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Abstract

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxed version of the classical VRP where
customers can be visited more than once. The SDVRP is also applicable for problems where one or more of
the customers require a demand larger than the vehicle capacity. Constructive heuristics adapted from the
parallel savings and the sweep methods are first proposed to generate a set of solutions which is then used
in the new and more efficient set covering-based formulation which we put forward. An effective repair
mechanism to remedy any infeasibility due to the set covering problem is presented. A reduced set of
promising routes is used in our model, instead of the original set of routes, proposing and using well
defined reduction schemes. This set covering-based approach is tested on large data sets from the literature
with encouraging results. In brief, 7 best solutions including ties are found among the 137 SDVRP

instances.

Keywords: split deliveries, vehicle routing, set covering, hybrid method, matheuristic.

1. Introduction

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the classical

VRP in which a customer can be served by more than one vehicle if it reduces the overall
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total cost. This relaxation is very important especially for cases where the sizes of the
customer orders are nearly as big as the capacity of a vehicle. Although the SDVRP is a
relaxation of the VRP, it is also an NP-hard problem, as shown by Archetti and Speranza
(2008). This routing problem was first introduced by Dror and Trudeau (1989) where it
was found that the total travel distance and the number of vehicles required can be
reduced by allowing more than one vehicle to deliver to a customer. It is worth noting
that in some situations, it may not be worth to split as this could increase the travelling

cost without a reduction in the number of vehicles.

Let ¢ ={1,2,..,n} be the set of customers, each customer i has a positive integer
demand, d;. The SDVRP can be defined over a graph G = (V,E), where V = {0} U C is
the set of nodes and E = {{i,j}: i,jeV,i qtj} is the set of edges. Node 0 is the depot
(with no demand), where a fleet of homogeneous vehicle with capacity Q is located. A

travelling cost from i to j, ¢;; is associated with each edge {i, j} € E. Each vehicle must

start and end at the depot. The vehicle load cannot exceed the vehicle capacity, Q. The
demand d;,(i = 1,2, ...,n) can be delivered by more than one vehicle. The objective is to
find a set of routes that minimizes the total travelling cost without violating all these
constraints. It is also applicable to problems with customers’ demands larger than the
vehicle capacity. These types of split routing problems can be applied in many real-world

logistical problems.

This problem remained dormant for several years till 2006 when Archetti et al. (2006)
revisited it and proposed an efficient and novel tabu search metaheuristic for its
resolution. Most of the approaches are heuristic-based methods which include a scatter
search method by Mota et al. (2007), a memetic algorithm by Boudia et al. (2007), a ring-
based diversification method by Aleman et al. (2009), a variable neighbourhood descent
by Aleman et al. (2010), a tabu search with vocabulary building approach (TSVBA) by
Aleman and Hill (2010), a local search-based method by Derigs et al. (2010), a
randomized granular tabu search by Berbotto et al. (2014), an iterated local search
heuristic by Silva et al. (2015) and a priori splitting strategy by Chen et al. (2017). There
are however a few exact methods such as the cutting plane method by Belenguer et al.
(2000), the branch-and-cut algorithms by Archetti et al. (2011a; 2014) and the set



partitioning approach by Archetti et al. (2011b). There are also a few hybrid methods
developed for this problem, see Chen et al. (2007) and Archetti et al. (2008). For more
details, the reader will find the recent review by Archetti and Speranza (2012) to be

interesting, easy to read and very informative.
The contributions of this study include:

(1)  The development of an effective and efficient matheuristic, a hybridisation of
some constructive heuristics, a repair mechanism and a set covering approach.

(i) A new and more powerful set covering model, which gives better solutions
when there is a computation time limit imposed.

(iii) The design of interesting selection rules for identifying potential routes so to
reduce the size of the problem without affecting solution quality.

(iv) The gain of competitive results.

This paper is organised as follows. In Section 2, we give a brief overview of the overall
algorithm followed by Section 3 that describes the constructive heuristics which we adopt
to generate a set of initial solutions. Section 4 provides the proposed set covering-based
formulation and its implementation followed by a section on how to identify promising
routes so to reduce the number of routes. Our computational results are presented in
Section 6. Our conclusion and highlights of research avenues that we believe to be worth

examining in the future are given in the last section.

2. An overview of the overall algorithm

The constructive heuristics which are implemented to generate a set of routes are adapted
from the saving and the sweep methods which are originally based on the classical VRP
and modified slightly to cater for the possibility of splitting.

The modified set covering model that considers the decision variables denoting the
proportion of a customer demand on a given route is proposed. This will be compared
against the existing classical formulation. The set of generated routes is reduced by
identifying good routes only so to accommodate the feasibility of using an ILP solver

such as CPLEX. This selection is based on the quality of the solutions where these routes
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belong to, the route dual information and the frequency of occurrences of the routes. This
hybrid heuristic is denoted by (MSN), short for Mohamed, Salhi and Nagy. In brief, the

overall algorithm of MSN can be described as follows:
The MSN Algorithm

Stepl  Generate a large set of routes using some constructive heuristics (VRP-based
and modified ones to cater for split deliveries).

Step 2 Reduce the set of routes using well defined selection criteria.

Step3  Apply an ILP solver using the new set covering-based formulation with the
original set of routes found in Step 1 as well as the set of routes generated in
Step 2.

The next three sections will describe the three steps of the MSN algorithm.

3. Constructive Heuristics for the SDVRP

Two approaches based on the parallel saving and the sweep method are adapted to
construct a large number of initial solutions whose routes, after the removal of
duplications, will be used in the modified set covering-based model which we present in

the next section.

The first approach consists of two stages namely the construction of the initial VRP
solutions in the first stage and then followed by an implementation of a splitting method
to relax the problem in stage two. Whereas in the second approach, the solutions are

obtained in only one stage with splitting integrated into the search.

A composite heuristic made up of commonly used refinement procedures which include
the 2-opt, the swap move and the insertion (intra route and inter routes) is then used as
the local search engine to improve upon the initial solutions. These are applied in
sequence. Details of these two scheme approaches and the composite heuristic are given

below.



3.1 Scheme 1 — A Two-stage Splitting Approach

The saving concept is first introduced by Clarke and Wright (1964) and then explored by
many studies to solve the VRP and its related problems using heuristics and meta-
heuristics approaches. Yellow (1970) modified the classical saving formulae by

incorporating a route shape parameter A as follows:
Sij = Cio T+ Coj = ACyj
where
s;j refers to the saving by merging customers i and j;
Cio IS the distance between customer i and the depot which is denoted by 0;
c;j Is the distance between customer i and customer j.

As split deliveries are allowed in this problem, we solve the problem in two stages in this

scheme.

Stage 1 (VRP Solution):
» Construct an initial solution for the VRP without any splitting using the standard
parallel saving method.

o Apply the composite heuristic to improve upon each of the solutions.

Stage 2 (Including the Splitting):
e Modify the obtained VRP solution to include split deliveries by using the
endpoints procedure (see The End Point Splitting Method).

o Apply the composite heuristic to improve the solution.

These two stages are implemented with various values of the route shape parameter to

generate a set of feasible routes.

We generate several solutions with 4 € [0,5] starting with 4 = 0 with an increment of
0.2. This implementation was successfully used in the past by Salhi and Rand (1987) for
the VRP. We opt for the parallel saving heuristic implementation instead of the sequential
saving as the latter produced, in most cases, better results. See Mohamed (2012) for more

details.



In Stage 2, this splitting method is implemented right after the VRP solutions are
obtained to generate routes where splitting occurred. The idea is to merge two routes
which are not fully loaded through their end point customers allowing concurrently
splitting. This splitting is performed at one of the other 2 end points used in the
combination. We refer to it as the end point splitting method which we call for short
EPSM.

The End Point Splitting Method (EPSM)

Step 1 Start from a given route which is not fully loaded and compute the best
merging of one of its endpoints with another endpoint (say customer j) from
another route by delivering some of the demand at customer j without
exceeding the vehicle capacity constraint. This could lead to customer j being
split and served by two routes.

Step 2 Execute this merging.

Step3  Search for another best merging until the current route is full.

Step4  Repeat Steps 1 - 3 for the next route until all routes are explored.

3.2 Scheme 2 — An Integrated Splitting Approach
The aim here is to obtain a one stage feasible solution, using the following two steps:

e Construct an initial solution for the SDVRP by adapting some constructive
methods. Here, we considered the modified parallel saving and the modified
sweep methods, both with splitting included.

e Improve the obtained solution using the composite heuristic.

Parallel Savings with Split Deliveries (PSSD)
This method is similar to the classical parallel saving method for the VRP except that:

Q) a customer is allowed to be split when selected by the savings and
(i) two routes can also be combined even when the total load exceeds the vehicle
capacity as long as it does not violate by more than the demand of the closest

customer of these routes to the depot.



This choice will allow easily a splitting to be applied on this particular customer. Note

that (ii) is similar to using one application of EPSM when the two routes are fixed. The

affected customer with its remaining demand will act as a new unassigned customer that

will be allocated to a route according to the saving method. This is referred to as PSSD

and its main steps are given next.

The PSSD Algorithm

Step 1
Step 2
Step 3
Step 4

Step 5

Step 6

Step 7

Step 8

Create n vehicle routes (0,i,0) foreachi = 1,2, ...... , M.

Calculate the savings s;; = co; + ¢coj —¢;; fori = 1,2,...,nand i # j.

Order the calculated savings in decreasing order.

Starting with the highest savings, s;; check whether there exist two routes
that can feasibly be merged.

Choose the route containing i, either as the first or the last customer in the
route. Choose another route containing j as the first or the last customer in the
route.

Merge these two routes to form a new larger route with i and j acting as the
first or the last customer of each route.

If these two routes cannot be merged together due to the vehicle capacity
constraint. However, if both routes are still not fully loaded, we check the
splitting point for each route so that one of their loads is equal to the vehicle
capacity. Select the nearest splitting point to the depot as the point to be split.
Merge i and j to get one full route, using the farthest splitting point from the
depot, which ends or starts at the selected splitting point, while the other
route, which also starts or ends at the same selected splitting point, will
become smaller.

Repeat Step 4 using the next savings until there is no more possible

combination left.



The Sweep-based Approach with Split Deliveries (SASD)

The sweep method initially proposed by Gillett and Miller (1974) is also investigated

here to generate additional sets of possible routes. The aim is to create a cluster of

customers that are geographically close together from an angular viewpoint. We have

extended this algorithm by generating all possible routes while allowing splitting. In this

implementation, we start from each customer location and use both clockwise and

counter-clockwise directions. The sweep-based splitting approach, which we refer to

SASD for short, is given next.

The Sweep-based Approach with Split Deliveries (SASD)

Step 1

Step 2

Step 3
Step 4

Step 5

Set the depot coordinate as the starting point. Calculate the angle, 6; of each
customer i, as the relative angle between the depot and the customer location
and arrange the angle, 6; in ascending order.

Starting from the first empty route, assign customers to the route according to

counterclockwise (or clockwise) direction until the vehicle capacity is full.

(i) If the last customer on the route is not fully served, split its demand and
start the next route with the customer as the first customer in the second
route.

(it) If the last customer is fully served, start the next route with the next
customer in the list.

Stop when all customers are served.

Repeat Steps 2 and 3, starting from the next customer in the list creating n

sets of solutions.

Repeat Steps 2 to 4 using the other direction.

3.3 A Composite Heuristic

As mentioned before, a composite heuristic is used as the local search engine to refine the

obtained initial solutions and these refinement procedures are applied in sequence.



The 2-Opt

This procedure starts from a given route, then compute the best edge exchange of two
non adjacent edges with other two new edges while maintaining the route structure that
improves the original route. Update the exchange and the direction of the arcs connecting

these two edges. This process is repeated until no further improvement is possible.

Figure 1: The 2-Opt routine within a route

Figure 1 illustrates an example of a 2-Opt routine within a route by exchanging the
positions of two nodes. In the example, the location of customer 4 is exchanged with the
position of customer 2. By executing this exchange, the arc that connects these two nodes
is diverted, where 4 — 3 — 2 becomes 2 — 3 — 4. The profit from the exchange can be
calculated as: Gain = c;, + c45 — €14 — C25. There is a well-known property such that a
route should never cross given that the triangular inequality holds and there are no

constraints such as time windows.

The Swap Move

This routine involves two routes, where a node i from a given route, say R, is exchanged
with a node j from another route, say R, excluding the given route (R; # R,) but not

necessary at the same positions. The process starts with removing node i and node j from



their original routes, searching for the best possible position to insert j into route R, and
the best feasible position to insert node i into route R,. We implement the best
improvement strategy where each pair of nodes for each pair of routes are explored to
find the best swap move. Once found, the mode is executed and the process is repeated

until no further improvement is possible. An illustrative example is shown in Figure 2.

Figure 2: A Swap move inter routes

Figure 2 shows nodes 2 and 5 are removed from their original routes and then inserted

into each other’s route, node 2 into route R, and node 5 into route R;.
Insertion (intra route and inter routes)

This routine involves one route (intra route) or two routes (inter routes) at a time, where a
node i from a given route, say R, is removed from the route to be inserted back into the
same route at a different position or into another route, say R,. The process starts by
removing node i from its original route, searching for the best possible position based on
the insertion cost to insert i into any possible route including R,. The insertion move is
implemented based on the best improvement strategy where the insertion is only executed
after all customer i is explored. The process is repeated until no further improvement is

possible.
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E:0-1-2-3-4-3-10 R:0-1-2-3-5-4-10

Figure 3: An example of the Insertion move within a route

Figure 3 illustrates an example of this insertion procedure within a route, where node 4
which was in between nodes 3 and 5 is removed from the route before being inserted

back into the route in between node 5 and the depot.

Figure 4 on the other hand demonstrates an example of this insertion procedure between
two routes, where node 2 from route R, is removed from the route, and then inserted into

route R,.

By:0-1-6-2-0

Ry:0-3-3-4-0

Figure 4: An example of the Insertion between routes
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4. A Set Covering-based Matheuristic

There are two types of mathematical formulations for the SDVRP namely the classical
mixed integer programming and the set covering-based model (SCM). Archetti and
Speranza (2008) produce an overview on the studies in the SDVRP where comparisons
have been conducted to highlight the benefits and the drawbacks of each model. Note that
if the problem is highly constrained (capacity, time windows), the set of routes becomes
smaller and hence the SCM becomes more attractive and relatively easier to solve. In this

study we will concentrate on the latter formulation.

The SCM is based on a collection of possible feasible routes from which the best feasible
solution could then be obtained. In this study, the routes found by the heuristics, as
described in the earlier section, will be used as a basis to construct the set of routes. As
the set covering model may generate routes with some customers being served more than
their required demand due to the constraints (8) and (10), a repair mechanism will be
given. In addition, as many routes may be duplicated, a scheme to avoid such
duplications will also be introduced. The hybridisation of heuristics and exact method is a
novel and powerful approach known as matheuristics. For an overview on heuristic

search including matheuristics, see Salhi (2017).

4.1 The Original Set Covering-Based Formulation for the SDVRP

The model objective is to design a solution with a set of selected routes from a large set
of feasible routes R. This is an extension of the Set Partition Problem (SPP) given by
Alvarenga et al. (2007) to cater for split deliveries. The model presented by Archetti et al.
(2008) and Archetti and Speranza (2008) also uses the following notation and

assumptions.

n = the number of customers (i = 1,2, ..., n);

C = the set of customers (i € C = {1, ...,n}, |C| = n);

4 = the set of nodes, V = {0,1, ..., n} (node 0 denotes the depot), {0} U C;
d; = the demand of customer i € C;

Cij = the travel cost between customer i and j, Vi,j € V — {0} (c;; = c;);

12



m = the number of vehicles (I = 1,2, ..., m);

Q = the vehicle capacity for each vehicle [ (I = 1,2, ..., m);

yt = the quantity of the demand of customer i delivered in route r.

R = the set of all possible routes (r € R);

Cr = the travel distance on the route r (r € R) ;

Xy = decision variable, 1 if the route r is considered in the solution and 0
otherwise;

The objective is to choose the subset of routes from R with the least total cost while

ensuring that each customer is served at least by one route.

Let (Po) be the original model:

—

min Ycg CrXr (1)

s.t: Yier ¥ <Qx, TER 2

(Po) — Yrerier Vi 2d;  1€C ©)
x- €{0,1} reR 4)

_ >0 reER;i€eC (5)

The objective function (1) is to minimise the total cost of the selected routes. Constraints
(2) enforce that a delivery to a customer i on route r can only take place if route r is
selected and that the maximum total quantity delivered on a selected route must not
exceed the vehicle capacity. Constraints (3) make sure that the demand d; of customer i

is fully satisfied.

Note that if R contains all the possible feasible routes and if it is possible to solve (Po) to

optimality then the optimal solution will obviously be guaranteed.

4.2 The New Set Covering-based Formulation (P1)

The model formulation used in this study is modified from the original (Po) of Archetti et
al. (2008). Several modified models have been studied (see Mohamed, 2012) but we only

provide the best one in this paper. Similar to (Po), there are two decision variables namely
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x, and y. However, in this model, y! is restricted to be a fractional variable rather than
just non-negative. In the original model, the optimiser decides the quantity to be
delivered to each customer i on route r and Archetti et al. (2008) made a useful
observation where they were having difficulties in solving this integer problem even with
some cuts strengthening introduced. As the quantity delivered to a customer on a route
was relaxed, this creates a large search space for the optimiser.

Their observation inspired us to make use of this information so to consider the
maximum amount delivered to customer i on route r, namely d;. The constraints (2) and

(3) have also been modified to reflect for this change.

This modified model which we refer to as (P;) uses the same notations and assumptions
as (Po) except for the following: y; represents the proportion of the i"customer demand
delivered to customer i on route r (i.e., 0 < y¢ < 1) and (2) & (3) are replaced by (7) &
(8) respectively.

min Y eg Xy (6)

s.t: Yierdiyf <Qx, TER (7)

(P1) < Yrerier Yt 21 (€C (8)
x, €{0,1} reRr 9)

- 0<y/!<1 reR;iecC (10)

This set of possible routes is then used to solve the set covering problem (SCP) by calling
the optimiser ILOG CPLEX Callable Library.

We have tested this idea on several problem instances and it is proved empirically that
this information is very useful. It makes the SCP easier to be solved while producing
better quality solutions whenever optimality was not guaranteed within the same amount
of CPU time.
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4.3 Repair Mechanism

As the above models are based on set covering formulations, the solutions obtained may
select routes where some customers could be served with more than their required
demand. To overcome this shortcoming, a simple but effective repair mechanism is
introduced to ensure that every customer receives exactly its demand. This routine
besides ensuring feasibility could also reduce, in some cases, the total routing cost.
Mathematically, this can obviously be avoided by replacing (8) with equality constraints
instead, as in the SPP, but this would require an excessive amount of computational
effort.

In brief, for a customer receiving more than its demand, this can lead to this customer

being:

(i)  either served from one route only or

(i1)  this customer remains to be served by the existing number of routes.

In (i) this will systematically lead to some reduction in routing cost whereas in (ii) the
corresponding customer request will be adjusted accordingly without any saving in
routing cost. Note that these two routes were not part of the set R, otherwise they would
have been selected. For instance the VRP solutions always fit into (i). Figures 5 and 6
illustrate these two cases. More details including mathematical expressions are available
in Mohamed (2012).
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Customer A is served twice 51 = dap +dgo — dop (saving)

D E D
A
A i
—»
B
C
C
O (Depot)
O (Depot)
Two additional new E D
routes are generated
(in red) A
52 = dgy +dyc — dp (saving)

C

O (Depot)

Figure 5: An example of the route generation heuristic for the VRP case (i)

(51+(3) g’:‘ @ (5)+ (2) A
@ C c
B B
—_—
D D
) )
Depot Depot

Figure 6: An example of the route generation heuristic for SDVRP case (i)
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4.4 A Route Duplication Removal Scheme

Once the set R is obtained, it is then cleaned by eliminating any duplicate route using the
following procedure. We achieve this by checking for each route r (r € R) its total route
distance, its route load, its number of customers served and the customers served on the
route. Also, if these four attributes happen to be the same, then the route that has its split
customer with the highest quantity delivered to it will be stored only. As this scheme is
route-based, the pitfall caused by having similar solutions is avoided from the outset as

the non-duplicate routes are stored only.

5. The Identification of Promising Routes

This obtained set of routes (R) could become too big to be handled by commercial
LP/ILP solvers such as ILOG CPLEX. Besides, this large set may also contain many ‘not
so good’ routes. The idea would be to identify a set of ‘promising’ routes to be solved in
MIP using our modified model (P1). The question is how to identify these promising
routes? Obviously we could not guarantee that the optimal results are part of the new
subset as optimality will only be guaranteed if the set of routes contains all possible
routes and the optimiser is run till the end. By restricting the computational time to a
maximum of 2 hours, the search area becomes relatively smaller, covering good solutions
and hence the solver may be able to find a better solution faster (a good upper bound).

We consider the promising routes to be those that

(i)  belong to the top best solutions obtained from the heuristics,
(i) have dual values obtained from the relaxation of the set covering-based
formulation to be larger than a certain threshold,

(iii) appear more than twice in the solutions generated by the selected heuristics.

These three selection schemes are briefly outlined next, followed by a scheme that

combines them all.
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5.1 Solution quality-based route selection

Let Z, be the cost of the best solution found so far from the heuristics and Z;, be the cost
of the k' best solution. Any routes contained in the solutions with Z,, < (1 + B)Z, are
included in the new subset. We define this subset as R, ={reRsuchthatz, <1+ 3)Z,}
where f is a threshold parameter (a small positive value close to zero). A pilot test using
values of g, set to 1%, 5%, 10% and 15% is conducted under the time limit of 2 hours.
Better solutions are observed with f = 10%. It is also observed that a larger |Ry| does
not necessarily guarantee a better solution when a time limit is imposed when using
CPLEX. Further detailed can be found in Mohamed (2012).

5.2 Dual Values-based route selection

The second way of identifying good routes is based on the routes’ dual values related to
constraint set (7), in the LP relaxation of (P1). Let u, be the dual price related to route r.
The idea is then to choose routes with u, = € (¢ >0). In other words, the new subset is
defined as R, ={r e R/ z > £}. The question is how to choose the most suitable value
of £? A simple experiment on a sample using several values of ¢ is conducted. We tested
the cases for e=u , ¢ = i — o and € = i + o with iz and o referring to the average and

the standard deviation of the wu, (r € R) respectively.

It is found that in most problem cases, CPLEX running time has been reduced for the
case of e = 1 + o but at the expense of solution quality. When ¢ = i — g, the results

were found to be rather inferior while reaching the time limit in most instances. The best

results were obtained when &=z so R, ={r e R/ u, > i}.

5.3 Frequency-based route selection

The third and last scheme of our set reduction is to include those routes which appear
more than twice in the set R. This is because poor quality heuristic solutions might

contain good routes and also routes which appear only once or twice in the set may have
happened just by luck. Here, we select the subset as R. ={r e R/ F, > 2}where E. being
the frequency of occurrence of route r (r € R). We also tested the subset{r e R/ F, >1} to

see its effect but without any success. This could be due to the larger feasible region for
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CPLEX to explore given the same limited amount of CPU time is imposed. The subset
with F >3 was also found to be not promising as it is rather small and hence the

solution quality was sacrificed with the benefit of a relatively smaller amount of CPU

time.

5.4 The Combined Scheme
We combined the three selection schemes described earlier to form our set of promising

routes as R™ = Ry U (Ry, N R). We limit the size of R™ to % with the following

restrictions:
(i) IRyl = min(0.8|R|,[{r € R/Z\, < (1 + B)Zy}|)

(if) The rest of the routes are then selected if they are found in the two subsets

R, and R.and count for at least 0.2|R].

In (i) we opt for B = 10% as the results obtained using this subset alone were found to be
better than the other selections. We proceed to fill R™ by using all the routes from Ry,
followed by the routes which are in both R and Rj,. Note that no route duplication is
permitted. In other words, once a route is in R"", it cannot be chosen again from any of

the other subsets.

In brief, R is then used instead of R in the CPLEX Callable Library to solve (P;). We
have tested some combination of the selection schemes on several problem instances and

it is proved empirically that the above combination is the best for this SDVRP.

6. Computational Results

The constructive heuristics are coded in C++ whereas the Set Covering-based approaches
are solved using ILOG CPLEX 12.3 solver with Microsoft Visual C++ interface and the
CPLEX Callable Library. Both approaches are executed on a PC with an Intel® CoreTM
17-620M, 2.66GHz processor with 8.0GB of RAM. For simplicity and convenience, a
maximum CPU time of 2 hours is capped for each problem instance. If time is not a main

concern, better results would be found if the problem is solved optimally using our new

19



Set Covering formulation. Our methods are tested on the four data sets from the literature
namely Archetti et al. (2006), Mota et al. (2007), Chen et al. (2007) and Belenguer et al.
(2000).

The summary results including the total cost, the average deviation and the best solution
are given in Tables 1- 4. The detailed average deviations and the route configurations of
the best solutions can be found in Mohamed (2012) or requested from the authors. The

deviation (in %) for each instance is computed as in Equation 11 below:

Deviation(%) = (C"STM(”)‘ZBEST(”) x 100) (12)

Zpgst(D)

where Zzzsr(p) and COST,,(p) refer, for the p™ instance, to the overall best cost and the

cost found by a given method (M) respectively.

The Archetti et al. (2006) Data Set

Table 1 shows the summary results on Archetti et al. (2006) data set. The best solution
for each problem is reported in bold. Based on the average deviations on 30 instances, it
is considered that MSN using the set R'* is the third best performer after SplitILS by
Silva et al. (2015) and Local Search Method by Derigs et al. (2011).

For comparison purpose and to be consistent with Archetti et al. (2008), we also include
the solutions obtained using the original set covering model when using the set of routes,
R. By using our modified model, we obtained our solutions faster besides being of a
better quality (or at least the same) on most of the instances tested except for p120_7090
and p150_0110.

The Mota et al. (2007) Data Set

Table 2 shows the summary results on Mota et al. (2007) data set where the best solution
is shown in bold. Among the 49 instances, MSN yields 1 best solution. In brief, MSN is
the third best performer after SplitILS and the memetic algorithm with population
management (MA|PM) by Boudia et al. (2007).

In addition, when comparing the solutions obtained from the original model (Po) against

those from our modified model (P;) when using the same set of routesR. It is found that
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(Po) produced slightly inferior solutions with an average of 2752.02 compared to
2631.20, found by MSN (using (P1)).

The Chen et al. (2007) Data Set

Table 3 illustrates the summary results on Chen et al. (2007). Among the methods which
are tested on this data set, MSN using the reduced set R"* is considered as the third best
performer producing an average cost of 9048.36 after SplitILS and TSVBA by Aleman
and Hill (2010) with an average cost of 9006.20 and 9043.31 respectively. Among the 21
instances, SplitILS produces the best result with a 0.05% average deviation. Branch-and-
price-and-cut (BC) by Archetti et al. (2011a) is the second best performer with a 0.30%
average deviation but using 6 hours of execution time in their branch and price cut
algorithm. Our modified set covering-based approach yields an average deviation of

0.42%, the third best performer when using the set R.

The Belenguer et al. (2000) Data Set

In Table 4 we compare our MSN to TSVBA, VRPHAS (Chen et al., 2017) and SplitILS
on Sets 1 and 2 of Belenguer et al. (2000) data set. SplitILS is the best performer on the
instances in Set 1 by giving the smallest average deviation of 0.45%, followed by
VRPHAS with the average deviation of 0.74%. While MSN is the third best performer
with an average deviation of 1.59% using the set R. In Set 2, MSN produces the second
best solutions with an average deviation of 1.30% using the reduced set R'* after
SplitILS.

7. Conclusions and Suggestions

The Split Delivery Vehicle Routing Problem (SDVRP) is examined using a new
formulation and an efficient implementation within a set covering-based methodology.
The saving-based and the sweep-based heuristics are adopted to generate the set of
routes. A modified set covering-based formulation which outperforms an existing one is
proposed to solve this problem. An effective repair mechanism is also proposed to

remedy any infeasibility due to a customer receiving more than its original demand when
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solving the set covering problem. Reduction schemes to identify the set of promising
routes are also carefully explored using dual routes information, the quality of the
solution obtained from the heuristics and the frequency of occurrence of the generated
routes. This hybrid method, which can also be called a matheuristic, produced 7 best

solutions including ties when tested on the 137 instances taken from the literature.

A possible future study is to extend this methodology by solving a series of smaller
subsets for the SDVRP and incorporating a learning scheme from one run to the next.
Another approach is to integrate evolutionary algorithms such as GA with our set
covering-based model. Other related SDVRP that incorporate vehicle fleet mix, presence
of time windows, backhauling and multi depots could also be worth exploring in the near

future.
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Table 1: Summary results on Archetti et al. (2006) data set

A
*SPLITABU-  "Best Opt- I ocal . "our ‘MSN  MsN  Qnidinal

Problem ZBest DT Basedp B&C Search "SplitiLS  'VRPHAS Heuristics (setR)  (setR’*) z\s/le(:dé;

p50_00 524.61 530.79 527.68 N/A 524.61 524.61 N/A 535.96 524.93 524.95 524.93
p75_00 823.89 854.28 853.61 N/A 829.89 823.89 N/A 856.14 843.33 845.77 850.93
p100_00 826.14 841.36 840.12 N/A 826.14 826.14 N/A 852.69 844.58 840.96 851.43
p120_00 1037.88 1056.96 1056.96 N/A 1042.12 1037.88 N/A 1051.31  1048.39  1048.39 1048.39
p150_00 1023.87 1070.86 1055.08 N/A 1028.42 1023.87 N/A 1082.01  1067.33  1062.83 1133.56
p199_00 1289.89 1340.35 1338.38 N/A 1302.89 1289.89 N/A 1367.61  1359.14  1367.61 1947.05
p50_0110 459.50 462.91 N/A 459.50 N/A 459.50 459.50 465.95 465.95 462.45 465.95
p75_0110 617.85 623.94 N/A 652.93 N/A 617.85 628.86 646.70 642.84 644.05 642.84
p100_0110 752.62 771.46 N/A 788.23 N/A 760.00 752.62 792.79 782.51 782.51 782.51
p120_0110  1031.11 1055.28 N/A 1071.58 N/A 1043.19 1031.11 1059.97  1047.63  1046.56 1047.63
p150_0110 919.17 947.14 N/A 984.69 N/A 921.91 919.17 969.07 969.07 969.07 968.44
p199_0110  1074.18 1148.27 N/A 1268.79 N/A 1074.18 1074.58 1134.82 113482  1134.82 1185.47
p50_1030 757.15 765.31 758.20 770.19 776.42 757.15 776.06 786.55 768.17 768.95 77291
p75_1030 1109.62 1134.08 1122.91 1121.82 1123.97 1109.62 1137.43 1154.66 111420 1112.69 1129.42
p100_1030  1458.46 1515.17 1505.46 1477.35 1478.59 1458.46 1469.84 1523.33  1476.61  1483.59 1595.09
p120_1030  2881.80 3060.47 3017.92  2983.82 2913.09 2898.50 2881.80 2950.79  2950.79  2929.21 3414.40
p150_1030  2016.97 2101.80 2093.28 2066.46 2055.18 2016.97 2039.21 2122.10 207729  2073.18 2300.13
p199_1030  2478.40 2585.85 2582.62  2596.94 2540.06  2478.40 2500.49 2590.47  2576.43  2561.38 2873.27
p50_1050 1005.75 1039.11 1021.02  1017.18 101256 100575  1027.92 105852  1014.69  1019.15  1019.08
p75_1050 1502.05 1556.69 154854  1514.39 1508.73  1502.05  1520.83 1556.46  1507.13  1506.45  1522.08
p100_1050  1996.76 2054.13 2024.58 2040.92 2035.91 1996.76 2017.94 2107.38 202735  2031.11 2071.92
p120_1050  4219.01 4502.62 4476.38 4259.94 4270.38 4219.01 4265.64 4338.41 433841  4253.48 4632.14
p150_1050  2849.66 2991.64 2977.00 2917.80 2912.08 2849.66 2876.70 3002.49  2878.77  2913.94 3275.80
p199_1050  3471.41 3624.20 3594.00  3568.25 3581.66  3471.41 3517.12 3618.82 354646  3530.34  4209.91

Continued on the next page
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*Original

3SPLITABU-  PBest Opt- 9 ocal our 2MSN 3MSN

Prablem ZBest DT Based B&C Search “SplitlLS 'VRPHAS Heuristics (setR) (set R’*) ?s/le(id%

p50_1090 1488.58 1511.98 1497.28 1489.37 1489.64 1488.58 1525.09 1587.50 1501.50 1510.43 1502.68
p75_1090 2298.58 2338.67 2337.81 2318.28 2340.09 2298.58 2356.70 2369.46 2303.15 2323.70 2323.80
p100_1090 3085.69 3155.22 3136.29 3127.06 3145.33 3085.69 3143.09 3192.52 3120.62 3130.05 3179.31
p120_1090 6854.09 7350.11 7117.24 6995.85 6890.39 6854.09 7004.71 6950.79 6950.79 6918.01 7089.50
p150_1090 4545.46 4674.13 4659.90 4678.52 4638.74 4545.46 4616.62 4707.61 4678.68 4657.50 4861.73
p199 1090 5521.57 5715.85 5710.21 5673.18 5669.26 5521.57 5618.96 5693.60 5665.46 5686.08 5909.54
p50_3070 1481.71 1503.95 1502.00 1499.29 1488.28 1481.71 1511.66 1552.73 1494.31 1491.52 1498.02
p75_3070 2219.97 2293.55 2263.12 2237.19 2243.93 2219.97 2286.06 2320.31 2251.17 2256.50 2264.20
p100_3070 2989.30 3070.90 3055.51 3030.66 3014.08 2989.30 3044.73 3120.44 3020.70 3033.00 3097.36
p120_3070 6671.04 7168.26 7126.84 6822.31 6671.04 6673.95 6776.88 6778.32 6766.97 6778.32 6828.67
p150_3070 4334.71 4496.86 4465.47 4438.76 4435.95 4334.71 4420.73 4476.23 4411.13 4425.77 4636.08
p199 3070 5409.76 5571.13 5549.77 5560.29 5541.09 5409.76 5496.88 5581.28 5581.28 5545.76 6006.03
p50_7090 2156.14 2173.63 2166.80 2166.30 2174.54 2156.14 2215.09 2228.22 2159.83 2180.42 2160.22
p75_7090 3223.40 3285.37 3250.39 3258.15 3266.78 3223.40 3303.98 3325.45 3234.61 3239.30 3261.28
p100_7090 4387.32 4470.71 4452.56 4467.59 4447.47 4387.32 4475.32 4490.52 4429.21 4416.81 4432.94
p120_7090 10204.81 10673.31 10429.75 10376.94 10233.37 10204.81 10364.33 10399.64 10332.33 10248.73 10288.27
p150_7090 6395.41 6482.19 6462.78 6523.22 6467.17 6395.41 6506.25 6537.03 6499.71 6476.39 6580.22
p199 7090 8192.03 8392.11 8355.45 8410.38 8297.71 8192.03 8331.44 8365.01 8296.87 8291.50 8535.30
Average Deviation (%) 3.39 2.57 1.86 1.43 0.02 1.74 3.65 1.52 1.50 5.80

PP

(Ao/‘;;"rage Deviation 3.22 N/A N/A N/A 0.07 N/A 3.74 1.98 1.95 6.42
# Best 0 0 1 3 36 6 0 0 0 0
# Best" 0 N/A N/A N/A 36 N/A 0 0 0 0

aArchetti et al. (2006); "Archetti et al. (2008); “Archetti et al. (2011a); “Derigs et al. (2011); ®Silva et al. (2015); 'Chen et al. (2017); *Our Constructive Heuristics;
20Our Modified Set Covering-based Approach (P,) using set R ; *0Our Modified Set Covering-based Approach (P;) using the reduced set R**; *Original Model (Po)
using set R.

+based on all instances.
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Table 2: Summary results on Mota et al. (2007) data set

1 2 3 A~ s
Problem ZBest  *TSVBA  P"iVNDiv  °ICA+VND iss *MAPPM  'SplitiLS Heu?i‘;{ics (S'\é'tSF';') (S:t"g',\‘*) le;'c?d'gf'
mgp50-01 524.61 527.67 524.61 540.82 531.02 524.61 524.61 535.96 52493 52495  524.93
mgp75-02 823.89 853.20 851.24 880.28 839.75 823.89 823.89 856.14 84333 84577  850.93
mgp100-03 826.14 844.21 852.74 854.13 835.82 829.44 826.14 852.60 84458 84096 85143
mgp120-11 1037.88  1051.24  1201.83 122328 1042.97 104120  1037.88 105131 104839 104839  1048.39
mgp150-04 102366  1079.55  1074.11 108891  1056.92  1042.37  1023.66 108201 106733  1062.83 1133.56
mgp199-05 128692 133049  1368.67 139055 134044 131159  1286.92 1367.61 1359.14 1367.61 1947.05
mgp100-12 819.56 819.60 824.78 824.82 820.92 819.56 819.56 832.30 82097 82097 82097
mgp50-01-a 460.79 466.74 471.92 473.22 460.79 460.79 460.79 465.95 46595 46595  465.95
mgp75-02-a 506.25 614.09 507.46 617.65 602.67 600.06 596.25 62131 61538 61538 61538
mgp100-03-a 726.81 741.60 745.35 789.16 729.67 726.81 726.81 76420 76340 75063  763.40
mgp120-11-a 975.96 990.59  1087.80 1101.14 979.57 976.57 975.96 99525 99371 98850  993.71
mgp150-04-a 866.31 891.10 891.98 893.49 883.05 875.61 866.31 919091 91991 89608  915.96
mgpl99-05-a  1017.28  1069.24  1073.55 1079.04 103951 101871  1017.28 1077.09 107709  1077.09  1117.73
mgp100-12-a 632.63 658.99 673.54 673.54 633.80 649.73 632.63 687.44 64527 5779  650.01
mgp50-01-b 741.06 753.98 766.19 777.75 769.60 751.41 741.06 77977 74106 74106  741.06
mgp75-02-b 106449 108570  1099.47 1099.47 107401 107446  1064.49 110012 106890 107155  1093.68
mgpl00-03-b 137622 141635 142590 145252 141648 139285  1376.22 142380 1423.80  1407.48  1504.43
mgpl20-11-b  2707.52 274474  2806.92 2806.92 278310 272038  2707.52 2759.33 274517 273522 321075
mgpl50-04-b  1861.63 192991  1978.01 197801 197470 187871 186163 1954.04 192736  1917.36  2169.08
mgpl99-05-b 230570  2408.16  2464.65 250254 243508 234014 230570 241336 238801 238657  2736.33
mgpl00-12-b 141385 144148  1428.27 142827 142349 141728 141385 145114 142570 142634  1449.02

Continued on the next page
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1 2 3 Ao: s
Problem ZBest  *TSVBA  PiVNDiv  °ICA+VND iss *MAPPM  'SplitiLS Heu?i‘;{ics (::tSF';') (S::'IS{',\'*) (Kﬂr:fégf"
mgp50-01-c 982.79 102324  1039.89 104593  1025.91 988.31 982.79 1031.37 1000.63 99474  1003.34
mgp75-02-c 139311 145859  1478.67 1503.02  1484.62 141380 139311 146221 140974 141619  1433.92
mgpl00-03-c 182358 188670  1956.13 195755 192615 184530 182358 192152 185690 185595  1889.50
mgpl20-11-c  3907.27  4010.80  4026.53 4085.36 399629 393439  3907.27 400071 400071 397819  4339.23
mgpl50-04-c  2527.96  2647.17  2671.62 2685.33  2649.97  2561.65  2527.96 2651.69 2580.30 257027  2777.43
mgpl99-05-c  3156.02  3296.69  3411.38 345084 331071  3191.25  3156.02 331849  3247.07 323821  3594.99
mgpl00-12-c  1967.41  2010.00  2007.11 2046.15 202230 199459  1967.41 2011.37 199379 199336 2021.53
mgp50-01-d 1456.00  1530.81  1522.43 1547.32  1580.77  1467.06  1456.00 154047 146160 1467.46  1461.60
mgp75-02-d 208138 216474  2200.51 221293 223308 210258  2081.38 216171 209427  2093.33  2128.63
mgpl00-03-d  2749.53  2874.86  2865.86 292513 293234 278095  2749.53 2879.60 277811  2797.97  2837.03
mgpl20-11-d 619537  6308.76  6364.87 6483.06 636146 631837  6195.37 631502  6306.81 6227.63 6412.24
mgpl50-04-d  3988.64 415190  4165.18 419250 418568 404587  3988.64 414309 404492 406071  4430.10
mgpl99-05-d  4843.83 506624  5184.57 5192.06  5085.64 494122  4843.83 4999.29 499929 496102  5417.32
mgpl00-12-d  3088.47  3157.48  3156.31 317828  3187.44 311372  3088.47 315489 311381 310693 3125.09
mgp50-01-e 1467.47 150538  1540.39 155752  1568.04 147701  1467.47 1554.96 1478.44  1481.83 1478.48
mgp75-02-e 211183 218233  2238.98 224159 222890 213216  2111.83 2108.82 212262 212775  2155.10
mgpl00-03-e 281352 292929 294164 204519  2986.33  2858.87  2813.52 203750 2866.60 2856.90  2887.92
mgpl20-11-e  6373.24  6511.08 654550 6591.40  6481.09 642471  6373.24 644541 644541 644247  7012.94
mgpl50-04-e  3985.76 415190  4165.18 419250 418568 404587 398576 414309 404514  4057.77  4430.10
mgpl99-05-e  5063.89 528155  5363.65 5366.06 526501 515536  5063.89 522225 5207.97 514247  5549.95
mgpl00-12-e 312547 320062  3225.63 331808 324876 315569 312547 320594 3158.68  3157.44 3145.72

Continued on the next page
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Problem ZBest  *TSVBA  P"iVNDiv  °ICA+VND iss *MAPM  'SplitiLS He:?i‘;{ics (Zs'\é'tSF';') (::t"li',\'*) 4%'(%'2?'
mgp50-01-f 215097 221932 221534 221534 231248 215435  2150.97 222786 215435 217118  2163.73
mgp75-02-f 317847 327833  3304.24 334126 3387.86  3200.35  3178.47 3288.62 3199.95 319373  3206.06
mgpl00-03-f 429412 443556  4429.21 445514 458098  4312.95  4294.12 441203  4339.88 434955  4343.49
mgpl20-11-f  10003.99  10186.06  10302.16  10302.16  10158.32  10063.47  10003.99 1019366 10113.63 10093.88 10232.85
mgpl50-04-f  6232.37 641612  6482.11 6513.36  6479.46  6267.48  6232.37 6377.65 6363.64 6319.66 6418.33
mgpl99-05-f  8037.88 833361  8320.55 8368.35 832372 808158  8037.88 8211.65 819091 814439 837554
mgpl00-12-f  4903.00  4996.88  5028.78 5058.76 506526  4919.48  4903.00 5017.97  4935.05 497911  4972.99
Average 2672.32 270148 272342 269240  2616.83  2591.68 2673.87 2637.13 263120  2752.02
Average Deviation (%) 3.08 4.45 5.55 3.62 0.90 0.00 3.73 1.92 1.76 6.07
#Best 0 1 0 1 5 49 0 1 1 1

aAleman and Hill (2010); "Aleman et al. (2009); “Aleman et al. (2010); “Mota et al. (2007); Boudia et al. (2007); 'Silva et al. (2015); Others

are defined as before
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Table 3: Summary results on Chen et al. (2007) data set

Problem n ZBest *‘Rto R "B&C “Local “TSVBA  SiVNDiv  'ICA+VND  9SplitILS  "VRPHAS our *MSN SMSN *Original
Search Heuristics (set R) (set R’*) Model
(set R)

SD1 8 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28 228.28
SD2 16 708.28 714.40 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28 708.28
SD3 16 430.40 430.61 430.40 430.58 430.58 430.58 430.58 430.58 430.58 430.58 430.58 43058 430.58
SD4 24 630.62 631.06 630.62 631.05 631.05 635.84 635.84 631.05 631.05 690.39 631.05 631.05 631.05
SD5 32 1389.94 1408.12 1389.94 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 1390.57 139057 1390.57
SD6 32 830.86 831.21 830.86 831.24 831.24 831.24 831.24 831.24 831.24 893.61 831.24 831.24 831.24
SD7 40  3640.00 371440  3640.00  3640.00  3640.00  3640.00 3640.00  3640.00 3640.00  3640.00  3640.00  3640.00 3640.00
SD8 48  5068.28 5200.00  5068.28 5068.28  5068.28  5068.28 5068.28 5068.28 5068.28  5068.28 5068.28  5068.28 5068.28
SD9 48 2042.88 2059.84  2042.88 2067.81 2071.03  2071.03 2071.03 2044.20 2057.62 2104.69 2052.80  2082.76 2048.67
SD10 64  2683.73 2749.11  2683.73 2784.21 274783 274284 2747.83 2684.88 2707.83 2758.36 2689.15 29985 2698.54
SD11 80 13280.00 13612.12  13280.00  13280.00  13280.00  13280.00  13280.00  13280.00  13280.00  13280.00  13280.00  13280.00 13280.00
SD12 80 721361 7399.06 7270.87 722036 721362  7265.70 7279.97 7213.61 7259.46 7279.06 7255.60  7264.23 7269.15
SD13 96 10105.86 10367.06  10105.86  10277.81 1011058  10110.58  10110.58  10110.58  10110.58 10110.60 1011058 1011058 10110.60
SD14 120 10717.53 11023.00 1075470  10790.58  10802.87  10829.25  10893.50  10717.53  10771.54  10837.80  10837.80  10837.80 10927.70
SD15 144 15094.48 15271.77  15154.14  15152.88  15153.45 15168.28  15168.28  15094.48  15250.13 1521040 1521040  15188.02 15210.30
SD16 144  3379.33 3449.05  3379.33  3381.29 3446.43  3580.07 3635.27  3381.26 3553.32 342820 339529 338128 3381.25
SD17 160 26493.56 26665.76  26547.44  26536.09  26493.56  26556.13  26559.93  26496.06  26547.06  26559.00  26559.00  26533.00 26835.20
SD18 160 1420253 1454658  14334.03  14469.10  14323.04 1437280 1444059 1420253  14320.66  14378.10 1437810  14281.00 14782.09
SD19 192  19995.69 20559.21 2021045 2042011 20157.10 20188.62  20191.19  19995.69  20251.89  20259.40  20259.40  20197.70 20599.60
SD20 240 3963551 4040822  39901.22  40368.58 39722.86 39803.13 3981349 3963551 39678.10  39757.80  39757.80  39757.80 40614.76
SD21 288 11271.06 11491.67  11491.13  11271.06 1145876  11682.09  11799.60 1134568  11631.67 11498.10  11486.98 1147316 11916.79
Average 9179.07  9051.54  9092.77 904331  9075.41 9091.63 9006.20 9064.20  9071.98 9057.20  9048.36 9171.57
Average Deviation (%) 1.61 0.30 0.67 0.51 0.92 1.12 0.05 0.71 1.54 0.42 0.43 1.01
# Best inc. ties 1 13 6 6 5 5 11 5 5 5 5 5

“Chen et al. (2007); "Archetti et al. (2011a); “Derigs et al. (2011); “Aleman and Hill (2010); *Aleman et al. (2009); 'Aleman et al. (2010); %Silva et al. (2015); "Chen et al. (2017); Others are defined

as before.
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Table 4: Summary results on Belenguer et al. (2000) data set

Problem i our ’MSN SMSN
(Set 1) LB Zbest “TSVBA bSplitILS  °VRPHAS Heuristics (SetR) (Set R™)
eil22 - 375.28 375.28 375.28 375.28 375.28 375.28 375.28
eil23 451.80  568.56 569.75 568.56 568.56 571.55 570.36 570.36
eil30 218.92 49753 505.01 505.01 497.53 506.67 505.01 505.01
eil33 - 826.41 843.64 837.06 826.41 841.65 840.68 840.68
eil51 518.23  524.61 527.67 524.61 524.61 535.96 524.93 524.93
eilA76 809.58  823.89 853.20 823.89 849.60 856.14 841.94 845.59
eilB76 984.13  1009.04 1034.21  1009.04 1024.44 1039.92 1025.48 1026.74
eilC76 72139  738.67 761.55 738.67 74851 757.04 747.47 747.47
eilD76 672.34 68453 695.96 687.60 684.53 706.66 700.39 701.96
eilA101 804.27 81251 844.21 826.14 812.51 843.80 843.80 840.96
eilB101 1055.59 1076.26 1112.15  1076.26 1099.00 1117.36 1105.90 1119.84
Average 738.42 724.74 728.27 741.09 734.66 736.26
Average Deviation (%) 2.04 0.45 0.74 2.43 1.59 1.75
# Best inc. ties 1.00 6 7 1 1 1

Problem i Tour ’MSN SMSN
(Set2) LB Zbest “TSVBA bSplitILS  °VRPHAS Heuristics (SetR) (Set R™)
s51D1 457.08  459.50 468.79 459.50 459.50 465.95 465.95 465.95
s51D2 697.00  709.29 718.69 709.29 716.82 727.84 713.32 713.32
s51D3 933.97  948.06 969.78 948.06 964.83 996.90 951.19 951.09
s51D4 154519 1562.01 1628.20  1562.01 1592.23 1636.51 1566.36 1572.65
s51D5 1316.93 1333.67 1362.19  1333.67 1371.41 1388.42 1338.75 1343.51
s51D6 214955 2169.10 2236.16  2169.10 2240.46 2268.86 2172.33 2172.33
s76D1 590.92  598.94 613.70 598.94 614.31 624.19 624.19 624.19
s76D2 1066.88 1087.40 1128.15  1087.40 1120.71 1129.59 1116.29 1102.88
s76D3 1406.85 1427.86 1472.92  1427.86 1445.23 1485.75 1438.97 1444.95
s76D4 2053.66 2079.76 2180.13  2079.76 2138.64 2158.21 2095.47 2094.52
s101D1 71450  726.59 749.93 726.59 746.08 742.43 761.18 742.43
s101D2 1356.78 1378.43 1409.03  1378.43 1412.98 1437.98 1401.44 1414.11
5101D3 1845.07 1874.81 1947.62  1874.81 1924.39 1969.05 1894.57 1890.06
5101D5 2758.21 2791.22 2910.71  2791.22 2874.86 2935.14 2812.65 2826.50
Average 1414.00  1367.62 1401.60 1426.20 1382.33 1382.75
Average Deviation (%) 3.06 0.00 2.24 3.95 1.41 1.30
# Best inc. ties 0 14 1 0 0 0

aAleman and Hill (2010); *Silva et al. (2015); °Chen et al. (2017); Others are defined as before.
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