
A robot programming environment based on free-form CAD modelling.

Colin G. Johnson.
Department of Computer Science,

University of Exeter,
Exeter, EX4 4PT, England, U.K.

and

Duncan Marsh.
Department of Mathematics,

Napier University, 219 Colinton Road,
Edinburgh, EH14 1DJ, Scotland, U.K.

Abstract

This paper presents the mathematical and computational
foundations of a robot programming environment embed-
ded within a CAD system. The key ideas behind this sys-
tem is that it will work offline, it will allow a high-level of
task abstraction and it will be usable by designers and en-
gineers who have a good knowledge of the desired task but
only a basic grounding in robot engineering. In this paper
we begin with a discussion of how robot workspace can be
modelled using free-form CAD design concepts. The core of
the paper is concerned with the application of these to well
known problems of collision detection and path planning,
showing how algorithms developed in CAD can be applied
to these new problem-areas in an efficient way. In the clos-
ing section we use these ideas to consider the development
of new, graphically-based, robot programming systems.

Much work has been carried out on designing systems
which attempt to simplify the process of robotic automation,
making it easier for a robot programmer to prepare a robot
to carry out a task. The important aspects of such automa-
tion are that it much work off-line, allowing programs to be
prepared whilst the robot is engaged on another task, and
that it must work at a high-level of abstraction—the intelli-
gence about the fine detail of the robot’s mechanics needs to
be kept within the machine, liberating the designer to work
on the task design not the fine-details of the programming.

If this work is to find its way into industrial practice,
then it must be grounded in techniques which are cur-
rently used in industry, so that skills learned in other indus-
trial design fields can be transferred to robot programming.

Our perspective here is to incorporate robot modelling into
computer-aided design systems, and to represent the com-
plicated geometry of the workspaces by trimmed B-spline
curves and surfaces and generalizations thereof.

1. A model of workspace.

This section gives a brief outline of the model which we
have developed for robot manipulator workspace. Further
details are given in our earlier papers [7, 9, 8].

1.1. B-spline free-form design.

A key concept in contemporary computer-aided design
systems is the existence of free-form design systems. In ge-
ometric design these is a need not just for simple shapes,
such as lines, circles and tori, but also for more general
smooth shapes. This work, stemming from the work of
Bézier and others in the automobile industry (see [5]), has
led to a large body of theoretical and practical results on
free-form design.

In this paper we make use of a free-form representation
known as NURBS (non-uniform rational B-splines). To de-
sign a NURBS curve or surface, the designer manipulates
interactively a number of control parameters, the most im-
portant of which are the control points. By adjusting the po-
sition of the control points, the surface generated is changed
in a geometrically intuitive way. An example is shown in
figure 1.

Mathematically the NURBS-curve is a piecewise polyno-
mial curve, and the NURBS-surface a tensor product surface

1



"control_points"

0
0.5

1 0

0.5

1
0

0.5

1

"surface"

Figure 1. Designing a B-spline surface.

over piecewise polynomial bases. The curve is of the fol-
lowing form

x�u� �

Pn

i�� wiPiNi�p�t�Pn

i��wiNi�p�t�
(1)

Where Pi are a set of points called control points. The wi

are a set of weights, one corresponding to each point. By
changing these weights the shape of the curve can be mod-
ified [14]. Mathematically the weights can be thought of
as the fourth coordinate in a homogeneous coordinate sys-
tem, defining the projection of a 4-dimensional non-rational
space curve into 3-dimensional space [5]. The Ni�p�t� are
the B-spline rational basis functions, defined recursively by

Ni���t� �

�
� if ti � t � ti�� and ti � ti��

� otherwise (2)

Ni�p�t� �

t� ti

ti�p � ti
N �t�i�p�� �

ti�p�� � t

ti�p�� � ti��
N �t�i���p���t� (3)

Here the t�� � � � � tn is a non-uniform knot vector which
is a list of non-decreasing numbers, where the first and last
numbers are repeated k times, where k is the order of the
curve. We define p to be the degree of the curve (i.e. p�� �
k). The B-spline consists of a rational linear combination of
these basis functions (an example of which are illustrated in
figure 2), and forms a piecewise polynomial function over
the interval spanned by the knots.

There are a number of reasons why this type of curve
is use in CAD systems (see [5, 15] for details). Firstly it
is possible to interactively modify the curve by adjusting
the control points and other control parameters, in a way
which is geometrically intuitive. A second reason is the

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 2. B-spline basis functions.

existence of powerful geometrical algorithms which act on
these curves. Below we shall make use of the subdivision
algorithm, which takes a B-spline curve and gives control
polygons corresponding to each half of the curve. This is
a powerful tool for rendering the curve, as the curve can
be rapidly broken down into approximate straight-line seg-
ments. A third advantage is that there are valuable geomet-
rical properties of the form, for example the curve always
lies within the convex hull of its control points. Finally there
are a wide spectrum of design tools which can be used for
B-spline curves, for example it is simple to design circles,
straight lines, and free-form blendings between them.

We can form tensor products of NURBS to produce sur-
faces, volumes and hypervolumes in NURBS form. This in-
volves taking a topologically rectangular/cuboidal grid of
control points, and creating piecewise polynomial functions
in each direction along the lines of the rectangle. A NURBS

surface with its control polygon is illustrated in figure 1.
The formula for the general n-variate NURBS mapping is
given by

x�u�� � � � � uk� �Pn�
i���

� � �
Pnk

ik��
Pi����� �ikwi����� �ikNi��p��u�� � � �Nik�pk�uk�Pn�

i���
� � �
Pnk

ik��
wi����� �ikNi��p� �u�� � � �Nik�pk�uk� (4)

Using these mappings we can form the image of a high-
dimensional space (such as the configuration space [11] of
a manipulator) in a lower dimensional space (such as R�).
This approach is followed below.

1.2. Kinematic functions as B-splines.

One important aspect of kinematics is studying the space
occupied by a robot as it moves. This allows us to examine
potential collisions of the robot with its environment, allow-
ing the avoidance of such collisions and the coordination of



Parallel lines

Axis 

d i

a i-1

α i-1

i

i-1

Link i-1

Axis i

Link 

iθ

Figure 3. Denavit-Hartenberg parameters.

the robot’s motions with other machines. Mathematically
we consider two mappings. Firstly the workspace occu-
pancy mapping�i� �i � �� � � � � d�, where d is the number of
joints, known as the degrees of freedom of the mechanism.

�i � C � Pi � R
� (5)

This mapping takes a configuration C and a point on the ith
link-surface Pi and maps it to the point occupied by that
point. We are also interested in the volume swept out by a
particular motion m � ��� �� � C. This gives a composite
mapping 	i � �i �m

	i � ��� ���Pi � R
� (6)

The image of this mapping is the volume of space swept out
as the robot moves through the motion m.

A well-known way of notating the kinematics of manipu-
lators is the Denavit-Hartenberg notation [2, 4]. This takes
a set of axes (one for each link) and specifies the connec-
tions between these axes by four parameters, ai� �i� di� �i,
one of the latter two being variable to represent the ability
of the link to extend or rotate respectively (see figure 3).

We have demonstrated [9] that given a description of an
open-chain mechanism in Denavit-Hartenberg form, and a
description of the physical surface of the link in terms of
NURBS, we can generate multivariate NURBS representing
all of the functions 	i� �i for i � �� � � � � d, where d is the
number of degrees of freedom of the robot.

2. Applications.

The focus of this paper is on applications of the the-
ory explained above. This revolves around the geometrical

problems in robotics which have application in task automa-
tion. In order to create a system which can be programmed
at a high level of task abstraction within a CAD system,
there is a need for problems such as collision detection and
path planning to be embedded into the CAD environment.
In this section we show how the work detailed above using
B-splines facilitates this.

2.1. Collision Detection.

The first problem which we study is the collision-
detection problem—given a motion m of the robot will it
collide with obstacles within its environment. Here we out-
line an algorithm which takes the occupancy functions 	i

corresponding to a motion m, and then subdivides 	i and
the obstacles to check if any subregions of 	i�C� are occu-
pied by obstacles. Linked-lists are used to structure the data
in an efficient way.

Begin
Create the occupancy functions 	i

Remove all obstacles that are impossible for the robot to
reach in any configuration

For �i � �
 i � degrees of freedom
 i� ��
Create an linked-list of obstacles obs list
Create a pair p �� �obs list�	i�
Push p onto an empty linked-list main list
integer count�� �
While main list is non-empty and count � tolerance

pop a pair � �� �current list� current patch�
from main list

pbb �� BoundingBox(patch)
While current list is non-empty

pop a patch obstacle from current list
obb �� BoundingBox(obstacle)
Test obb and pbb for intersection
If there is an intersection push obstacle

onto a list temp obstacles
EndIf

EndWhile
If there have been any intersections

Subdivide patch into patch�
and patch�

Subdivide each obstacle on
temp obstacles

Push �patch�� temp obstacles�
onto the back of main list

Push �patch�� temp obstacles�
onto the back of main list
onto the back of main list

EndIf
count �� count � �

EndWhile
If main list is empty there is no collision,



 next iteration.
Due to be removed

Patches
Obstacle

Workspace patches.

main_list

To each workspace

obstacle_lists

 has a potential collision.
 that part of workspace
 patches with which 
 a list of obstacle 
 patch is associated

Figure 4. The collision-detection algorithm.

so continue to link i� �
Else if tolerance has been reached and there are

still things on main list, then there is a collision
Report(collision) and Stop

EndIf
EndFor
Report(no collision)
End

We can adjust the tolerance to and desired number of
subdivisions. In practice six or seven subdivisions in each
direction is a useful limit (though of course this number of
subdivisions will not be performed every time).

The BoundingBox procedure can be carried out in
a number of different ways, for example rectangular
bounding-boxes, spheres, oriented bounding boxes, swept
spheres and convex hulls. This list is in rough order of com-
plexity, the earlier ones being fast to calculate but offering a
cruder approximation, the later ones offering tighter bounds
but requiring more complex intersection algorithms. Varia-
tions on these bounding-box methods are commonly found
in computer graphics—see [3, 6, 13, 18, 20] for details.

A graphical snapshot of the data-structures in the middle
of this algorithm is shown in figure 4.

For collision detection in a dynamic environment, for ex-
ample where the robot is moving amidst obstacles which are
also moving, or where a system requires the coordinated
motion of multiple robots, we can extrude the motion into
a four-dimensional space-time, as in [1]. The mathematical
details of this are given in [9, 8].

2.2. Path Planning.

More complicated problems are path planning and ac-
cessibility checking. Instead of using the computer to check
human-designed paths, we create an algorithm which takes

basic path requirements such as the initial and final configu-
rations, and checks whether a path is feasible and if so finds
such a path.

There are several approaches to this. Firstly we can con-
sider working with individual paths and recombining these
paths in a versions of a genetic algorithm [12]. This al-
gorithm works by taking a wide variety of paths, speci-
fied as NURBS in configuration space, and iteratively split-
ting, combining and then selecting the best paths, gradually
converging to a good path. This relies on a fast collision-
checking algorithm such as the one outlined above.

Begin
Select a random set P of n paths in C
Until (collision-free path found)

Empty the set Pnew

For �i � �
 i � �n
 i� ��
Choose two members p�� p� of P at random
Chop off a random number of control points

from the beginning of p�
Chop off a random number of control points

from the end of p�
Concatenate p��p� and put in a set Pnew

EndFor
Test each member of Pnew for collision
Rank the members of Pnew in order of

amount of contact with obstacles
Remove the n members of Pnew withmost obstacle contact
Mutate a random selection from Pnew

by perturbing the control points
P �� Pnew

EndWhile
End

Another approach which captures the geometry of the
situation in a better way is to trim away those regions
r � C where �i�r� � Oj �� 	 for some i� j, where Oj

are the obstacles in the robot’s environment, leaving behind
those free-space regions in which the robot can move with-
out fear. Here we apply a useful property of the B-spline
representation—we have a natural subdivision structure (as
in section 1.1) which allows us to calculate the image �i�r�
easily and quickly. The key idea is illustrated in figure 5.

Essentially our algorithm works like this. Find the re-
gion ���C�, and carry out intersection tests using bounding-
boxes as above. If there are any intersections, draw an
isoparametric line throughC splitting it into C �� C� and carry
this split intoR� by carrying out the subdivision algorithm
on �� to give ���C�� and ���C��. Then test these against the
obstacles, throwing away any obstacles which don’t collide.
Continue until a free-space region is found, or until a toler-
ance is reached, then progress to the next link.

Begin



Create the occupancy functions �i

Remove all obstacles that are impossible for the robot to
reach in any configuration

Create an linked-list of obstacles obs list
Create a triple p �� �obs list� ��� ��
Make p the root of a tree main tree
Mark this root as the current node,

and make it a grey node
While main tree still contains grey nodes

take the triple � �� �current list� current patch� depth�
from current node of main tree

pbb �� BoundingBox(patch)
While current list is non-empty

pop a patch obstacle from current list
obb �� BoundingBox(obstacle)
Test obb and pbb for intersection
If there is an intersection push obstacle

onto a list temp obstacles
EndIf

EndWhile
If there have been any intersections

Subdivide patch into
patch� � � �patch�i

Subdivide each obstacle on
temp obstacles

Place �patch�� temp obstacles� depth� ��
on a new daughter-node of main tree

onto the back of main tree
� � �

Place �patch�� temp obstacles� depth� ��
on a new daughter-node of main tree

onto the back of main tree
EndIf

If depth+1 � tolerance
mark current node as blocked and traverse the

tree until another grey-node is found
EndIf
If no collisions were detected

If current node is on last link
mark the current node as free and traverse the

tree until another grey-node is found
Else create �i�� daughter nodes,

initialized to ��i��� obs list� ��
EndIf

EndWhile
End

We have used a tree-structure [17] to store information
about the patches as we continue subdividing (see figure 6).
Each node of the tree (corresponding to a patch of the oc-
cupancy mapping) is shaded grey (if more subdivision is
needed), blocked if an obstacle prevents than patch of C
from being accessed) or free if that region is known to

d) Remaining free
 space.

 occupancy region
b) Sweeps out a) Robot arm moves.

 clear regions
c) Subdivide to find

Figure 5. Trimming away to find free-space.

be accessible. This has a number of advantages. One valu-
able property that we use here is the existence of algorithms
which find connected regions in trees [16], thus giving an
algorithm for checking whether there exists a path or not.
Once we have found such a contiguous free-space region,
then we can interpolate a NURBS path through it.

One major advantage of this (compared with, for exam-
ple, [11]) is that the same structure works on any scale. If a
large amount of space is free then these regions are marked
off as free near the beginning of the algorithm, rather than
being pointlessly further subdivided. Equally the algorithm
concentrates on small regions where this is necessary, and
the level of detail is decided automatically as the algorithm
progresses—there is no need to set an initial level of desired
detail.

We can extend the arguments about space-time swaths
for motion in dynamic environments to the accessibility
checking and path planning problems too.

3. Development of a system.

In the paper we have shown how to develop a NURBS

model of robot workspace, and how to apply this model to
a number of problems in automation. In these closing para-
graphs we bring these ideas together and discuss how to
embed this into intelligent robot programming systems.

A key to this lies in liberating robots from the constraints



Stop!

[0,1]

[1/2,3/4]
[0,1]

[0,1/2] [1/2,1]

[1/2,1] Stop!Stop!Stop!

  blocked regions, open circles are free regions, hexagons are 
  link angle, normalized to [0,1]. Shading indicates possibly
Notes: figures in brackets refer to uppar and lower ranges of

  blocked regions.

Figure 6. Tree structure after the first few
stages of the free-space algorithm.

of the designed environment. One exciting avenue to ex-
plore here is incorporating work in computer-vision and
range sensing, and recent work by Wang and Wang [19] and
Lavallée and Szeliski [10] use B-spline surfaces as the basis
of visual reconstruction experiments, which strengthens our
use of B-splines as a mathematical basis for the system.

Moving on from this we intend to develop a system
whereby robots can be programmed in a wholly graphical
environment, rather than graphical systems being used to
test text-based programs [2]. This will build upon the work
above, allowing the environment to be designed in a CAD

system and desired positions and orientations of the robot
indicated by interaction with a 3D model, drawing on the
path-planning algorithms outlined in section 2.2 to hide the
details of the robot’s kinematics. Further on from this, we
are working towards the development of a graphical robot
programming system based on constraints on the motion
of the robot given by graphical analogies—for example re-
gions where the robot is not allowed to visit are indicated
by virtual “walls”, pressures towards or away from a region
of workspace are indicated by virtual “springs”, et cetera. It
is intended that this will provide a flexible way of program-
ming robots which can respond to variations in the robot
environment.

References

[1] S. Cameron. Using space-time for collision detection : solv-

ing the general case. In K. Warwick, editor, Robotics, Ap-
plied Mathematics and Computational Aspects, pages 403–
415. Clarendon/IMA, 1993.

[2] J. Craig. Introduction to Robotics. Addison-Wesley, second
edition, 1989.

[3] A. del Pobil and M. Serna. Spatial Representation and Mo-
tion Planning. Number 1014 in Lecture Notes in Computer
Science. Springer, 1995.

[4] J. Denavit and R. Hartenberg. A kinematics notation for
lower-pair mechanisms based on matrices. Journal of Ap-
plied Mechanics (Transactions of the ASME), June 1955.

[5] G. Farin. Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, third edition, 1993.

[6] R. Featherstone. A hierarchical representation of the space
occupancy of a robot mechanism. In J.-P. Merlet and B. Ra-
vani, editors, Computational Kinematics (INRIA, September
1995). Kluwer, 1995.

[7] C. G. Johnson and D. Marsh. Modelling robot manipulators
in a CAD environment using B-splines. In N. Bourbakis, ed-
itor, Proceedings of the IEEE International Joint Symposia
on Intelligence and Systems, pages 194–201. IEEE Press,
1996.

[8] C. G. Johnson and D. Marsh. Geometric models of robotic
mechanism motions using multivariate B-splines. In prepa-
ration, 1997.

[9] C. G. Johnson and D. Marsh. Multivariate B-splines for
modelling robot manipulator workspace. In M. Dæhlen,
T. Lyche, and L. L. Schumaker, editors, Mathematical Meth-
ods for Curves and Surfaces II. Vanderbilt University Press,
1998.

[10] S. Lavallée and P. Szeliski. Recovering the position and ori-
entation of free-form objects from image contours using 3D
distance maps. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(4):378–390, 1995.

[11] T. Lozano-Pérez. A simple motion-planning algorithm for
general robotic manipulators. IEEE Journal on Robotics and
Automation, RA-3(3):224–238, 1987.

[12] M. Mitchell. An Introduction to Genetic Algorithms. Brad-
ford Books, 1996.

[13] Q. Peng. An algorithm for finding the intersection lines
between two B-spline surfaces. Computer Aided Design,
16(4), July 1984.

[14] L. Piegl. Modifying the shape of rational B-splines. part 1 :
curves. Computer Aided Design, 21(8):509–518, 1989.

[15] L. Piegl and W. Tiller. TheNURBS Book. Springer, 1995.
[16] H. Samet. Connected component labeling using quadtrees.

Journal of the Association for Computing Machinery,
28(3):487–501, 1981.

[17] H. Samet. The quadtree and related hierarchical data-
structures. ACM Computing Surveys, 16(2), 1984.

[18] T. W. Sederberg and S. R. Parry. Comparison of three curve
intersection algorithms. Computer-Aided Design, 18(1):58–
63, January/February 1986.

[19] Y. Wang and J. Wang. On 3D model construction by fusing
heterogeneous sensor data. CVGIP-Image Understanding,
60(2):210–229, 1994.

[20] J. Yen, S. Sprach, M. Smith, and R. Pulleyblank. Parallel
boxing in B-spline intersection. IEEE Computer Graphics
and Applications, pages 72–79, January 1991.


