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Abstract—In an earlier paper, a novel method to pre-process
image data for use in Artificial Neural-Network (ANN) classifica-
tion was presented. This method requires an additional training
stage prior to the main learning phase of the ANN. In this extra
stage, an additional algorithm (a Selection method) is used to
generate the data that is required to construct the final pre-
processor. As part of the introduction of that method, it was
presented with a single Selection method that was termed Saliency
Heat Mapping. This paper will present a number of alternative
Selection methods and compare how effective they are against a
sample problem.

Keywords—Artificial Neural Networks, Preprocessor, Image
Processing, Salience, Relevance Assessment

I. INTRODUCTION

This paper present two new methods for preprocessing of
visual data for use in Artificial Neural Network (ANN) based
classification. This take the form of two new selection methods
for the Regioned Downsample algorithm (Greenhow and John-
son, 2014) (from which this paper extends). First, this paper
will providing an overview of the algorithm’s functionality and
the related terminology. Following this with an explanation
of the previous selection method and the additional novel
approaches. The comparison of the methods is accompanied
by the structure of the comparison model (a simple naı̈ve face
detection problem) and results from these test. This is then
followed up with the conclusion drawn from these results.
Potential avenues for continued effort are the provided to end.

The overall question that is being asked is: what algorithm
should be used to sample a large input (such as an image)
to present a reasonable number of inputs to a neural network
which will be used to carry out classification or prediction
based on those inputs?

II. OVERVIEW

This section will cover the terminology used in this
paper and the functionality of the Regioned Downsample
Preprocessor.

A. Saliency

In this paper, the termed Saliency is used to describe how
‘useful’ each input is in generating predictions or classifica-

tions. From the earlier paper: “we are not interested in the
contribution of the inputs to the ANN’s predictive accuracy,
but rather to the ANNs output function”. When dealing with
Artificial Neural-Networks (ANNs), the saliency of each unit
can be computed (similarly to back-propagation) as

ρ̂i =


1 when i is an output,

tanh

(
Ni∑
j

|wij | ρ̂j

)
otherwise. (1)

where, Ni is the set of subsequent neuronal units that have
unit i as an input source; wij is the synaptic weight between
units i and j; and ρ̂x is the approximated saliency of unit x.

This method was based on the earlier work by Mozer and
Smolensky (1989).

B. Preprocessor

1) Definition: This paper discusses image preprocessors as
used by an artificial neural-network (ANN) backed system or
process. In this specific context the definition of a preprocessor
as ‘a data preparation stage, processes or algorithm in which
image data is normalised, colour corrected and/or resized
before being presented to a subsequent ANN for task specific
processing’ is used.

2) Traditional Preprocessors: When constructing image
processors using an ANN it is standard practice to imple-
ment some form of preprocessor to deal with the problem
of dimensionality. These preprocessors are traditionally im-
plemented as calls to the well known Bilinear or Bicubic
interpolation algorithms1, typically used for image resizing in
graphics applications. These algorithms are have been around
for many years and modern implementations are extremely
well implemented for reduced computation time.

The issue with these algorithms is that they are designed for
human vision and have a constant information density. Though
they have shown sufficiency in the past, it is not well known
how suitable these algorithms are for ANN, or if there are
better methods for these situations.

1The works by Shibata and Utsunomiya (2011); Davies et al. (2010) show
good examples of this
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Fig. 1. Representation of the implementation of the Regioned Downsample
Preprocessor, showing internal component topology and data flow.

3) Regioned Downsample Preprocessor: The implementa-
tion of the Region Downsample Preprocessor (RDP) is in the
form of multiple small bilinear interpolation functions, each
responsible for a small region of the input image and to output
at a specified resolution (with possible overlapping regions).
The multiple outputs are then filtered to only the intended
pixels and then serialised to a single stream of colour pixels
(See Fig. 1). The ordering of the serialisation must remain
consistent between applications of the same preprocessor.

As part of constructing a RDP, first the pixels that need
to be used need to be determined and the conversion of these
selections to a compatible format. The selection process will
be covered in detail in the next section so will be skipped as
part of this overview. The conversion to a compatible format is
a step referred to as Optimisation. At current, the Optimisation
process currently uses a naı̈ve optimisation which groups all
selected pixels by their resolution and then defines a Bilinear
interpolation to process the minimum region of all the pixels
and a filter to remove the additional pixels.

III. SELECTION

Selection is the term used to describe the process of filter-
ing out pixels at the multitude of resolutions until you have a
minimal number of pixels that provide sufficient information
to perform the intended task. The Saliency metrics described
earlier are used in this process to approximate the quality of
each pixel at the given resolution. The first of these Selection
Methods is Saliency Heat Mapping. This is the method that
was introduced in the previous paper. The two additional
methods are Restricted Saliency Heat Mapping and Pruned-
Bilinear Selection.

Preparation: Saliency Computation

Prior to selection, the saliency is precomputed to allow for
use in the multiple competing selection methods. An upper
and lower bound are defined, RESmin and RESmax, that
mark the minimum and maximum resolutions to process (in
both orthogonal directions). An ANN is generated with a
traditional bilinear interpolation preprocessor and is trained
using the Building set (see IV-C on how they are constructed).
The Building set is the subset of the entire Training set that
is solely used to build the ANN. After a fixed number of
epochs, the ANN is parsed by the Saliency Metric and these
saliency values are averaged with those from repeated runs at
the same resolution. Each resolution’s average saliency matrix

· · ·

...
. . .

...

· · ·

Fig. 2. Example matrix for an image from the Caltech-158 training set. Here
RESmin and RESmax define the range of the matrix contents and are equal
8 and 30 respectively.

is paired up with its average accuracy (computed by running
the ANN against the Validation set and scoring with Cohen’s
Kappa) and passed on the selection process. Additionally, to
provide suitable comparison, the single resolution with the
greatest accuracy according to the Validation set is used as the
basis for comparison with the traditional methods (Bicubic and
Bilinear interpolation). The Validation set is the remainder of
the Training set (after exclusion of the Building set) used to
validate that learning has been successful and provide some
approximation of the quality of said learning.

A. Saliency Heat Map Selection

Saliency Heat Map Selection is the original Selection
method that was implemented along with the Regioned Pre-
processor in the earlier paper. This method takes the image
matrices provided by the Saliency Computation stage and
resize via nearest-neighbour interpolation, such that their di-
mensions are 2 × RESmax. The resultant matrices are then
averaged together, weighted by their accuracies (from the
Saliency Computation Stage), generating a single Saliency
Heat Map (See Fig 3 for the SHM generated.). From here
a approximate saliency can be generated for all pixels, from
all resolutions in the RESmin . . . RESmax range by looking
at the average value within the area covered by that pixel
on the SHM. The single pixel with the highest approximated
saliency is selected and the area on the SHM it covers is zeroed
(blacked out). This process is repeated until there are no pixels
that are above a predefined threshold. For the implementation,
a selection threshold of 0.65 was found to be sufficient by
informal experimentation.

B. Restricted Saliency Heat Map Selection

This new method works in the same manner as SHM
Selection, but applies the additional criteria to pixel selection.
Prior to selecting pixels by highest predicted saliency, the
pixels are pre-filtered so that only pixels from resolutions that
had positive accuracy scores from the Validation tests (i.e. The
ANNs that were used to generate the saliencies managed to
learn the task at hand, even to a minor degree) can be chosen.
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Fig. 3. The SHM generated for the naı̈ve face finding task. The image
originally ranged over the mid-greys (about 0.45 to 0.65) and has been
normalised for easier viewing. From this with can see that (for this task) the
left side of the profile, (right of centre in image above) has a higher saliency,
implying greater predictive value.

C. Pruned-Bilinear Selection

This new method is named for the fact that it results in
a selection that represents a standard bilinear interpolation
preprocessor, but with some of its pixels ignored. This process
uses the same process of selection as Restricted-SHM, but
applies a much tighter constraint. Rather than only exploring
resolutions that were even slightly successful in learning the
task, it only selects from the single resolution that to perform
the best on the Validation Set (see section III).

IV. COMPARISON

To compare the two newly proposed Selection methods
against Saliency Heat Map Selection, a naı̈ve face detection
algorithm was implemented as test basis. The implementation
of the main face detection system (an ANN) was left in a
unoptimised state to best show the effects of the different
preprocessors.

The method of comparing was split into two main tasks,
Construction and Testing.

A. Construction

The process was broken down into three steps

1) The preparation stage is used to perform the Saliency
Computations, as described in section III.

2) After preparation, the three sets of pixels are se-
lected for by the three selection processes, using the
recorded saliency measures. The selected pixels are
then packaged into three preprocessors.

3) With preparation and Selection complete, training
begins. Each of the three constructed preprocessors
and an additional two control preprocessors (backed
by a traditional Bicubic and Bilinear interpolation
functions respectively) are each assigned to 200 ran-
domly initialised ANNs forming a Preprocessor-ANN
system2. Each system is then trained using Back-

2The term system is used to describe each Preprocessor-ANN pair in a
generic manner when the specific preprocessor is not known/identified or
multiple types of preprocessor are being discussed.

Propagation against the Building sets3 (see section
IV-C below for construction).

B. Testing

After training, each system used in a naı̈ve face detection
algorithm to attempt to find the faces in the Test set.

The naı̈ve face detection algorithm is implemented as a
sliding window over an image pyramid. The naı̈vety of this
implementation allows for location and scale independence but
does not consider orientation.

1) Each face detection system has a sliding window that
is initially 1/4 the size (1/16 the area) of the extracted
faces from the Training set (see section IV-C3).

2) The sliding window is initialised to the top left corner.
a) For each location of the sliding window, the

test image is cropped to the window and then
parsed to the systems preprocessor.

b) The system then processes the prepared im-
age data in the ANN and determines if the
sliding window appears to be over a face (See
section IV-D for detection specifics).

3) After processing the sliding window is shifted 20
pixels right and the process repeated.

4) At the end of each line, the sliding window is moved
20 pixels down and moved back to the left edge.

5) Once the sliding window has traversed the whole
image, the size of the sliding window is increased
by 1/3 and moved back to the top left corner.

6) This is repeated until the sliding window covers the
whole image.

C. Datasets

The following data sets where used for the naı̈ve face
detection system. (See Fig. 4 for samples.)

1) CMU-130: This data set was constructed from the union
of the CMU frontal face data sets4 A, B and C. The data set
consists of numerous faces that are looking towards the camera
in an upright manner, formatted in indexed grey-scale in a
loss-less compression format. The data sets are provided with
a ground truth labelling of each face in the scene, identifying
the eyes, the nose and the corners and centre of the mouth.

2) CMU-Rotated: Equally, this data set comes from the
CMU frontal face data sets; specifically the CMU Rotated Test
Set4. This data set contains faces that are looking towards
the camera, but are at slight angles from upright that can
increase identification difficulty. These are provided with the
same ground truth and data sets A-C.

3) Caltech-158: This data set is a subset of Caltech Faces
1999 (Front) data set5. The original data set includes 450
images of 27 unique faces that look towards the camera and
are oriented upright. They are formatted in full RGB with
negligible compression artefacts (due to the JPEG file format).

3The Building set is used twice, once for initial Saliency computation and
once for the training of the final ANNs.

4Data set A, C and the rotated data set were collected by Rowley et al.
(1998), whilst data set B was compiled by Sung and Poggio (1998)

5Caltech Faces 1999 (Front) was compiled by Weber (1999)
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(a) CMU-130 (b) CMU-Rotated (c) Caltech

Fig. 4. Three sample images from three data sets. These provide examples of a single image with multiple faces, an image with a single face proportionally
small to the image, and an image with a face that fills most of the image.

The provided ground truth of this data set is incompatible with
the implemented system, so the first 158 images were manually
labelled to produce a data set slightly larger than the CMU data
set A. The new ground truth was formatted in a consistent
manner to that provided with the CMU data sets.

Subset construction: As data sets CMU-130 and Caltech-
158 were to be used to construct the neural networks, they were
segregated into the Build6, Validation6 and Test sets. To do this
the images, along with associated ground-truths, of both sets
were initially loaded into memory. The first 10% of faces were
separated into the Test sets, T(CMU-130) and T(Caltech). The
faces from the remaining images are extracted (cropped and
scaled), along with an equal number of background samples7.
The faces and background images are randomly assigned to
either the respective Building set or their Validation set, so that
90% form the Building sets, B(CMU-130) and B(Caltech-158),
whilst the remainder 10% form the Validation sets, V(CMU-
130) and V(Caltech-158).

The data set CMU-Rotated is not used for training purposes
and is used as an additional test set alongside T(CMU-130).
This is specifically used to see if there is any noticeable
increase or decrease in generalisation of the solution.

D. Implementation

The face detection algorithm was implemented as a stan-
dard feed-forward perceptron based neural network with a
topology of I → 10 → 2 (where I represents the number
of neurons required to fully represent the data provided by
the accompanied preprocessor). Of the two output neurons,
one was defined as a background identifying neuron and the
other as a face detecting neuron. A face was deemed to have
been identified by the ANN if and only if the face detecting
neuron presented an activity of 0.95 or greater and had higher
activity than the background identifying neuron. Learning was
implemented using Back-Propagation and a learning rate of
0.8.

E. Results

To quantify the quality of each preprocessor, Percentage
Correct Detection (CD) and Number of False Positives (FP)
(Yang et al., 2000) are used to compare and contrast. A
correct detection is recorded if the system classifies the current

6The Build and Validation sets collectively the make up the Training Set
7A background sample is considered to be a section of the image that would

fail to register as a correct detection, as described in section IV-E.

location of the sliding window to contain a face and the region
covered by the sliding window contains the eyes, nose and
mouth from the same face; otherwise it is identified as a
false positive. To prevent erroneous scoring due to multiple
detections of the same face, only the first detection is counted.
Further detections of the same face are not counted towards
CD or FP.

The graphs Fig. 5 and Fig 6 show the non-dominated result
sets of the repeated trials (grouped by preprocessor). Note that
not all averages are shown in these figures. For preprocessor
systems in which this is he case, it is due to the average false
positive rate being sufficiently high that if it where included,
the important aspects of the graphs would me difficult to view.

In Fig. 5a, it can clearly be see that the systems that used a
Pruned-Bilinear preprocessor dominate all of the other systems
with generated/tested. It is also interesting to note that below
70% accuracy, The two traditional methods seem to have a
false-positive rate about the same a Restricted-SHM Selection,
which then increases significantly over that threshold.

Fig. 5b shows an expected outcome with regards to the non-
dominated sets, in that they all appear to perform equally well
when presented with slightly dis-similar inputs than what they
were trained for. The averages show some interest properties
in that the RDPs are all have higher correct detection rates
on average than the traditional methods (significantly so for
Pruned-Bilinear) at the expense of increased false positive
rates.

Lastly, fig 6 shows almost the reverse outcome from the
CMU trials. With the colour input images of the Caltech data
set, the Pruned-Bilinear preprocessors had performed worse
then the others due to a noticeably higher false positive rate.
Restricted-SHM Selection proved the most effective at this
task, dominating all others.

V. CONCLUSION

In conclusion, there was a significant improvement in the
accuracy (in terms of false positive and correct detection rate)
between the RDP and the traditional method, due mostly to
the decrement in false-positive rates. Additionally there also
appears to be a subtle difference between the different selection
methods used to construct the RDP depending on the specifics
of the task.

Against the grey-scale CMU images, the Pruned-Bilinear
preprocessor performed best, where as Restricted-SHM gener-
ally performed the best when the system had to deal with the
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(a) T(CMU-130)
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(b) CMU-Rotated

Fig. 5. The set of non-dominated systems, grouped by preprocessor and marked with circles, for verification against the T(CMU-130) data set (a). The crosses
identify the ‘average’ system for each given preprocessor group. Additionally the CMU-Rotated data set (b) (same layout) is used to explore any noticeable
improvement or degradation in generalisation to the problem.
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Fig. 6. The set of non-dominated systems, grouped by preprocessor and
marked with circles, for verification against the T(Caltech-158) data set. The
crosses identify the ‘average’ system for each given preprocessor group.

rotated faces from CMU-Rotated. Against the RGB Caltech
images, Pruned-Bilinear had a surprising poor performance in
terms of false positive rates, with the traditional and SHM
Selection methods performing mediocre and Restricted-SHM
having the lowest false-positive rates.

VI. FUTURE WORK

A. Optimisation

In section II-B3, it was mentioned that a naı̈ve Optimisation
process was in use. The current implementation of this method
is very simplistic. This is a prime location for improvement
in the runtime of the preprocessor. Improvements to the
optimiser will allow for the construction of RDPs that will run
faster due to either a smaller number of bilinear interpolation
preprocessors (reducing overheads), or by generating more
numerous bilinear interpolation preprocessors that process
smaller regions.
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