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Abstract

I develop a model of dynamic firm entry, oligopolistic competition

and returns to scale in order to decompose TFP fluctuations into tech-

nical change, economic profit and markup fluctuations. I show that

economic profits cause short-run upward bias in measured TFP, but

this subsides to upward bias from endogenous markups as firm en-

try adjusts. I analyze dynamics analytically through a nonparametric

DGE model that allows for a perfect competition equilibrium such

that there are no biases in measured TFP. Given market power, simu-

lations show that measured TFP is 40% higher than technology in the

short-run, due solely to profits, and 20% higher in the long-run due

solely to markups. During transition both effects contribute upward

bias: initially the profit effect dominates, but by 5 quarters the two

effects contribute equally, and by 10 quarters only the markup effect

persists. The speed of firm adjustment (‘business dynamism’ ) will

determine these timings and therefore the importance of each bias.

JEL: E32, D21, D43, L13, C62, Endogenous markups, Dynamic

Firm Entry, Endogenous Productivity, Endogenous Entry Costs
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Non-technical Summary 

 

A standard way to measure productivity is to take output growth and subtract 

input growth. Typically input growth is growth in capital and growth in labor 

weighted by their share in production. Whatever remains after subtracting is 

known as total factor productivity (TFP). 

Under specific circumstances, this productivity measure also reflects 

underlying technology growth. This is important for economists because they 

struggle to measure underlying technology at an aggregate level, but it is a key 

variable to understand the behaviour of the economy.  

However when we diverge from some basic assumptions, such as perfect 

competition, the TFP measure no longer reflects underlying technology. 

Therefore using our TFP measure to represent technology could lead to 

incorrect conclusions. 

In this paper I show that when we recognize the slow adjustment of firms to 

arbitrage profits and the effect that slowly entering firms have on competition, 

the relationship between our measure of TFP and technology becomes much 

more complex. In fact, when we observe changing TFP, it will compose 

changing technology, changing profits and changing markups. This 

decomposition allows us to understand how we can get a true measure of 

underlying technology from our calculated TFP measure. It emphasizes that 

the composition of profits and markups vary in importance as firm entry takes 

place. 



Rising markups, increasing economic profits and declining business dy-

namism are topical empirical issues in macroeconomics.1 From a theoretical

perspective, firm entry is core to each mechanism: entry affects competition

thus markups; entry arbitrages profits; and entry rates measure business dy-

namism. In this paper, I develop a model of dynamic firm entry, endogenous

markups and endogenous entry costs in order to understand how these emerg-

ing trends affect our understanding of measured TFP, typically acquired as

a Solow residual.

I decompose measured TFP into profit, markup and pure technology com-

ponents. Crucially, I focus on the dynamic evolution of each component as

entry transitions following a permanent technology improvement, rather than

providing a static analysis once entry has adjusted. There are three stages:

the short run, when firms are fixed; transition, when firms are entering; and

the long run, when entry has ceased (profits are zero). I show that both

markups and profits cause measured TFP to be an upward biased measure

of pure technology, but their importance differs as entry adjusts. In the short

run, upward bias in measured TFP is driven solely by profits, whereas in the

long run upward bias is driven solely by markups. During transition both ef-

fects contribute positively, but the profit bias decreases in importance whilst

the markup bias increases in importance. Numerically I show that measured

TFP exceeds underlying technology by 40% on impact as profits rise and

remains 20% higher in the long-run once profits have been arbitraged but

competition has decreased markups. I show that the positive profit effect

dominates the positive markup effect for 5 quarters, but after 10 quarters

the profit effect disappears leaving only the long-run markup effect. These

speeds will vary depending on the speed of entry adjustment, so-called busi-

ness dynamism, in a given economy. Business dynamism is determined by

prospective entrants’ sensitivity to endogenously procylical sunk costs.

I extend a continuous-time Ramsey-Cass-Koopmans setup to include en-

dogenous labor, endogenous markups and dynamic firm entry due to en-

dogenous entry costs. Additionally the firm-level production function has

1De Loecker and Eeckhout 2017; Eggertsson, Robbins, and Wold 2018; Decker et al.
2018.
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a U-shaped average cost curve due to increasing marginal costs and a fixed

overhead cost. The fixed overhead cost implies there are increasing returns to

scale in steady-state under imperfect competition, but with perfect competi-

tion there are constant returns at minimum average cost. Imperfect compe-

tition, due to product differentiation, leads to endogenous markups as entry

expands the number of competing products which weakens price setting abil-

ity. Dynamic entry introduces a new state variable, number of firms, in

addition to capital, and implies markups adjust slowly. Entry occurs to arbi-

trage profits which are non-zero whilst entry takes place, but zero in long-run

steady-state when entry ceases.

Given a permanent positive aggregate technology shock: profits, entry,

employment, investment, entry costs and productivity are procylical, whereas

markups are countercyclical. The shock initially affects a fixed number of in-

cumbent firms with a fixed amount of capital. Consequently the incumbents

increase their output which increases profits as markups are unchanged due

to no entry. The change in output occurs through the direct effect of a better

technology and because labor adjusts instantaneously. Scale economies from

overhead costs increase incumbents’ productivity inline with the output ex-

pansion. However, by raising output and gaining monopoly profits, prospec-

tive entrants evaluate that paying a sunk cost to enter and receive profits

outweighs the opportunity cost of investing at the market rate, hence entry

occurs. Entry reduces the output and profits that incumbents temporarily

gained which reduces productivity as scale declines, but with greater com-

petition, lower markups mean that incumbents must produce more output

in the long run to break-even at zero-profit steady-state. Hence there is a

countervailing long-run scale effect increasing productivity. Therefore entry

has opposing effects on measured productivity. It decreases the profit bias,

but increases the markup bias.

Related Literature Recent progress to understand aggregate produc-

tivity through firm entry focuses on static entry and its selection effects due

to heterogeneity in firm productivity, whereas I focus on the intertemporal

effects of homogeneous incumbent firms bearing shocks and subsequently ad-
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justing to new entrants.2 The interaction between imperfect competition,

increasing returns to scale and technology shocks is an established explana-

tion for procylical productivity.3 Also, in a static entry setup the positive

effect of endogenous markups on measured TFP is understood (Portier 1995;

Jaimovich and Floetotto 2008). The contribution of this paper is to focus

on the dynamic effect of firm entry on productivity, specifically to distin-

guish the contributions of profits and markups intertemporally. This focus

on productivity differs from emerging literature on dynamic firm entry based

on Bilbiie, Ghironi, and Melitz 2012.4 Additionally, the work generalizes the

cost structure of the firm to allow for perfect competition and presents a non-

parametric tractable analysis. To facilitate this, I use an endogenous sunk

cost setup, based on Datta and Dixon 2002, which generates dynamic entry

and allows for a tractable analysis in continuous time. Savagar and Dixon

2017 study a similar dynamic firm entry model with fixed markups and in-

terpret short-run procylical productivity movements through excess capacity

utilization.

1 Cost Curves Intuition

Figure 1 shows the cost curves and equilibria of a firm with increasing

marginal costs and a U-shaped average cost due to a fixed overhead cost. The

two diagrams represent the dynamic effect on an incumbent firm’s costs and

in turn productivity resulting from an improvement in technology A0 < A1

2Static entry literature, such as Da-Rocha, Tavares, and Restuccia 2017; Baqaee
and Farhi 2017, focuses on producer heterogeneity, allocation and selection effects, thus
between-firm productivity is the interest whereas, in this paper, with dynamic entry the
interest is within-firm productivity over the cycle as firms adjust their production in re-
sponse to entry.

3Hall 1990; Caballero and Lyons 1992; Hornstein 1993; Devereux, Head, and Lapham
1996a; Basu and Fernald 2001.

4Etro and Colciago 2010; Lewis and Poilly 2012 investigate model performance under
different forms of strategic interaction and endogenous markup. Jaimovich and Floetotto
2008 focus on static entry in their main paper, but simulate for dynamic entry in the
appendix. The dynamic entry results cause weaker measured TFP amplification than in
the static case. My tractable analytic analysis helps to explain these simulated results, and
provides new explanations for the changing role of profits and markups intertemporally.
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Figure 1: Cost Curve Explanation

when entry is slow and affects price setting ability. The ‘true’ measure of

technological productivity growth that we hope to capture is the shift in the

average cost curve, most easily captured at the perfectly competitive mini-

mum average cost level.

Initially the economy is at steady state ỹ(A0), p(ỹ(A0)) where MR(A0) =
MC(A0).5 At time t = 0 a permanent technology improvement shifts both

5This is the steady state outcome under imperfect competition due to downward slop-
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marginal and average cost curves downwards instantaneously. With slow

firm adjustment, entry does not take place immediately, firms are quasi-

fixed, so that incumbents face demand (price) D(A0) and MR(A0) but lower

costs LRAC(A1), such that producing where MR(A0) = MC(A1) leads to

economic profit indicated by the shaded rectangle. At this profit maximizing

level the firm produces y0(A1) which shows it expands its scale on impact.

This is because it can change labor freely to achieve optimum.6 The increase

in scale implies a movement down the LRAC curve which corresponds to a

productivity improvement on top of the parallel shift from technology. This

is the productivity increase associated with economic profits. Subsequently

(lower graph) entry takes place, arbitraging profit until demand shifts to

tangency between D(A1) and LRAC(A1). The new steady-state following

full entry adjustment corresponds to ỹ(A1). It shows that following the initial

increase in firm scale and corresponding endogenous rise in productivity, there

is a decline in scale reducing productivity but not back to the initial level.

There is a long-run increase in scale and thus productivity because entry has

a second effect: it increases competition among firms making their demand

curves more elastic. As the demand curve becomes flatter so tangency is

achieved at a point corresponding to an increase in output. This is because

with weaker demand (price) firms must produce more units to break even

in the long-run zero-profit steady state. Therefore entry has two opposing

effects on productivity. The shifting in of the demand curve from business

stealing (profit arbitrage) reduces incumbent scale and thus productivity,

whereas the greater competition which flattens the demand curve increases

scale and thus productivity, and this persists into the long run. If entry

did not endogenously affect price setting ability (Dixit and Stiglitz 1977), so

ing demand curves from product differentiation. The level of output is less than the firm’s
minimum efficient scale (MES) ỹ(A0) < yMES where average cost and marginal cost in-
tersect and long run average costs are minimized – the difference is excess capacity. The
MES would arise under perfect competition where demand curves are horizontal due to
no product differentiation.

6See supplementary appendix figure for a full diagram with short-run average cost
curves which demonstrates that incumbents move along the SRAC by varying labor in-
stantaneously, whereas in the long-run they move along the LRAC envelope because capital
can also be adjusted.
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constant markups with dynamic entry, then the demand and revenue curves

would shift inwards in parallel (no flattening) such that MR(A1) = MC(A1)
at the original firm scale ỹ(A0) implying no long-run scale and thus no long-

run productivity effect, despite the short-run profit effect.7

Fixed markups and instantaneous entry: Importantly imperfect

competition (markup greater than 1) is not sufficient to impart biases on our

measure of technological improvement. Beginning at p(ỹ(A0)) if the demand

curve shifts in immediately (due to zero-profit i.e.instantaneous entry) and

it maintains its slope (due to fixed markup i.e. constant price elasticity of

demand) we immediately attain tangency at p(y0(A1)), which perfectly cap-

tures the change in technology as the change p(ỹ(A0)) → p(y0(A1)) exactly

corresponds to the downward shift in the AC curve.8 The problem in our case

is that what we measure captures this distance, plus some extra represented

by p(y0(A1))→ C(y0(A1)), and corresponding to profit. This is the concept

of quasi-fixity (Morrison 1992): the cost of an extra unit of output C(y0(A1))
diverges from the marginal (revenue) product p(y0(A1)), unlike in the case

discussed earlier in this paragraph where they are instantaneously the same.

To overcome this it is better to find an alternative measure of cost (not factor

price) that accurately represents MRP i.e. we immediately want p(y0(A1))
rather than the C(y0(A1)) we observe. Morrison 1992 uses shadow prices. In

steady-state the AC/MC ratio is also the P/MC ratio, hence returns to scale

equal markups under zero-profits.

The remainder of the paper formalizes this intuition in a DGE model

taking special care to disentangle the two opposing effects from entry.

7Savagar and Dixon 2017 focus on this so-called excess capacity utilization effect in the
absence of endogenous markups, and relate it to microproduction theory (Morrison 2012)
and capital-utilization literature.

8Just as in the trivial perfect competition case at minimum AC
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2 Model

2.1 Household

The representative household chooses future consumption {C(t)}∞0 ∈ < and

labor supply {L(t)}∞0 ∈ [0, 1] to maximise lifetime utility U : <2 → <.

Instantaneous utility u : < × [0, 1] → < is jointly concave and differentiable

in both of its arguments. It is strictly increasing in in consumption uC >

0, strictly decreasing in labor uL and separable uCL = 0. The household

owns capital and takes equilibrium rental rate, wage rate and firm profits

K, r, w,Π ∈ <+ as given. The household solves

U : =
∞∫

0

u(C(t), 1− L(t))e−ρtdt (1)

s.t. K̇(t) = rK(t) + wL(t) + Π(t)− C(t) (2)

Optimal paths satisfy the intertemporal consumption Euler equation (3),

intratemporal labor-consumption trade-off (4) and resource constraint (2).9

Ċ(t) = − uC
uCC

(r(t)− ρ), (3)

w(t) = − uL(L(t))
uC(C(t)) (4)

To complete the solution for the boundary value problem, we impose a

transversality condition on the upper boundary and an initial condition on

the lower boundary.

lim
t→∞

K(t)λ(t)e−ρt = 0, (5)

K(0) = K0 (6)

λ(t) = uC is the co-state variable which represents the marginal utility of

consumption.

9See appendix for the Hamiltonian problem and 6 associated Pontryagin conditions.
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2.2 Firm

There is a nested CES aggregator composing aggregate output Y from a

continuum of industries  ∈ [0, 1] producing Q containing a finite number

of N firms producing yı. At the aggregate level and industry level there

is perfect competition (prices P and P are given). But at the firm level

there is oligopolistic (Cournot) competition. The firm can affect own-price

Pı through a direct effect (standard monopolistic competition) and through

its effect on the industry level output. The result is endogenous demand

elasticity that becomes more elastic with more firms, hence a markup that

decreases in entry.

The program faced by the final output producer is

max
Q, ∈[0,1]

{
PY −

∫ 1

0
Qpd

}
(7)

subject to the aggregate output production function

Y =
[∫ 1

0
Q

θI−1
θI

 d

] θI
θI−1

, θI ≥ 1 (8)

The first-order condition gives inverse demand for industry 

P =
(
Q

Y

)− 1
θI

P (9)

The program faced by the industry is

max
yı, ı∈(1...N)

{
pQ −

N∑

1
yıpı

}
(10)

subject to the industry output production function where ϑ ∈ [0,∞) is a

8



variety effect10

Q = N1+ϑ
[

1
N

N∑

ı=1
y
θF−1
θF

ı

] θF
θF−1

, θF > θI ≥ 1 (11)

This leads to industry-level inverse demand

Pı =
[
yı
Q

]− 1
θF

N
− 1
θF

+ϑ θF−1
θF P (12)

Combining the aggregate and industry level inverse demands gives the firm-

level inverse demand

Pı =
(
yı
Q

)− 1
θF
(
Q

Y

)− 1
θI

N
− 1
θF

+ϑ θF−1
θF P (13)

Firms are symmetric in their production technology, firm ı in industry 

produces output:

yı(t) := max{AF (kı(t), `ı(t))− φ, 0} (14)

where F : <2
+ ⊇ (k, `) → <+ is homogeneous of degree ν ∈ (0, 1) (hod-

ν). φ ∈ <+ is an overhead cost denominated in output.11 Inada’s conditions

hold so that marginal products of capital and labor are strictly positive which

rules out corner solutions Fk, F` > 0, and the Hessian of F satisfies concavity

properties Fk` = F`k > 0, Fkk, F`` < 0 and FkkF`` − F 2
k` > 0.12 A ∈ [1,∞) is

10In comparable setups Jaimovich and Floetotto 2008 remove the variety effect ϑ = 0
whereas Atkeson and Burstein 2008 leave it in ϑ = 1

θF−1 , θF > 1.
11As in Hornstein 1993; Devereux, Head, and Lapham 1996a; Rotemberg and Woodford

1996; Cook 2001; Jaimovich 2007 the fixed overhead parameter implies profits will be zero
in steady-state despite market power. The overhead cost means that marginal costs do
not measure returns to scale. We focus on the case where marginal costs are increasing,
but average costs are decreasing, so there are (locally) increasing returns to scale.

12Homogeneity of degree ν and cross-derivative symmetry implies

νF (k, l) = Fkk + Fll

(ν − 1)Fl = Flll + Flkk = Flll + Fklk

(ν − 1)Fk = Fkll + Fkkk = Flkl + Fkkk

9



a scale parameter reflecting the production technology.

2.2.1 Dual Cost Function

The firm’s cost minimization problem yields the cost function dual to the

intermediate producer’s production function. The traditional Lagrange cost

minimization problem yields

C(r, w, yı) = MC ν(yı + φ) (15)

where the Lagrane multiplier is the MC. However the MC is not indepen-

dent of output, unless there are constant marginal costs. For homothetic

functions (of which homogeneous functions are a subset) the cost function

can be rearranged to isolate output effects. A hod-ν production function

exhibits unit-cost function form13

C(r, w, yı) =
(
yı + φ

A

) 1
ν

C(r, w, 1) (16)

where the unit cost function C(r, w, 1) is independent of output. Given this,

the cost function representation (16) implies the marginal cost is positive and

increasing if ν ∈ (0, 1), but flat with ν = 1

MC = ∂ C(r, w, yı)
∂y

= 1
ν

C(r, w, yı)
y + φ

> 0 (17)

∂MC
∂y

= 1− ν
ν

MC
yı + φ

> 0 if ν ∈ (0, 1) (18)

13The outline is that the production function can be rearranged for constant-output
factor demands k(y, k/`, w, r), `(y, `/k, w, r) and substituted into rk +w` which gives the
multiplicative form but with k/` ratios in the second part. Then the Lagrangean cost min-
imization FOCs imply that this ratio is independent of y, as is the case for all homothetic
functions.
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From (16), we can see the average cost curve is U-shaped with increasing

marginal costs ν ∈ (0, 1) and an overhead cost φ

AC = C(r, w, yı)
yı

= C(r, w, 1)(yı + φ) 1
ν

yı
(19)

∂ AC
∂y

= AC
y

(
1

ν(1 + sφ) − 1
)
, where sφ ≡

φ

y
(20)

The individual firm solves

max
y,ı

πı = Pıyı − C(r, w, yı) (21)

subject to inverse demand (13) and cost function (16) and taking factor prices

as given. This implies that at optimal MRı = MCı. Marginal revenue

depends on both the price gained from increasing output but, due to price

setting ability, also the negative effect on price level captured by the price

elasticity of demand εı

εı ≡ −
∂yı
∂Pı

Pı
yı

(22)

MRı = ∂Pı
∂yı

yı + Pı = Pı

(
εı − 1
εı

)
(23)

Therefore, since MRı = MCı, a firm prices at a markup µı ∈ (1,∞) of price

over marginal cost

µı ≡
Pı

MCı

= εı
εı − 1 (24)

2.2.2 Endogenous Price Elasticity of Demand

At the firm-level an individual firm will maximize profits subject to inverse

demand (13) and its production function (14). Crucially the firm has a degree

of price setting ability over Pı. Under quantity competition (Cournot), it

chooses yı.
14 Differentiating (13) with respect to yı and multiplying by − yı

Pı

14See Appendix A.1 for Bertrand case.
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gives inverse price elasticity of demand

ε−1
ı = −∂Pı

∂yı

yı
Pı

= 1
θF

+
[ 1
θI
− 1
θF

]
∂Q

∂yı

yı
Q

(25)

There are two components to the inverse price elasticity of demand: a regular

direct effect that occurs with monopolistic competition and a second endoge-

nous effect that arises because firms are ‘large’ in their industry and thus

can affect industry output Q. Therefore by choosing their own production

yı, a firm has a direct effect 1
θF

and an indirect effect through ∂Q
∂yı

. It is

the indirect effect that causes endogenous markups, and in its absence (when

firms are atomistic ∂Q
∂yı

= 0) there is standard monopolistic competition from

the direct effect. Later, when we impose symmetric equilibrium, we shall see
yı
Q

∂Q
∂yı

= 1
N

which makes the price elasticity of demand and in turn markup

dependent on number of firms.

2.2.3 Factor Market Equilibrium

An optimizing firm’s conditional demand for hours worked and capital are

given by the following factor market equilibrium15

AFk(k, `)
µ(N) = r

Pı
(26)

AF`(k, `)
µ(N) = w

Pı
(27)

The marginal revenue product of capital (MRPK) AFk
µ(N) equates to the real

price of capital and the MRPL AF`
µ(N) equates to the real price of labor. As

markups increase the marginal revenue from an additional unit of produc-

tion is less. The presence of the endogenous markup (µ depending on N),

causes the MRPs to be nonmonotone functions of N . This can cause multiple

equilibria: different numbers of firm cause the factor market relationship to

15Where the Lagrange multiplier is marginal cost, a firm’s cost minimization problem
yields r = MCAFk and w = MCAF` leading to cost function (15) by C = rk + w`.
Dividing factor prices by Pı yields the factor market equilibrium in markup terms.
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hold.16 I provide uniqueness conditions later.

2.2.4 Returns to Scale (RTS)

Returns to scale are defined as the average cost to marginal cost ratio

RTS ≡ AC
MC





∈ (1,∞), increasing returns

= 1, constant returns

∈ (0, 1), decreasing returns

(28)

The production function exhibits two alternative representations of returns to

scale defined as AC
MC

. They arise from the cost function and profit definition

respectively, the former depends on market structure, whereas the latter

relates to technical parameters of the production function17

RTS = ν (1 + sφ) = µ (1− sπ) R 1 (29)

where sφ ≡ φ
y

and sπ ≡ π
y

are fixed cost and profit shares in output. The

‘cost-based measure’, RTS = ν(1 + sφ), highlights that entry affects RTS

through output only, by affecting the fixed cost share, as the other variables

are fixed parameters, whereas the ‘profit-based measure’, RTS = µ(1 − sπ),
shows markups, profit and output determine RTS.

It is useful to contrast my work in relation to RTS with related papers.

In Bilbiie, Ghironi, and Melitz 2012 there are no overhead costs φ = 0 and

marginal costs are constant ν = 1 implying RTS = 1 from the cost-based

measure. To demonstrate RTS from the profit-based measure consider their

equilibrium profit condition is π =
(
1− 1

µ

)
y, analogous to (50), except with

constant returns to scale (RTS = 1) the implied profit share is in a one-one

mapping with markups and, in fact, equal to the Lerner index measure of

market power sπ =
(
1− 1

µ

)
= LI = 1

ε
∈ (0, 1). Hence the profit-based RTS

measure in (29) is also 1. However in BGM the profit share is always posi-

16Linnemann 2001 investigate this in a model with instantaneous entry, endogenous
markups and no capital.

17See Appendix for derivation.
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tive if µ > 1, this is due to the absence of a fixed overhead cost which in our

model wipes out any excess profit, and the absence of sunk costs in the long

run as there is no congestion. In their work the one-off, wage-denominated

entry cost is fixed so fulfills the role of eliminating profits. In the long-run

it equates to profits, so net of the entry cost profits are zero. Therefore the

presence of constant returns, will remove any of the endogenous productiv-

ity effects I focus on in this paper, even though their dynamic entry setup

creates the same short-run intensive margin (variation in output per firm)

adjustment and long-run intensive-extensive margin (variation in output per

firm and aggregate output) adjustment. In Jaimovich and Floetotto 2008

φ > 0, ν = 1, implying flat marginal cost and globally downward sloping

average cost, so there are globally increasing returns and equilibrium only

exists with imperfect competition µ > 1 – there is no Walrasian benchmark

at minimum efficient scale. In their work the equilibrium profit condition is

π =
(
1− 1

µ

)
y− 1

µ
φ such that sπ =

(
1− 1

µ

)
− 1

µ
sφ and entry is instantaneous

such that the profit-share is always zero and returns to scale always equal

the endogenous markup, which always reflect the fixed cost share in output.

2.2.5 Symmetric Equilibrium Profits, Prices, Aggregates

We already derived the symmetric equilibrium elasticity and markup (45). In

deriving the markup, symmetry provided the crucial step to link price setting

ability to number of competitors. That is, it determined that own output

effect on industry output is declining in number of competitors ∂Q
∂yı

= Q
yı

1
N

.18

Under symmetry, intermediate variables are equivalent

∀(, ı) ∈ [0, 1]× [1, N(t)] : yı = y, kı = k, `ı = `,N = N

Perfect factor markets imply aggregate capital and hours are divided evenly

among firms, such that the number of firms behaves as a quasi-input deter-

18For Betrand own price on industry price is declining in number of competitors
∂P
∂Pı

=
P
Pı

1
N .
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mining output through how resources are divided.

k = K

N
, (30)

` = L

N
(31)

F (k, `) = F
(
K

N
,
L

N

)
= N−νF (K,L) (32)

Fk(k, `) = FK

(
K

N
,
L

N

)
= N1−νFN(K,L) (33)

F`(k, `) = F`

(
K

N
,
L

N

)
= N1−νFL(K,L) (34)

y = AN−νF (K,L)− φ (35)

Integrating a symmetric quantity over the [0, 1] interval implies industries

are representative of aggregate Y = Q and P = P ∀. The aggregation of

firm level to industry level will depend on any variety effect (ϑ)

Q = N1+ϑ
[

1
N

N∑

ı=1
y
θF−1
θF

ı

] θF
θF−1

=⇒ Q = N1+ϑy (= Y ) (36)

P = N
1

θF−1−ϑ
(

N∑

1
P 1−θF
ı

) 1
1−θF

=⇒ P = N−ϑPı (= P ) (37)

Given a variety effect ϑ > 0, in symmetric equilibrium the relative price

depends on the number of firms (which each produce a variety)

%(N) = Pı
P

= Nϑ (38)

In Atkeson and Burstein 2008, Bilbiie, Ghironi, and Melitz 2012, Table 1,

p.312 and Etro and Colciago 2010, Eq. C.1, p1230 the variety effect is ϑ =
1

θF−1 , but is ignored for data-consistent variable interpretations.19 Here we

19In both Etro and Colciago 2010; Bilbiie, Ghironi, and Melitz 2012, the implication
of variety effects is to carefully interpret different methods to deflate variables: either
data-consistent (divide by Pı) or welfare-consistent (divide by P ). Empirically relevant
variables net out the effect of changes in the number of firms (varieties/products), whereas
welfare-consistent variables always assume variations in the number of varieties are left in
the deflator.
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follow Jaimovich and Floetotto 2008, and assume no variety effect ϑ = 0,

thus normalizing final good price to 1 we have

P = P = Pı = 1 (39)

Y = Ny (40)

= N1−νAF (K,L)−Nφ (41)

Under symmetry inverse price elasticity of demand (25) under Cournot be-

comes20

ε−1 = 1
θF

+
[ 1
θI
− 1
θF

] 1
N

(44)

which is also the Lerner index (LI ∈ (0, 1)) of market power LI = P−MC
P =

1− 1
P/MC = ε−1. Therefore the symmetric Cournot markup, with N ≥ 1, is

µ(N) = 1
1− ε−1 = 1

1− 1
θF
− 1

N

(
1
θI
− 1

θF

) , θF > θI ≥ 1 (45)

Markups decrease as number of competitors increase because they dilute

incumbents’ market share, making price elasticity of demand more elastic.

The markup is bounded above by the single firm industry case (monopolistic

competition) limN→1 = θI
θI−1 and bounded below by limN→∞ = θF

θF−1 , which

is the perfect competition case if goods are homogeneous at the firm level

limN→∞
θF→∞

µ(N) = 1. The elasticity of the markup with respect to number of

20 Taking the derivative of (11) gives

∂Qı
∂yı

= Q(∑N
ı=1 y

θF−1
θF

ı

)y−
1
θF

ı =⇒ ∂Qı
∂yı

yı
Qı

= y
θF−1
θF

ı(∑N
ı=1 y

θF−1
θF

ı

) (42)

and under symmetry

(∑N
ı=1 y

θF−1
θF

ı

)
= Ny

θF−1
θF

ı so

∂Q
∂yı

= Q
yı

1
N

=⇒ yı
Q

∂Q
∂yı

= 1
N

(43)
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firms εµ ≡ ∂µ
∂N

N
µ

measures the responsiveness of markups to entry

εC
µN = 1−

θF−1
θF

θF−1
θF
− 1

N

(
1
θI
− 1

θF

) = 1−
(
θF − 1
θF

)
µ < 0 (46)

The case that gives the most responsive markups is when N → 1, θI = 1: a

small number of firms competing in a unique industry. The corresponding

markup is µ = θFN
(θF−1)(N−1) and its elasticity is εµN |θI=1 = − 1

N−1 .21 Appendix

A.4 illustrates these markup properties graphically and for the Bertrand case.

With normalized pricing and symmetry, factor market equilibrium be-

comes

r = AFk(k, `)
µ(N) = AN1−νFK(K,L)

µ(N) (47)

w = AF`(k, `)
µ(N) = AN1−νFL(K,L)

µ(N) (48)

Through these factor prices and Euler’s homogeneous function theorem, vari-

able costs can be expressed as a function of output per firm and markups

rk + w` = ν

µ(N)(y + φ) (49)

In turn operating profits and output per firm are in a one-one mapping, where

operating profits under symmetry are π = y − rk − w`.22

π(y, µ(N)) =
(

1− ν

µ(N)

)
(y + φ)− φ =

(
1− ν

µ(N)

)
y − ν

µ(N)φ (50)

y(π, µ(N)) = π + φ

1− ν
µ(N)

− φ =
π + ν

µ(N)φ

1− ν
µ(N)

(51)

21Between firm substitutability θF > θI = 1 can be specified arbitrarily, it does not
affect the elasticity.

22Operating profit, often called dividends, is the profit of an incumbent firm in a given
period which excludes the one-time sunk entry cost. The sunk entry cost is included in
aggregate profits.
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2.2.6 Measured TFP

In symmetric equilibrium aggregate output can be shown to be the product

of an efficiency term, which we call measured TFP, and aggregate inputs of

capital and labor. Beginning from aggregate output in symmetric equilibrium

(41) and accounting for the gross overhead cost Nφ in terms of inputs, we

can derive23

Y =
(

A

π + φ

) 1
ν
(

1− ν

µ

) 1
ν
−1 (

π + ν

µ
φ

)
F (K,L) 1

ν (52)

Hence measured TFP relates aggregate output to inputs24

TFP ≡ Y

F (K,L) 1
ν

= y

F (k, `) 1
ν

(53)

This term is influenced by endogenously varying markups and profits

TFP(t) ≡
(

A

π(t) + φ

) 1
ν
(

1− ν

µ(t)

) 1
ν
−1 (

ν

µ(t)φ+ π(t)
)

(54)

The two endogenous components of measured TFP trace back to the two key

mechanisms in our model. Profits are endogenous due to dynamic entry and

markups are endogenous due to competition effects. A useful representation

of our measured TFP definition is

TFP(t) = A
1
ν

y(t)
(y(t) + φ) 1

ν

(55)

This shows given fixed parameters φ, ν, variations in measured TFP can

arise through two variables: exogenous technology A and output per firm y.

Output per firm y has an effect on measured TFP providing there are not

23See Appendix D for full derivation. First substitute out N = Y
y from (40), then collect

terms in Y , lastly replace y(π, µ(N)) using (51).
24See Barseghyan and DiCecio 2011 for a similar derivation of measured TFP with non-

constant marginal costs and an overhead cost (albeit wage denominated). The normaliza-
tion of the denominator to be homogeneous of degree 1 with scale economies is common
(see Da-Rocha, Tavares, and Restuccia 2017, p.22 who also have an output denominated
fixed cost).
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constant returns to scale (RTS = 1):

∂ TFP
∂y

= TFP
y


1− 1

ν
(
1 + φ

y

)


 = TFP

y

(
1− 1

RTS

)
(56)

Through (51) output per firm depends on profits and markups which in turn

depend on A. Therefore through (55), exogenous shocks to A will have a

direct effect on measured TFP but also an effect due to y which by (56)

affects measured TFP due to RTS.

2.2.7 Minimum Efficient Scale (MES)

From the U-shaped AC curve slope (20), average costs are minimized when

the share of fixed costs in output is sφ = 1−ν
ν

. The corresponding output is

at the firms’ minimum efficient scale (MES) yMES = νφ
1−ν . Returns to scale

are also constant RTS = ν(1 + sφ) = 1 at this level of output as average and

marginal costs intersect at the minimum. We can also observe from (56) that

the minimum efficient scale maximizes measured TFP.

The MES is an indicator of market structure. It is the socially optimal

firm size that gives the lowest production costs per unit of output.25 In

symmetric equilibrium the overall size of the market is equivalent to aggregate

output or industry output Y = Q = Ny, which in steady state equates to

consumption Ỹ = C̃. If the minimum efficient scale is small relative to

the overall size of the market (demand for the good), there will be a large

number of firms N = Y
yMES . The firms in this market will behave in a perfectly

competitive manner due to the large number of competitors. Hence φ will

be the main determinant of market structure, and in turn the endogenous

markup.

2.2.8 Firm Entry

An endogenous sunk entry cost and an entry arbitrage condition determine

the level of entry and consequently the number of firms operating at time

25In the steady state analysis (Section 3.2.1) we show that the minimum efficient scale
arises under perfect competition (i.e. no markups µ = 1).
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t. The sunk entry cost exhibits a congestion effect, and it is this dynamic

sunk cost that prevents instantaneous adjustment of firms to steady state.26

A prospective entrant’s post-entry value is equal to the present discounted

value of future operating profits (dividends), which is also the value of an

incumbent firm

V (t) =
∫ ∞

s=t
π(t)e−r(s−t)dt (57)

A free entry assumption implies that firm value equates to the sunk entry

cost V (t) = q(t). We assume that the sunk entry cost q ∈ < increases in

the rate of entry Ṅ , and its sensitivity to entry depends on the exogenous

congestion parameter γ27

q(t) = γṄ, γ ∈ (0,∞) (58)

The congestion effect assumption is a particular form of endogenous sunk cost

that captures that resources needed to setup a firm are in inelastic supply,

and therefore a greater rate of entry increases the entry cost. For example if

firms need to register documents with a Government office before operating,

then as more firms enter, the queue increases and the cost increases.28 Lewis

2009 provides empirical evidence on the importance of entry congestion in

replicating empirical dynamics to aggregate shocks.

By taking the derivative, the value function can be represented as the

well-known arbitrage condition rV = π + V̇ that equates an assets opportu-

nity cost to its dividends and change in underlying value.29 Therefore when

26The entry adjustment costs theory is analogous to capital adjustment cost models
which recognize that investment in capital is more costly for larger investment.

27Its bounds are the two well-known cases: less sensitivity to congestion limγ→0 q(t)
implies instantaneous free entry, and more congestion sensitivity limγ→∞ q(t) implies fixed
number of firms.

28See Aloi, Dixon, and Savagar 2018 for empirical evidence, from OECD Doing Business
data, that links number of procedures to start-up with length of time to create a firm.

29See Stokey 2008 for this derivation, where the arbitrage equation is referred to as a
stationary Hamilton-Jacobi-Bellman equation.
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combined with the free entry condition and sunk cost assumption

r(t)q(t) = q̇(t) + π(t) (59)

The return to paying a sunk costs q to enter and receiving profits equals the

return from investing the cost of entry at the market rate r(t). Since the

endogenous sunk cost is itself dynamic, the arbitrage condition is a second-

order ODE in number of firms. If we define net entry, this second-order ODE

is separable into two first-order ODEs.

Ṅ(t) ≡ E(t) (60)

Ė(t) = −π(t)
γ

+ r(t)E(t), γ ∈ (0,∞) (61)

The second-order differential equation requires two boundary conditions for

a unique solution

N(0) = N0 (62)

lim
t→∞

e−ρtuCN(t)q(t) = 0 (63)

The rate of entry increases Ė > 0 if the outside option r(t)E(t) exceeds

the profit from entering π(t)
γ

. This is because households invest in the more

attractive outside option, as opposed to setting up firms, hence the entry cost

falls because there is less congestion. The result is an increase in the amount

of entry.

The aggregate cost of entry Z(t) ∈ < is

Z(t) = γ
∫ E(t)

0
i di = γ

E(t)2

2 (64)

In general equilibrium sunk entry costs are accounted for in the aggregate

profits of the household’s income constraint. Aggregate profits are each firm’s

operating profits less the aggregate sunk cost of entry.

Π(t) = N(t)π(t)− Z(t) (65)
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This leads to the aggregate resource constraint30

K̇ = Y − Z(E)− C (70)

3 Model Analysis

Table 1 summarizes the model. The core of the model is a four dimensional

dynamical system that determines consumption, entry, capital and number

of firms (C,E,K,N). Labor supply L does not enter the system as an inde-

pendent variable because it can be defined in terms of C,K,N through labor

market equilibrium.

3.1 Endogenous Labor

Labor market equilibrium occurs where labor demand (27) equals labor sup-

ply (4), and it allows us to understand endogenous labor behaviour.31

Proposition 1. In general equilibrium the response of aggregate labor is

negative to consumption and positive to capital and entry

∂L

∂K
= Φ−1FLK

FL
> 0 (71)

∂L

∂C
= Φ−1uCC

uC
< 0 (72)

30This follows from the income identity. A representative household’s income is earned
from wages w on labor L, rental r of capital K and total profits Π, which equal aggregate
dividends (operating profits) N(t)π(t) less entry costs Z(E(t)).

Π(t) = N(t)π(t)− Z(E(t)) = Y (t)− w(t)L(t)− r(t)K(t)− Z(E(t)) (66)

This income can be spent on consumption and investment in capital

IK(t) + C(t) = w(t)L(t) + r(t)K(t) + Π(t) (67)

K̇(t) + C(t) = Y (t)− Z(E(t)) (68)

K̇ = Y (t)− γE(t)2

2 − C(t) (69)

31Related literature (Devereux, Head, and Lapham 1996b; Jaimovich 2007) terms (27)
the aggregate labor demand function.
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Static

(45) Markup (Cournot) µ(N) =
[
1− 1

θF
− 1

N

(
1
θI
− 1

θF

)]−1

(4) Labor Supply w = − uL(L)
uC(C)

(48) Labor demand w = AF`(k,`)
µ(N)

(47) Capital Rental r = AFk(k,`)
µ(N)

(14) Output per Firm y = AF (k, `)− φ
(50) Operating Profit per Firm π = (y + φ)

(
1− ν

µ(N)

)
− φ

(40) Aggregate Output Y = Ny
(53) Productivity TFP = y

F (k,`)
1
ν

Dynamic

(3) Consumption Euler Ċ = − uC(C(t))
uCC(C(t))(r(t)− ρ)

(61) Entry Arbitrage Ė = r(t)E(t)− π(t)
γ

(69) Capital Accumulation K̇ = Y (t)− γ
2E(t)2 − C(t)

(60) Entry Definition Ṅ = E(t)
Boundary Values
(6) Capital Initial Condition K(0) = K0
(62) Firms Initial Condition N(0) = N0
(5) Capital Transversality limt→∞ e−ρtuC(C(t))K(t) = 0
(63) Firms Transversality limt→∞ e−ρtuC(C(t))q(t)N(t) = 0

Table 1: Model Summary

∂L

∂N
= Φ−1 1

N
(1− ν − εµN) > 0 (73)

where Φ ≡
[
uLL
uL
− FLL

FL

]
=
[
εuLL−εFLL

L

]
> 0.

Proof. See Appendix

Capital increases labor because a rise in capital increases the marginal

product of labor (FLK > 0) which consequently raises wage and labor supply.

Consumption decreases labor supply because additional consumption reduces

the marginal utility of consumption (uCC < 0) so the value of consumption

declines, thus reducing labor to support consumption (leisure becomes more

attractive). The effect of entry on labor supply is more complex.

Corollary 1. Increasing marginal costs 1−ν > 0 and countercyclical markups

εµN < 0 augment the labor response to entry. With constant marginal costs
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ν = 1 and fixed markups εµN = 0, entry does not affect labor dL
dN

= 0.

The first effect is from increasing marginal costs (1 − ν > 0), so that

as entry divides inputs (labor and capital) across more units, the marginal

product of labor increases MPL = AN1−νFL(K,L), hence wage w = MPL
µ

and consequently labor increase. The second positive effect occurs because

entry decreases the markup between wage and a worker’s marginal product.32

The total effect of technology on labor incorporates the endogenous ad-

justments of these variables.

dL

dA
= ∂L

∂A
+ ∂L

dC

dC

dA
+ ∂L

dK

dK

dA
+ ∂L

dN

dN

dA
R 0, where

∂L

∂A
= Φ−1 1

A
> 0

(74)

Assuming technology increases consumption, capital and firms, then there

is a negative income effect from consumption and a positive substitution

effect from the direct, capital and entry effects. Therefore the overall effect is

ambiguous. Labor increases if substitution effects dominate income effects.

In the short run, when number of firms and capital are fixed, only the positive

partial effect and negative consumption effect influence the impact labor

response to technology.33 On impact of a shock to A the response of output

y will depend on a direct effect from A and an indirect effect through L

but importantly the state variable capital and number of firms are fixed

K = K̄ and N = N̄ , thus y(0) = A(0)N̄−νF (K̄, L(A(0))) − φ. Labor

does not necessarily increase, and nor does it need to in order to expand

output. Output expands on impact providing the direct effect outweighs the

possibility of a negative labor effect. If the substitution effect, of a higher

MPL and in turn wage, dominates the income effect of a rise in consumption

such that labor increases on impact, then this is sufficient for an output

expansion.34

32The first effect (returns to scale) is present in Rotemberg 2008; Barseghyan and DiCe-
cio 2011 and the second effect (endogenous markups) is studied in Cook 2001; Jaimovich
2007. The effects can be interpreted through wage behaviour, as in Jaimovich 2007, see
appendix.

33The instantaneous response of labor to aggregate technology shocks is an unsettled
debate (see Basu, Fernald, and Kimball 2006).

34With logarithmic consumption utility, the income and substitution effects equate in
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3.2 Dynamics and Steady-State

With labor defined implicitly L(C,K,N) by the intratemporal condition, and

substituting in factor prices, profits and output, the dynamic equations from

Table 1 are a system of four ODEs in consumption, entry, capital and number

of firms (C,E,K,N).

3.2.1 Steady-State Solutions

The steady-state X̃ = (C̃, Ẽ, K̃, Ñ) satisfies the following conditions jointly

leading to steady-state levels in terms of fixed parameters {A, ν, φ, ρ, θF , θI}35

Ċ = 0 ⇐⇒ r̃(C̃, K̃, Ñ) = ρ (75)

Ė = 0 ⇐⇒ π̃(C̃, K̃, Ñ) = 0 (76)

K̇ = 0 ⇐⇒ Ỹ (C̃, K̃, Ñ) = C̃ (77)

Ṅ = 0 ⇐⇒ Ẽ = 0 (78)

Hence in steady state the interest rate equals the discount factor; profits are

zero; and aggregate output equals consumption. The conditions are nonlin-

ear, and steady-state may not be well-defined. Later, I provide conditions

for existence. The steady-state conditions imply output per firm, and thus

measured TFP are endogenously dependent on the number of firms in steady-

state.

Proposition 2 (Endogenous Steady State Output and Productivity). Steady

state output per firm ỹ and measured productivity ˜TFP are endogenously

increasing in the number of firms.

ỹ(µ(Ñ)) = νφ

µ(Ñ)− ν (79)

˜TFP (µ(Ñ)) = ν


 A

µ(Ñ)

(
µ(Ñ)− ν

φ

)1−ν


1
ν

(80)

the long run so that long-run labor supply is irresponsive to technology.
35The congestion parameter γ does not affect steady state because it pre-multiplies a

differential.
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With profit represented as in equation (50) since φ is fixed, production

F (k, l) must increase to cover this overhead and break-even at zero-profit

as entry decreases the markup. The TFP result follows because there are

increasing returns in steady-state with imperfect competition.36 In the spe-

cial case of perfect competition, when there are many firms µN→∞ = 1, the

steady-state levels are equivalent to a firm’s minimum efficient scale (MES),

implying TFP is maximized, and firm’s are operating at the minimum of

their average cost curve. This result would not occur if ν = 1. A steady-

state outcome would not be well-defined. The steady-state output result also

implies (by rearranging) that the long-run markup equates to returns to scale

as implied in (29) under zero-profits.

3.2.2 Equilibrium Dynamics and Existence

The dynamical system in Table 1 is in nonlinear form Ẋ = g(X). We linearize

it to Ẋ ≈ J(X)(X(t)−X̃),37 and analyze the Jacobian matrix J(C̃, Ẽ, K̃, Ñ)
where each element is a respective derivative evaluated at steady state.38




Ċ

Ė

K̇

Ṅ



≈




− uC
uCC

rC 0 − uC
uCC

rK − uC
uCC

rN

−πC
γ

ρ −πK
γ

−πN
γ

YC − 1 0 YK YN

0 1 0 0







C(t)− C̃
E(t)

K(t)− K̃
N(t)− Ñ




(81)

The characteristic polynomial corresponding to this four-dimensional sys-

36The rate at which TFP increases in N is

∂ ˜TFP

∂N
= −Aν

µ2
(µ− 1)

(µ− ν)νφ1−ν ·
∂µ(Ñ)
∂N

> 0

37By definition variables are constant at steady state so that evaluating at steady state
the differential form is dẋ = [ẋ(t)− ˜̇x] = ẋ(t).

38The derivatives treat {C,E,K,N} as independent. Labor is a function of these vari-
ables through the intratemporal condition L(C,K,N). The linearized solution has a re-
cursive structure, denoting the solution paths C∗(t), E∗(t),K∗(t), N∗(t), they will all be a
function of {t, [K0−K̃], [N0−Ñ ]} in open-loop form or {[K(t)−K̃], [N(t)−Ñ ]} in closed-
loop form. At time zero C(0) and E(0) will respond, whereas K(0) and N(0) remain fixed
and subsequently move after C(0), E(0) adjust.
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tem is

c(λ) = det(J− λI) = λ4 −M1λ
3 +M2λ

2 −M3λ+M4 (82)

where coefficients Mk denote the sum of principal minors of dimension k,

therefore M1 = Tr(J) and M4 = det(J).39 The trace is unambiguously

positive, whereas endogenous markups (εµN < 0) make the determinant am-

biguous (with exogenous markups the determinant is strictly positive). In

the Appendix I provide necessary conditions for a positive determinant and

this also ensures steady-state existence.40 Since Tr(J) > 0 and det(J) > 0,

there are are either two or four positive eigenvalues. By Descartes’ rule of

signs restrictions on M2 and M3 can rule out the global instability case (four

positive eigenvalues), so that we focus on the saddle-point stable case of two

positive and two negative eigenvalues.

Therefore the system is a saddle with a two dimensional stable manifold

defined on K,N . Hence capital and number of firms, so capital per firm, are

fixed on impact whereas consumption and entry C,E jump instantaneously

on to the stable arm. See Appendix for full derivation of dynamic solutions.

The open-loop solution is in terms of initial values K0, N0, time t and the

exogenous parameters of the model is

X(t) = X̃ + aV1e
λ1t + bV2e

λ2t

where X = [C,E,K,N ]ᵀ and Vj = [v1,j, v2,j, v3,j, v4,j]ᵀ j ∈ {1, 2} are the

normalized eigenvectors associated with stable roots λ1 < λ2 < 0. The

constants are a = K̂−v3,2N̂
v3,1−v3,2

and b = v3,1N̂−K̂
v3,1−v3,2

where K̂ = K0 − K̃ and N̂ =
N0 − Ñ , so in long-hand, noting Ẽ = 0, we have

C(t) = C̃ + (K̂ − v3,2N̂)v1,1e
λ1t + (v3,1N̂ − K̂)v1,2e

λ2t

v3,1 − v3,2
(83)

39 See Murata and Shell 2014, pp. 14-16.
40The Jacobian determinant of the dynamical system is equivalent to the determinant

of the Jacobian of the steady-state conditions (75) - (78). Hence the conditions for it to
be positive ensure steady-state is well-defined.
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E(t) = (K̂ − v3,2N̂)λ1e
λ1t + (v3,1N̂ − K̂)λ2e

λ2t

v3,1 − v3,2
(84)

K(t) = K̃ + (K̂ − v3,2N̂)v3,1e
λ1t + (v3,1N̂ − K̂)v3,2e

λ2t

v3,1 − v3,2
(85)

N(t) = Ñ + (K̂ − v3,2N̂)eλ1t + (v3,1N̂ − K̂)eλ2t

v3,1 − v3,2
(86)

Our transition experiments specify the initial capital and number of firms

equal to steady state under the old technology. We then study transi-

tion towards the new technology, thus a pefect foresight equilibrium. For-

mally, the model begins at steady-state under the old technology (K0, N0) =
(K̃(Aold), Ñ(Aold)) and transitions to (K̃, Ñ) = (K̃(Anew), Ñ(Anew)) under

the new technology which comes online in period t = 0.

4 Measured Productivity Dynamics

From our definition of measured TFP (55) take the logarithmic derivative

ˆTFP(t) ≈ 1
ν
Â(t) +

( ˜RTS− 1
˜RTS

)
ŷ(t) (87)

Hat notation represents deviation from steady-state. This shows that vari-

ations in measured TFP are composed of variations in pure technology, but

also variations in output per firm (firm intensive margin). Since ˜RTS > 1
with imperfect competition, measured TFP overestimates pure technology

because it captures variations in returns to scale. There is no bias if there

are (locally) constant returns to scale ˜RTS = 1 which would occur with per-

fect competition µ̃ = 1 at minimum efficient scale. Additionally, if firm size

is not varying ŷ = 0, as in status-quo models with fixed markups and in-

stantaneous entry, then there is no bias: measured productivity accurately

reflects underlying technology, even though there is imperfect competition in

the form of monopolistic competition.

Our focus is to understand how the endogenous variations in firms’ in-

tensive margin and therefore measured productivity can be decomposed into
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profit and markup components. From (51) output per firm could be ex-

pressed as a function of profits and markups, which in turn implies measured

TFP could be written as a function of technology A, markups µ and profits

π in (54). To understand the effect of a change in technology on measured

TFP, linearize the expression for measured TFP (54) around Ã, µ(Ñ), π̃.

ˆTFP(t) ≈ Â
1
ν
− µ̂(t)

(
µ̃− 1
µ̃− ν

)
+ π̂(t)

(
µ̃− 1
νφ

)
(88)

A is always positively related to TFP but, in a neighborhood of steady state,

µ is negatively related and π positively related, providing there is not per-

fect competition µ̃ = 1 and therefore constant returns as discussed above.41

Profits increase measured TFP whereas markups decrease measured TFP,

but over the cycle profits are procyclical and markups are countercyclical

hence both cause upward bias. Therefore a deviation in technology Â is

not accurately measured by a deviation in ˆTFP which is what we typically

measure from the data using a Solow Residual type approach, either in the

crudest Solow Residual sense from acquiring the residuals of a logged regres-

sion of (53) (in our model the relevant SR would account for ν), or using the

‘modified Solow Residual’ of Basu and Fernald 1997. The result shows that

the measured TFP series we acquire is composed of variations in technology,

but also upward biased by variations in markups and profits. Consequently

a pure technology series would purge a measured TFP series of these two ex-

tra endogenous components. Our main interest is the dynamic implications

of firm entry, that is how important are these two biases at various stages

following a technology shock.

Proposition 3. Following a technology shock, all short-run endogenous vari-

ation in measured TFP arises from economic profits. The markup effect is

zero.

Consider that the economy begins at steady state and there is a positive

shock to technology Ã < A(0) at time 0, hence [A(0) − Ã] 1
Ãν

immediately

41Away from steady state, the effects are ambiguous depending on the size of increasing
marginal costs, as shown in the supplementary appendix.
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increases TFP(0). Under instantaneous entry the markup would immediately

decrease µ(0) < µ̃ in response to the immediate entry of new firms to bring

about zero profits. The double-negative means this will have an additional

positive effect −[µ(0)−µ̃]
(

µ̃−1
µ̃(µ̃−ν)

)
> 0 on TFP(0). The conclusion being that

with static entry (instantaneous zero profits) measured TFP is an upward

biased estimator or technology.42 Under dynamic entry at t = 0 the markup

does not move because the number of firms is a state variable which takes an

instance to adjust [µ(0)− µ̃] = 0.43 Therefore µ(N0)− µ(Ñ) = 0 so there is

no instantaneous markup effect on productivity. However, profits will have

an effect. At t = 0 profits increase π(0) > π̃ so in addition to the technology

effect we observe [π(0) − π̃]
(
µ̃−1
νφ

)
> 0. Hence our theory, which shows that

markups do not move instantaneously, allows us to disentangle the profit

effect from the markup effect due to timing.

Proposition 4. Following a technology shock, all long-run endogenous vari-

ation in measured TFP arises from endogenous markups. The profit effect is

zero.

In the instantaneous entry case, the instantaneous technology and markup

effect persist into the long run. Hence there is no distinction. In the dynamic

entry case, as t→∞ markups decrease to their long-run level as number of

firms increases so there is a permanent effect equivalent to the instantaneous

effect in the static entry case −[µ(∞) − µ̃]
(

µ̃−1
µ̃(µ̃−ν)

)
> 0 on TFP(∞). The

profit effect, observed on impact in the static entry case, disappears as profits

return to their initial position so π(∞)− π̃ = 0.

Transition: At t = 0 the only effect is from profits. At t → ∞ the

only effect is from markups. In transition there are two positive effects on

TFP, but the importance of profits decreases and of markups increases. Each

period µ(t) moves further away from its initial position µ̃ so its importance

grows. Whereas π(t) moves closer to its original position π̃ = 0, so its im-

42With ν = 1 and the deviation expressed as a growth rate, the coefficient is

−
(
µ̃−1
µ̃−ν

)
|ν=1 = −1, which is the result of Jaimovich and Floetotto 2008, eq. 24. Therefore

the coefficient here is smaller given µ̃.
43As it is a state variable it remains at the given initial condition N0 which we begin at

steady state N0 = Ñ

30



portance shrinks. Therefore both profits and markups are intertemporally

having a measured productivity increasing effect TFP(t), on top of the ex-

ogenous shock, but the positive effects change in relative importance over

time. It is firm entry that drives this change. Firm entry increases the im-

portance of the positive markup effect, and decreases the importance of the

positive profit effect.44 The markup effect continuously grows in importance,

t

ˆTFP(t)

˜̂TFP = 0

Â(0) 1
ν

Fix. Markup Zero Profit

Â(0) 1
ν

− µ̂(0)
(

µ̃−1
µ̃−ν

)
Endog. Markup Zero Profit

Endog. Markup & Profit

Â(0) 1
ν

− µ̂(t)
(

µ̃−1
µ̃−ν

)
+ π̂(t)

(
µ̃−1
νφ

)
Â(0) 1

ν
+ π̂(0)

(
µ̃−1
νφ

)

0

Fix. Markup & Profit

Â(0) 1
ν

+ π̂(t)
(

µ̃−1
νφ

)

Endog. Markup & No Profit

Â(0) 1
ν

− µ̂(t)
(

µ̃−1
µ̃−ν

)

Figure 2: Endogenous Productivity Decomposition, Positive Shock Ã→ A(0)

whereas the profit effect continuously shrinks. Figure 2 demonstrates the

composition of these effects: the top blue line shows the measured produc-

tivity that we observe, whereas the dashed horizontal pink line represents

the pure technology effects. The lines in between represent the composition.

Specifically the increasing gray dotted line shows the growing importance of

markups in influencing measured TFP, whereas the decreasing dotted red

line shows the diminishing importance of profit bias. Separately, the middle

green horizontal line shows the case that would arise if entry were instan-

taneous but markups endogenous hence there is no profit effect and all bias

arises from markups. This is discussed from a quantitative perspective with

Cobb-Douglas production and flat marginal costs in Jaimovich and Floetotto

2008.

44Therefore we can identify instantaneous endogenous productivity effects as entirely
due to profits and long-run endogenous productivity effects as entirely due to markups.
During transition it is a combination of both.
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Figure 2 also emphasizes that at some time t′ the upward bias from profit

and markup effect equate. Before t′ the profit effect is the dominant compo-

nent of measured TFP and after t′ the markup effect dominates. Therefore

at some time t′ the two effects will intersect

−µ̂(t′)
(
µ̃− 1
µ̃− ν

)
= π̂(t′)

(
µ̃− 1
νφ

)
(89)

π̂(t′)
µ̂(t′) = − νφ

µ̃− ν = −ỹ (90)

This is the ratio of coefficients in (88). It shows that the relative importance

of each effect depends on the fixed cost and the steady-state markup.45 In

the parametric numerical exercise we estimate t′ = 5 quarters, implying the

length of time for which the profit bias dominates the markup bias.

4.1 Parametric Example

The baseline RBC model assumes isoelastic separable subutilties and a Cobb-

Douglas production function.

U(C,L) = C1−σ − 1
1− σ − ξ L

1+η

1 + η
(91)

y = Akα`β − φ (92)

Isoelastic utility implies there is constant elasticity of marginal utility with

respect to consumption and labor UCC
C
UC

= −σ and ULL
L
UL

= η.46 Frisch

elasticity of labor supply is given by 1
η
, hence we calibrate inverse elasticity

η ∈ (0,∞).47 Cobb-Douglas production conforms to our assumptions on the

production function derivatives. The production function is homogeneous

of degree ν ≡ α + β, where α and β are capital and labor shares. Table 2

summarizes the calibration used for simulation. The time interval is a quarter

45The steady-state markup will also change indirectly with the fixed cost.
46The limiting case of σ → 1 implies log utility ln(C), implying fixed aggregate labor in

the long run following a technology shock as income and substitution effects cancel out.
47η = 0 implies indivisible labor.
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Table 2: Parameter Values

Capital Share α 0.283
Labor Share β 0.567
Fixed Cost φ 2.5
Entry Congestion γ 2.0
Technology A 1.0
Risk Aversion† σ 1.0
Discount Rate ρ 0.02
Labor Weight ξ 0.01
Labor Elast. (Frisch) η 0.5
Industry (inter) Subs. θI 1.0
Firm (intra) Subs. θF 8.0
† Unit risk aversion σ = 1 implies lnC

and correspondingly ρ = 0.02 implies an annualized discount rate of 8%.48

We calibrate the fixed cost φ to be a percentage of sales in steady-state φ
ỹ
≈

0.10. We choose the entry congestion parameter γ such that firm convergence

is similar to Bilbiie, Ghironi, and Melitz 2012. That is, most convergence has

taken place within about 20 quarters (5 years), the approximate length of a

cycle.49 The intra- and inter- industry substitutability parameters are chosen

in line with literature (see table 3). Together with the steady-state number of

firms these substitutabilities imply that the steady state markup before shock

is µ̃ = θF Ñ
θF Ñ−1 = 1.42, which declines following the shock in the endogenous

markup case and is fixed at this level for the exogenous markup benchmark.

The capital and labor income shares follow Restuccia and Rogerson 2008

who cite that estimates of α + β = 0.85 and then division between the two

is determined by a 1/3 capital to 2/3 labor share.50 These parameter values

imply K̃
Ỹ
≈ 2.5 as suggested in US data (Rotemberg and Woodford 1993).

The shock shifts technology from A0 = 1 to A1 = 1.1.

48Corresponding to a discount factor in the discrete time case of 1.08− 1
4 = 0.98 as in

Restuccia and Rogerson 2008.
49A more sophisticated approach could solve the industry dynamics second-order differ-

ential equation in partial equilibrium (r given by r̃ = ρ) then calibrate based on half-life
if firm convergence.

50Also see Da-Rocha, Tavares, and Restuccia 2017 for the same approach to decreasing
returns.
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Figure 3: Endogenous Vs Exogenous Responses

Figure 3 shows the permanent shock to technology appearing unexpect-

edly in period 20. The measured TFP improvement with dynamic entry and

endogenous markups (blue thick) exceeds underlying technology improve-

ment by 40% on impact as profits rise and remains 20% higher in the long-run

once profits have been arbitraged but competition has decreased markups.

This follows from comparing the blue thick with green dotted lines.51 The

positive profit effect dominates the positive markup effect for 5 quarters,

but after 10 quarters the profit effect disappears leaving only the long-run

markup effect. These speeds will vary depending on the business dynamism

of a given economy. That is how fast firm entry is able to adjust to a shock,

which is determined by endogenously procylical sunk costs. When γ → 0 an

economy exhibits strong business dynamism and will more accurately reflect

underlying technology as firms acquire positive profits for a shorter period of

time.

51The green dotted line that captures measured TFP with neither endogenous markups
or dynamic entry does not exactly reflect the technology change (dotted red) due to the ν
component. The two lines would be equivalent with ν = 1.
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5 Summary

The paper investigates the effect of firm entry on measured productivity over

the business cycle. I consider that entry is non-instantaneous leading to tem-

porary profits and entry affects the price markups that incumbents charge.

Together these mechanisms can explain short-run procylical productivity and

long-run persistence following a technology shock.

The theory explains that productivity is exacerbated on impact, since

firms cannot adjust immediately so incumbents gain profits and expand out-

put, and in the long run underlying productivity is not regained because

subsequent adjustment of firms causes structural changes in competition.

Furthermore I show that in highly competitive (low markup) industries the

distinction between short-run and long-run productivity is small, so measured

productivity quickly and accurately reflects underlying technology. And in-

dustries with fast adjustment of firms (strong business dynamism), due to

low endogenous sunk costs, will observe measured productivity closer to un-

derlying technology. If business dynamism has declined, such that economic

profits are protected for longer, this will have increased the importance of

the profit bias in measured TFP and delayed the importance of markup bias.
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A Endogenous Markup Details

A.1 Bertrand Derivation of Markup

For the Bertrand case we recast each first order condition to obtain condi-

tional demand as a function of prices. Therefore (9), (12), (13) become (93),

(94), (95).

Q =
(
P
P

)−θI
Y (93)

yı =
(
Pı
P

)−θF ( 1
N

)1−ϑ(θF−1)
Q (94)

yı =
(
Pı
P

)−θF (P
P

)−θI ( 1
N

)1−ϑ(θF−1)
Y (95)

The corresponding price indices follow from substituting the two FOCs (93),

(94) into their corresponding constraints (production functions) (8), (11),

giving aggregate price index and industry price index

P =
(∫ 1

0
P 1−θI
 d

) 1
1−θI

(96)

P = N
1

θF−1−ϑ
(

N∑

1
P 1−θF
ı

) 1
1−θF

(97)

Under Bertrand firms maximize profits subject to conditional demand

(95) by choosing Pı. Therefore

∂yı
∂Pı

= −θF
yı
pı

+ (θF − θI)
yı
P

∂P
∂Pı

(98)

From the industry-level price index P = N
1

θF−1−ϑ
(∑N

1 P
1−θF
ı

) 1
1−θF then

∂P
∂Pı

= P∑N
1 P

1−θF
ı

P−θFı (99)
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Thus under symmetry ∂P
∂Pı

= 1
N

P
Pı

. Hence defining price elasticity of demand

ε ≡ − ∂yı
∂Pı

Pı
yı

(100)

Then (95) becomes

ε = θF − (θF − θI)
1
N

(101)

Therefore for Bertrand the markup is

µ(N)B = θI + θF (N − 1)
(θF − 1)N − (θF − θI)

=
1− 1

N

(
1
θI
− 1

θF

)
θI

1− 1
θF
− 1

N

(
1
θI
− 1

θF

)
θI
, θF > θI ≥ 1

(102)

εBµN = NθF
θI + θF (N − 1)

(
1− θF − 1

θF
µB

)
< 0 (103)

A.2 Cournot Markup as a Function of Bertrand

The Cournot and Bertrand markups are related as follows

µC = µB

θI
(

1
θI
−
[
1 + µB

(
1
θI
− 1

)]
1
N

(
1
θI
− 1

θF

)) (104)

This follows from rewriting the Cournot markup as Bertrand

µC =
[
(µB)−1 (1−ΥθI) + ΥθI −Υ

]−1
, where Υ = 1

N

( 1
θI
− 1
θF

)
(105)

and rearranging.

A.3 Markup Calibration Survey

Table 3 surveys the intersectoral θI and intrasectoral θF parameters used in

the literature.

A.4 Graphical Illustration of Markup Properties
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Table 3: Endogenous Markup Literature Survey

θI θF µ εµN

Cournot εC = 1− θF−1
θF

µC

Atkeson et al., p.2015 1.01 10.0 1(
θF−1
θF

)
− 1
N

(
1
θI
− 1
θF

) 1−
θF−1
θF(

θF−1
θF

)
− 1
N

(
1
θI
− 1
θF

)

Jaimovich et al., App p.151 1.001 ∞ θIN
θIN−1 − 1

θIN−1
Etro et al., p.1215 1.0 6.0, 20.0,∞ θFN

(θF−1)(N−1) − 1
N−1

†

Colciago et al., p.11042 1.0 ∞ N
N−1 − 1

N−1
Bertrand εB = NθF

θI+θF (N−1)

(
1− θF−1

θF
µB
)

Jaimovich et al., p.12483 1.001 19.6
θI+θF (N−1)

(θF−1)N−(θF−θI )
Etro et al., p.1216 1.0 6.0, 20.0 1+θF (N−1)

(θF−1)(N−1)
Lewis et al., p.6784 1.00‡ 2.624

θI+θF (N−1)
(θF−1)N−(θF−θI )

1 Portier 1995; Brito, Costa, and Dixon 2013 also use Cournot with homogeneous goods but differentiated industries.
2 Homogeneous goods and unitary elasticity is common in theoretical papers e.g. Dos Santos Ferreira and Dufourt 2006; Opp, Parlour,

and Walden 2014.
3 Jaimovich and Floetotto 2008, p.1248 specify their nested CES aggregators as a p-norm τ and Holder conjugate ω, rather than

elasticities, hence θI = 1
1−ω = 1

1−0.001 = 1.001 and θF = 1
1−τ = 1

1−0.949 = 19.6.

4 Lewis and Poilly 2012, p.680 plot their competition effect for a domain of substitutabilities θI , θF ∈ (1.0, 4.0)2.
† θF does not affect the markups elasticity to number of firms when there is unitary elasticity across industries.
‡ Estimated value to 2 decimal places.

B Returns to Scale Derivations

There are two ways to identify returns to scale. First, from the profit defini-

tion, without imposing restrictions on the cost function.

Pπ = Py − C(r, w, y) = (P − AC)y (106)

Divide by Py and multiply AC by MC /MC to express as a markup

sπ = 1− AC

P
= 1− AC

MC

MC

P
(107)

RTS = µ

(
1− π

y

)
(108)

Second from the cost function that occurs under cost-minimizing factor prices

(input demands).52

C = MC ν(y + φ) (109)

52We could divide by prices and begin with the familiar real cost function C
P = ν

µ (y+φ).
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Figure 4: Markup Comparison

Divide by yMC

RTS = ν(1 + sφ) (110)

We could also obtain this by dividing the explicit expressions for AC and

MC, (19) and (17), that we obtain from the cost function rewritten in unit

cost form.
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Figure 5: Markup Properties

C Labor Responses

Proof of Proposition 1. The partial derivatives of utility have the following

properties: uCC , uLL, uL < 0, uC > 0 and uCL = uLC = 0. From the

intratemporal condition and wage equation

Ξ(L,C,K,N,A) ≡ uL(L) + uC(C)w(L,K,N) = 0 (4)

w(L,K,N) = A

µ(N)N
1−νFL(K,L) (27)
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take the total derivative, treating {C,K,N} independently, with respect to

dummy $

0 = ∂Ξ
∂L

dL

d$
+ ∂Ξ
∂C

dC

d$
+ ∂Ξ
∂K

dK

d$
+ ∂Ξ
∂N

dN

d$
+ ∂Ξ
∂$

(111)

dL

d$
= −

(
∂Ξ
∂L

)−1 [
∂Ξ
∂C

dC

d$
+ ∂Ξ
∂K

dK

d$
+ ∂Ξ
∂N

dN

d$
+ ∂Ξ
∂$

]
(112)

dL

d$
= ∂L

∂C

dC

d$
+ ∂L

∂K

dK

d$
+ ∂L

∂N

dN

d$
+ ∂L

∂$
(113)

Replacing the dummy $ with each of the endogenous variables {C,K,N},
we get that the total and partial derivatives are equivalent and follow the

usual multivariate implicit function rule

∂L

∂C
= −

∂Ξ
∂C
∂Ξ
∂L

= Φ−1uCC
uC

= dL

dC
(114)

∂L

∂K
= −

∂Ξ
∂K
∂Ξ
∂L

= 1
w

Φ−1 ∂w

∂K
= dL

dK
(115)

∂L

∂N
= −

∂Ξ
∂N
∂Ξ
∂L

= 1
w

Φ−1 ∂w

∂N
= dL

dN
(116)

where Φ ≡
[
uLL
uL
− FLL

FL

]
=
[
εuLL−εFLL

L

]
and to finish we subsitute in

∂Ξ
∂L

= uLΦ < 0 (117)

∂w

∂C
= 0 = 0 (118)

∂w

∂L
= w

FLL
FL

< 0 (119)

∂w

∂K
= w

FLK
FL

> 0 (120)

∂w

∂N
= w

N
(1− ν − εµN) > 0 (121)

Notice that we treat the endogenous variables {C,K,N} independently so

that total and partial derivatives equate. However a change in an exogenous
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parameter, such as technology $ = A, causes all endogenous variables to

respond in addition to its partial effect from holding C,K,N constant.

dL

dA
= ∂L

∂C

dC

dA
+ ∂L

∂K

dK

dA
+ ∂L

∂N

dN

dA
+ ∂L

∂A
= dL

dC

dC

dA
+ dL

dK

dK

dA
+ dL

dN

dN

dA
+ ∂L

∂A
(122)

where

∂L

∂A
= −

∂Ξ
∂A
∂Ξ
∂L

= 1
w

Φ−1∂w

∂A
6= dL

dA
(123)

∂w

∂A
= w

A
> 0 (124)

D Measured TFP Derivation

Our aim is to explain aggregate output as a function of inputs K,L

y = N−νAF (K,L)− φ (125)

Use, y + φ = (π + φ)
(

1− ν

µ

)−1

(126)

(π + φ)
(

1− ν

µ

)−1

= N−νAF (K,L) (127)

Use, N = Y

y
(128)

Y ν = yνAF (K,L)(π + φ)−1
(

1− ν

µ

)
(129)

Use, y =
(
π + ν

µ
φ

)(
1− ν

µ

)−1

(130)

Y =
(

A

π + φ

) 1
ν
(

1− ν

µ

) 1
ν
−1 (

π + ν

µ
φ

)
F (K,L) 1

ν (131)

E Characteristic Polynomal

The characteristic polynomial associated with the Jacobian matrix of the 4d

dynamical system can be determined through its principal minors. Principal
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minors are those that correspond to the leading diagonal of the Jacobian

matrix. Where Mk denotes the sum of principal minors of dimension k, the

characteristic polynomial can be expressed as follows53

c(λ) = det(J− λI) = λ4 −M1λ
3 +M2λ

2 −M3λ+M4 (132)

where M1 = Tr(J) > 0 and M4 = det(J) > 0, where we have shown these

are both positive. The sequence of signs of coefficients of the polynomial is

{+,−,±,±,+}

Descartes’ rule of signs (for positive roots) states: If the terms of a single-

variable polynomial with real coefficients are ordered by descending variable

exponent, then the number of positive roots of the polynomial is either equal

to the number of sign differences between consecutive nonzero coefficients,

or is less than it by an even number. Multiple roots of the same value are

counted separately.

Leaving two coefficients unspecified, there is a minimum of two sign

changes and a maximum of four sign changes. Hence there are either four,

two or zero positive roots.54 The zero positive roots case is ruled out by a

positive trace, the four positive root case (implying asymptotic stability) is

consistent with positive trace and positive determinant but can be ruled out

if the two unspecified signs are of the same sign, either +,+ or −,−.55

The four solutions of this quartic polynomial are saddle stable if there

are two positive (unstable) and two negative (stable).56 We denote these

53 The proofs in this section follow results developed in Murata and Shell 2014, pp.
14-16; Flaschel et al. 2008, pp. 503-510 (Theorem A.2, p.504); Jacobson 2012, p. 196.

54If unspecified coefficients are zero, the possibility of one sign change occurs if ±,± are
0, 0 or 0,+ or −, 0. However, from the positive trace and determinant, we know there are
either four positive roots, or two positive and two negative roots.

55Jaimovich 2007 studies an endogenous markups, static entry model that leads to
sunspots (global stability) in a one state variable model (only capital) so has two pos-
itive roots.

56Chatterjee, Sakoulis, and Turnovsky 2003, pp.1087-88 and Bhandari, Haque, and
Turnovsky 1990, pp. 413-415 employ a similar strategy to derive sufficient conditions
for saddle stability with a quartic polynomial.
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eigenvalues

λ1 ≤ λ2 < 0 < λ3 ≤ λ4

We derive the general minors and thus coefficents on the quartic polynomial

for the general case.

E.1 Jacobian Trace

The trace of the Jacobian matrix is

Tr(J) = −Φ−1FKL
FK

ρ+ ρ+
(

1 + Φ−1FKL
FK

)
ρµ̃ (133)

= ρ
(
1 + µ̃+ (µ̃− 1)Φ−1

)
(134)

= ρ(1 + µ̃)
(

1 +
(
µ̃− 1
µ̃+ 1

)
Φ−1

)
> 0 (135)

with perfect competition µ̃ = 1 then Tr(J) = 2ρ.

E.2 Jacobian Determinant

A lengthy derivation shows the determinant of the Jacobian associated with

the dynamical system is positive when the endogenous markup effect is suf-

ficiently small, where I provide the sufficient condition.

det J = Ñ

εuCC

φ

γ

ν

µ
{Θ + ΓεµNN} (136)

where

Θ =
(

L

εuLL − εFLL

)(
ρ

N

)2
µ(εuCC − εuLL)

(
FKL
FL
− FKK

FK

)
FL
FK

< 0 (137)

Γ = y

(
1 + y

φ

)
Φ−2

(
ρ

N

)2
µ

([
Φ + F 2

LK

FLFKK

]
FKKFL
F 2
K

{
εuCC
y
− ΦN

ρµ

FK
FL

+ 1
}
−
(

Φ + FLK
FK

)2)
R 0

(138)
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where elasticities are defined as εuL,L ≡ uLL
uL
L. Then, remembering εuCC < 0

det J R 0 ⇐⇒ Θ + ΓεµNN Q 0 (139)

Hence this provides a necessary condition for a positive determinant

Θ + ΓεµNN < 0 (140)

Since Θ < 0, εµNN < 0, a sufficient condition is

Γ ≥ 0 (141)

Or, if Γ < 0, less restrictive

ΓεµNN < −Θ (142)

εµNN > −Θ
Γ (143)

Hence the negative markup effect must be sufficiently small.

F Measured Productivity Dynamics

Use growth notation notation X̂ = dX
X̃

.

From (55)

TFP = A
1
ν

y

(y + φ) 1
ν

(144)

ln TFP = 1
ν

lnA+ ln y + 1
ν

ln(y + φ) (145)

1
TFP

dTFP
dA

= 1
ν

1
A

+ 1
y

dy

dA
− 1
ν

1
y + φ

dy

dA
(146)

Local approx. × dA = [A(t)− Ã] (147)

dTFP
TFP = 1

ν

dA

Ã
+
(

1− 1
ν(1 + s̃φ)

)
dy

ỹ
(148)

ˆTFP = 1
ν
Â+

( ˜RTS− 1
˜RTS

)
ŷ (149)
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From (54)

ln TFP = 1
ν

[lnA− ln(π + φ)] +
(1
ν
− 1

)
ln
(

1− ν

µ

)
+ ln

(
ν

µ
φ+ π

)

(150)

d ln TFP
dA

= 1
ν

[
1
A
− 1
π + φ

dπ

dA

]

+
(1
ν
− 1

) 1
1− ν

µ

ν

µ2
dµ

dA
+ 1

ν
µ
φ+ π

(
− ν

µ2φ
dµ

dA
+ dπ

dA

)
(151)

1
TFP

dTFP
dA

= 1
ν

1
A
−


(

1− 1
ν

) 1
1− ν

µ

ν

µ2 +

 1

ν
µ
φ+ π


 ν

µ2φ


 dµ
dA

+

−1

ν

1
π + φ

+ 1
ν
µ
φ+ π


 dπ
dA

(152)

Use local approx. ×dA = [A(t)− Ã] and remember π̃ = 0

ˆTFP = 1
ν
Â−

(
µ̃− 1
µ̃− ν

)
µ̂+

(
µ̂− 1
νφ

)
π̂ (153)

G Parametric Model and Steady State

We begin with isoelastic utility

U(C,L) = C1−σ − 1
1− σ − ξ L

1+η

1 + η
(154)

The partial derivatives are

UC = C−σ, UCC = −σUC
C
, UL = −ξLη, ULL = η

UL
L

(155)

and Cobb-Douglas production

F (k, `) = kα`β = KαLβN−(α+β) = F (K,L)N−(α+β) (156)
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so derivatives are

Fk = αkα−1`β = αKα−1LβN1−(α+β), (157)

F` = kαβ`β−1 = KαβLβ−1N1−(α+β) (158)

G.1 Parametric Equilibrium Conditions

L is defined in terms of (C,K,N) through the intratemporal condition, which

conforms to our theoretical derivations for optimal labor behaviour.

L =
(
AKαβN1−(α+β)

µ(N)ξCσ

) 1
1+η−β

(159)

Under this parameterization the dynamical system is

Ċ = C

σ

[
1

µ(N)AαK
α−1LβN1−(α+β) − ρ

]
(160)

Ė = 1
µ(N)AαK

α−1LβN1−(α+β)e

− 1
γ

(
AKαLβN−(α+β)

(
1− ν

µ(N)

)
− φ

)
(161)

K̇ = N
[
AKαLβN−(α+β) − φ

]
− γ

2E
2 − C (162)

Ṅ = E (163)

G.2 Parameteric Steady State

The intratemporal condition is

C̃ =
(
βAk̃α ˜̀β−1−ηÑη

µ(Ñ)ξ

) 1
σ

(164)

The dynamical system is

C̃ = φν

µ(Ñ)− ν Ñ (165)

Ẽ = 0 (166)
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αk̃α−1`(k̃, Ñ)β = µ(Ñ)ρ
A

(167)

k̃α ˜̀(k̃, Ñ)β = φ

A
(
1− ν

µ(Ñ)

) (168)

Substituting C̃(Ñ) into the intratemporal condition

˜̀(k̃, Ñ) =




Ak̃αβÑ−σ−η

µ(Ñ)ξ
(

φν
µ(Ñ)−ν

)σ




1
1+η−β

(169)

Solving (167) and (168) gives k̃ and ˜̀

k̃(Ñ) = φα

(µ(Ñ)− ν)ρ
(170)

˜̀(Ñ) =

µ(Ñ)

A

(
ρ

α

)α ( φ

µ(Ñ)− ν

)1−α


1
β

(171)

Capital per firm is decreasing in market power, whilst labor per firm is am-

biguous depending on the capital-labor income ratio r̃k̃
w̃l̃

= α
β
.

∂ ˜̀
∂µ̃

=
˜̀

µ̃(µ̃− ν)

(
α

β
(µ̃− 1)− 1

)
R 0 ⇐⇒ α

β
(µ̃− 1) R 1 (172)

An increase in number of firms, decreases market power and increases capital

per firm. This is important to explain why output per firm ỹ increases, which

we have shown in general. Rearranging the intratemporal condition (169)

gives a nonlinear function in terms of Ñ .

Ñ =
((

α

ρν

)σ
Aβ

µ(Ñ)ξk̃σ−α ˜̀1+η−β

) 1
σ+η

(173)

where k̃, ˜̀are defined in (170) and (171) as functions of Ñ . Therefore solving

this nonlinear expression numerically gives Ñ , which in turn provides C̃, K̃, L̃
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by (165, 170, 171). Equation (174) presents equation (173) in Ñ terms only.

Ñ =

 β

ξνσ





(
A

(
α

ρ

)α)1+η ( 1
µ(Ñ)

)α(1+η)+β(1−σ)

(1− ν
µ(Ñ)

φ

)1−ν+η(1−α)+σβ


1
β




1
η+σ

(174)

G.3 Parametric Labor Responses

dL

dC
= − σ

1 + η − β
L

C
< 0 (175)

dL

dK
= α

1 + η − β
L

K
> 0 (176)

dL

dN
= 1− ν − εµN

1 + η − β
L

N
> 0 (177)

∂L

∂A
= 1

1 + η − β
L

A
> 0 (178)

and the total effect of technology on labor is

dL

dA
=
(

L

1 + η − β

)(
− σ
C

dC

dA
+ α

K

dK

dA
+ 1− ν − εµN

N

dN

dA
+ 1
A

)
(179)
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