source but at a much lower cost. To illustrate this point, Figure 7.9
presents a set of 8 images (B-scans) measured from an Infra-red Card (IR -
Card), which can be found in any optics laboratory. All images have been
displayed with identical coding for the grey-level conversion making the
visual quality comparison fair. First, an obvious difference can be seen be-
tween Figure 7.9 (a) and Figure 7.9 (e), which are the B-scans acquired using
an exposure time of 20 ps. Figure 7.9 (e) presents a poor image quality with
vertical black stripes all along the image. Those stripes correspond to read-
out of the camera where no optical pulse have been measured. Indeed, at an
exposure time of 20 ps, the linerate of the camera is 41.7 kHz, which is more
than twice the repetition rate of the QS-SC. The ML-SC shows a good image
quality with clear structural information distinguishable in Figure 7.9 (a). A
similar observation can be done for the exposure time of 40 us. However,
the QS-SC image is improved. When considering long exposure time such
as 100 ps or 150 ps, the images produced by the two sources become similar,
with more background noise when using the QS-SC.

An interesting tool for investigating the influence of the background

noise of the OCT image in the visual quality is the Michelson contrast C),.
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FIGURE 7.9: 1 mm x 2.4 mm B-scans of an IR card using a

power on the sample of 1.3 mW with exposure times of 20 ps,

40 ps, 100 ps and 150 ps in each respective column: (a-d) ML-

SC based and (e-h) QS-SC based B-scans. (scale bar 150 pym
depth — 400 pm lateral)

The Michelson contrast can be calculated using the Equation 7.2,

i 72
where I is the intensity signal of each pixel within the image, and where 1,,,,,
and I,,,;,, are calculated as an average of the 50 first highest and respectively
50 first lowest intensity pixels within the image. This contrast calculation
differs slightly from the original Michelson contrast in terms of the mini-
mum and maximum intensity calculation. This adaptation is necessary, if
not, taking directly the real minimum and maximum values of the image
leads to a very high contrast of 0.99 in all the cases. From the calculated
contrast which values are indicated on the corresponding images it can be
seen that relatively small contrast variations are observable from QS-SC to
ML-SC images. In the worst case scenario, comparing the largest contrast to
the lowest lead to a variation of 20-25 %
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7.9 Example of Images - Hand palm skin

So far, we have tested the QS-SC for non destructive investigation based
on UHR-OCT. However, biomedical application is the main target for OCT.
Figures 7.10 and Figure 7.11 are examples of skin images acquired in-vivo
from the hand-palm of a healthy volunteer using 4 mW on the sample.
The volume dimensions are 500 (A-scans) by 500 (B-scans) by 1024 (depth
points). These are acquired in 37.5 s for the longest exposure time (150 ns)
considered. This time is too long for imaging to be applied to samples in
motion, as it is the case with imaging the eye, heart or even skin. For such
long exposures, motion correction processing would be required before any
volume averaging or any other advanced processing. Using the shortest
exposure time of 20 ps, a volume acquisition can be finalized in 5 s, this is
however still long for biomedical imaging of organs. Here, to compensate
for eventual movement in x and y directions, we have used a hand-held
probe, which is in contact with the sample except for a small aperture re-
served for the optical beam scanning. This restricts the motion along the

depth direction only, as the sample is maintained stationary in respect to

FIGURE 7.10: Example B-scans from a healthy volunteer hand

palm skin of 1.6 mm x 4 mm, obtained using: (a-d) ML-SC;

(e-h) QS-SC. Exposure time in each row: 20 ps, 40 ps, 100 ps
and 150 ps, respectively (scale bar 450 yum).
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the z and y directions. Then, the remaining motion in the z-direction can
be compensated through conventional algorithms, if further volume pro-
cessing would be considered. In terms of image quality, conclusions can be
drawn similar to those from imaging the IR card above. Figures 7.10 and
7.11 confirm that 20 ps and 40 ps are too short exposure times and during
such intervals the number of pulses is less than one. As soon as there are a
few more pulses per readout, the QS-SC reaches similar image quality com-
pared to the ML-SC. A difference of 20 % is obtained in the contrast. In the
case of the en-face display of Figure 7.11, the problem of black stripes due
to readouts containing no pulses is very important. The images acquired at

20 ps and 40 ps show almost no structural information.

£=023 - Ve=098~" lc-028 ——

FIGURE 7.11: Example of 4 mm x 4 mm C-scans extracted

from a volume acquired from a healthy volunteer hand palm

skin. (a-d): ML-SC based C-scans and(e-h): QS-SC based C-

scans. Exposure times 20 ps, 40 ps, 100 ps and 150 ps. (scale

bar 1 mm) — (NaN means that the contrast cannot be calculated
for the 20 pus QS-SC image due to lack of signal).

7.10 Conclusion

In this chapter, a QS-SC have been used for UHR-OCT in the wave-
length range of 1300 nm. First, it is shown that the QS-SC shows much
more stable behaviour compared to the ML-SC. This is of importance for
OCT in order to reduce the pulse to pulse fluctuations causing very high
RIN. Though, this stability is to be considered together with the repetition
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rate of each SC source. Indeed, the QS-SC operates at a much lower repe-
tition rate compared to the ML-SC. Then, an analysis of OCT A-scan noise
floor showed that the QS-SC exhibits noise much higher than the ML-SC
if long exposure time are considered, differences up to 20 dB are observed.
However, the QS-SC noise level is comparable, within 10 dB, to the ML-SC
used with short exposure time of 20 ps. Finally, two examples of images
are presented where it is shown that the QS-SC can obtain acceptable im-
age quality, similar to the ML-SC, at long exposure time. In addition to the
demonstrated operation in the 1300 nm range, the QS-SC source is suitable
for operation either at shorter wavelengths (800 nm range) or even at longer
wavelengths (1700 nm, 2000 nm range). In conclusion, the QS-SC looks to be
a very interesting alternative SC source offering identical extremely broad
spectrum to that of a ML-SC but at a much lower cost.
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Chapter 8
Conclusion and future work

As proposed in the introduction Chapter, two main topics have been
discussed in the thesis. The first topic was the problem of signal processing
in Optical Coherence Tomography (OCT) and Ultra-High Resolution-OCT
(UHR-OCT). The second topic was the impact of noise due to Supercontin-
uum (SC) light sources in Spectral Domain-OCT (SD-OCT).

8.1 Complex Master/Slave Interferometry related
topics

Signal processing is an important part of the work required in order to
produce an OCT image. As described in Chapter 4, some of the processing
steps are compulsory and common to any OCT technique. Such steps are
detector noise correction, background subtraction or conversion to logarith-
mic scale. Different procedures can be applied for analysing the frequency
content of the interference fringes. If considering conventional FD-OCT,
resampling and dispersion compensation are compulsory for achieving an
accurate depth reflectivity profile. Otherwise, if Complex Master Slave In-
terferometry (CMSI) is used, no resampling nor dispersion compensation
are needed to infer a correct depth reflectivity profile. Within this thesis,
processing dedicated to both conventional OCT and CMSI have been pre-
sented in detail. Several conclusions can be drawn regarding the alternative
CMSI based OCT compared to FFT based OCT. First, CMSI effectively al-
lows to measure a depth reflectivity profile using a comparison scheme of
spectral shapes and pre-generated signals called Masks. With no FFT and
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hence no resampling neither dispersion compensation, CMSI measures ac-
curately the same information as a fully corrected FFT based OCT proce-
dure. The second conclusion relates to the sensitivity achievable with the
CMSIL. If comparing CMSI based and FFT based sensitivity values obtained
from the exact same data set, no differences have been observed. This tells
us that the two methods are behaving similarly in terms of the noise prop-
erties when considering Low Coherent Interferometry principle. Regard-
ing axial resolution consideration, some small advantage was noticed when
using the FFT based algorithm which included resampling and dispersion
compensation. Even though this advantage was small, this suggests that
the CMSI procedure presented in the thesis was not optimal. However, the
results reported in the thesis have been obtained based on the work done
during the first half of the PhD (March 2014 — September 2015). Since then,
the CMSI method was further sophisticated and now no difference is ob-
served in the axial resolution between FFT based and CMSI based OCT.
Master-Slave Interferometry is a relatively new principle (2013). Even
more, the method presented in this thesis, CMSI is only 2 years old. This
means that the method is relatively young and that multiple future avenues
can be pursued. However, only a few will be mentioned here. One of the
most interesting would certainly be a study on live updating the Masks dur-
ing the very imaging step in order to compensate for sample dispersion and
then reach transform limited point spread function at any depth within the
sample. Still within the topic of dispersion in OCT, due to the insensitiv-
ity to dispersion effects arising from the system, CMSI seems well suited
for spectroscopic applications. Indeed, any remaining dispersive effects de-
tected while using the CMSI procedure can come only from the sample it-
self. Then, a measure of those dispersive effects can be turned into infor-
mation. Also, another advantage of the CMSI technique is that some pre-
processing steps can be performed during the generation of Masks. Process-
ing steps such as normalization and apodization are usually done after the
readout acquisition in a FFT based scheme. Such a processing procedure
is not time efficient. Using CMSI, those steps could be computed within
the Masks generation step with the direct consequence of speeding up the

imaging step.
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8.2 Noise from SC source and OCT

The second topic and also the main topic discussed during the thesis is
the impact of noise from SC sources in a SD-OCT system. Three Chapters of
the thesis have been dedicated to this discussion.

The study of Chapter 5 relies on the current generation of commercial
SC sources based on pumping a Photonic Crystal Fibre (PCF) close to its
Zero Dispersion Wavelength (ZDW). In this chapter, it is shown that in-
creasing the source repetition rate can lead to reduction of the extension
of the Relative Intensity Noise (RIN) dominated regime over the dynamic
range of the spectrometer camera. Using a repetition rate of 320 MHz, a
shot noise dominated regime is achievable between 10 % and 25-30 % of the
dynamic range of the camera considering exposure time in the range of 20
ps. Operating under shot noise limited regime for the OCT system leads to
an increase of the Signal to Noise Ratio (SNR) of about 3-4 dB compared to
the RIN dominated regime. Also, by extrapolating on the current data, a SC
source operating at a repetition rate of 800 MHz to 1 GHz should enable an
almost complete reduction of the source RIN impact into the OCT system.
More accurately, it should reduce the RIN impact to a value smaller than the
shot noise one and hence it could lead to a maximized SNR. Such a source
could be assembled by playing with the balance of peak power versus aver-
age power of the SC source pump. The SC sources used in Chapter 5 have
shown a spectral extension much larger than what is required for OCT in
the 1300 nm region. Therefore, a decrease of the SC pump peak power can
be implemented in order to reduce the average power without impairing
the overall spectral bandwidth necessary for the OCT. This lower average
power condition can be used in order to increase the repetition rate of the
source without any risk of damaging the PCF. This peak power reduction to-
gether with an increase of repetition rate for noise reduction is possible only
because the impact of both parameters on the total noise in the OCT sys-
tem is different. Repetition rate increase is much more efficient than peak
power increase. For example, from Chapter 5, a peak power drop of 50 %
still leaves the system with large enough spectral bandwidth but also offers

the possibility of doubling the pump repetition rate. Such improvement will
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increase the SNR by almost 3 dB, placing the OCT system in a regime very
close to shot noise dominated regime over the entire camera dynamic range.

The second study conducted regarding noise and OCT was presented
in Chapter 6. In this study, the SC source design has been changed from
long pulse to ultra-short pulse for the SC pump. Also, the PCF have been
changed so that the fibre dispersion profile is all-normal (D < 0 ps.nm™ km™
) instead of both anomalous (D > 0 ps.nm™ .km™) and normal depending on
the wavelength considered. By changing the SC source design from the pre-
viously described one (ps pumped close to the fibre ZDW) to the proposed
one (fs pumped with all-normal dispersion fibre), the SC generation is based
on deterministic non-linear effects such as Self-Phase Modulation and Op-
tical Wave Breaking. This new concept is in opposition to the SC source
design used in Chapter 5, based on non-linear effects such as Modulation
Instability and Solitons. The new SC source has been assembled and tested
into an SD-OCT system operating within the 1300 nm wavelength region.
After SC generation, the spectrum covered a spectral region from 700 nm
to 1400 nm. For the SD-OCT, the red side of the SC is used and it covered
almost the entire spectral range of the spectrometer (from 1070 nm up to
1470 nm). The new SC source was used for SD-OCT imaging of skin where
similar image quality was obtained compared to the conventional SC source
design, with the additional advantage of less RIN level. It is shown that the
deterministic SC source has a noise profile similar to a SLD source but with
larger bandwidth and higher power. Nevertheless, the source built during
this project was a simple proof of concept and several points need to be im-
proved. The most important problem encountered during this project was
the temporal source stability. The femtosecond laser used a compression
block in bulk and therefore provided a free space collimated beam. Then, a
free space to fibre coupling of light was required for injection into the PCFE.
This coupling was extremely unstable due to the high average power from
the laser and the small core of the PCFE. This critical point leads to high ther-
mal effects at the fibre facet and inside the fibre. Several instances when the
tibre was destroyed have been observed during the project. An interesting

improvement for the source would be to consider a fibre based connection
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between the source and the PCF. Also, during the study a commercial fem-
tosecond source was used. A minimal pulse length of 170 fs and a repetition
rate of 80 MHz lead to a high average power into the fibre however neces-
sary to achieve a smooth SC spectrum. A shorter optical pulse could achieve
a smooth spectrum for a lower average power into the fibre and then a min-
imal risk of fibre destruction.

The last chapter of the thesis is dedicated to a demonstration of a low-
cost SC source for OCT imaging. Such SC source could be used if consider-
ing longer exposure times compared to the exposure times of current fast
OCT systems. The current high cost of SD-OCT technology is to be at-
tributed mainly to the laser cost and the spectrometer cost. In this chapter,
it is proposed to use a SC source based on Q-switch technology for the SC
pump instead of the conventional Mode-locked technology. The advantage
of using a Q-switched-pump is its much lower cost compared to the Mode-
locked one. A large technical difference between both lasers types is their
repetition rate of operation. While Mode-Locked lasers can achieve hun-
dreds of MHz and even GHz repetition rate, Q-switched lasers are limited
to the kHz regime (a few tens to a few hundreds of kHz). This parameter
affects the SNR of the SD-OCT system as the source RIN impact is modified
by the number of pulses detected during an exposure time of the camera.
However, we have shown that a QS based SC (QS-5C) source shows a much
more stable pulse-to-pulse behaviour compared to a ML based SC (ML-SC).
Then, the QS-SC source can be used for OCT at the only cost of increasing
the exposure time of the camera to value in the range of 100 ps. Doing so,
the images obtained with the QS-SC are comparable to the images obtained
with the ML-SC source. Also, the OCT systems considered in this study op-
erates in the 1300 nm region. Nevertheless, the QS-SC source presents a flat
spectrum covering from 600 nm to 2400 nm. It would be interesting to in-
vestigate the usefulness of such a SC source at other wavelength range than
800 nm or 1700-2000 nm. Such a source can be a first step towards lowering
the cost of SD-OCT system. Its current cost is less than 10 % compared to
the cost of the ML-SC commonly used for OCT.

In a more general view and as a final conclusion, fibre-based SC sources

are by far one of the most interesting optical source for SD-OCT. Due to their
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ultra-broad spectrum, their high spatial coherence and large average power,
they are one of the very few options available for driving OCT systems
(from visible to far Infra-Red). Over the years, considerable work has been
devoted to ameliorate the issue related to the high RIN that limits their use-
fulness in OCT. Nowadays, fibre-based SC sources have spread among most
of the research groups working on SD-OCT. Essential for further progress is
for academia to liaise with industry and enhance the utility of SC source.
An example in this direction was the launch of the UBAPHODESA Marie
Curie collaborative training school involving a leading research group in
high resolution optical medical imaging (Applied Optics Group — Univer-
sity of Kent) and the world leader in SC source manufacturing (NKT Pho-
tonics A/S). This collaboration has led to numerous results in applications
such as Microscopy, Photo-acoustic imaging and SD-OCT.
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Complex Master-Slave

Interferometry

- A. Bradu, M. Maria, and A. Podoleanu, "Demonstration of tolerance
to dispersion of master/slave interferometry," Opt. Express 23, 14148-14161
(2015). https://www.osapublishing.org/oe/abstract.cfm?uri=
0e-23-11-14148


https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-11-14148
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-11-14148

Complex master slave interferometry

12" Michael Maria,* Adrian Bradu,' Thomas Feuchter,® Lasse Leick,’

and Adrian Podoleanu®

*Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK
2Université de Bretagne Occidentale, EA 938 Laboratoire de Spectrométrie et Optique Laser, 6 avenue Le Gorgeu,
C.S. 93837, 29238 Brest Cedex 3, France
3NKT Photonics A/S, Blokken 84, DK-3460 Birkerod, Denmark
“sylvain.rivet@univ-brest.fr

Sylvain Rivet,

Abstract: A general theoretical model is developed to improve the novel
Spectral Domain Interferometry method denoted as Master/Slave (MS)
Interferometry. In this model, two functions, g and h are introduced to
describe the modulation chirp of the channeled spectrum signal due to
nonlinearities in the decoding process from wavenumber to time and due to
dispersion in the interferometer. The utilization of these two functions
brings two major improvements to previous implementations of the MS
method. A first improvement consists in reducing the number of channeled
spectra necessary to be collected at Master stage. In previous MSI
implementation, the number of channeled spectra at the Master stage
equated the number of depths where information was selected from at the
Slave stage. The paper demonstrates that two experimental channeled
spectra only acquired at Master stage suffice to produce A-scans from any
number of resolved depths at the Slave stage. A second improvement is the
utilization of complex signal processing. Previous MSI implementations
discarded the phase. Complex processing of the electrical signal determined
by the channeled spectrum allows phase processing that opens several novel
avenues. A first consequence of such signal processing is reduction in the
random component of the phase without affecting the axial resolution. In
previous MSI implementations, phase instabilities were reduced by an
average over the wavenumber that led to reduction in the axial resolution.
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1. Introduction

Spectral (or Fourier) domain Interferometry (SDI) is widely spread in many fields of
biomedical optics, especially in Optical Coherence Tomography (OCT) [1,2]. SDI encodes
distances, thicknesses, scattering properties or refractive indices onto the density of
modulation of the optical spectrum, i.e. channeled spectrum, at the interferometer output.

To decode the channeled spectrum, SDI uses a Fourier Transform (FT) operation that
translates the modulation density into a distance measurement. SDI principles can be applied
to systems employing either a broadband optical source (spectrometer based, Sp) or a tunable
optical source (swept source, SS). In the case of a Sp system, the channeled spectrum at the
interferometer output is read by a camera incorporated within the spectrometer. This
channeled spectrum is chirped due to a nonlinear dependence of the pixel position in the
camera versus the optical frequency. When a SS system is employed, the temporal signal read
by a photodetector at the interferometer output presents a chirp mainly due to non-linear
frequency sweeping. We will refer to these chirping effects as due to the decoding process
from channeled spectrum. In addition to the chirp due to spectrum decoding, unbalanced
dispersion in the interferometer arms also affects the regularity of maxima and minima in the
readout channeled spectrum. For a strictly periodic modulation (no chirp) of the channeled
spectrum, a FT returns a well-defined peak. The chirp in the spectrum modulation translates
into an enlargement and reduction in the amplitude of such a peak, worsening the axial
resolution and sensitivity.

In order to correct the chirping before FT, hardware and software methods have been
reported. In terms of hardware solutions, a spectrometer using a prism after the diffraction
grating [3,4], or chirped sampling using an analogue line scan camera [5] were proposed.
Several solutions have also been proposed to compensate for dispersion, using matched
lengths of glass [6], spectral delay line [7], fiber Bragg gratings [8]. In terms of software
solutions, several methods have also been developed to resample and organize the data
linearly along the optical frequency axis, or wavenumber, prior to the FT. Common
corrections are based on the interpolation of the phase in order to obtain linearity in k-space

#255422 Received 9 Dec 2015; revised 20 Jan 2016; accepted 27 Jan 2016; published 4 Feb 2016
(C) 2016 OSA 8 Feb 2016 | Vol. 24, No. 3 | DOI:10.1364/OE.24.002885 | OPTICS EXPRESS 2886



[9]. More complex techniques based on fractional Fourier transforms [10], non-uniform
Fourier Transformation [11], or advanced computational algorithms [12-14] provide a
posteriori data resampling.

Master-Slave Interferometry (MSI) is a new approach to SDI to eliminate the chirp effects
[15]. The MSI proceeds in two stages. In a first stage (Master), a mirror is used as an object
and experimental channeled spectra (CSy,) are measured and stored, for a number P of
different values of the optical path difference (OPD) in the interferometer. In a second stage
(Slave), the object replaces the mirror and the channeled spectrum is compared with every
CS,yp saved in the memory block and used as a mask. The comparison operation of each mask
with the channeled spectrum was implemented via correlation [15-19] or by simplified dot
product procedures for faster implementation of correlation for argument zero [20,21]. The
maximum value of each comparison (correlation) is selected to provide the depth information
profile (A-scan) at each OPD value selected during the Master stage.

MSI presents several advantages compared to conventional SDI. The process of data
resampling performed during measurements is replaced by data storage at the Master stage,
which shortens processing time while performing measurements. The quality of data
resampling for the conventional FT-based method affects the axial resolution.
Advantageously, MSI exhibits a constant resolution over the OPD range which recommends
it as a useful tool for metrology and imaging. Each CSe, provides direct access to
measurements from that OPD value used at the Master stage to produce it, conferring
advantage to MSI in terms of production of en-face OCT images. Recently, its tolerance to
dispersion in the interferometer has also been demonstrated [19].

Nevertheless, the implementation of MSI reported in previous reports presents some
shortcomings, such as:

(i) Typically, a large number of CS,,, need to be recorded at the Master stage, a problem
especially when using large bandwidth sources. The sampling of the A-scans in
depth is determined by the number of CS,, recorded for incremental depths.

(ii) MSI is characterized by a trade-off between phase instability and axial resolution.
The phase in the interferometer varies between the step of recording the CSe,, and
the step of scanning the object to be imaged, considered here as a random phase shift
Jrana- As the phase is discarded, it is not possible to eliminate its effects. To reduce
the effect of the random phase shift, the correlation function is averaged over several
lags [15-19] that leads to some deterioration of the axial resolution.

In this paper, an improved method is presented that addresses the above shortcomings.
This method, Complex Master Slave Interferometry (CMSI), does not directly use CS,, as
masks, contrary to [15-21], but develops a procedure to infer any number of masks from a
reduced number of CS,,, acquired. Additionally, the masks generated are complex in order to
conserve the phase information.

This paper is organized into three theoretical sections and an experimental section. The
theoretical sections describe the interferometric signal in a SDI set-up unbalanced from the
point of view of dispersion and equipped with a chirped decoder, obtained in conventional
MSI [15-21] and in the novel CMSI presented here. The chirp affecting the channeled
spectrum at the interferometer output is modeled by two functions g and h. Based on these
functions, a procedure of inferring a number of Q channeled spectra (masks) at the Slave
stage from a variable number P of CSe,, with Q>>P is then presented. The experimental
section demonstrates the conservation of axial resolution over depth for both spectrometer
and swept source based SDI methods.
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2. Chirped decoder and interferometer with unbalanced dispersion
2.1. General description of an SDI experimental set-up

In Fig. 1, a SDI schematic diagram is shown, made of two main components, an
interferometer and a decoder. The interferometer includes a splitter (shown as a directional
coupler), a reference mirror (M), an interface optics that conveys light towards an object (O)
subject to tests or imaging. In case the application is spectral domain OCT, the interface
optics contains a lateral or transversal galvo-scanner. The decoder block translates the
channeled spectrum shape at the interferometer output into an electrical signal. For a
spectrometer-based configuration, the source is broadband and the decoder is a spectrometer.
For a swept source configuration, the optical source is a swept source laser and the decoder is
a fast photodetector.

AN

Spectrum

Cl Ch led spectrum
Ipc#A Ipc=A

Fig. 1. Block diagram for a spectral domain OCT system. C1 and C2, collimators; M, reference
mirror; O, object. Two channeled spectra are shown underneath, for a mirror as a sample. lpc
represents the power spectrum of the optical source, shown by the red Gaussian shape solid
line. The A shape is shown by the dashed blue line, determined by the interference contrast of
the modulating signal proportional to the channeled spectrum. On the left, the usual case in
practice is shown when IpcA. Here, the interference contrast A is deliberately shown smaller
on the left side of the spectrum. In this case, A varies below lpc on the left hand side and
regains the Ipc value on the right. The channeled spectrum on the right shows the ideal case,
when Ipc = A, i.e. when the contrast profile A and the Ipc profile are superposed on each other.

In the following, a mathematical expression of the electrical signal at the output of the
interferometer shown in Fig. 1 is obtained, where the decoder performs nonlinearly and
dispersion is left unbalanced between the arms of the interferometer.

2.2. Fourier transform of the channeled spectrum

Let us consider a non-uniform distribution of frequencies v along the pixels of the line array
detector when using a spectrometer, or along time when using a tunable laser. The
relationship between the optical frequency nand v is given by the function g(v) = n.

The unbalanced dispersion between the arms of the interferometer can be described by a
function d(n):

0(r) =220 [(na(v) =1 (v5))es = () -1, (). @
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where ny, and n, are the refractive indices of the dispersive parts in the reference and in the
object arm respectively, e; and e, their thicknesses and ng the central optical frequency of the
source.

The electrical signal 1(7) delivered by a non-ideal decoder is a chirped signal according
to v and can be written as a superposition of a DC term, Ipc, and a complex exponential form
of a periodic function I(v) as follows

1(7) = Ioc(g(V))%(L(v“)u'(v‘)), @

where g takes into account the decoding procedure chirp and * corresponds to its complex
conjugate. Ipc follows the shape of the power spectrum of the optical source (in spectrometer-
based configurations and to the tuning bandwidth in swept source configurations).

Considering r the complex reflectivity of the object varying with depth r, the complex
electrical signal 1(v) corresponding to the decoded channeled spectrum can be written as a
continuous summation of modulations

10)=[r(p)A(a(7)) Exp{i(%{ a(7)2p+ h(o)ﬂdp, @®

where c is the speed of light, h(v) = d(g(v)) is a function depending on the unbalanced
dispersion in the interferometer and the nonlinear dependence onv. The depth r = 0
corresponds to the OPD = 0 in the interferometer. A(n) represents the interference contrast. In
practice, A(n) is different from the power spectrum of the optical source, Ipc(n) as shown by
the left channeled spectrum in Fig. 1. This is due to several additional effects such as
polarization mismatching of reference light and object light fields or due to chromatic
aberrations introduced by optical components, factors that reduce the axial resolution.
Although the amount of unbalanced dispersion due to the object can be incorporated into the
overall unbalanced dispersion present within the system, we restrict h to describe the
dispersion in the interferometer only. Equation (3) presents the most general expression for
the channeled spectrum, which includes the nonlinear dependence on v and the dispersion
effects.

If the decoder is linear (g(v) = v = n) and the interferometer is perfectly balanced for
dispersion (d = 0), the inverse Fourier transform of | is directly related to the complex
reflectivity r in depth z of the object (A-scan) via the following expression as detailed in

Appendix A:
(@) (@) bren 2. o

where T and Tpc are the inverse FT of | and Ipc respectively, ® is the convolution operation
and Py is the axial Point Spread Function (PSF) of the system defined by

Ry (t)=FT[A(v)]. ©)

As shown by Eq. (5), the axial resolution (the width of Py) does not vary with depth, being
only determined by the interference contrast, A(n). This happens in the case of a perfectly
dispersion-balanced interferometer interrogated by an ideal decoder (either spectrometer or
tuning laser).

In the paper the refractive index and the dispersion of the sample are ignored to simplify
the study. All distances are measured in air. In the common practice of conventional FT based
OCT methods, the depth in the sample was inferred by dividing the axial depth interval, after
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FT, by the index of refraction of the sample. To compensate sample dispersion, a slab of
similar material in the reference arm or a numerical compensation should be used. Similarly,
the axial intervals associated to each mask of CMSI are measured in air, therefore they
correspond to a depth in the sample obtained by their division to an average index of
refraction. As far as sample dispersion is concerned, CMSI should also be used with a slab of
similar material in the reference arm or with masks modified by the amount of dispersion to
be compensated at each depth.

3. Theory of master-slave interferometry
3.1 Master slave signal

In contrast to conventional spectral (Fourier) domain interferometry, MSI delivers a signal
from a single depth, z, within the object to be investigated. Initially, for the comparison
operation required by the MSI method, correlation was used [15-19]. To improve on the
calculation speed, a modified correlation operation was proposed [20,21], reduced to the
correlation calculation in lag N = 0. This delivers the value of an A-scan at depth z, the MSI
signal, according to

Mt (2)=[C(N,2)],  =[ [CS, (74 N,2)1 (a)d&]ﬁzo, ®)

where C is the correlation operation between the channeled spectrum I collected when the
object is placed in the object arm (Slave stage), and the mask corresponding to the channeled
spectrum CSe,, collected at the Master stage for an OPD = 2z, when the mirror is used as an
object.

3.2. Limitations in the MSI practice due to using the CS,,, as masks
The experimental channeled spectra CSe,(z) can be written according to

(i) a random phase shift gana(z) induced by the fluctuations of the OPD between the step
of acquiring the channeled spectra to be used as masks and the step of measuring the
channeled spectrum I associated to the object,

(ii) a coefficient o(z) describing the variation with OPD of the strength of the CS,
collected. This is due for instance to the variation of the amount of light injected into
single mode fibers when altering the OPD in the interferometer,

(iii) a complex-valued channeled spectrum CS, not affected by the random phase shift.
The channeled spectrum CS is only affected by the specific modality of decoding the
spectrum into an output electric signal, and the dispersion in the interferometer as
follows:

Cs (7, Z):A(g(17))Exp{i(z?”g(ﬁ)ZZJrh(l?)ﬂ. I

According to the considerations (i), (ii) and (iii) above, the experimental channeled spectrum
is described by

CSW(17,2):%a(z)@(&,z)e'”’““"“’ La@cs@ayet=. @)
Note that no DC component appears in Eq. (8) because a high-pass filter is applied on each

saved CSey.
Combining Egs. (6)-(8), the MSI signal can be written as
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MSI () = %a(z)e"“"m<‘> Jes(7.2) 1(7)dv+cc, ©)

where CC stands for Complex Conjugate, or using the complex exponential form of |
(Appendix B), as

MSI(z):%ﬂ%e{a(z)e"%“"‘” [es(72) 1(7)dv), (10)
where Re{} denotes the real part of the complex function within the curly brackets. Equation
(10) is valid for an object positioned outside OPD = 0 (Appendix B).

In order to present the relationship between the MSI signal and the reflectivity r of the
object, a complex function y(z) is defined by
7(2)=[Cs(v.2) 1(v)dv. (12)

Using the expression of the CS given by Eq. (7) and the expression of the complex channeled
spectrum | given by Eq. (3), y(z) can be expressed as

y(z):[jr(p)\A(g(a))zExp[-i[Z%g(a)xz(z-p)ﬂdpda. 12)

As the same amount of unbalanced dispersion h(v') is present in both CSe,, and I, (and
consequently in their complex forms CS.,, and 1), the effect of unbalanced dispersion is
totally eliminated in Eq. (12). A change of variable, d = z-r, allows us to rewrite Eq. (12) as

#(2)=[[r(z-5) [a(g (7)) exp[—i[%g(i)wﬂdédﬁ. (13)
Let us denote P, as

_\\[2 - _ _
R.(t)=[|A(g(7)) Exp[-i2rg(v)t]dv. (14)

In case g(v) = v = n, we recognize P4(t) as the axial PSF of the system, similar to Eq.
(5). Here the power of the interference contrast A is squared because both the masks CSy, and
| depend on A. Using Eq. (14) in Eq. (13), y(z) can be expressed as a convolution product
between the complex reflectivity profile of the object r(z) and the function P,(2z/c):

¥(2)=[r(z-0)R(26/c) ds =r(2)®R(2z/c), (15)

Let us consider G as the inverse function of g, G(g) = 1. Using a change of variable g(v) = n,
the function P, can be expressed as follows

R.(t) = [|AG) Exp[-ivt]G'(v)dv, (16a)

where G’(n) is the derivative of G(n) in respect to n. Via a Fourier transform, Eq. (16a) can be
written as

R ()= FT*UA(V)\2 G'(v)]. (16b)

As a more general description for the MSI operation, the MSI signal for OPD = 2z can be
expressed as the convolution product between the depth-resolved complex reflectivity r and
the axial PSF Py, defined in Eq. (16b), by
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MSI(Z)=@€Re{ew’”“‘”(r(z)® F’l(Zz/c))}. 17)

Equation (17) shows that the reflectivity of the sample measured via the MSI method is
independent of the amount of dispersion left unbalanced, meaning that the axial resolution is
not affected. This property has already been demonstrated in [19]. Additionally, as the
decoding non-linearity described by G’ is the same at all OPD values, the axial resolution is
also independent on z but it is not optimal, as Eq. (16b) involves the square of A than simply
A in Eq. (5). For instance if A has a Gaussian shape, the axial resolution is 2 poorer than
the axial resolution obtained with the FT method without any unbalanced dispersion and
nonlinearities. An improvement in the practice of MSI would be to eliminate the shape of A
from the masks in Eq. (10) as suggested by the theoretical model in [19] but not done in [15-
18,20,21]. Equation (17) also shows that combination of phase in the complex r with the
random phase impedes the recovery of the complex r.

In order to address this problem, we propose to use complex masks, as we describe in the
next section.

4. Complex master-slave interferometry

The main idea of CMSI is to generate, during the Master stage, a complex function
incorporating two phenomena: (i) the non-uniform distribution along the axis, v, of the
detector (pixel for spectrometer or time slot for swept source) due to the nonlinearities in the
decoder, function g, and (ii) the unbalanced dispersion of the interferometer, function h. The
masks to be used in CMSI at the Slave stage are then to be obtained from this complex
function, evaluated in as many OPD = 2z values as the user requires, independently from the
OPD values used to measure the CSey.

4.1 Extraction of the functions g(v ) and h(v') at the master stage

In CMSI, it is possible to infer the masks from a Mask function My, created by calculating
the functions g(v') and h(v) from data acquired in the Master stage, when a number P of
CS,yp are recorded for P OPD values. These experimental channeled spectra are then extended
into their complex exponential form CS,,, according to a procedure described in Appendix C.
Their corresponding phases f*°( 77, z) are obtained by extracting the arguments of CS,y,. The
phase f*°(, z) is expressed according to

oxp [ 2T . ~
97 (7.2) === 0(7) 2240 (7) + 9o (2)- (18)
A partial derivative of Eq. (18) in respect to ¥ removes the random phase and leads to
0 oo 2 - _
— ¢ (v,7)=—=0g'(V)2z+h'(V), 19
0 (7,2) =T g (7) 22°(9) (19)

where g’(v') and h’(v) are the derivatives of g(v) and h(v').

A linear regression according to z permits to retrieve the slope 4pg’(v;)/c and the y-
intercept h’(v;) for each v ; of the channeled spectrum, and build 4pg’(v )/c and h’(v') along
the spectral coordinate v. Then an indefinite integration is used to infer 4pg(v )/c and h(v').
Figure 2 describes the step by step procedure of obtaining the set of functions g and h from an
experimental set of CSey,, and then the Mask function Mpyiy.
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(v.2) complex form s, (7.2) argument
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Fig. 2. Step by step procedure to infer the Mask function from a reduced set of experimentally
measured channeled spectra.

) derivative %@,\,(i:)
v

By retaining the phase of the CS,, only, the spectral amplitude of the Mask functions
Mupuire is flat. The elimination of the spectral dependence of the masks used by CMSI leads to
an optimum axial resolution related to FT '[A] as it will be demonstrated in Section 4.3
below.

4.2 Complex MSI signal
The Mask function My, to be used by the CMSI, is defined at the OPD = 2z as

My (7,2) = 9'(¥) Exp{( g(v)2z+h(v )ﬂ (20)

where g’(v) is the derivative of g(77). CMSI signal is defined similarly to Eq. (6) by the
following integral

CMSI(2) = [ My, (7,2) 1 (7)dv. (21)

CMSI involves a similar definition to the MSI except that the CS,, used as masks are
replaced by a complex function with the adjustable parameter z. CMSI is valid for an object
set outside OPD = 0, i.e. 2z should be larger than the coherence length L. of the light source
(inverse proportional to the bandwidth of the optical source in Sp-OCT and to the tuning
bandwidth in SS-OCT).

4.3 Relation between CMSI and reflectivity r in depth
By using the complex exponential form of I, CMSI can be written as follows (Appendix D)

CMSI(Z):%IMQM(V,Z)L(&)dﬁ, (22)
and the operation of the CMSI can be described by
cMmsI(z jj (p) A9 Exp[—l[—g( )xz(z_p)ﬂ g'(v)dv dp, (23)

according to Eq. (20) and Eq. (3). Changes of variable n = g(v) and 6 = z-r are carried out in
Eq. (23) leading to

CMSI(z jJ’ (z-9) Exp[— —v25}dvd5 (24)

Equation (24) can be rewritten as a convolution product between the complex reflectivity
profile r(z) and the point spread function Py

CMSI(Z):%r(z)@PD(Zz/c), 25)
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for 2z>L, where P, is the axial PSF defined by Eq. (5) and equal to FT*[A].

Again, depth information profile is extracted and expressed as a convolution product
between a complex reflectivity function and the ideal PSF of the system, which leads to a
constant axial resolution in depth irrespective of the non-linearity of the decoder and
irrespective of the amount of the unbalanced dispersion in the interferometer.

The drawbacks of the previous implementations of MSI addressed by CMSI are: (i) the
depth points of the A-scan are now determined by a sampling parameter z, independent of the
OPD values used to acquire the CSey, in the Master stage, (i) CMSI operation returns a
complex signal, hence phase of r is conserved. Moreover, the building of the Mask function
does not depend on the random phase shift as it will be shown in Section 5, which eliminates
the need for averaging over an interval of lag wavenumbers (window in [15-19], practiced in
previous MSI reports). (iii) The axial resolution is related to FT™[A], as for a perfect
interferometer.

5. Experimental results
5.1 Discrete formulation of the CMSI operation

As with the MSI, CMSI has been described above by continuous variables, however practical
implementations involve digital processing. Let Myir(n, g) be the complex mask inferred at
the Master stage, where n = 1 to N corresponds to the sampling along the pixels in the
spectrometer line camera or along the time slots within the sweeping time for a swept source
and where g = 1 to Q corresponds to the different OPDs required by the user independently
from the P number of CS,,,. In these conditions, Eq. (20) becomes

M 00 =0(0) B[ Zo(rasoposnm)|. @

where DOPD defined by the user is, in practice, at least half of the coherence length of the
optical source, and Eq. (21) can be re-written as

N
CMSI(q)=> Mg, (n,q) I(n), (27)
n=1
as an upgrade of the dot product introduced in [19]. In this way, an A-scan can be assembled
from CMSI signals evaluated at Q depths, given by the number of Q masks inferred from the
number P of the CS,,, acquired at the Master stage.
The operation of the CMSI is demonstrated below on two versions of the set-ups
described in Fig. 1, in Section 5.2 using a broadband source and a spectrometer and in Section
5.3 using a swept source and a photodetector.

5.2 A-scan with a spectrometer-based OCT

The experimental set-up is similar to that shown in [16,19]. The broadband source is a super
Luminescent Diode (SLD) with a Gaussian spectrum centered at 1306 + 2 nm and a
bandwidth of 28 + 1nm. The detection part includes a home-built spectrometer equipped with
an InGaAs linear camera (Goodrich SUI, Princeton, New-Jersey, model SU-LDH, 1024
pixels, 14-Bit). Data obtained from the system are directly processed by the CMSI procedure
with no resampling.

At the Master stage, experimental channeled spectra are recorded for different values of
the OPD. After the extraction of the experimental phases (procedure presented in Section
4.1), the variation of 0¢>®/ov according to the position of the mirror, looks like the one
presented at the center of the spectrum v . (Fig. 3).
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The linear regression on the derivative of the experimental phase for each value of v
permits to extract the functions g(v') and h(v). The integration constant has been chosen so
that g(v ) and h(v') are equal to zero at the center of the spectrum.

Figures 4(a) and 4(b) show g(v) and h(v') calculated from three sets of limited number P
of CSeyp. These sets correspond to P = 2, P = 11 and P = 71 of CS,,, recorded from z = 140
um to z = 1540 pm at the Master stage. The accuracy of determining g and h depends on the
noise of the experimental phase measurement and the number of points, i.e. the number P of
CSeyp, used for the linear regression. In the case of this experiment, the functions g and h
inferred are quite similar for the three sets of CS,, as shown in Fig. 4. The instabilities
shown at the edges of the spectrometer do not count in practice, as the optical spectrum is
almost zero there, shown in solid line.

=z (pm)
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— -0.2
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Fig. 3. Derivative of the experimental phase with respect to v for different positions of the
reference mirror M in Fig. 1 (black dots) adjusting the OPD = 2z. The derivative phase is
evaluated at the center of the spectrum !75. Continuous line, linear fit of experimental

measurements.
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Fig. 4. The functions g (a) and h (b) versus the pixels of the spectrometer according to the
number P of CS.,, acquired in the Master stage. Blue line, P = 2. Green line, P = 11. Red line,
P =71. Black line, normalized channeled spectrum at the Master stage for OPD = 0.

At the Slave stage, channeled spectra have been recorded for 3 positions of the reference
mirror (220 um, 720 pm and 1320 pm measured from OPD = 0). Figure 5 shows the axial
reflectance profile based on Fourier Transform (black line) and CMSI according to the three
sets of CSey, (blue line for P = 2, green line for P = 11 and red line for P = 71). An axial
sampling of 2 mm was chosen for CMSI to perform good sampling of the A-scan peaks, i.e.
using Q = 771 masks in the range [0, 1540 mm]. The Fourier transformation of the channeled
spectrum for 3 positions of the reference mirror is calculated to demonstrate the existence of
chirp in the channelled spectra.
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Fig. 5. A-scans for 3 OPD = 2z values (z = 220 um, 720 um and 1320 pm measured from OPD
= 0). Black line, A-scan peaks obtained using FT. Blue line, A-scans obtained using CMSI
with P = 2 CS,y, in the Master stage. Green line, A-scans obtained using CMSI with P = 11.
Red line, A-scans obtained using CMSI with P = 71. All peaks are normalized with respect to
the first peaks at z =220 um. The inset shows a zoom in the peaks around 1320 pm.

Although FT peaks broaden with OPD due to the dispersion induced by the interferometer
and the non-linearity of spectral conversion in the spectrometer, the peak width of CMSI does
not change with depth. Moreover, the reflectance profiles are identical irrespective of the
number of CSey, used for inferring the Mask function My, The graphs in Fig. 5 show that
high resolution A-scans are achievable with a mask My obtained from P = 2 CSq,, only.
Lastly, the inset of Fig. 5 shows details in the peaks around 1320 pm and the fact that the
profiles for P = 2, 11 and 77 are identical.

Obviously, if a resampling method would be used, then the FT profile would be narrowed
and in principle, if such resampling/linearization would be done to perfection, the ideal shape
of A-scan peaks should be obtained as well. We do not show such graphs here as they have
been presented in numerous reports on the conventional FT based OCT and such corrections
are not the subject of this study.

[l

-50 -40 -30 -20 -10 O 10 20 30 40 50
z (pm)

Fig. 6. PSF corresponding to the channeled spectrum I for the OPD at position 3 (z = 1340
mm) in Fig. 5. The PSF is obtained by calculating FT[|I(V)]] that is equal to
FT[JA(g(V ))[l. The complex form | has been calculated in Appendix C. FT[|I(V )]
corresponds to the Fourier transformation of a channeled spectrum with no chirp.

It is important to distinguish two modalities to evaluate the axial resolution: 1) ALpc equal
to the full width at half maximum (FWHM) of the FT [Ioc(g( v ))] profile. For a Gaussian
spectrum shape the axial resolution is mathematically described by ALpc = (2Ln2)/m x A /AL
=27 + 1 um, which represents the ideal axial resolution, determined by the source bandwidth
only. 2) AL is equal to the FWHM of the FT[|I(v)[] = FT '[|A(g(¥ )] profile (Fig. 6). In
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this case, the axial resolution depends on a combination of factors including the spectrum
shape of the source, polarization effects and injection coupling in fibers that exhibits spectral
behavior due to chromatic aberrations. Not all spectral components under the optical source
envelope contribute to interference, and therefore AlLiyers is expected to be larger than Alpc.
ALinert is defined as the achievable experimental resolution of the interferometer. In practice,
ALinert i Obtained by selecting one of the CSe,, I(77), calculating its complex form I(v') by
using Appendix C, and Fourier transforming the absolute value [1( )|.

As shown in Table 1, the resolution of CMSI is equal to the experimental resolution of the
interferometer for the three peaks, ALinerr, Which confirms our theoretical approach.
Table 1. Axial resolution according to the position of the reference mirror M in Fig. 1
(determining the optical path difference value) and the numerical tool used. ALoc is the
width of the peak FT[Ioc(g( V )] ALinert is the width of the peak FT-[|I( V/ )[]. All widths
are evaluated via a Gaussian fit.

ALoc (um) Al () FT (um) CMSI (um)

Position 1 26+1 27.0+0.7 28.0+0.3 27.0+0.2
240 pm

Position 2 26+1 27.0+07 56.0+ 0.4 27.0£0.2
740 pm

Position 3 26+1 26.1+0.7 104.5+0.9 26.2+0.2
1340 pm

MSI and CMSI are not sensitive to the deviation of the channeled spectrum modulation
from a regular periodicity modulation [19], i.e. to the chirp coming from the nonlinearity of
the decoder and from the unbalanced dispersion of the interferometer. Therefore there is no
need for any compensation procedure as data resampling employed in the conventional FT
based OCT practice.

5.3 A-scan with a swept source-based OCT without k-clock

The experimental set-up is similar to that presented in [15,17,18,20,21], where a swept source
(Axsun Technologies, Billerica, MA), central wavelength 1060 nm, sweeping range 106 nm
(quoted at 10 dB) and 100 kHz line rate is used. The interferometric signal from a balance
detection receiver (Thorlabs, Newton, New Jersey, model PDB460C) is sent to one of the two
inputs of a dual input digitizer (Alazartech, Quebec, Canada, model ATS9350, 500 MB/s).
Although the SS used for our experiments was equipped with a k-clock, to fully demonstrate
the benefits of the MSI, we did not take advantage of this facility. At the Master stage, three
sets of P-channeled spectra CSe,, have been recorded, P = 2, P = 11 and P = 491, from z =
143 pm to z = 2833 pm.
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Fig. 7. A-scan for z = 1001 pm. Black line, A scan obtained with FT. The other three graphs
are A-scan peaks obtained using the CMSI method with Q = 776, evaluated from different
numbers of P-CSy, used at the Master stage. Blue line, P = 2. Green line, P = 11. Red line, P =
491. Inset, details of the A-scans from 980 pum to 1030 pm.

At the Slave stage, a channeled spectrum has been recorded for a reference mirror
positioned at 1001 pm measured from OPD = 0. Figure 7 shows the reflectance profile in
depth based on Fourier Transform (black line) and on the CMSI method according to the
three sets of CSey, (blue line for P = 2, green line for P = 11 and red line for P = 491). Here
again the Fourier transformation of the channeled spectrum corresponding to the reference
mirror positioned at 1001 pm is calculated to demonstrate the existence of chirp in the
channeled spectrum.

A depth sampling interval of 2 mm was chosen for CMSI to perform good sampling of the
A-scan peaks, i.e. using Q = 776 masks for the range [0, 1550 mm]. The FT peak broadens
due to the non-linearity of sweeping, as expected. The achievable experimental resolution of
the interferometer ALiyer is equal to the FWHM of the FT-[|I(v)[] = FT[|A(g(¥))[] profile,
which is estimated to be 9.0 + 0.2 um (Fig. 8) for the three sets of P-CS,,,. Lastly, in the inset
of Fig. 7, the reflectance profiles are identical for P = 11 and P = 491, i.e. the green line
overlaps the red line. For P = 2 (blue line), the A-scan displays a similar resolution but
presents a slight shift of 2 pm and more noise on the edge of the peak.
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Fig. 8. PSF corresponding to the channeled spectrum | for an OPD = 2z, where z = 1001 mm.

The complex form | has been calculated in Appendix C. FT[|I(¥)]] corresponds to the
Fourier transformation of a channeled spectrum with no chirp.

5.4 Stability study and signal drop-off in depth: comparison between MSI and CMSI

In order to illustrate the insensitivity of CMSI to the random phase shift of channeled spectra
acquired at the Master stage, several A-scans have been recorded over time while imaging a
flat mirror. The interferometer used in this experiment is the same as in Section 5.3, i.e. a
swept source without k-clock. The sampling in depth is chosen equal to 0.4 mm, much denser
than the sampling obtained with the FT based method, estimated at 6.1 mm by measuring the
displacement of the peak in Fourier domain according to the displacement of the reference
mirror. This massive oversampling is implemented in order to determine a well-defined
reflectance profile, to accurately measure the peak width (9.0 + 0.2 um here).

The MSI signal has been calculated using Eq. (6) on data collected every 2 seconds and
displayed in Fig. 9(a). To perform the calculation, 100 CS,,, have been recorded at the Master
stage from OPD = 500 mm to 540 mm. These 100 CS,,, are used as masks. As shown in Fig.
9(a) and by the corresponding reflectance profile for a particular time in Fig. 9(c), the
reflectance profiles are noisy. We interpret this as result of fluctuations in the phase of the
channeled spectrum collected during measurement (Slave stage) combined with much larger
phase fluctuations cumulated during the acquisition of the CS,,, channeled spectra during the
Master stage.

In Fig. 9(b), the absolute value of CMSI signal has been calculated from the same raw
data previously used for the MSI. To perform the calculation, the Mask function My has
been calculated using P = 2 CS,,, measured at OPD = 500 mm and 540 mm and used to
generate Q = 100 masks distanced at 0.4 mm. As shown in Fig. 9(b) and by the blue profile in
Fig. 9(c) the CMSI reflectance profiles do not present significant fluctuations. This
demonstrates the superiority of using masks generated theoretically, deprived from the
random phase affecting the phase of experimentally collected channeled spectra. More
quantification of this behavior represents the subject of future more rigorous experiments, for
the limited study here we evaluated that the standard deviation of the random phase shift in
the set-up was 0.27 rad per second. This still affects the resulting image in Fig. 9(b).
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Fig. 9. (a) A-scans (vertical axis) for a mirror as object, represented in time (horizontal axis)
calculated with MSI and P = 100 CSe, utilized as masks. (b) A-scans (vertical axis) for a
mirror as object represented in time (horizontal axis) calculated with CMSI using Q = 100
masks obtained from P = 2 CS.,. (c) Reflectance profiles calculated by MSI (red) and CMSI
(blue) for t = 100 s in each respective image.

Another important parameter to be compared between MSI and CMSI is the signal drop-
off with optical path difference. To illustrate this, B-scans of the anterior chamber of a human
eye have been obtained using CMSI (Fig. 10(a)) and MSI (Fig. 10(b)). The interferometer
used in this experiment is the same as in Section 5.3, i.e. a swept source without k-clock. The
sampling interval in depth is chosen equal to 5 mm. Both images are normalized to 1
according to the maximum of each of them.

10.7 mm

mm

5

2mm

Fig. 10. (a) B-scan of the lens and the iris of a human eye with CMSI. (b) B-scan of the same
raw data as in (a) but with MSI. Both images are normalized according to the maximum of
each of them. To demonstrate the slight improvement in contrast at large depths of the CMSI
image, we display their bottom only, showing the lens and the iris. The 2 mm-axial range of
the B-scans is considered in air.

The sensitivity for both MSI and CMSI is measured as 101.3 dB close to OPD = 0 with a
power equal to 1.7 mW on the sample, using the procedure detailed in [15]. The images are
quite similar except for the drop-off in depth that is slightly larger for the MSI than for the
CMSI. This is because in previous reports [15-21], MSI was implemented using the product
between the raw channelled spectra and experimental masks, all affected by a decrease in
their interference contrast with OPD. In CMSI, all masks have the same amplitude, hence an
improvement in the decay of sensitivity with depth. This improvement can only be seen at
large depths, therefore we have truncated the images to display large OPD values only, where
some improvement can be seen in the CMSI image. The expected improvement is anticipated
by the difference between Egs. (16b) and (25).
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6. Conclusions

CMSI employs a Mask function to generate any number Q of masks, where each mask is used
in the second stage, Slave measurement, to obtain the reflectivity of the object from a selected
depth, characteristic for each mask. In previous implementations of MSI, the only depths
addressed were those for which CS,,, were initially acquired at the Master stage. CMSI can
create any number of intermediate masks between the depths where CSe, were initially
acquired from. This represents a major improvement in comparison with the implementations
in [15-21], as CMSI requires fewer experimental measurements while allowing for much
denser sampling in depth. This feature is especially important for high axial resolution OCT,
where a large number of masks are needed to accurately construct an A-scan.

As with the correlation-based MSI method, there is no need for organizing the data in
equally spaced frequency slots. The Mask function incorporates both the non-linearity of
reading the channeled spectrum as well as the dispersion of the interferometer in the same
way as the experimentally collected masks in the MSI Therefore, MSI and CMSI can work
directly in the non-uniform distribution v space in opposition to the conventional FT based
spectral (Fourier) domain systems. In addition, as demonstrated here, CMSI can reach the
expected theoretical resolution. MSI could equally achieve such resolution if the spectral
envelope imprinted by the optical source spectrum is eliminated, procedure much improved in
the CMSI, as shown in building Mask functions in Fig. 2. In the FT based OCT, achieving the
best axial resolution depends on how good the resampling/linearization method is. Several
methods have been developed to address this issue that allowed FT-based OCT methods to
achieve axial resolutions close to the theoretical axial resolution. However, these procedures
are performed in the very moment of data acquisition before displaying the results, involve
extra computation resources and are time consuming. In MSI and CMSI the experimental
masks and respectively the Mask function and derived masks are obtained at the Master stage,
i.e. prior to measurement. The Master stage procedure can be considered as the equivalent to
the resampling/linearization procedure in the FT-based OCT method. However, MSI and
CMSI are radically different in output from the FT-based OCT methods. MSI and CMSI
perform a procedure for each depth of interest while the FT-based methods deliver a full A-
scan in a single step. Although this may look disadvantageous, MSI and CMSI allow a more
direct production of en-face views, as there is no need, like in FT-based OCT method, to split
the A-scan into its depth components.

In terms of time required by the CMSI in comparison with the MSI method, the main gain
is at the Master Stage. While MSI would have required a tedious repetition of experimental
collection of hundreds of channelled spectra subsequently used as masks, the CMSI presented
here requires a much reduced number of channelled spectra to be experimentally collected at
the Master stage, which can then be processed theoretically into as many masks needed.

In terms of calculation at the Slave stage, the only difference is that CMSI requires the
operator for the core operation [21] to be implemented in complex, so the calculations at the
Slave stage for the same number of masks require slightly more than the double the time of
the MSI. This disadvantage may be eliminated by using graphic cards [18]. In terms of
comparison of the time required by the core operator of the MSI with the time required by
conventional FT based method, with or without resampling, this is benchmarked in Fig. 3 in
[21]. Similarly, the improvement in the timing of the core operation using graphic cards
detailed in [18] for the MSI can be extrapolated here for the CMSI method.

Finally, it has been shown that the theoretical expression for the operation of the CMSI is
identical to the Fourier transform of channeled spectra for a perfect interferometer (no
dispersion) and perfect decoder, such as either a spectrometer linear in wavenumber or a
linearly tunable swept source, however with the difference that the CMSI delivers a complex
signal without random phase shift. This allows CMSI to eliminate the process of window
integration practiced in the MSI, integration that has lead to worsening the axial resolution.
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Having access to the phase, CMSI method can be further explored to measure the phase of
signal acquired from the object. The recovery of phase has not been employed here, however
it is expected that this will trigger future developments in polarization and flow
measurements.

Appendix A: demonstration of Eq. (4)

Let the Fourier transform (FT) and its inverse (FT™*) be defined by the following expressions
FT[ ] | (t)Expli2ztv]at, (28)
FT[f(v)]=[ 1 (v)Exp[-i2tv]dv. (29)

The decoder is considered linear (g(v) = v = n) and the interferometer perfectly balanced for

dispersion (d = 0). According to (28), the inverse Fourier transform of I in (2), denoted as 1, is
equal to

[(0)=Tac (05 10+ 5 1(1) (20

where Tpc and T are the inverse FT of Ipc and I, and where for the last term the usual property
of the Fourier transform was used

FTfr() ]=f(). @)
Equation (30) can be evaluated for t = 2z/c and becomes
f(22/c) = i (22/0) + 7| (22/c)+ %j(-n/c)*. @)
Moreover, for g(v) = v =n, Eq. (3) can be written as follows
10)=[r(p Exp‘:I—VZp}dp, (33)
and its inverse FT evaluated for t = 2z/c is equal to
It=2210)=(fr(p Exp[ —VZ(Z p):idpdv, (34)
that can be written as follows
j(22/c):'[/:\[§(z—p)j r(p)dp=A(22/¢)®r(z), (35)

for which A(t) = FT[A(n)].
Appendix B: demonstration of Eq. (10)

Eqg. (9) can be written in the Fourier domain using a variable f, pair conjugate to v as
follows

Ml (2) = %a(z)e"“"ﬂ"““' [CS(t.2) T(E)a +cC, (36)
by using the Plancherel-Parceval theorem defined by
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[t:0) ) dv = [ £ F D, @7
for which f, = FT[fAJ and f, = FT[fz].
Similar to (30), the inverse Fourier transform of the channeled spectrum | is equal to
i(f)=1T (t')+5|:(t')+71(7t')“. (38)
For an object placed axially in respect to the OCT system, in such a way as the OPD =0 is
placed outside of the object, the product C:S x1 is only equal to 1IZC:S*xj. Indeed the

position of the peak @ depends on z that is defined for z>2L, only, condition that avoids the

peak @ to overlap the peak fDC (see Fig. 11).

T, (7)

f\i(—f')'

Fri[1(v)] /

FT €8 (v.2)] j\@“‘:)
| \

T >

0

Fig. 11. Schematic representation of the peaks obtained by calculating the inverse FT of I (top)
and CS (bottom) for a single layer object. The OPD is chosen so that | does not overlap Ipc.

Then we have

JES(f.2) 1(f)di ==[CS(t.2) I(F)df. (39)

[E8(E2) i(f)dE == [Cs(v.2) L(¥)dv, (40)

and the expression of MSI(z) is equal to
MSI (2) =2 a(z)efe " [CS(7.2) 1(7)dv}. (1)
where Re{} means the real part of a complex function.
Appendix C: complex exponential form of a real sinusoidal function
Let f(n) be a real sinusoidal function modulated at a and defined by the following expression
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f(v)=loe (v)+21(v)e™>™ +%1(v)'e"a“". (42)

1
2
The complex form f(n) of f(n) is then equal to 1 (v)e'**™ and can be retrieved using (29) and
the steps shown in Fig. 12.

1= L 43 10) " 42107 e Ty 70 i 0 i ae ki)

‘ wonls 115
L) =L(v)e PLLE ()G ()= (e -a) ' '

FT

Fig. 12. Diagram explaining the process of changing a real sinusoidal function into a complex
form. The parameter to is chosen to eliminate the DC component of the real sinusoidal
function.

Appendix D: demonstration of Eq. (22)

Eq. (22) can be written in the Fourier domain by using the Plancherel-Parseval theorem as
follows

CMSI (2) = [ M, (£,2) T(E) . (43)

For an OPD = 0 placed outside of the object, only the product 1/2 I\?Ibm““ x 1 is different from

0, according to similar reasoning used in Fig. 10 in Appendix B. Therefore, the CMSI signal
can be written, after using the Plancherel-Parseval theorem, as follows

cmsl (z):%thm“(&,z)' 1(v)dv. (44)
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