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Abstract 

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxed version of the classical VRP where 

customers can be visited more than once. The SDVRP is also applicable for problems where one or more of 

the customers require a demand larger than the vehicle capacity. Constructive heuristics adapted from the 

parallel savings and the sweep methods are first proposed to generate a set of solutions which is then used 

in the new and more efficient set covering-based formulation which we put forward. An effective repair 

mechanism to remedy any infeasibility due to the set covering problem is presented. A reduced set of 

promising routes is used in our model, instead of the original set of routes, proposing and using well 

defined reduction schemes. This set covering-based approach is tested on large data sets from the literature 

with encouraging results. In brief, 7 best solutions including ties are found among the 137 SDVRP 

instances.  

Keywords: split deliveries, vehicle routing, set covering, hybrid method, matheuristic. 

 

1. Introduction 

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the classical 

VRP in which a customer can be served by more than one vehicle if it reduces the overall 
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total cost. This relaxation is very important especially for cases where the sizes of the 

customer orders are nearly as big as the capacity of a vehicle. Although the SDVRP is a 

relaxation of the VRP, it is also an NP-hard problem, as shown by Archetti and Speranza 

(2008). This routing problem was first introduced by Dror and Trudeau (1989) where it 

was found that the total travel distance and the number of vehicles required can be 

reduced by allowing more than one vehicle to deliver to a customer. It is worth noting 

that in some situations, it may not be worth to split as this could increase the travelling 

cost without a reduction in the number of vehicles.  

Let 𝐶 = {1,2, . . , 𝑛} be the set of customers, each customer 𝑖 has a positive integer 

demand, 𝑑𝑖. The SDVRP can be defined over a graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {0} ∪ 𝐶 is 

the set of nodes and 𝐸 = {{𝑖, 𝑗}: 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of edges. Node 0 is the depot 

(with no demand), where a fleet of homogeneous vehicle with capacity 𝑄 is located. A 

travelling cost from 𝑖 to 𝑗, 𝑐𝑖𝑗 is associated with each edge {𝑖, 𝑗} ∈ 𝐸. Each vehicle must 

start and end at the depot. The vehicle load cannot exceed the vehicle capacity, 𝑄. The 

demand 𝑑𝑖,(𝑖 = 1,2, … , 𝑛) can be delivered by more than one vehicle. The objective is to 

find a set of routes that minimizes the total travelling cost without violating all these 

constraints. It is also applicable to problems with customers’ demands larger than the 

vehicle capacity. These types of split routing problems can be applied in many real-world 

logistical problems.  

This problem remained dormant for several years till 2006 when Archetti et al. (2006) 

revisited it and proposed an efficient and novel tabu search metaheuristic for its 

resolution. Most of the approaches are heuristic-based methods which include a scatter 

search method by Mota et al. (2007), a memetic algorithm by Boudia et al. (2007), a ring-

based diversification method by Aleman et al. (2009), a variable neighbourhood descent 

by Aleman et al. (2010), a tabu search with vocabulary building approach (TSVBA) by 

Aleman and Hill (2010), a local search-based method by Derigs et al. (2010), a 

randomized granular tabu search by Berbotto et al. (2014), an iterated local search 

heuristic by Silva et al. (2015) and a priori splitting strategy by Chen et al. (2017). There 

are however a few exact methods such as the cutting plane method by Belenguer et al. 

(2000), the branch-and-cut algorithms by Archetti et al. (2011a; 2014) and the set 
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partitioning approach by Archetti et al. (2011b). There are also a few hybrid methods 

developed for this problem, see Chen et al. (2007) and Archetti et al. (2008). For more 

details, the reader will find the recent review by Archetti and Speranza (2012) to be 

interesting, easy to read and very informative. 

The contributions of this study include:  

(i) The development of an effective and efficient matheuristic, a hybridisation of 

some constructive heuristics, a repair mechanism and a set covering approach.  

(ii) A new and more powerful set covering model, which gives better solutions 

when there is a computation time limit imposed.  

(iii) The design of interesting selection rules for identifying potential routes so to 

reduce the size of the problem without affecting solution quality. 

(iv) The gain of competitive results.  

This paper is organised as follows.  In Section 2, we give a brief overview of the overall 

algorithm followed by Section 3 that describes the constructive heuristics which we adopt 

to generate a set of initial solutions. Section 4 provides the proposed set covering-based 

formulation and its implementation followed by a section on how to identify promising 

routes so to reduce the number of routes. Our computational results are presented in 

Section 6. Our conclusion and highlights of research avenues that we believe to be worth 

examining in the future are given in the last section. 

 

2. An overview of the overall algorithm 

The constructive heuristics which are implemented to generate a set of routes are adapted 

from the saving and the sweep methods which are originally based on the classical VRP 

and modified slightly to cater for the possibility of splitting. 

The modified set covering model that considers the decision variables denoting the 

proportion of a customer demand on a given route is proposed. This will be compared 

against the existing classical formulation. The set of generated routes is reduced by 

identifying good routes only so to accommodate the feasibility of using an ILP solver 

such as CPLEX. This selection is based on the quality of the solutions where these routes 
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belong to, the route dual information and the frequency of occurrences of the routes. This 

hybrid heuristic is denoted by (MSN), short for Mohamed, Salhi and Nagy. In brief, the 

overall algorithm of MSN can be described as follows: 

The MSN Algorithm 

Step 1 Generate a large set of routes using some constructive heuristics (VRP-based 

and modified ones to cater for split deliveries). 

Step 2 Reduce the set of routes using well defined selection criteria.  

Step 3 Apply an ILP solver using the new set covering-based formulation with the 

original set of routes found in Step 1 as well as the set of routes generated in 

Step 2. 

The next three sections will describe the three steps of the MSN algorithm. 

  

3. Constructive Heuristics for the SDVRP 

Two approaches based on the parallel saving and the sweep method are adapted to 

construct a large number of initial solutions whose routes, after the removal of 

duplications, will be used in the modified set covering-based model which we present in 

the next section.  

The first approach consists of two stages namely the construction of the initial VRP 

solutions in the first stage and then followed by an implementation of a splitting method 

to relax the problem in stage two. Whereas in the second approach, the solutions are 

obtained in only one stage with splitting integrated into the search.  

A composite heuristic made up of commonly used refinement procedures which include 

the 2-opt, the swap move and the insertion (intra route and inter routes) is then used as 

the local search engine to improve upon the initial solutions. These are applied in 

sequence. Details of these two scheme approaches and the composite heuristic are given 

below.  
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3.1 Scheme 1 – A Two-stage Splitting Approach 

The saving concept is first introduced by Clarke and Wright (1964) and then explored by 

many studies to solve the VRP and its related problems using heuristics and meta-

heuristics approaches. Yellow (1970) modified the classical saving formulae by 

incorporating a route shape parameter  as follows: 

𝑠𝑖𝑗 = 𝑐𝑖0  +  𝑐0𝑗  – c𝑖𝑗 

where  

𝑠𝑖𝑗 refers to the saving by merging customers 𝑖 and 𝑗;  

𝑐𝑖0 is the distance between customer 𝑖 and the depot which is denoted by 0; 

𝑐𝑖𝑗 is the distance between customer 𝑖 and customer 𝑗.                               

As split deliveries are allowed in this problem, we solve the problem in two stages in this 

scheme.  

Stage 1 (VRP Solution): 

 Construct an initial solution for the VRP without any splitting using the standard 

parallel saving method.  

 Apply the composite heuristic to improve upon each of the solutions. 

Stage 2 (Including the Splitting): 

 Modify the obtained VRP solution to include split deliveries by using the 

endpoints procedure (see The End Point Splitting Method).  

 Apply the composite heuristic to improve the solution. 

These two stages are implemented with various values of the route shape parameter to 

generate a set of feasible routes. 

We generate several solutions with  ∈ [0,5] starting with  = 0 with an increment of 

0.2. This implementation was successfully used in the past by Salhi and Rand (1987) for 

the VRP. We opt for the parallel saving heuristic implementation instead of the sequential 

saving as the latter produced, in most cases, better results. See Mohamed (2012) for more 

details. 
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In Stage 2, this splitting method is implemented right after the VRP solutions are 

obtained to generate routes where splitting occurred. The idea is to merge two routes 

which are not fully loaded through their end point customers allowing concurrently 

splitting. This splitting is performed at one of the other 2 end points used in the 

combination.  We refer to it as the end point splitting method which we call for short 

EPSM. 

The End Point Splitting Method (EPSM) 

Step 1 Start from a given route which is not fully loaded and compute the best 

merging of one of its endpoints with another endpoint (say customer 𝑗) from 

another route by delivering some of the demand at customer 𝑗 without 

exceeding the vehicle capacity constraint. This could lead to customer 𝑗 being 

split and served by two routes. 

Step 2 Execute this merging. 

Step 3 Search for another best merging until the current route is full. 

Step 4 Repeat Steps 1 - 3 for the next route until all routes are explored. 

 

3.2 Scheme 2 – An Integrated Splitting Approach 

The aim here is to obtain a one stage feasible solution, using the following two steps: 

 Construct an initial solution for the SDVRP by adapting some constructive 

methods. Here, we considered the modified parallel saving and the modified 

sweep methods, both with splitting included.  

 Improve the obtained solution using the composite heuristic. 

Parallel Savings with Split Deliveries (PSSD)  

This method is similar to the classical parallel saving method for the VRP except that: 

(i) a customer is allowed to be split when selected by the savings and  

(ii) two routes can also be combined even when the total load exceeds the vehicle 

capacity as long as it does not violate by more than the demand of the closest 

customer of these routes to the depot.  
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This choice will allow easily a splitting to be applied on this particular customer. Note 

that (ii) is similar to using one application of EPSM when the two routes are fixed. The 

affected customer with its remaining demand will act as a new unassigned customer that 

will be allocated to a route according to the saving method. This is referred to as PSSD 

and its main steps are given next. 

The PSSD Algorithm 

Step 1 Create 𝑛 vehicle routes (0, 𝑖, 0) for each 𝑖 = 1,2, … … , 𝑛. 

Step 2 Calculate the savings 𝑠𝑖𝑗 = 𝑐0𝑖 + 𝑐0𝑗 − 𝑐𝑖𝑗 for 𝑖 = 1,2, … , 𝑛 and 𝑖 ≠ 𝑗. 

Step 3 Order the calculated savings in decreasing order. 

Step 4 Starting with the highest savings, 𝑠𝑖𝑗 check whether there exist two routes 

that can feasibly be merged. 

Step 5 Choose the route containing 𝑖, either as the first or the last customer in the 

route. Choose another route containing 𝑗 as the first or the last customer in the 

route. 

Step 6 Merge these two routes to form a new larger route with 𝑖 and 𝑗 acting as the 

first or the last customer of each route. 

Step 7 If these two routes cannot be merged together due to the vehicle capacity 

constraint. However, if both routes are still not fully loaded, we check the 

splitting point for each route so that one of their loads is equal to the vehicle 

capacity. Select the nearest splitting point to the depot as the point to be split. 

Merge 𝑖 and 𝑗 to get one full route, using the farthest splitting point from the 

depot, which ends or starts at the selected splitting point, while the other 

route, which also starts or ends at the same selected splitting point, will 

become smaller.  

Step 8 Repeat Step 4 using the next savings until there is no more possible 

combination left. 
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The Sweep-based Approach with Split Deliveries (SASD) 

The sweep method initially proposed by Gillett and Miller (1974) is also investigated 

here to generate additional sets of possible routes. The aim is to create a cluster of 

customers that are geographically close together from an angular viewpoint. We have 

extended this algorithm by generating all possible routes while allowing splitting. In this 

implementation, we start from each customer location and use both clockwise and 

counter-clockwise directions. The sweep-based splitting approach, which we refer to 

SASD for short, is given next. 

The Sweep-based Approach with Split Deliveries (SASD) 

Step 1 Set the depot coordinate as the starting point. Calculate the angle, 𝜃𝑖 of each 

customer 𝑖, as the relative angle between the depot and the customer location 

and arrange the angle, 𝜃𝑖 in ascending order. 

Step 2 Starting from the first empty route, assign customers to the route according to 

counterclockwise (or clockwise) direction until the vehicle capacity is full.  

(i) If the last customer on the route is not fully served, split its demand and 

start the next route with the customer as the first customer in the second 

route.  

(ii) If the last customer is fully served, start the next route with the next 

customer in the list. 

Step 3 Stop when all customers are served. 

Step 4 Repeat Steps 2 and 3, starting from the next customer in the list creating 𝑛 

sets of solutions. 

Step 5 Repeat Steps 2 to 4 using the other direction. 

 

3.3 A Composite Heuristic 

As mentioned before, a composite heuristic is used as the local search engine to refine the 

obtained initial solutions and these refinement procedures are applied in sequence. 
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The 2-Opt 

This procedure starts from a given route, then compute the best edge exchange of two 

non adjacent edges with other two new edges while maintaining the route structure that 

improves the original route. Update the exchange and the direction of the arcs connecting 

these two edges. This process is repeated until no further improvement is possible.  

 

 

Figure 1: The 2-Opt routine within a route 
 

Figure 1 illustrates an example of a 2-Opt routine within a route by exchanging the 

positions of two nodes. In the example, the location of customer 4 is exchanged with the 

position of customer 2. By executing this exchange, the arc that connects these two nodes 

is diverted, where 4 – 3 – 2 becomes 2 – 3 – 4. The profit from the exchange can be 

calculated as: 𝐺𝑎𝑖𝑛 =  𝑐12 + 𝑐45 − 𝑐14 − 𝑐25. There is a well-known property such that a 

route should never cross given that the triangular inequality holds and there are no 

constraints such as time windows. 

The Swap Move 

This routine involves two routes, where a node 𝑖 from a given route, say 𝑅1 is exchanged 

with a node 𝑗 from another route, say 𝑅2 excluding the given route (𝑅1 ≠ 𝑅2) but not 

necessary at the same positions. The process starts with removing node 𝑖 and node 𝑗 from 
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their original routes, searching for the best possible position to insert 𝑗 into route 𝑅1 and 

the best feasible position to insert node 𝑖 into route 𝑅2. We implement the best 

improvement strategy where each pair of nodes for each pair of routes are explored to 

find the best swap move. Once found, the mode is executed and the process is repeated 

until no further improvement is possible. An illustrative example is shown in Figure 2. 

 

Figure 2: A Swap move inter routes 

 

Figure 2 shows nodes 2 and 5 are removed from their original routes and then inserted 

into each other’s route, node 2 into route 𝑅2 and node 5 into route 𝑅1. 

Insertion (intra route and inter routes) 

This routine involves one route (intra route) or two routes (inter routes) at a time, where a 

node 𝑖 from a given route, say 𝑅1 is removed from the route to be inserted back into the 

same route at a different position or into another route, say 𝑅2. The process starts by 

removing node 𝑖 from its original route, searching for the best possible position based on 

the insertion cost to insert 𝑖 into any possible route including 𝑅1. The insertion move is 

implemented based on the best improvement strategy where the insertion is only executed 

after all customer 𝑖 is explored. The process is repeated until no further improvement is 

possible. 

A Swap Move 
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Figure 3: An example of the Insertion move within a route 

 

Figure 3 illustrates an example of this insertion procedure within a route, where node 4 

which was in between nodes 3 and 5 is removed from the route before being inserted 

back into the route in between node 5 and the depot.  

Figure 4 on the other hand demonstrates an example of this insertion procedure between 

two routes, where node 2 from route 𝑅1 is removed from the route, and then inserted into 

route 𝑅2. 

 

 

Figure 4: An example of the Insertion between routes 

The Insertion intra route 

The Insertion inter route 
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4. A Set Covering-based Matheuristic 

There are two types of mathematical formulations for the SDVRP namely the classical 

mixed integer programming and the set covering-based model (SCM). Archetti and 

Speranza (2008) produce an overview on the studies in the SDVRP where comparisons 

have been conducted to highlight the benefits and the drawbacks of each model. Note that 

if the problem is highly constrained (capacity, time windows), the set of routes becomes 

smaller and hence the SCM becomes more attractive and relatively easier to solve. In this 

study we will concentrate on the latter formulation. 

The SCM is based on a collection of possible feasible routes from which the best feasible 

solution could then be obtained. In this study, the routes found by the heuristics, as 

described in the earlier section, will be used as a basis to construct the set of routes. As 

the set covering model may generate routes with some customers being served more than 

their required demand due to the constraints (8) and (10), a repair mechanism will be 

given. In addition, as many routes may be duplicated, a scheme to avoid such 

duplications will also be introduced. The hybridisation of heuristics and exact method is a 

novel and powerful approach known as matheuristics. For an overview on heuristic 

search including matheuristics, see Salhi (2017). 

4.1 The Original Set Covering-Based Formulation for the SDVRP 

The model objective is to design a solution with a set of selected routes from a large set 

of feasible routes 𝑅. This is an extension of the Set Partition Problem (SPP) given by 

Alvarenga et al. (2007) to cater for split deliveries. The model presented by Archetti et al. 

(2008) and Archetti and Speranza (2008) also uses the following notation and 

assumptions.  

𝑛 = the number of customers (𝑖 = 1,2, … , 𝑛); 

C         = the set of customers (𝑖 ∈ 𝐶 = {1, … , 𝑛}, |𝐶| = 𝑛);   

𝑉 = the set of nodes, 𝑉 = {0,1, … , 𝑛} (node 0 denotes the depot), {0} ∪ 𝐶; 

𝑑𝑖 = the demand of customer 𝑖 ∈ 𝐶; 

𝑐𝑖𝑗 = the travel cost between customer  𝑖  and 𝑗, ∀ 𝑖, 𝑗 ∈ 𝑉 − {0} (𝑐𝑗𝑖 = 𝑐𝑖𝑗); 
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𝑚 = the number of vehicles (𝑙 = 1,2, … , 𝑚); 

𝑄 = the vehicle capacity for each vehicle 𝑙 (𝑙 = 1,2, … , 𝑚); 

𝑦𝑟
𝑖 = the quantity of the demand of customer 𝑖 delivered in route 𝑟. 

𝑅         = the set of all possible routes (𝑟 ∈ 𝑅);  

𝑐𝑟        =  the travel distance on the route 𝑟 (𝑟 ∈ 𝑅) ; 

𝑥𝑟    = decision variable, 1 if the route 𝑟 is considered in the solution and 0 

otherwise;  

The objective is to choose the subset of routes from 𝑅 with the least total cost while 

ensuring that each customer is served at least by one route.  

Let (P0) be the original model:  

min ∑ 𝑐𝑟𝑥𝑟𝑟∈𝑅                                                       (1) 

s.t:  ∑ 𝑦𝑟
𝑖

𝑖∈𝑟 ≤ 𝑄𝑥𝑟        𝑟 ∈ 𝑅                                              (2) 

∑ 𝑦𝑟
𝑖

𝑟∈𝑅:𝑖∈𝑟 ≥ 𝑑𝑖        𝑖 ∈ 𝐶                                             (3) 

𝑥𝑟 ∈ {0,1}      𝑟 ∈ 𝑅                                                  (4) 

𝑦𝑟
𝑖 ≥ 0     𝑟 ∈ 𝑅; 𝑖 ∈ 𝐶                                                (5) 

The objective function (1) is to minimise the total cost of the selected routes. Constraints 

(2) enforce that a delivery to a customer 𝑖 on route 𝑟 can only take place if route 𝑟 is 

selected and that the maximum total quantity delivered on a selected route must not 

exceed the vehicle capacity. Constraints (3) make sure that the demand 𝑑𝑖 of customer 𝑖 

is fully satisfied. 

Note that if 𝑅 contains all the possible feasible routes and if it is possible to solve (P0) to 

optimality then the optimal solution will obviously be guaranteed. 

4.2 The New Set Covering-based Formulation (P1) 

The model formulation used in this study is modified from the original (P0) of Archetti et 

al. (2008). Several modified models have been studied (see Mohamed, 2012) but we only 

provide the best one in this paper. Similar to (P0), there are two decision variables namely 

(P0) 
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𝑥𝑟 and 𝑦𝑟
𝑖. However, in this model, 𝑦𝑟

𝑖 is restricted to be a fractional variable rather than 

just non-negative.  In the original model, the optimiser decides the quantity to be 

delivered to each customer 𝑖 on route 𝑟 and Archetti et al. (2008) made a useful 

observation where they were having difficulties in solving this integer problem even with 

some cuts strengthening introduced. As the quantity delivered to a customer on a route 

was relaxed, this creates a large search space for the optimiser.  

Their observation inspired us to make use of this information so to consider the 

maximum amount delivered to customer 𝑖 on route 𝑟, namely 𝑑𝑖. The constraints (2) and 

(3) have also been modified to reflect for this change. 

This modified model which we refer to as (P1) uses the same notations and assumptions 

as (P0) except for the following: 𝑦𝑟
𝑖 represents the proportion of the 𝑖𝑡ℎcustomer demand 

delivered to customer 𝑖 on route 𝑟 (i.e., 0 ≤ 𝑦𝑟
𝑖 ≤ 1) and (2) & (3) are replaced by (7) & 

(8) respectively.  

 

min ∑ 𝑐𝑟𝑥𝑟𝑟∈𝑅                                                       (6) 

s.t:  ∑ 𝑑𝑖𝑦𝑟
𝑖

𝑖∈𝑟 ≤ 𝑄𝑥𝑟        𝑟 ∈ 𝑅                                              (7) 

∑ 𝑦𝑟
𝑖

𝑟∈𝑅:𝑖∈𝑟 ≥ 1       𝑖 ∈ 𝐶                                             (8) 

𝑥𝑟 ∈ {0,1}      𝑟 ∈ 𝑅                                                  (9) 

0 ≤ 𝑦𝑟
𝑖 ≤ 1    𝑟 ∈ 𝑅; 𝑖 ∈ 𝐶                                               (10) 

 

This set of possible routes is then used to solve the set covering problem (SCP) by calling 

the optimiser ILOG CPLEX Callable Library.  

We have tested this idea on several problem instances and it is proved empirically that 

this information is very useful. It makes the SCP easier to be solved while producing 

better quality solutions whenever optimality was not guaranteed within the same amount 

of CPU time. 

(P1) 
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4.3  Repair Mechanism 

As the above models are based on set covering formulations, the solutions obtained may 

select routes where some customers could be served with more than their required 

demand. To overcome this shortcoming, a simple but effective repair mechanism is 

introduced to ensure that every customer receives exactly its demand. This routine 

besides ensuring feasibility could also reduce, in some cases, the total routing cost. 

Mathematically, this can obviously be avoided by replacing (8) with equality constraints 

instead, as in the SPP, but this would require an excessive amount of computational 

effort. 

In brief, for a customer receiving more than its demand, this can lead to this customer 

being:  

(i) either served from one route only or  

(ii) this customer remains to be served by the existing number of routes.  

In (i) this will systematically lead to some reduction in routing cost whereas in (ii) the 

corresponding customer request will be adjusted accordingly without any saving in 

routing cost.  Note that these two routes were not part of the set 𝑅, otherwise they would 

have been selected. For instance the VRP solutions always fit into (i). Figures 5 and 6 

illustrate these two cases. More details including mathematical expressions are available 

in Mohamed (2012).  
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Figure 5: An example of the route generation heuristic for the VRP case (i)  

 

 

Figure 6: An example of the route generation heuristic for SDVRP case (ii)  
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4.4 A Route Duplication Removal Scheme 

Once the set 𝑅 is obtained, it is then cleaned by eliminating any duplicate route using the 

following procedure. We achieve this by checking for each route 𝑟 (𝑟 ∈ 𝑅) its total route 

distance, its route load, its number of customers served and the customers served on the 

route. Also, if these four attributes happen to be the same, then the route that has its split 

customer with the highest quantity delivered to it will be stored only. As this scheme is 

route-based, the pitfall caused by having similar solutions is avoided from the outset as 

the non-duplicate routes are stored only. 

 

5. The Identification of Promising Routes  

This obtained set of routes (R) could become too big to be handled by commercial 

LP/ILP solvers such as ILOG CPLEX. Besides, this large set may also contain many ‘not 

so good’ routes. The idea would be to identify a set of ‘promising’ routes to be solved in 

MIP using our modified model (P1). The question is how to identify these promising 

routes? Obviously we could not guarantee that the optimal results are part of the new 

subset as optimality will only be guaranteed if the set of routes contains all possible 

routes and the optimiser is run till the end. By restricting the computational time to a 

maximum of 2 hours, the search area becomes relatively smaller, covering good solutions 

and hence the solver may be able to find a better solution faster (a good upper bound). 

We consider the promising routes to be those that  

(i) belong to the top best solutions obtained from the heuristics,  

(ii) have dual values obtained from the relaxation of the set covering-based 

formulation to be larger than a certain threshold,   

(iii) appear more than twice in the solutions generated by the selected heuristics. 

These three selection schemes are briefly outlined next, followed by a scheme that 

combines them all.  
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5.1  Solution quality-based route selection 

Let 𝑍0 be the cost of the best solution found so far from the heuristics and 𝑍𝑘 be the cost 

of the 𝑘𝑡ℎ best solution. Any routes contained in the solutions with 𝑍𝑘 ≤ (1 +  𝛽)𝑍0 are 

included in the new subset. We define this subset as '

0{ such that (1 ) }H kR r R Z Z     

where 𝛽 is a threshold parameter (a small positive value close to zero). A pilot test using 

values of 𝛽, set to 1%, 5%, 10% and 15% is conducted under the time limit of 2 hours. 

Better solutions are observed with 𝛽 = 10%. It is also observed that a larger |𝑅𝐻
′ | does 

not necessarily guarantee a better solution when a time limit is imposed when using 

CPLEX. Further detailed can be found in Mohamed (2012). 

5.2  Dual Values-based route selection 

The second way of identifying good routes is based on the routes’ dual values related to 

constraint set (7), in the LP relaxation of (P1). Let 𝜇𝑟 be the dual price related to route 𝑟. 

The idea is then to choose routes with  𝜇𝑟 ≥ 𝜀 (𝜀 >0). In other words, the new subset is 

defined as ' { / }.M rR r R      The question is how to choose the most suitable value 

of 𝜀? A simple experiment on a sample using several values of 𝜀 is conducted. We tested 

the cases for    , 𝜀 = 𝜇̅ − 𝜎 and 𝜀 = 𝜇̅ + 𝜎 with 𝜇̅ and 𝜎 referring to the average and 

the standard deviation of the  𝜇𝑟 (𝑟 ∈ 𝑅) respectively.  

It is found that in most problem cases, CPLEX running time has been reduced for the 

case of 𝜀 = 𝜇̅ + 𝜎 but at the expense of solution quality. When 𝜀 = 𝜇̅ − 𝜎, the results 

were found to be rather inferior while reaching the time limit in most instances.  The best 

results were obtained when    so ' { / }.M rR r R        

5.3  Frequency-based route selection 

The third and last scheme of our set reduction is to include those routes which appear 

more than twice in the set 𝑅. This is because poor quality heuristic solutions might 

contain good routes and also routes which appear only once or twice in the set may have 

happened just by luck. Here, we select the subset as ' { / 2}F rR r R F   where 𝐹𝑟 being 

the frequency of occurrence of route r (𝑟 ∈ 𝑅). We also tested the subset{ / 1}rr R F   to 

see its effect but without any success. This could be due to the larger feasible region for 
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CPLEX to explore given the same limited amount of CPU time is imposed. The subset 

with 3rF 
 
was also found to be not promising as it is rather small and hence the 

solution quality was sacrificed with the benefit of a relatively smaller amount of CPU 

time.  

5.4  The Combined Scheme 

We combined the three selection schemes described earlier to form our set of promising 

routes as 𝑅′∗ = 𝑅𝐻
′ ∪ (𝑅𝑀

′ ∩ 𝑅𝐹
′ ). We limit the size of 𝑅′∗ to

| |

2

R
 with the following 

restrictions:  

(i)   |𝑅𝐻
′ | = min(0.8|𝑅|, |{𝑟 ∈ 𝑅/𝑍𝑘 ≤ (1 + 𝛽)𝑍0}|) 

(ii) The rest of the routes are then selected if they are found in the two subsets 

' 'andM FR R and count for at least 0.2|𝑅|.     

In (i) we opt for 𝛽 = 10% as the results obtained using this subset alone were found to be 

better than the other selections. We proceed to fill 𝑅′∗ by using all the routes from 𝑅𝐻
′  

followed by the routes which are in both 𝑅𝐹
′  and 𝑅𝑀

′ . Note that no route duplication is 

permitted. In other words, once a route is in 𝑅′∗, it cannot be chosen again from any of 

the other subsets.  

In brief, 𝑅′∗ is then used instead of R  in the CPLEX Callable Library to solve (P1). We 

have tested some combination of the selection schemes on several problem instances and 

it is proved empirically that the above combination is the best for this SDVRP. 

 

6. Computational Results 

The constructive heuristics are coded in C++ whereas the Set Covering-based approaches 

are solved using ILOG CPLEX 12.3 solver with Microsoft Visual C++ interface and the 

CPLEX Callable Library. Both approaches are executed on a PC with an Intel® CoreTM 

i7-620M, 2.66GHz processor with 8.0GB of RAM. For simplicity and convenience, a 

maximum CPU time of 2 hours is capped for each problem instance. If time is not a main 

concern, better results would be found if the problem is solved optimally using our new 
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Set Covering formulation. Our methods are tested on the four data sets from the literature 

namely Archetti et al. (2006), Mota et al. (2007), Chen et al. (2007) and Belenguer et al. 

(2000). 

The summary results including the total cost, the average deviation and the best solution 

are given in Tables 1- 4. The detailed average deviations and the route configurations of 

the best solutions can be found in Mohamed (2012) or requested from the authors. The 

deviation (in %) for each instance is computed as in Equation 11 below:  

Deviation(%) = (
𝐶𝑂𝑆𝑇𝑀(𝑝)−𝑍𝐵𝐸𝑆𝑇(𝑝)

𝑍𝐵𝐸𝑆𝑇(𝑝)
× 100)        (11) 

where 𝑍𝐵𝐸𝑆𝑇(𝑝) and 𝐶𝑂𝑆𝑇𝑀(𝑝) refer,  for the p
th

 instance, to the overall best cost and the 

cost found by a given method ( )M respectively.  

The Archetti et al. (2006) Data Set 

Table 1 shows the summary results on Archetti et al. (2006) data set. The best solution 

for each problem is reported in bold. Based on the average deviations on 30 instances, it 

is considered that MSN using the set 𝑅′* is the third best performer after SplitILS by 

Silva et al. (2015) and Local Search Method by Derigs et al. (2011).  

For comparison purpose and to be consistent with Archetti et al. (2008), we also include 

the solutions obtained using the original set covering model when using the set of routes, 

𝑅. By using our modified model, we obtained our solutions faster besides being of a 

better quality (or at least the same) on most of the instances tested except for p120_7090 

and p150_0110.  

The Mota et al. (2007) Data Set 

Table 2 shows the summary results on Mota et al. (2007) data set where the best solution 

is shown in bold. Among the 49 instances, MSN yields 1 best solution. In brief, MSN is 

the third best performer after SplitILS and the memetic algorithm with population 

management (MA|PM) by Boudia et al. (2007).  

In addition, when comparing the solutions obtained from the original model (P0) against 

those from our modified model (P1) when using the same set of routes R . It is found that 
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(P0) produced slightly inferior solutions with an average of 2752.02 compared to 

2631.20, found by MSN (using (P1)). 

The Chen et al. (2007) Data Set 

Table 3 illustrates the summary results on Chen et al. (2007). Among the methods which 

are tested on this data set, MSN using the reduced set 𝑅′* is considered as the third best 

performer producing an average cost of 9048.36 after SplitILS and TSVBA by Aleman 

and Hill (2010) with an average cost of 9006.20 and 9043.31 respectively. Among the 21 

instances, SplitILS produces the best result with a 0.05% average deviation. Branch-and-

price-and-cut (BC) by Archetti et al. (2011a) is the second best performer with a 0.30% 

average deviation but using 6 hours of execution time in their branch and price cut 

algorithm. Our modified set covering-based approach yields an average deviation of 

0.42%, the third best performer when using the set 𝑅.  

The Belenguer et al. (2000) Data Set 

In Table 4 we compare our MSN to TSVBA, VRPHAS (Chen et al., 2017) and SplitILS 

on Sets 1 and 2 of Belenguer et al. (2000) data set. SplitILS is the best performer on the 

instances in Set 1 by giving the smallest average deviation of 0.45%, followed by 

VRPHAS with the average deviation of 0.74%. While MSN is the third best performer 

with an average deviation of 1.59% using the set 𝑅. In Set 2, MSN produces the second 

best solutions with an average deviation of 1.30% using the reduced set 𝑅′* after 

SplitILS. 

 

7. Conclusions and Suggestions 

The Split Delivery Vehicle Routing Problem (SDVRP) is examined using a new 

formulation and an efficient implementation within a set covering-based methodology. 

The saving-based and the sweep-based heuristics are adopted to generate the set of 

routes. A modified set covering-based formulation which outperforms an existing one is 

proposed to solve this problem. An effective repair mechanism is also proposed to 

remedy any infeasibility due to a customer receiving more than its original demand when 
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solving the set covering problem. Reduction schemes to identify the set of promising 

routes are also carefully explored using dual routes information, the quality of the 

solution obtained from the heuristics and the frequency of occurrence of the generated 

routes. This hybrid method, which can also be called a matheuristic, produced 7 best 

solutions including ties when tested on the 137 instances taken from the literature.  

A possible future study is to extend this methodology by solving a series of smaller 

subsets for the SDVRP and incorporating a learning scheme from one run to the next. 

Another approach is to integrate evolutionary algorithms such as GA with our set 

covering-based model.  Other related SDVRP that incorporate vehicle fleet mix, presence 

of time windows, backhauling and multi depots could also be worth exploring in the near 

future. 
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Table 1: Summary results on Archetti et al. (2006) data set 

Problem ZBest 
aSPLITABU-

DT 

bBest Opt-

Based 
cB&C 

dLocal 

Search 
eSplitILS fVRPHAS 

1Our 

Heuristics 

2MSN 

(set R) 

3MSN 

(set R’*) 

4Original 

Model 

(set R) 

p50_00 524.61 530.79 527.68 N/A 524.61 524.61 N/A 535.96 524.93 524.95 524.93 

p75_00 823.89 854.28 853.61 N/A 829.89 823.89 N/A 856.14 843.33 845.77 850.93 

p100_00 826.14 841.36 840.12 N/A 826.14 826.14 N/A 852.69 844.58 840.96 851.43 

p120_00 1037.88 1056.96 1056.96 N/A 1042.12 1037.88 N/A 1051.31 1048.39 1048.39 1048.39 

p150_00 1023.87 1070.86 1055.08 N/A 1028.42 1023.87 N/A 1082.01 1067.33 1062.83 1133.56 

p199_00 1289.89 1340.35 1338.38  N/A 1302.89 1289.89  N/A 1367.61 1359.14 1367.61 1947.05 

p50_0110 459.50 462.91 N/A 459.50 N/A 459.50 459.50 465.95 465.95 462.45 465.95 

p75_0110 617.85 623.94 N/A 652.93 N/A 617.85 628.86 646.70 642.84 644.05 642.84 

p100_0110 752.62 771.46 N/A 788.23 N/A 760.00 752.62 792.79 782.51 782.51 782.51 

p120_0110 1031.11 1055.28 N/A 1071.58 N/A 1043.19 1031.11 1059.97 1047.63 1046.56 1047.63 

p150_0110 919.17 947.14 N/A 984.69 N/A 921.91 919.17 969.07 969.07 969.07 968.44 

p199_0110 1074.18 1148.27  N/A 1268.79  N/A 1074.18 1074.58 1134.82 1134.82 1134.82 1185.47 

p50_1030 757.15 765.31 758.20 770.19 776.42 757.15 776.06 786.55 768.17 768.95 772.91 

p75_1030 1109.62 1134.08 1122.91 1121.82 1123.97 1109.62 1137.43 1154.66 1114.20 1112.69 1129.42 

p100_1030 1458.46 1515.17 1505.46 1477.35 1478.59 1458.46 1469.84 1523.33 1476.61 1483.59 1595.09 

p120_1030 2881.80 3060.47 3017.92 2983.82 2913.09 2898.50 2881.80 2950.79 2950.79 2929.21 3414.40 

p150_1030 2016.97 2101.80 2093.28 2066.46 2055.18 2016.97 2039.21 2122.10 2077.29 2073.18 2300.13 

p199_1030 2478.40 2585.85 2582.62 2596.94 2540.06 2478.40 2500.49 2590.47 2576.43 2561.38 2873.27 

p50_1050 1005.75 1039.11 1021.02 1017.18 1012.56 1005.75 1027.92 1058.52 1014.69 1019.15 1019.08 

p75_1050 1502.05 1556.69 1548.54 1514.39 1508.73 1502.05 1520.83 1556.46 1507.13 1506.45 1522.08 

p100_1050 1996.76 2054.13 2024.58 2040.92 2035.91 1996.76 2017.94 2107.38 2027.35 2031.11 2071.92 

p120_1050 4219.01 4502.62 4476.38 4259.94 4270.38 4219.01 4265.64 4338.41 4338.41 4253.48 4632.14 

p150_1050 2849.66 2991.64 2977.00 2917.80 2912.08 2849.66 2876.70 3002.49 2878.77 2913.94 3275.80 

p199_1050 3471.41 3624.20 3594.00 3568.25 3581.66 3471.41 3517.12 3618.82 3546.46 3530.34 4209.91 

  
 

            Continued on the next page  
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Problem ZBest 
aSPLITABU-

DT 

bBest Opt-

Based 
cB&C 

dLocal 

Search 
eSplitILS fVRPHAS 

1Our 

Heuristics 

2MSN 

(set R) 

3MSN 

(set R’*) 

4Original 

Model 

(set R) 

p50_1090 1488.58 1511.98 1497.28 1489.37 1489.64 1488.58 1525.09 1587.50 1501.50 1510.43 1502.68 

p75_1090 2298.58 2338.67 2337.81 2318.28 2340.09 2298.58 2356.70 2369.46 2303.15 2323.70 2323.80 

p100_1090 3085.69 3155.22 3136.29 3127.06 3145.33 3085.69 3143.09 3192.52 3120.62 3130.05 3179.31 

p120_1090 6854.09 7350.11 7117.24 6995.85 6890.39 6854.09 7004.71 6950.79 6950.79 6918.01 7089.50 

p150_1090 4545.46 4674.13 4659.90 4678.52 4638.74 4545.46 4616.62 4707.61 4678.68 4657.50 4861.73 

p199_1090 5521.57 5715.85 5710.21 5673.18 5669.26 5521.57 5618.96 5693.60 5665.46 5686.08 5909.54 

p50_3070 1481.71 1503.95 1502.00 1499.29 1488.28 1481.71 1511.66 1552.73 1494.31 1491.52 1498.02 

p75_3070 2219.97 2293.55 2263.12 2237.19 2243.93 2219.97 2286.06 2320.31 2251.17 2256.50 2264.20 

p100_3070 2989.30 3070.90 3055.51 3030.66 3014.08 2989.30 3044.73 3120.44 3020.70 3033.00 3097.36 

p120_3070 6671.04 7168.26 7126.84 6822.31 6671.04 6673.95 6776.88 6778.32 6766.97 6778.32 6828.67 

p150_3070 4334.71 4496.86 4465.47 4438.76 4435.95 4334.71 4420.73 4476.23 4411.13 4425.77 4636.08 

p199_3070 5409.76 5571.13 5549.77 5560.29 5541.09 5409.76 5496.88 5581.28 5581.28 5545.76 6006.03 

p50_7090 2156.14 2173.63 2166.80 2166.30 2174.54 2156.14 2215.09 2228.22 2159.83 2180.42 2160.22 

p75_7090 3223.40 3285.37 3250.39 3258.15 3266.78 3223.40 3303.98 3325.45 3234.61 3239.30 3261.28 

p100_7090 4387.32 4470.71 4452.56 4467.59 4447.47 4387.32 4475.32 4490.52 4429.21 4416.81 4432.94 

p120_7090 10204.81 10673.31 10429.75 10376.94 10233.37 10204.81 10364.33 10399.64 10332.33 10248.73 10288.27 

p150_7090 6395.41 6482.19 6462.78 6523.22 6467.17 6395.41 6506.25 6537.03 6499.71 6476.39 6580.22 

p199_7090 8192.03 8392.11 8355.45 8410.38 8297.71 8192.03 8331.44 8365.01 8296.87 8291.50 8535.30 

Average Deviation (%) 3.39 2.57 1.86 1.43 0.02 1.74 3.65 1.52 1.50 5.80 

Average Deviation+ 

(%) 
3.22 N/A N/A N/A 0.07 N/A 3.74 1.98 1.95 6.42 

# Best   0 0 1 3 36 6 0 0 0 0 

# Best+   0 N/A N/A N/A 36 N/A 0 0 0 0 
aArchetti et al. (2006); bArchetti et al. (2008); cArchetti et al. (2011a); dDerigs et al. (2011); eSilva et al. (2015); fChen et al. (2017); 1Our Constructive Heuristics; 
2Our Modified Set Covering-based Approach (P1) using set R ; 3Our Modified Set Covering-based Approach (P1) using the reduced set R’*; 4Original Model (P0) 

using set R. 

+based on all instances. 
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Table 2: Summary results on Mota et al. (2007) data set 

Problem ZBest aTSVBA biVNDiv cICA+VND dSS eMA|PM fSplitILS 
1Our 

Heuristics 

2MSN 

(set R) 

3MSN 

(set R’*) 

4Original 

Model 

mgp50-01 524.61 527.67 524.61 540.82 531.02 524.61 524.61 535.96 524.93 524.95 524.93 

mgp75-02 823.89 853.20 851.24 880.28 839.75 823.89 823.89 856.14 843.33 845.77 850.93 

mgp100-03 826.14 844.21 852.74 854.13 835.82 829.44 826.14 852.69 844.58 840.96 851.43 

mgp120-11 1037.88 1051.24 1201.83 1223.28 1042.97 1041.20 1037.88 1051.31 1048.39 1048.39 1048.39 

mgp150-04 1023.66 1079.55 1074.11 1088.91 1056.92 1042.37 1023.66 1082.01 1067.33 1062.83 1133.56 

mgp199-05 1286.92 1339.49 1368.67 1390.55 1340.44 1311.59 1286.92 1367.61 1359.14 1367.61 1947.05 

mgp100-12 819.56 819.60 824.78 824.82 820.92 819.56 819.56 832.30 820.97 820.97 820.97 

mgp50-01-a 460.79 466.74 471.92 473.22 460.79 460.79 460.79 465.95 465.95 465.95 465.95 

mgp75-02-a 596.25 614.09 597.46 617.65 602.67 600.06 596.25 621.31 615.38 615.38 615.38 

mgp100-03-a 726.81 741.60 745.35 789.16 729.67 726.81 726.81 764.20 763.40 750.63 763.40 

mgp120-11-a 975.96 990.59 1087.80 1101.14 979.57 976.57 975.96 995.25 993.71 988.50 993.71 

mgp150-04-a 866.31 891.10 891.98 893.49 883.05 875.61 866.31 919.91 919.91 896.08 915.96 

mgp199-05-a 1017.28 1069.24 1073.55 1079.04 1039.51 1018.71 1017.28 1077.09 1077.09 1077.09 1117.73 

mgp100-12-a 632.63 658.99 673.54 673.54 633.80 649.73 632.63 687.44 645.27 657.79 650.01 

mgp50-01-b 741.06 753.98 766.19 777.75 769.60 751.41 741.06 779.77 741.06 741.06 741.06 

mgp75-02-b 1064.49 1085.70 1099.47 1099.47 1074.01 1074.46 1064.49 1100.12 1068.90 1071.55 1093.68 

mgp100-03-b 1376.22 1416.35 1425.90 1452.52 1416.48 1392.85 1376.22 1423.80 1423.80 1407.48 1504.43 

mgp120-11-b 2707.52 2744.74 2806.92 2806.92 2783.10 2720.38 2707.52 2759.33 2745.17 2735.22 3210.75 

mgp150-04-b 1861.63 1929.91 1978.01 1978.01 1974.70 1878.71 1861.63 1954.04 1927.36 1917.36 2169.08 

mgp199-05-b 2305.70 2408.16 2464.65 2502.54 2435.08 2340.14 2305.70 2413.36 2388.01 2386.57 2736.33 

mgp100-12-b 1413.85 1441.48 1428.27 1428.27 1423.49 1417.28 1413.85 1451.14 1425.70 1426.34 1449.02 

Continued on the next page 
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Problem ZBest aTSVBA biVNDiv cICA+VND dSS eMA|PM fSplitILS 
1Our 

Heuristics 

2MSN 

(set R) 

3MSN 

(set R’*) 

4Original 

Model 

mgp50-01-c 982.79 1023.24 1039.89 1045.93 1025.91 988.31 982.79 1031.37 1000.63 994.74 1003.34 

mgp75-02-c 1393.11 1458.59 1478.67 1503.02 1484.62 1413.80 1393.11 1462.21 1409.74 1416.19 1433.92 

mgp100-03-c 1823.58 1886.70 1956.13 1957.55 1926.15 1845.30 1823.58 1921.52 1856.90 1855.95 1889.50 

mgp120-11-c 3907.27 4010.80 4026.53 4085.36 3996.29 3934.39 3907.27 4000.71 4000.71 3978.19 4339.23 

mgp150-04-c 2527.96 2647.17 2671.62 2685.33 2649.97 2561.65 2527.96 2651.69 2580.30 2570.27 2777.43 

mgp199-05-c 3156.02 3296.69 3411.38 3450.84 3310.71 3191.25 3156.02 3318.49 3247.07 3238.21 3594.99 

mgp100-12-c 1967.41 2010.00 2007.11 2046.15 2022.30 1994.59 1967.41 2011.37 1993.79 1993.36 2021.53 

mgp50-01-d 1456.00 1530.81 1522.43 1547.32 1580.77 1467.06 1456.00 1540.47 1461.60 1467.46 1461.60 

mgp75-02-d 2081.38 2164.74 2200.51 2212.93 2233.08 2102.58 2081.38 2161.71 2094.27 2093.33 2128.63 

mgp100-03-d 2749.53 2874.86 2865.86 2925.13 2932.34 2780.95 2749.53 2879.60 2778.11 2797.97 2837.03 

mgp120-11-d 6195.37 6308.76 6364.87 6483.06 6361.46 6318.37 6195.37 6315.02 6306.81 6227.63 6412.24 

mgp150-04-d 3988.64 4151.90 4165.18 4192.50 4185.68 4045.87 3988.64 4143.09 4044.92 4060.71 4430.10 

mgp199-05-d 4843.83 5066.24 5184.57 5192.06 5085.64 4941.22 4843.83 4999.29 4999.29 4961.02 5417.32 

mgp100-12-d 3088.47 3157.48 3156.31 3178.28 3187.44 3113.72 3088.47 3154.89 3113.81 3106.93 3125.09 

mgp50-01-e 1467.47 1505.38 1540.39 1557.52 1568.04 1477.01 1467.47 1554.96 1478.44 1481.83 1478.48 

mgp75-02-e 2111.83 2182.33 2238.98 2241.59 2228.90 2132.16 2111.83 2198.82 2122.62 2127.75 2155.10 

mgp100-03-e 2813.52 2929.29 2941.64 2945.19 2986.33 2858.87 2813.52 2937.50 2866.60 2856.90 2887.92 

mgp120-11-e 6373.24 6511.08 6545.50 6591.40 6481.09 6424.71 6373.24 6445.41 6445.41 6442.47 7012.94 

mgp150-04-e 3985.76 4151.90 4165.18 4192.50 4185.68 4045.87 3985.76 4143.09 4045.14 4057.77 4430.10 

mgp199-05-e 5063.89 5281.55 5363.65 5366.06 5265.01 5155.36 5063.89 5222.25 5207.97 5142.47 5549.95 

mgp100-12-e 3125.47 3200.62 3225.63 3318.08 3248.76 3155.69 3125.47 3205.94 3158.68 3157.44 3145.72 

Continued on the next page 
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Problem ZBest aTSVBA biVNDiv cICA+VND dSS eMA|PM fSplitILS 
1Our 

Heuristics 

2MSN 

(set R) 

3MSN 

(set R’*) 

4Original 

Model 

mgp50-01-f 2150.97 2219.32 2215.34 2215.34 2312.48 2154.35 2150.97 2227.86 2154.35 2171.18 2163.73 

mgp75-02-f 3178.47 3278.33 3304.24 3341.26 3387.86 3200.35 3178.47 3288.62 3199.95 3193.73 3206.06 

mgp100-03-f 4294.12 4435.56 4429.21 4455.14 4580.98 4312.95 4294.12 4412.03 4339.88 4349.55 4343.49 

mgp120-11-f 10003.99 10186.06 10302.16 10302.16 10158.32 10063.47 10003.99 10193.66 10113.63 10093.88 10232.85 

mgp150-04-f 6232.37 6416.12 6482.11 6513.36 6479.46 6267.48 6232.37 6377.65 6363.64 6319.66 6418.33 

mgp199-05-f 8037.88 8333.61 8329.55 8368.35 8323.72 8081.58 8037.88 8211.65 8190.91 8144.39 8375.54 

mgp100-12-f 4903.00 4996.88 5028.78 5058.76 5065.26 4919.48 4903.00 5017.97 4935.05 4979.11 4972.99 

Average   2672.32 2701.48 2723.42 2692.40 2616.83 2591.68 2673.87 2637.13 2631.20 2752.02 

Average Deviation (%) 3.08 4.45 5.55 3.62 0.90 0.00 3.73 1.92 1.76 6.07 

#Best 0 1 0 1 5 49 0 1 1 1 
aAleman and Hill (2010); bAleman et al. (2009); cAleman et al. (2010); dMota et al. (2007); eBoudia et al. (2007); fSilva et al. (2015); Others 

are defined as before     
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Table 3: Summary results on Chen et al. (2007) data set 

Problem n ZBest aR to R bB&C cLocal 

Search 

dTSVBA eiVNDiv fICA+VND gSplitILS hVRPHAS 1Our 

Heuristics 

2MSN  

(set R) 

3MSN  

(set R’*) 

4Original 

Model  

(set R) 
 

SD1 8 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 

SD2 16 708.28 714.40 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 

SD3 16 430.40 430.61 430.40 430.58 430.58 430.58 430.58 430.58 430.58 430.58 430.58 430.58 430.58 

SD4 24 630.62 631.06 630.62 631.05 631.05 635.84 635.84 631.05 631.05 690.39 631.05 631.05 631.05 

SD5 32 1389.94 1408.12 1389.94 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 

SD6 32 830.86 831.21 830.86 831.24 831.24 831.24 831.24 831.24 831.24 893.61 831.24 831.24 831.24 

SD7 40 3640.00 3714.40 3640.00 3640.00 3640.00 3640.00 3640.00 3640.00 3640.00 3640.00 3640.00 3640.00 3640.00 

SD8 48 5068.28 5200.00 5068.28 5068.28 5068.28 5068.28 5068.28 5068.28 5068.28 5068.28 5068.28 5068.28 5068.28 

SD9 48 2042.88 2059.84 2042.88 2067.81 2071.03 2071.03 2071.03 2044.20 2057.62 2104.69 2052.80 2082.76 2048.67 

SD10 64 2683.73 2749.11 2683.73 2784.21 2747.83 2742.84 2747.83 2684.88 2707.83 2758.36 2689.15 2699.85 2698.54 

SD11 80 13280.00 13612.12 13280.00 13280.00 13280.00 13280.00 13280.00 13280.00 13280.00 13280.00 13280.00 13280.00 13280.00 

SD12 80 7213.61 7399.06 7270.87 7220.36 7213.62 7265.70 7279.97 7213.61 7259.46 7279.06 7255.60 7264.23 7269.15 

SD13 96 10105.86 10367.06 10105.86 10277.81 10110.58 10110.58 10110.58 10110.58 10110.58 10110.60 10110.58 10110.58 10110.60 

SD14 120 10717.53 11023.00 10754.70 10790.58 10802.87 10829.25 10893.50 10717.53 10771.54 10837.80 10837.80 10837.80 10927.70 

SD15 144 15094.48 15271.77 15154.14 15152.88 15153.45 15168.28 15168.28 15094.48 15250.13 15210.40 15210.40 15188.02 15210.30 

SD16 144 3379.33 3449.05 3379.33 3381.29 3446.43 3580.07 3635.27 3381.26 3553.32 3428.20 3395.29 3381.28 3381.25 

SD17 160 26493.56 26665.76 26547.44 26536.09 26493.56 26556.13 26559.93 26496.06 26547.06 26559.00 26559.00 26533.00 26835.20 

SD18 160 14202.53 14546.58 14334.03 14469.10 14323.04 14372.80 14440.59 14202.53 14320.66 14378.10 14378.10 14281.00 14782.09 

SD19 192 19995.69 20559.21 20210.45 20420.11 20157.10 20188.62 20191.19 19995.69 20251.89 20259.40 20259.40 20197.70 20599.60 

SD20 240 39635.51 40408.22 39901.22 40368.58 39722.86 39803.13 39813.49 39635.51 39678.10 39757.80 39757.80 39757.80 40614.76 

SD21 288 11271.06 11491.67 11491.13 11271.06 11458.76 11682.09 11799.60 11345.68 11631.67 11498.10 11486.98 11473.16 11916.79 

Average   9179.07 9051.54 9092.77 9043.31 9075.41 9091.63 9006.20 9064.20 9071.98 9057.20 9048.36 9171.57 

Average Deviation (%) 1.61 0.30 0.67 0.51 0.92 1.12 0.05 0.71 1.54 0.42 0.43 1.01 

# Best inc. ties 1 13 6 6 5 5 11 5 5 5 5 5 
aChen et al. (2007); bArchetti et al. (2011a); cDerigs et al. (2011); dAleman and Hill (2010); eAleman et al. (2009); fAleman et al. (2010); gSilva et al. (2015); hChen et al. (2017); Others are defined 

as before. 
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Table 4: Summary results on Belenguer et al. (2000) data set 

Problem 

(Set 1) 
LB Zbest aTSVBA bSplitILS cVRPHAS 

1Our 

Heuristics 

2MSN 

(Set R) 

3MSN 

(Set R'*) 

eil22 - 375.28 375.28 375.28 375.28 375.28 375.28 375.28 

eil23 451.80 568.56 569.75 568.56 568.56 571.55 570.36 570.36 

eil30 218.92 497.53 505.01 505.01 497.53 506.67 505.01 505.01 

eil33 - 826.41 843.64 837.06 826.41 841.65 840.68 840.68 

eil51 518.23 524.61 527.67 524.61 524.61 535.96 524.93 524.93 

eilA76 809.58 823.89 853.20 823.89 849.60 856.14 841.94 845.59 

eilB76 984.13 1009.04 1034.21 1009.04 1024.44 1039.92 1025.48 1026.74 

eilC76 721.39 738.67 761.55 738.67 748.51 757.04 747.47 747.47 

eilD76 672.34 684.53 695.96 687.60 684.53 706.66 700.39 701.96 

eilA101 804.27 812.51 844.21 826.14 812.51 843.80 843.80 840.96 

eilB101 1055.59 1076.26 1112.15 1076.26 1099.00 1117.36 1105.90 1119.84 

Average   738.42 724.74 728.27 741.09 734.66 736.26 

Average Deviation (%) 2.04 0.45 0.74 2.43 1.59 1.75 

# Best inc. ties 1.00 6 7 1 1 1 

   
      Problem 

(Set 2) 
LB Zbest aTSVBA bSplitILS cVRPHAS 

1Our 

Heuristics 

2MSN 

(Set R) 

3MSN 

(Set R'*) 

s51D1 457.08 459.50 468.79 459.50 459.50 465.95 465.95 465.95 

s51D2 697.00 709.29 718.69 709.29 716.82 727.84 713.32 713.32 

s51D3 933.97 948.06 969.78 948.06 964.83 996.90 951.19 951.09 

s51D4 1545.19 1562.01 1628.20 1562.01 1592.23 1636.51 1566.36 1572.65 

s51D5 1316.93 1333.67 1362.19 1333.67 1371.41 1388.42 1338.75 1343.51 

s51D6 2149.55 2169.10 2236.16 2169.10 2240.46 2268.86 2172.33 2172.33 

s76D1 590.92 598.94 613.70 598.94 614.31 624.19 624.19 624.19 

s76D2 1066.88 1087.40 1128.15 1087.40 1120.71 1129.59 1116.29 1102.88 

s76D3 1406.85 1427.86 1472.92 1427.86 1445.23 1485.75 1438.97 1444.95 

s76D4 2053.66 2079.76 2180.13 2079.76 2138.64 2158.21 2095.47 2094.52 

s101D1 714.50 726.59 749.93 726.59 746.08 742.43 761.18 742.43 

s101D2 1356.78 1378.43 1409.03 1378.43 1412.98 1437.98 1401.44 1414.11 

s101D3 1845.07 1874.81 1947.62 1874.81 1924.39 1969.05 1894.57 1890.06 

s101D5 2758.21 2791.22 2910.71 2791.22 2874.86 2935.14 2812.65 2826.50 

Average   1414.00 1367.62 1401.60 1426.20 1382.33 1382.75 

Average Deviation (%) 3.06 0.00 2.24 3.95 1.41 1.30 

# Best inc. ties 0 14 1 0 0 0 
aAleman and Hill (2010); bSilva et al. (2015); cChen et al. (2017); Others are defined as before.  

 


