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a b s t r a c t 

The detection and monitoring of emotions are important in various applications, e.g., to enable naturalistic and 

personalised human-robot interaction. Emotion detection often require modelling of various data inputs from 

multiple modalities, including physiological signals (e.g., EEG and GSR), environmental data (e.g., audio and 

weather), videos (e.g., for capturing facial expressions and gestures) and more recently motion and location data. 

Many traditional machine learning algorithms have been utilised to capture the diversity of multimodal data at 

the sensors and features levels for human emotion classification. While the feature engineering processes often 

embedded in these algorithms are beneficial for emotion modelling, they inherit some critical limitations which 

may hinder the development of reliable and accurate models. In this work, we adopt a deep learning approach for 

emotion classification through an iterative process by adding and removing large number of sensor signals from 

different modalities. Our dataset was collected in a real-world study from smart-phones and wearable devices. It 

merges local interaction of three sensor modalities: on-body, environmental and location into global model that 

represents signal dynamics along with the temporal relationships of each modality. Our approach employs a series 

of learning algorithms including a hybrid approach using Convolutional Neural Network and Long Short-term 

Memory Recurrent Neural Network (CNN-LSTM) on the raw sensor data, eliminating the needs for manual feature 

extraction and engineering. The results show that the adoption of deep-learning approaches is effective in human 

emotion classification when large number of sensors input is utilised (average accuracy 95% and F-Measure = %95) 

and the hybrid models outperform traditional fully connected deep neural network (average accuracy 73% and 

F-Measure = 73%). Furthermore, the hybrid models outperform previously developed Ensemble algorithms that 

utilise feature engineering to train the model average accuracy 83% and F-Measure = 82%) 
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. Introduction 

The growing popularity of sensors and low power integrated circuits,

ogether with the increasing use of wireless networks have led to the

evelopment of affordable, robust and efficient wearable devices which

an capture and transmit data in real time for a long period of time.

hese data sources provide a unique opportunity for innovative ways

n recognising human activities through human physiological sensing

hile also taking into account other natural environmental factors, such

s weather, noise levels, etc. This could potentially contribute to better

anagement of chronic diseases such as diabetes, asthma and cardio-

ascular diseases [1] . For example, extensive research has focused on

utomatic detection of physical exercises which are linked to a range of

ealth related issues [2] . Due to these potential impacts, research work

s on the rise with many algorithms being developed for a range of appli-
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ation areas in healthcare (e.g., symptoms monitoring, home-based re-

abilitation) and beyond (e.g., security, logistics supports) [2,3] . Some

f these machine learning algorithms include multivariate regression,

-nearest Neighbour (KNN) classification combined with Dynamic Time

arping (DTW), etc. In addition, given the importance of mental health

nd its increasing impact on societies, researchers are now finding ways

o accurately detect human emotion with the hope to develop interven-

ion strategies for mental health and to provides rich contextual infor-

ation which can be used to better understand mental health issues

4] . Furthermore, there have also been significant interests in emotion

etection in human-computer interactions [5] due to its potential use,

llowing us to design intelligent computer systems which are adaptable

ccording to users emotional states, ensuring convergence and optimi-

ation of human-computer interaction. Therefore, there have been nu-

erous attempts to exploit machine learning techniques utilising sensor

atasets for automatic emotion detection [6–9] . To date, a significant

mount of research in automatic emotion detection has been carried out

rimarily using visual, audio and movement data (e.g., facial expression,

ody postures, speeches) [3,6,8–10] . With the increased availability of
ptember 2018 
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ow-cost wearable sensors (e.g., Fitbit, Microsoft writs bands), there is

n emergence in research interest in using human physiological data

e.g., galvanic skin response (GSR), heart rate (HR), electroencephalog-

aphy(EEG), etc.) for emotion detection. Apart from these, given the

ntimate links between emotion and environmental factors [6] , studies

re starting to look into using environmental sensors data and location

atterns to infer human emotion [6] . Despite the possibility of sensing

 wide range of information (from human physiology to environment),

utomatic human emotion classification remains very challenging due

o the idiosyncrasy and variability of human emotional expressions [11] .

he range of modalities of emotion expression could be very broad,

ith many of these modalities still being inaccessible to current sensor

echnology (e.g., blood chemistry). Many accessible physiological sig-

als may be non-differentiable in emotion detection [11] . Furthermore,

tudies in automatic emotion detection rely on controlled samples in lab

ettings, where specific emotions are artificially triggered using audio-

isual stimuli (e.g., presenting photos or videos to participants) or by

sking participants to carry out carefully designed tasks to induce emo-

ional states [12] . Although this type of controlled studies is valuable

or certain applications (e.g., clinical diagnosis in healthcare), its use

s rather limited to strictly controlled environments. For emotion de-

ection technology to be useful in the everyday management of mental

ealth and mobile human-computer interaction in the wild, we are in-

erested in techniques which allow us to detect emotion on-the-go and in

eal-life settings. In this paper, we explore a deep learning approach for

ultivariate time series classification, combining environmental, phys-

ological and location sensor data using smart phones and wristbands.

nspired by the deep feature learning in images and speech recognition

13–15] , we explore a deep learning framework for multivariate time

eries classification for emotion recognition in the wild, where users are

alking in a urban area. Deep learning relieves the burden of manually

xtracting hand-crafted features for machine learning models. Instead, it

an learn a hierarchical feature representation from raw data automat-

cally. We leverage this characteristic by building models using a range

f deep learning methods to train raw sensor data. This eliminates the

eed for data pre-processing and feature space construction, and simpli-

es the overall machine learning process [16] . Due to its success in im-

ge and speech classification, deep learning has been increasingly used

or non-image/speech data, including human activity recognition using

ime series data such as in the case of smart phone accelerometer data

1,17–19] . There have also been recent attempts using deep learning for

motion detection, although most studies have only looked at lab based

motion data [9,20] . Specifically, we propose a Multi-Channels Deep

onvolutional Neural Network (MC-DCNN) model. We follow a hybrid

pproach based on Convolutional Neural Network and Long Short-term

emory Recurrent Neural Network (CNN-LSTM) inspired by previous

tate of the art [19,21] which have been applied to human activity using

ccelerometer data. The majority of the studies employing deep learn-

ng on activity recognition are restricted to a handful of data channels as

pposed to this study, where we utilise 20 sensor channels from three

ifferent modalities to classify emotion against self-reported emotion

abels. The main contribution of our work lies in: 

1. The use of multimodal sensor feeds (physiological, environmental

and location data) for emotion detection using features automati-

cally extracted with deep learning approach. Although deep learn-

ing has been used in human activity/emotion detection, few stud-

ies looked into multimodal datasets. Specifically, to the best of our

knowledge, no other work has applied deep learning on the combi-

nation of physiological, environmental and location data for emotion

recognition. 

2. The collection of real-world data from participants walking in a tran-

sited city location wearing a wristband and smart phone, while re-

porting their emotion periodically using a smart phone. The data

therefore better reflect the complexity of real life environments.

Most previous studies in automatic emotion detection are carried out
47 
in controlled lab settings as opposed to “in the wild ” (i.e., in partic-

ipants’ natural environments), therefore the results are restricted to

narrow application domains. 

3. Various experiments carried out to compare different architectures

of deep neural networks, including hybrid models using hybrid

multi-channel sensor data (beyond human activity recognition). 

4. The analysis and fusion of human physiological, environmental and

location features individually and combined to explore its signifi-

cance in emotion classification. 

. Related work 

In recent years, smart phones and many wearable devices such as

mart watches and wristbands are equipped with a range of sensors

hich can continuously monitor human physiological signals (e.g., heart

ate, motions/movements, location data) and in some cases the am-

ient environment data (e.g., noise, brightness, etc.). This led to the

mergence of large datasets in a wide variety of research areas such

s healthcare and smart city. This burst of on-Body and environmen-

al data presents an unprecedented opportunity for healthcare research,

ut it requires the development of new tools and approaches to deal

ith large multidimensional datasets. In the past decades, researchers

rom various fields, particularly in ubiquitous and mobile computing

ave been exploring the possibilities harnessing these data to infer or

redict human behaviour, with varying levels of success [1,17–19,22–

5] . Given the relative ease of collecting time series sensor datasets, re-

earchers have investigated the relationship between these sensor data

nd human emotion. The majority employ traditional statistical analy-

is methods and machine learning techniques. Often, a number of hand-

rafted features that summarise the raw sensor data are extracted from

he less structured data. These features are then filtered empirically or

sing structured algorithms through a feature selection process [16] .

eatures with low level of correlation with its corresponding label are

xcluded (through dimensionality reduction). Moreover, features are of-

en removed to avoid collinearity, when excessive correlation among

xplanatory variables (features) exist in the dataset. Given the list of se-

ected features, computational models are built which help classify or

redict human activity/emotion using machine learning models such as

ogistic regression based models [6] , support vector machines (SVM),

ecision trees, artificial neural networks (ANN), etc. [26,27] . Although

and-crafted features have yielded promising results, they are domain-

pecific, and often poorly generalise to other similar problem domains.

andcrafted-based approaches involve laborious human intervention

or selecting the most discriminating features and decision thresholds

rom sensor data. Handcrafted features have a decisive impact on mod-

ls [16] and often utilise statistical variables, e.g., mean, variance, kur-

osis and entropy, as distinctive representation features. Moreover, tra-

itional machine learning and feature engineering algorithms may not

e efficient enough to extract the complex and non-linear patterns gen-

rally observed in multimodal time series datasets. In addition, tradi-

ional feature engineering could also result in a large output features set

28] . This is problematic because it is difficult to know without training

hich features are relevant to a given task, and which are noise. As a

esult, the ability to select features from a huge feature set is critical

nd will require additional dimensional reduction techniques to process

hese features. Furthermore, feature extraction and feature selection are

omputationally expensive. The computational cost of feature selection

ay increase combinatorially as the number of features increases [28] .

n general, search algorithms may not be able to converge to optimal

eature sets for a given model [16] . Given the complexity of human

motion detection, it is important to have abstract representations of the

ensor data which are invariant to local changes in the data. Learning

uch invariant features is a major challenge in pattern recognition (for

xample learning features which are invariant to the time of data collec-

ion). Traditional shallow methods, which contain only a small number

f non-linear operations, do not have the capacity to accurately model
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uch variation of time series data. Therefore, to overcome the difficulties

n obtaining effective and robust features from time-series data, many re-

earchers have turned their attention to deep learning approaches. One

nteresting property of deep learning techniques is that they can work

n raw data and automate the feature extraction and selection. Noisy

ime series samples are fed into the network as input data, and during

ach transformation, a hidden representation of inputs from the prior

ayer is generated to form a higher hierarchical architecture of data rep-

esentation (i.e., features). One can train the network by adjusting the

apping parameters, in order to obtain finer abstraction levels. Specif-

cally, each layer in a deep learning model combines outputs from the

revious layer and transforms them via a non-linear function to form a

ew feature set. This gives a deep learning model the ability to automat-

cally learn features directly from the underlying sensor data, forming a

ierarchy, where basic features are detected in the first layers, and in the

eeper layers the abstract features from previous layers are combined to

orm complex feature maps. Empirical studies showed that data repre-

entations obtained from stacking up non-linear feature extracting layers

s in deep learning often yield better results, e.g., improved classifica-

ion model accuracy [18] , better generative models (to produce better

uality samples) [18] , and the invariant characteristics of data repre-

entations [18] . Deep learning techniques have already made significant

mpacts in computer vision [13,29,30] , speech recognition [31,32] and

atural language processing [20,33,34] , where it performs better than

tandard machine learning methods and the performance is compara-

le to human level. While some attempts at detecting human activity

nd emotion have been made using deep learning [8,9,17,20,21] , it is

till a new and growing area of research which requires further work.

n recent years, deep learning has been increasingly used in the field of

uman activity recognition [17,21] . While progress has been made, hu-

an activity recognition remains a challenging task. This is partly due

o the broad range of human activities as well as the rich variation in

ow a given activity can be performed. Since deep learning is capable of

igh-level abstraction of data, it can be used to develop self-configurable

rameworks for human activity as well as emotion recognition. For in-

tance, in an attempt to improve performance accuracy of activity recog-

ition using mobile phone triaxial accelerometer data, Alsheikh et al.

17] utilised a hybrid approach of deep learning and hidden Markov

odels(HMM). This approach allows to model deep hierarchical rep-

esentations of spatial data with restricted Boltzmann machines (RBM)

nd stochastic modelling of temporal sequences in the HMM models.

he proposed approach was reported to have performed better than tra-

itional methods of using shallow networks with handcrafted features.

ther deep learning architectures, including Convolutional Neural Net-

ork (CNN) and Recurrent Neural Network (RNN) have been increas-

ngly applied in activity recognition problems. The performance of CNN

or some activity recognition tasks was explored by Zeng et al. [35–37] .

uilding on CNNs successes in image recognition, Hinton et al. [13] de-

eloped a method based on CNN and applied it in activity recognition

roblems in three different domains:assembling line activities, activi-

ies in kitchen and jogging/walking. CNN was utilised to automatically

xtract features from accelerometer data without any domain knowl-

dge. It was shown that CNN can capture local dependencies and invari-

nt features in the data. Experimental results showed that CNN outper-

ormed traditional machine learning approaches. Using a CNN model,

lsheikh et al. [17,21] demonstrated that it can model complex multi-

ariate sensory time series data (considering accelerometer and gyro

ata) in recognition common human activities, e.g. walking, sitting,

aying, etc. Specifically, CNN outperformed SVM which has previously

chieved the best performance in this dataset [37] . showed that CNN

lso outperformed other conventional machine learning methods (e.g.,

NN and SVM) in two other activity recognition datasets: breakfast ac-

ivity and gesture recognition. A CNN is used in [38] to extract features

or gait pattern recognition so that labour intensive hand-crafted feature

xtraction process is avoided. Furthermore, CNNs have been applied for

etection of stereotypical movements in Autism [39] , where they signif-
48 
cantly improved upon the state- of-the-art. Recurrent neural network

RNN) relying on Long Short-Term Memory (LSTM) cells have gained

opularity due to its ability to exploit the temporal dependencies in

ime series data. LSTM have recently achieved impressive performance

n various time-dependent applications, such as machine translations,

utomatic video subtitling, and others [40] . A biometrics application of

STM has been explored by Neverova et al. [41] to identify individual

umans based on their motion patterns captured from smartphones, i.e.,

ccelerometer, gyroscope and magnetometer. This is a challenging task,

s temporal motion signals are generally very noisy. Their work using

STM demonstrated that human movement convey necessary informa-

ion about the persons identity and it is possible to achieve relative good

uthentication results. Furthermore, the same LSTM algorithm can also

e applied to other time series data on gesture detection in a human

onversation. In [21] a hybrid approach was used based on CNN and

STM to classify human activities using two public datasets (daily activ-

ties and assembly line activities). The fundamental idea is to use CNN

o automatically extract spatial features from raw sensor signals, and

STM to capture the temporal dynamics of the human movement. Their

esults showed that CNN-LSTM hybrid model outperformed other deep

odels without using LSTM to model time dependencies. Importantly, it

as shown that the model can potentially be used in multimodal sensor

ata. 

.1. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) are a widely used deep learn-

ng algorithm which performs especially well for images input data, al-

hough they are now increasingly applied in time series data including

uman physiological data and financial data [21,42] . The inputs in a

onvolutional layer connect to the subregions of the layers instead of

eing fully-connected as in traditional neural networks models. These

roup of inputs in subregions share the same weights, therefore the

nputs of a CNN produce spatially-correlated outputs, whereas in tra-

itional neural networks (NN), each input has individual weight and

ence produce independent outputs. In a neural network with only fully-

onnected layers, the number of weights can increase quickly as the

imension of the input increases. CNNs reduce the number of weights

ompared with NN with the reduced number of connections through

eights sharing and downsampling. CNNs typically consist of three

ypes of layers: convolutional layers, pooling/downsampling layers and

ully-connected layers. 

• The convolutional layer is the main building block of a CNN which

determines the output of connected inputs in within local subre-

gions. This is done via a set of learnable filters (kernels) which are

convolved across the width and height of the input data, calculat-

ing the scalar product between the values of the filter and the input,

hence producing a two dimensional activation map of that filter.

Through this, CNNs are able to learn filters which activate when

specific type of features at some spatial position of the input are de-

tected. 
• The pooling layer will perform downsampling along the spatial di-

mensionality of the given input, further reducing the number of

weights within that activation. 
• The fully-connected layers are standard deep neural networks and

attempt to produce predictions from the activation, to be used for

classification or regression. 

Convolution is the key operation in CNN. By convolution of the in-

ut signal with a linear filter (or kernel), adding a bias term and then

pplying a non-linear function, a 2D matrix named feature map is ob-

ained, representing local correlation across the input signal. Specifi-

ally, for a certain convolutional layer, the units in it are connected to

 local subregion of units in the (l-1)th layer. Note that all the units

n one feature map share the same weight vector (for kernel) and bias,
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Fig. 1. Long short term memory (LSTM) block [44] . 
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ence, the total number of parameters is much less than traditional mul-

ilayer fully connected neural networks with the same number of hid-

en layers. This indicates that CNN has a sparse network connectivity

14] , which results in considerably reduced computational complexity

ompared with the fully connected neural network. For a richer repre-

entation of the input, each convolutional layer can produce multiple

eature maps. Though units in adjacent convolutional layers are locally

onnected, various salient patterns of the input signals at different levels

an be obtained by stacking several convolutional layers to form a hi-

rarchy of progressively more abstract features. For the jth feature map

n the lth convolutional layer Cl,j, the unit at the mth row and the nth

olumn is denoted as vm,nl,j and the value of vm,nl,j is defined by: 

𝑣𝑚, 𝑛𝑙, 𝑗 = 𝜎( 𝑏𝑙, 𝑗 + 

∑
𝑘 
∑

𝑝𝑎 = 0 𝑃 𝑙, 𝑎 1 
∑

𝑝𝑏 = 0 𝑃 𝑙, 

𝑏 − 1 𝑤𝑝𝑎, 𝑝𝑏𝑙, 𝑗, 𝑘𝑣𝑚 + 𝑝𝑎, 𝑛 + 𝑝𝑏𝑙1 , 𝑘 ) 

∀𝑛 = 1 , 2 , 𝑁𝑙, 𝑚 = 1 , 2 , 𝑀𝑙 , (1) 

here Ml and Nl are height and width of feature map Cl,j. bl,j is the

ias of this feature map, k indexes over the set of feature map in the

l–1)th layer, wpa,pbl,j, k is the value of convolutional kernel at position

pa,pb), Pl,a and Pl,b are the size of the convolutional kernel, and 𝜎()

s the Rectified Linear Units (ReLU) nonlinear function. ReLU is defined

y: 

( 𝑥 ) = max (0 , 𝑥 ) (2)

he proposed convolution operation is performed without zero padding

unlike the conventional approaches of image processing). This means

ach dimension of feature map will be reduced after a convolution op-

ration. Thus: 

 𝑙 = 𝑀 𝑙 − 1 − 𝑃 𝑙, 𝑎 + 1 𝑁 𝑙 = 𝑁 𝑙 − 1 − 𝑃 𝑙, 𝑏 + 1 , (3)

here l is the index of the layer that performs convolutional operation.

.2. Recurrent Neural Networks (RNN) 

In a traditional neural network (with only fully connected layers)

e assume that all inputs are independent of each other. In CNN, we

ave seen that inputs can be grouped into subregions, where features

re spatially dependent on each other and share the same weights. For

ome classification/learning tasks, the inputs are temporally dependent.

or instance, if we want to predict the next word in a sentence, it is im-

ortant to know which words came before it. RNNs can perform the

lassification task for every element of a time sequence, with the output

eing depended on the previous computations. Another way to think

bout RNNs is that they have a memory which captures information

bout what has been calculated so far. In other words, RNNs take as

heir input not just the current input data they see, but also what they

erceived one step back in time. The decision a RNN reached at time

tep 𝑡 − 1 affects the decision it will reach at time step t. Hence, RNNs

ave two sources of input, the present and the recent past. Here is what

 typical RNN looks like: In theory RNNs can make use of information in

rbitrarily long sequences, but in practice they have difficulties learning

ong-range dependencies due to the vanishing gradient problem [43] .

he vanishing gradient problem is the result of RNN seeking to estab-

ish connections between the final output and inputs from many time

teps before as a RNN passes through many stages of multiplication.

o address this, we adopt Long Short-term Memory (LSTM) as the RNN

emory unit. LSTMs help preserve the error that can be backpropagated

hrough time and layers by using a gated cell which determines what

nformation from the prior step should be forgotten and what informa-

ion in current time step should be remembered into the next state, via

ates that open and close (activate and deactivate). This allows a RNN

o continue to learn over many time steps, thereby opening a channel

o link causes and effects remotely ( Fig. 1 ). 

The structure of a LSTM cell is illustrated in Figure and the mecha-

ism of the gates is described as follows: The first step in a LSTM cell is
49 
o decide what information we will forget from the cell state. This deci-

ion is made by a Sigmoid layer called the forget gate layer. It looks at

 𝑡 −1 and x t , and outputs a number between 0 and 1 for each number in

he cell state 𝐶 𝑡 −1 . 1 represents completely keep this while 0 represents

ompletely remove this. The output ft of the gate is formalised as: 

 𝑡 = 𝜎( 𝑊 𝑓 ⋅ [ ℎ 𝑡 −1 , 𝑥 𝑡 ] + 𝑏𝑓 ) (4)

hen the cell decides which new information will be stored in the cell

tate. This has two parts. First, a sigmoid layer known as the input gate

ayer decides which values will be updated. Then, a tanh layer creates a

ector of new candidate values, 𝐶̂ 𝑡 , which could be added to the state.

hese two will be combined to create an update to the state, as follow:

𝑡 = 𝜎( 𝑊 𝑖 ⋅ [ ℎ 𝑡 −1 , 𝑥 𝑡 ] + 𝑏 𝑖 ) (5)

̂𝑡 = tanh ( 𝑊 𝐶 ⋅ [ ℎ 𝑡 −1 , 𝑥 𝑡 ] + 𝑏 𝐶 ) (6)

hen, we update the old cell state, 𝐶 𝑡 −1 , into the new cell state C t as

ollow: 

 𝑡 = 𝐶 𝑡 −1 ∗ 𝑓𝑡 + 𝑖 𝑡 𝐶̂ 𝑡 (7)

o produce the output, a Sigmoid layer is first run, which decides which

arts of the cell state will be output. Then, the cell state is fed through

anh (to push the values to be between –1 and 1) and multiplied by the

utput of the Sigmoid gate, as follow: 

𝑡 = 𝜎( 𝑊 𝑜 ⋅ [ ℎ 𝑡 −1 , 𝑥 𝑡 ] + 𝑏 𝑜 ) (8)

 𝑡 = tanh ( 𝐶 𝑡 ) ∗ 𝑜 𝑡 (9)

s we used Softmax as our last activation, our loss function is cross

ntropy loss: 

𝑜𝑠𝑠 = − 

∑

𝑖 

log 
𝑒𝑥𝑝 ( 𝑊 𝑥 𝑖 ) ∑
𝑗 𝑒𝑥𝑝 ( 𝑊 𝑥 𝑗 ) 

(10)

inally, Adam Optimizer can be used to have a better navigation through

he loss function. 
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Fig. 2. Learning Architectures, four models are trained, (a) for On-Body, (b) for Env , (c) for Location separately (d) and then fused using all the data input and feed 

it into the Deep Layers. 

Fig. 3. CNN architecture. 
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. Methodology 

In this section, we explain in details the dataset used for emotion

n the wild classification and the architectures of deep learning models

sed for experimentation. 

.1. The envbodysens dataset 

We use the EnvBodySens dataset [6] to evaluate the models, which

onsists of 40 data files collected from 40 female participants (average

ge of 28) walking around the city centre in Nottingham, UK on spe-

ific routes. The dataset is composed of on-body data such as heart rate

HR), galvanic skin response (SGR), body temperature, motion data (ac-

elerometer and gyro), environmental data such as noise levels, UV, air

ressure and location data, GPS locations associated with time stamp

nd self report emotion levels (5-step Self-Assessment-Manikin (SAM)

cale for valence) logged by the EnvBodySens mobile application on

ndroid phones (Nexus), connected wirelessly to Microsoft wrist Band

 [45] . The participants were asked to spend no more than 45 min-

tes walking in the city center. Data was collected in similar weather

onditions (average 20° degrees), at around 11am. During the data col-

ection process, 550,432 sensor data frames were collected as well as

345 self-report responses. The statistical data analysis of the dataset is

eported in [6] . Participants were asked to periodically report how they

eel based on predefined emotion scale as they walked around the city

entre. We adopted the 5-step SAM Scale for Valence taken from Banzhaf

t al. [46] to simplify the continuous labelling process. On average, 134

elf-reports were entered per participants. We disabled the screen auto

leep mode on our mobile devices, so the screen was kept on during the

ata collection process. [6] . Data from six users were excluded due to

ogging problem. For example, one user was unable to collect data due

o battery problem with the mobile phone, another user switched the
50 
pplication off accidentally. The correlation matrix in [6] shows a low

evel of correlation between the independent variables, suggesting that

ur model will not be affected by the multi-collinearity problem. 

. Model implementation 

We use TensorFlow [47] to implement our models and Tensorboard

or visualisation on Xeon E5-2640 v4 Processor (25 Mb Cache, 2.4 GHz,

 core). In this paper, we first train a Multi-layer Perceptron (MLP)

or emotion classification based on twenty raw sensor input from three

odalities: (i) on-body (i.e., physiological and motion/movement data),

ii) environmental, (iii) and location data. Initially, we train each modal-

ty individually and then we combine all sensor input modalities in a

eparate training process, see Fig. 2 for the four different learning archi-

ectures. Then we evaluate the performance of each modality against

he combined model. This is then followed by training deep learning

odels in order to test the efficacy of the deep learning approach for

ccurately classifying multimodal time series data. 

.1. Data pre-processing 

After the data collection the signals were pre-processed and cleaned.

he first and the last 30 s were removed from the start of the data col-

ection process for each user data, the reason for this step is that users

eeded a few seconds to fully engage in the movement and also few sec-

nds to terminate the data collection process. A non-overlapping sliding

indow strategy has been adopted to segment the time series signal.

ig. 12 shows the difference between the two segmentation methods. 

.2. MLP models 

Our implementation of “Multi-Layer Perceptron ” (MLP) network

onsists of two hidden layers. The first layer has 64 neuron, whereas
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Fig. 4. CNN-LSTM Model Architecture, we train 4 models separately, these are (a) On-Body, (b) Env , (c) for Location (d) and then we fused model using all the 

data input and feed it into the Deep Layers. 

Fig. 5. Comparison of average accuracy levels of all models. 
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he second hidden layer has 32 neurons. The input layer is 20 ∗ 40 dimen-

ions per iteration. The output layer has 5 neurons, each corresponds to

he 5 emotional classes. 

.3. CNN models 

We start with the notations used in the CNN. A sliding window strat-

gy is adopted to segment the time series signal into a ( n, c, t ) tensor,

here 𝑛 = number of instances, 𝑐 = sensor channels, 𝑡 = time steps. Af-

er preliminary experiments with various deep learning topologies using

ultiple modalities combinations, we choose the CNN architecture as

ollows: Input of n batch x 20 channels x t window size, 2 convolutional

ayers (Conv1, Conv2), 2 maxpooling layers (Pooling1, Pooling2) and

ully-connected layer as shown in 3 . The first layer Conv1 has 32 filters

feature maps) while the second one Conv2 has 64 filters. This proce-

ure may hinder partially the generality of the created models, as the

verage cross-validation accuracy is used to guide the feature selection

earch. However, the comparison between single, multiple modalities,
51 
nd across fusion approaches is fair because all experiments follow the

ame procedure. The window size, r = 40 (i.e., the height of sliding win-

ow) is chosen experimentally, by trying different sample rates from 10

o 100 as shown later in Table 2 . The convolution kernel is 2x2, stride

s 1x1, i.e., strides = [1,1,1,1], Padding = 1 (which does not shrink the

atrix). 

.4. CNN-LSTM models 

CNN-LSTM has a similar structure as CNN, with an added LSTM layer

see Fig. 3 ). In particular, the temporal dimension of the data is pre-

erved during the convolution operation, and the resulting fully con-

ected layer is fed into LSTM cell(see Fig. 4 ). Each LSTM cell keeps

rack of an internal state that represents its memory. Over time the cells

earn to output, overwrite, or reset their internal memory based on their

urrent input and the history of past internal states. The MaxPool ker-

el is 2x2, stride is 1x2, i.e., strides = [1, 1, 2, 1], padding is 1. So that

he temporal dimension is preserved and we only shrink the spatial di-
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Fig. 6. Confusion matrices of three models for one user data (fused data). 

Table 1 

Average performance metrics for all the models. 

Average Precision Recall F-measure Accuracy RMSE 

MLP All 0.734 0.728 0.729 72.9 0.95975 

Body 0.654 0.621 0.63 62.2 1.264 

Environment 0.424 0.428 0.424 42.6 1.54 

Location 0.59 0.605 0.58 60.2 1.22 

CNN All 0.818 0.79 0.787 78.6 0.788 

Body 0.734 0.712 0.709 70.8 1.01 

Environment 0.529 0.47 0.468 46.5 1.41 

Location 0.79 0.761 0.769 78.7 0.99 

CNN-LSTM All 0.927 0.95 0.949 94.7 0.291 

Body 0.881 0.878 0.874 87.3 0.6 

Environment 0.607 0.593 0.574 59.7 1.18 

Location 0.655 5.586 0.621 64 1.03 
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Table 2 

Average accuracy of CNN+LSTM models using 

different sliding window sizes. Bold numbers rep- 

resent the best performing window size. 

Window size F-measure Accuracy RMSE 

20 0.942 94 0.5 

40 0.949 94.7 0.291 

60 0.946 94.7 0.313 

80 0.911 92.7 0.8 

100 0.922 93.7 1.1 

120 0.912 92.5 1.3 
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e  
ension. Thus output filters are of 40x10 dimension after first MaxPool

ayer and 40x5 after the second MaxPool layer. Similarly, 32 filters are

sed for the first Conv1 layer and 64 used for the second Conv2 layer.

he output of these filters are also shown in Fig. 4 . We train all models

entioned above on each subject dataset using fused data from all sen-

ors modalities. We also train the models on three subsets of the data

ased on three modalities: on-Body, Env and Location. In total, we train

2 models on each user dataset (3x3 models on subsets and 3 models

n fused data). Here, n = 40 raw samples and c = 20 the number of the at-

ributes from sensor input. Similarly, c = 2 for the location models, c = 3 is

or Env models (Noise, Air-Pressure and UV) and c = 15 for the On-body

odels (the rest of the attributes). 

.5. Results 

All the experiments presented here are run for data files of each in-

ividual participant and then the average (and standard error) of the re-

ulting models prediction accuracy and other performance metrics are

eported. The performance of the trained model is evaluated by split-

ing each subject data using random sampling technique into training

et of 70% data instances and test set of 30%. Evaluation results across

ll experiments are illustrated in Table 1 , based on five standard perfor-

ance evaluation metrics: Precision, Recall, F-Measure, Accuracy, Er-

or rate and RMSE (root mean squared error). The accuracy levels of

he results are also compared between single modalities (on-body, en-

ironmental and location modality) and combined modalities across all

he three models. When MLP was trained only on-Body data subset, it

chieved an average accuracy of 0.62 (F-Measure: 0.63 ± 0.039). Loca-

ion model achieved an average accuracy of 0.60 (F-Measure:0.580.032)

hile MLP did not not perform well on Environment data with an av-

rage accuracy lower than 0.50. MLP achieved an average accuracy of

.72 (F-Measure:0.580.032) when performed on fused modalities data
52 
hich is significantly higher than each single modality ( p < 0.01). More-

ver, the results show that CNN outperforms MLP significantly by 6%

 p < 0.01) with an average accuracy 0.79. (F-Measure:0.79 ± 0.034).

oth on-Body and Location models were improved with CNN. CNN-

STM model achieved an average accuracy of 0.95 (F-Measure:0.95

 0.022) with significant 16% increase margin in performance, com-

ared to CNN model ( p < 0.01). Furthermore, the accuracy level of the

NN-LSTM model increased considerably based on-Body data at 0.87

F-Measure:0.87 ± 0.024, ( p < 0.01)), although the model did not do as

ell with Location data. The results suggested that on-Body modality is

he more robust data source for emotion classification “in the wild ”. The

ther two modalities, i.e., Environment and Location, are not as effective

n their own but together they yield improved performance when fused

ith on-Body data by approximately 7% in accuracy. The high levels

f accuracy achieved with the hybrid CNN-LSTM model reinforces the

ffectiveness of deep learning in multimodel time series sensor data for

motion recognition. Due to limited space, we only visualise the accu-

acy levels of ten participants. Radar chart in Fig. 5 shows the differ-

nce in accuracy levels of 10 users experiments which are selected ran-
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Fig. 7. Radar charts showing the accuracy levels of three models(a) MLP, (b) CNN , and CNN = LSTM, based on ten users data in ad-hoc and fused modes. 
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omly. With CNN-LSTM accuracy levels ranging between 0.89 to 0.996

 ± 0.027). Similarly, Fig. 7 , presents 3 radar charts of 10 users models

figure per model MLP,CNN and CNN-LSTM). Its clear from Fig. 7 that

LP models resulted in the highest variation between users, and models

ased on Environment data achieved the lowest accuracy levels. While

n 7 , we can see that all the combined modalities have achieved high

evels of accuracy. Fig. 7 , illustrate the confusion matrices yielded by

he three models based from one user data. There is a slight confusion

etween state 0 and 1 (negative emotions), which is improved when

STM is added to the architecture. During the user study, we have made

 great effort to ask users the meaning of each class and the difference

etween the very negative label “0 ” and neutral “3 ”. In addition, we

ave cropped the first few minutes of the data recording when users are

tationary and using default rating (label) at 3. We believe our dataset

s reasonably balanced with small variation from one user to another. 

Modern deep learning techniques allow us to train a network in

atches by interleaving multiple sequences together. Among others,

atching allows to further exploit the power of matrix multiplication

n the GPU and to avoid loading all data into memory at once. The

atch size has implications for the robustness of the error that is propa-

ated in the learning phase [29] . Fig. 3 shows an example of 3 batches

hat encode 3 sequences of 5 samples each.(Figs. 6, 8–10) 

Fig. 8. The accuracy levels of 10 users across all the models in ad-hoc and fused 

modes. 
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Fig. 9. Cumulative distribution of recognition accuracy of 7 user. 

Fig. 10. Cumulative distribution of recognition loss of 7 users. 
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. Discussion 

The objectives of our study were to (i) evaluate deep learning as a

omputational model for emotion recognition “in the wild ” following

tate-of-the-art methodologies, and (ii) to assess the overall power of

eep learning on multmodal sensor data including time series sensor

nput (Physiological, Environmental and Location data). This is one of

he few studies looking into emotional recognition of participants in

heir natural environment using multiple sources of time series data.

ur results have demonstrated that raw features can perform well when

used utilising deep learning models. In particular, CNN combined with

STM has outperformed traditional MLP by more than 20% increase

argin. Furthermore, applying deep learning on multimodel sensor data

utperformed our earlier Ensemble algorithm by 6% margin [6] (see

ig. 11 ) which is based on staking various learners and refine the output

y another meta learner layer. 
54 
Our results in general have suggested that deep learning method-

logies are appropriate for modeling affective states and, more impor-

antly, indicated that ad-hoc feature extraction may not be necessary for

s deep learning models are able to identify high level of data abstrac-

ion automatically. Furthermore, in some affective states examined (e.g.,

elaxation models built on Electrodermal Activities (EDA); fun and ex-

itement models built on Blood Volume Pulse (BVP); relaxation models

uilt on fused EDA and BVP), deep learning without prior feature selec-

ion manages to reach or even outperform the performances of models

uilt on ad-hoc extracted features which are boosted by automatic fea-

ure selection. These findings showcased the potential of deep learning

or affective modeling based multiple sensors and multiple modalities

nput, as both manual feature extraction and automatic feature selec-

ion could be ultimately bypassed. Even though the results obtained are

ore than encouraging with respect to the applicability and efficacy of

eep learning for affective modelling, there are a number of limitations
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Fig. 11. Accuracy and F-Measure levels of the base learners and the stacking learner [6] . 

Fig. 12. Illustration of sliding window steps and overlapping. 
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nd research directions that should be considered in future research.

here are many parameters that can be tuned to obtain the optimal per-

ormance of the network. e.g. we have managed to test various step sizes

f the sliding window as shown in Fig. 12 . It demonstrates that by only

nalysing a small chunck of data (40 samples, i.e., 160 ms), the deep

earning model is able to classify emotions at high accuracy levels. The

est has shown that the model performs at its best when the sliding win-

ow step size is set to 40. However, there are other parameters which

an be tuned based on similar tests such as allowing window overlapping

nd the width of window overlap as shown in Fig. 12 . While the Env-

odySens dataset includes key components for emotion modelling and

s representative of a typical affective modelling scenario, our approach

eeds to be tested on diverse datasets with larger number of participants

nd with more modalities and account to other factors such as pollution

evels and crowd density, which may have significant impact on human

motions. Furthermore, we expect that the application of deep learning

o model affect in large physiological datasets would show larger im-

rovements with respect to statistical features and provide new insights

n the relationship between physiology and affect. 

In addition, we have demonstrated that our algorithms can work

n three very different modalities including physiological, enviromen-

al and movement activities, we believe our models can also work on

lmost any other sensor data (beyond emotion detection and city sens-

ng). Also we are in the process of deploying real-time mobile applica-

ions that can run these models on mobile and IoT platforms such as

ntel Edison module [48] . We have attempted to combine all partici-

ants data into one single dataset for emotion detection, however we

ound a high across-subject variation in the dataset which led to low

odel accuracy of less than 50%. This observation is in agreement with

revious studies [49] which verify that emotion recognition is subject

ependent which makes it difficult to obtain a generalised model across

ndividuals.Others have successfully created a universal deep learning

odel for gesture data as gestures performed by different individuals

re typically quite similar.For emotion however , there is higher levels

f variations between individuals. Our results, confirm this, and verify
55 
hat the emotion recognition is subject dependent as the accuracy varies

rom subject to subject and exhibits high variance of accuracy. 

. Conclusion 

Mobile phones along with other wearable devices produce large

umber of data as people are going about their daily activities. In this

tudy, we presented a scenario of emotion detection “in the wild ”, where

eople are moving from one place to another in an urban environment.

lthough this type of time series data can help us understand peoples

motion, traditional emotion recognition techniques requires features

ngineering process to be applied to data prior to modelling, which

ight be challenging especially if the dataset is multimodal and large.

eep learning offers an automated way for features extraction embed-

ed in the process. This paper has demonstrated the advantages of em-

loying a hybrid deep learning approach for raw multimodal data mod-

lling based on smart device sensors input collected in city space. Our

esults have shown that using a hybrid deep learning approach (CNN-

STM) on large number of raw sensor data increased the accuracy lev-

ls of emotion models by more than 20% compared to a traditional

LP model. Furthermore, fusing various sensor modalities including on-

ody, Environment and Location data showed a significant increase in

ccuracy when compared to modelling single modality such as physio-

ogical sensors only. Also, we have shown that deep learning can be a

romising approach for the study of human behaviour and emotion data.

he promising results demonstrated in the study holds the potential for

ovel applications in emotion recognition and can open new opportu-

ity in the study of mental health and well-being in real-life settings.

n future work, we will further explore the possibility of utilising LSTM

ates to reset and forget some of the states based on the emotion states

nd their history. Finally, we are planning to run a larger scale studies

ith other modalities and sensor feed such as(e.g. EEG data, air qual-

ty), and then build an emotion map using our model on mobile devices

long with the sensors. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.inffus.2018.09.001. 
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