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This paper deals with the problem of state estimation for the transfer alignment of airborne distributed position and orientation
system (distributed POS). For a nonlinear system, especially with large initial attitude errors, the performance of linear
estimation methods will degrade. In this paper, a nonlinear smoothing algorithm called the unscented particle smoother (UPS)
is proposed and utilized in the off-line transfer alignment of airborne distributed POS. In this algorithm, the measurements
are first processed by the forward unscented particle filter (UPF) and then a backward smoother is used to achieve the
improved solution. The performance of this algorithm is compared with that of a similar smoother known as the unscented
Rauch-Tung-Striebel smoother. The simulation results show that the UPS effectively improves the estimation accuracy and
this work offers a new off-line transfer alignment approach of distributed POS for multiantenna synthetic aperture radar and
other airborne earth observation tasks.

1. Introduction

Airborne synthetic aperture radar (SAR) is an important tool
for earth observation. Multiantenna SAR can achieve higher
accuracy of interferometric processing and ground moving
target indication through multibaseline interferometry tech-
nology (i.e., interferometric SAR), and it has become an
important research direction of radar remote sensing [1].
Usually, these antennae are installed on both sides of the
wing of the aircraft, and the motion parameters of each
antenna are needed to complete the motion compensation
[2]. As a result, airborne distributed position and orientation
system (distributed POS) is developed, which is used to
provide the time and space reference information for all
points of multiantenna SAR or other requirements [3].

Airborne distributed POS is generally composed of
four parts: a high-precision POS (main system), a few
low-precision inertial measurement units (IMU, subsys-
tem), a POS computer system (PCS), and postprocessing

software [4, 5]. The high precision main system is usually
installed in the cabin or underpart of the aircraft and per-
forms the inertial/satellite integrated estimation with the
position and velocity of global navigation satellite system
(GNSS) as the measurement information. The subsystem,
which is placed as close as possible to the measurement
center of the load, is used to measure the acceleration
and angular velocity which are sent to the PCS. In the
PCS, the high precision motion information of main system
is used as the reference signal to achieve the motion informa-
tion of subsystem by transfer alignment technology. The
nature of transfer alignment is to estimate and compensate
the calculation error of motion parameters of the subsystem
by using the high precision information of the main sys-
tem [6]. It shows that the estimation method is crucial
for distributed POS.

It should be noted that distributed POS is a nonlinear
system. In some emergency situations, the distributed POS
is expected to try to shorten the preparation time on the
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ground and even start up in flight, which will bring the
uncertain errors and the misalignment of initial attitude is
not small. These make the nonlinearity of the system to be
further increased. Thus, the performance of transfer align-
ment based on the linear model and linear estimation
method will degrade [7].

The unscented Kalman filter (UKF) is a typical nonlinear
filtering method. It uses a deterministic sampling approach
named as sigma points to propagate nonlinear systems
and has been discussed in many literatures for the inertial/
satellite integration system [8–10]. UKF is a representative
filter to overcome the flaw of truncated error in extended
Kalman filter (EKF) [11]. However, the UKF method is an
approximation of linear minimum variance estimation
and does not apply to general non-Gaussian distributions
[12, 13]. Another popular solution strategy for general fil-
tering problems is particle filter (PF) which is based on the
recursive Bayesian estimation and suitable for the nonlin-
ear and non-Gaussian distributed system [14]. The esti-
mated accuracy of PF is higher than the accuracy of
using EKF or UKF alone [7]. PF uses a set of sampling
points extracted from the posterior probability to express
its distribution. Choosing a reasonably recommended
probability density is the core of PF. The closer the recom-
mended density selected is to the true density, the better
the filter effect is. Otherwise, it is worse or even divergent
[7, 15]. The UKF is able to more accurately propagate the
mean and covariance of the Gaussian approximation to
the state distribution than the EKF. So PF is combined
with UKF and formed a new PF called unscented particle
filter (UPF) [15], in which the UKF is used for proposal
distribution generation and the performance of the filtering
algorithm is improved by taking into account the influence
of the measured values on the state estimation.

The above UKF and PF are based on the idea of for-
ward filtering, where only the observation information of
the current moment and the previous time are used. The
other methods, such as smoothing estimation, can make
full use of all the observation information to estimate the
state of each moment, and is particularly suitable for off-
line data processing. Since the smoother uses more observa-
tions than the filter, although it cannot be used in real time,
the accuracy of the optimal smoothing algorithm is theoret-
ically higher than that of the KF [16]. The unscented
Rauch-Tung-Striebel smoother (URTSS) was first proposed
by Särkkä in 2008 [17]. This smoother takes the benefit
over unscented transformation as well as the smoothing
iterative characteristics, which makes the estimation accu-
racy much better than that of the UKF. In ref. [18], the
URTSS is applied to the off-line integrated estimation of
the inertial/satellite integration system and shows an obvi-
ous accuracy advantage over extended R-T-S smoother in
attitude estimation. In particle smoothing, ref. [19] pro-
posed a particle smoothing algorithm which is a direct
extension of the PF. This method has the advantage of fixed
interval smoothing, but it cannot express the state variables
in the past very well. Then, the forward-backward smoother
and two-filter smoother based on PF are proposed [20].
This kind of smoothing algorithm needs to carry on the

particle filter first and store the particles with weight
selected in the approximate process and then perform the
smoothing process. However, there is still the problem of
particle degeneracy.

For the airborne earth observation system, there are
two modes of image processing: real time and off-line. In
the off-line cases, there is no high requirement for fast
data processing in real-time imaging mode. The smoother
can be employed to provide a better solution for off-line
image processing. Motivated by these, a smoother called
unscented particle smoother (UPS) is proposed in this
paper, which is then applied to the off-line transfer alignment
of airborne distributed POS. The UPS is made by taking the
advantages of the UKF, PF, and smoothing. In the UPS,
UKF is used to generate the proposed distributions to over-
come the shortage of particle degradation in PF. Then, the
forward-backward smoother using all observations is further
combined together to obtain higher estimation accuracy. The
UPS can be applied to nonlinear and non-Gaussian noise
systems as well. There is no need to keep still to obtain the
initial motion information of the main system and subsystem
before flying off.

The rest of this paper is organized as follows. In
Section 2, the UPS are proposed. In Section 3, the
design of UPS for airborne distributed POS is given in
detail. In Section 4, the performance of the UPS method
is demonstrated and compared with that of the URTSS in
estimation accuracy by a simulation test. Finally, conclusions
are given in Section 5.

2. Unscented Particle Smoothing Algorithm

The proposed UPS has two structures: a forward filter
and a backward smoother. The forward filter is UPF
used to obtain the filtering state estimation. In UPF,
the proposed density is determined by UKF, which
not only solves the problem of the degradation of par-
ticles but also enables particles to get the latest a pos-
teriori information of the measurement vector when
they are updated, which is helpful for particles to move
toward the area with high likelihood. Then, the back-
ward smoother is conducted after the forward filter to
modify the importance weights to achieve the smoothed
state estimation.

Suppose the discrete form of the nx-state system equation
and the observation equation is as follows:

xk = f xk−1, k − 1 + Γk−1wk−1,

yk = h xk, k + vk,
1

where xk ∈ Rnx represents the state vector of the system at
time k and yk ∈ R

ny denotes the measurement vector at time
tk. The functions f and h describe state and measurement
models, respectively [8, 21]; Γk−1 is the state noise distribu-
tion matrix, and wk−1 and vk represent the state and mea-
surement noises, respectively, which can be described by
the corresponding probability density functions p wk−1

2 International Journal of Aerospace Engineering



and p vk . In this work, wk−1 and vk are assumed to the
uncorrelated white Gaussian noise. The mean value of
wk−1 and vk is zero and their variance matrices are Qk−1
and Rk, respectively [8, 22].

Based on (1), the process of UPS is described
as follows.

Step 1. Initialization (k = 0) [7, 15]. Suppose the initial state
variable x0 ~ p x0 , and the covariance matrix is P0.

For i = 1, 2,… ,N , draw the states (particles) x i
0 from the

prior probability density p x0 and set x i
0 ~N x̂ i

0 , P i
0 ,

where x̂ i
0 = x i

0 and P i
0 = P0. N is the number of

particles.

Step 2. Importance sampling step (for i = 1, 2,… ,N ,
k = 1, 2, 3,… , T).

(1) Update the particles with the UKF:

(i) Calculate sigma points

χ
i
k−1 0 = x̂

i
k−1,

χ
i
k−1 j = x̂ i

k−1 + nx + λ P i
k−1

j

 j = 1, 2,… , nx ,

χ
i
k−1 j = x̂ i

k−1 − nx + λ P i
k−1

j

 j = nx + 1, nx + 2,… , 2nx,
2

where the sigma point set S = χ i
k−1 j ,W

l′
j ;

j = 0, 1,… , 2nx, l′ ∈ m, c is composed of

the sigma points χ i
k−1 j and their respective

mean (m) and covariance (c) weights W l′
j .

λ = α2 nx + κ − nx denotes a scaling parame-
ter. The parameter α determines the spread
of samples that is usually set between 10−4
and 1. The constant κ is typically set to 0
or 3 − nx where nx is the state dimension.
The corresponding weights are given by:

W m
0 =

λ

nx + λ
,

W c
0 =

λ

nx + λ
+ 1 − α2 + β ,

W m
j =W c

j =
0 5

nx + λ
 j = 1, 2,… , 2nx,

3

where the parameter β is used to incorpo-
rate prior knowledge of the distribution (for
Gaussian distribution, β = 2 is optimal).

(ii) Time update (propagate particle into future)

χ
i
k∣k−1 j = f χ

i
k−1 j , k − 1 ,

x̂ i
k∣k−1 = 〠

2nx

j=0
W m

j χ
i
k∣k−1 j ,

P i
k∣k−1 = 〠

2nx

j=0
W c

j χ
i
k∣k−1 j − x̂ i

k∣k−1

χ
i
k∣k−1 j − x̂ i

k∣k−1
T
+ Γk−1QkΓTk−1,

γ
i
k∣k−1 j = h χ

i
k∣k−1 j , k ,

ŷ i
k∣k−1 = 〠

2nx

j=0
W m

j γ
i
k∣k−1 j , 4

where P i
k∣k−1 denotes the prior error covariance.

(iii) Measurement update (incorporate new obser-
vation)

P i
ŷkŷk

= 〠
2nx

j=0
W c

j γ
i
k∣k−1 j − ŷ i

k∣k−1

γ i
k∣k−1 j − ŷ i

k∣k−1
T
+ Rk,

P i
x̂kŷk

= 〠
2nx

j=0
W c

j χ
i
k∣k−1 j − x̂ i

k∣k−1

γ
i
k∣k−1 j − ŷ i

k∣k−1
T
,

K i
k = P i

x̂k ŷk
P i
ŷk ŷk

− 1,

x̂ i
k = x̂ i

k∣k−1 + K i
k yk − ŷ i

k∣k−1 ,

P i
k = P i

k∣k−1 − K i
k Pŷkŷk

K i
k

T
, 5

where ŷ i
k∣k−1 denotes the predicted measurement,

P i
ŷk ŷk

denotes the covariance of predicted mea-

surement error, and P i
x̂kŷk

denotes the cross-

covariance matrix between x̂ i
k∣k−1 and ŷ i

k∣k−1.

K i
k denotes the filter gain.
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(2) Importance sampling step.

For i = 1, 2,… ,N , sample x i
k ~ q x i

k ∣ x i
0 k−1, y1 k =

N x̂ i
k , P i

k and set x i
k ≜ x i

0 k−1, x
i
k and P i

0 k ≜
P i
0 k−1, P

i
k .

(3) Update and normalize the importance weights.

For i = 1, 2,… ,N , evaluate the importance weights
up to a normalizing constant:

w i
k =w i

k−1

p yk ∣ x
i
k p x i

k ∣ x i
k−1

q x i
k ∣ x i

0 k−1, y1 k

6

For i = 1, 2,… ,N , normalize and store the impor-
tance weights:

w i
k =w i

k 〠
N

i=1
w i

k

−1

7

Compute the filtering state estimation x̂Fk :

x̂ F
k = 〠

N

i=1
w i

k x̂ i
k 8

Step 3. Using the importance weights stored in the forward
filtering to conduct the backward smoothing recursion.

Set w i
T∣T =w i

T∣T . For k = T − 1,… , 1 and i = 1, 2,… ,N ,
evaluate

w i
k∣T =w i

k+1∣T 〠
N

j=1
w j

k+1∣T

p x j
k+1 ∣ x

i
k

∑N
m=1w

m
k p x j

k+1 ∣ x
m
k

9

(1) Resampling

For x i
k (i = 1, 2,… ,N), Using sequential impor-

tance resampling (SIR) [15] to complete resam-

pling to obtain N random samples x′ i0 k, and set

w i
k =w i

k = 1/N .

(2) Compute the smoothed state estimation x̂Sk

x̂ S
k =

1
N
〠
N

i=1
x′ ik 10

The principle diagram of UPS is shown in
Figure 1. In summary, there are two processes: a for-
ward filtering process and a backward smoothing
process. The measurements are first processed by

the forward filter and the importance weight w i
k

should be stored in the forward filter stage. And
then, a separate backward smoothing pass is used
to modify the importance weights for obtaining the
smoothing solution.

3. UPS Design for Airborne Distributed POS

The design of UPS for airborne distributed POS is given
in this section. Firstly, the definition of coordinate frames
is introduced. i and e denote the earth-center inertial
frame and the earth-centered earth-fixed frame, respec-
tively. The navigation frames of the main system and sub-
system are both topocentric frames (the z-axis parallel to
the upward vertical, the x-axis pointing eastward, and
the y-axis pointing northward), represented by n and ns,
respectively. The body frames of the main system and sub-
system are denoted by b and bs. A detailed description of
these coordinate frames is available in [18, 23].

Figure 2 show the block diagram of transfer alignment in
distributed POS based on UPS.

In Figure 2, the strapdown navigator calculates the
attitude (heading, pitch, and roll), velocity, and position
expressed in ns-frame by using the angular rates and

tk + 1tk + 1|k
Time

Forward filter
(UPF)

Backward smoother

tk

ˆ Sxk
ˆ

~

Sxk + 1

ˆ (i)
xk + 1|k

ˆ (i)
xk + 1 ,

(i)
wk|T

(i)
wk

~ˆ (i)
xk ,

ˆ (i)
xk|k − 1

(i)
wk − 1

tk|k − 1

Figure 1: The principle diagram of UPS.
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Transfer alignment based on UPS
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Navigator
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Forward
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error controller

Lever arm
compensation

Improved position,
velocity, and

attitude

Imaging
sensor

Figure 2: The block diagram of transfer alignment in distributed POS based on UPS.

accelerations of subsystem. Since the strapdown navigation is
an integration process, any errors of the accelerometers and
gyroscopes will integrate into slowly growing errors on
velocity, position, and attitude. The differences of velocity
and attitude between the main system and the strapdown
navigator are used in the forward filtering to estimate the
growing velocity, position, and attitude errors in the strap-
down navigator. The closed-loop error controller is used to
correct the result of strapdown navigator by using the
estimation of forward filtering. After the end of the forward
filter, the backward smoother is performed to compensate
the estimation of forward filtering, and the improved estima-
tion results are used to correct the result of strapdown
navigator in the feed forward error controller. The improved
attitude, velocity, and position are outputted to the imaging
sensor at last.

3.1. Nonlinear Inertial Navigation Error Model. The inertial
navigation error equations are the basis of the mathematical
model for transfer alignment. According to the definitions
above, the nonlinear SINS error model of the subsystem
based on angle error, which includes attitude error equation,
velocity error equation, position error equation, and inertial
senor constant error equation, is given by [24]:

ϕns = I − Cp
ns

ωns
ins

+ δωns
ins

−Cns
bs
εbs ,

δVns = I −Cns
p f ns − 2δωns

ie + δωns
ens

×Vns − 2δωns
ie + δωns

ens
× δVns + Ĉns

b ∇
bs ,

δL =
δVN

RM +H
−

VN

RM +H 2 δH,

δλ =
sec L
RN +H

δVE +
VE sec L tan L

RN +H
δL −

VE sec L
RN +H 2 δH,

δH = δVU,

εbsc = 0,

∇
bs
c = 0, 11

where ϕns = ϕE ϕN ϕU
T denotes the attitude error

vector in ns-frame, the subscripts E,N, andU denote the east,
north, and up components, respectively; ωns

ins
denotes the

rotation velocity of the ns-frame relative to the i-frame
expressed in ns-frame with error δω

ns
ins
; Cns

bs
denotes the

coordinate transformation matrix from the bs-frame to
the ns-frame; εbs denotes the gyro drift of subsystem in

bs-frame, which consists of random constant drift εbsc and

the Gaussian white noise ω
bs
ε with ε

bs
c = ε

bs
x ε

bs
y ε

bs
z

T
and

ω
bs
ε = ω

bs
εx ω

bs
εy ω

bs
εz

T
; Vns = VE VN VU

T denotes the

velocity vector in ns-frame with error δVns =
δVE δVN δVU

T; f ns = f E f N f U
T denotes the

specific force measured by the accelerometers of subsystem
expressed in ns-frame; ωns

ie denotes the rotation velocity of
the e-frame relative to the i-frame expressed in ns-frame with
error δωns

ie ; ω
ns
ens denotes the rotation velocity of the ns-frame

relative to the e-frame expressed in ns-frame with error δωns
ens ;

∇
bs denotes the accelerometer bias of subsystem in bs-frame,

which consists of random constant bias ∇
bs
c and the

Gaussian white noise ωbs
∇ with ∇

bs
c = ∇bs

x ∇bs
y ∇bs

z
T
and ω

bs
∇ =

ω
bs
∇x
ω
bs
∇y
ω
bs
∇z

T
; secL=1/cosL. The symbols δL, δλ, and δH

denote the latitude error, longitude error, and height error,
respectively; and RM and RN denote the meridian and
transverse radius of curvature, respectively.

The nonlinear terms of attitude and velocity error equa-
tions are I −Cp

ns
ω
ns
ins

and I − Cns
p f ns in (11), respectively,

and the nonlinear matrix Cp
ns
= Cns

p
T
is expressed as follows:
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3.2. Model of Rigid Misalignment Angle and Flexure Angle.
During the transfer alignment, there are flexure angles and
rigid misalignment angles between the main system and the
subsystem. These angles cannot be measured accurately and
the flexure angles vary with the time. Therefore, the flexure
angles and rigid misalignment angles should be modeled
and estimated.

The models of rigid misalignment angles and flexure
angles are shown in the following equations:

ρj = 0,

θj + 2βjθj + β2
j θj = ηj j = x, y, z,

13

where ρj denotes the rigid misalignment angle of subsystem;
θ j denotes the flexure angle and described by the second-
order Markov process [25]; βj = 2 146/τj and τj is the corre-
lation time; x, y, and z are the axes of bs-frame; ηj denotes the

Gaussian white noise with covariance Qη j
= 4β3

jσ
2
j ; and σ2j

denotes the covariance of θ j; Qη = Qηx
Qηy

Qηz

T.

3.3. Design of the Smoother for Transfer Alignment of
Distributed POS

3.3.1. State Equation. On the basis of models established in
Subsections 3.1 and 3.2, let

Then, the continuous-time system model can be given by

x = f x, t +G t WI t , 15

where the nonlinear function f x, t is determined by
error model of transfer alignment in Subsections 3.1
and 3.2, the vector WI t represents the system noise.

W1 = ω
bs
εx ω

bs
εy ω

bs
εz ω

bs
∇x

ω
bs
∇y

ω
bs
∇z

ηx ηy ηz
T

is

the zero-mean Gaussian white noise vector with covariance
QI which consists of covariance Qε of gyro random drift,
covariance Q∇, of accelerometer random bias, and Qη.

3.3.2. Measurement Equation. The differences of velocity
and attitude between the main system and the subsystem
solutions are considered as the measurement vector. The
measurement vector can be given as

y t = δψ δθ δγ δVE′ δVN′ δVU′
T, 16

where δψ, δθ, and δγ denote the differences of heading
angle, pitch angle, and roll angle between the main system

and the subsystem; δVE′, δVN′ , and δVU′ denote the differ-
ences of the east, north, and up velocities between the
main system and the subsystem accounting for the lever
arm between the main system and subsystem [25].

The measurement vector can be expressed linearly by the
state vector shown in (14). Hence, the linear measurement
model can be given by

y t =Hx t + v t , 17

where the measurement noise v t = vδψ vδθ vδγ vδVE′

vδVN′
vδVU′

T is the white noise vector of the solution of the

main system with zero mean and covariance matrix R. The
measurement matrix H t can be given as

H t =
H1 03×3 03×9 H2 H3 03×3
03×3 I3×3 03×9 03×3 03×3 03×3 6×24

18

Cp
ns
=

cos ϕN cos ϕU − sin ϕE sin ϕN sin ϕU cos ϕN sin ϕU + sin ϕE sin ϕN cos ϕU −cos ϕE sin ϕN

−cos ϕE sin ϕU cos ϕE cos ϕU sin ϕE

sin ϕN cos ϕU + sin ϕE cos ϕN sin ϕU sin ϕN sin ϕU − sin ϕE cos ϕN cos ϕU cos ϕE cos ϕN

12

x = x1 x2
T,

x1 = ϕE ϕN ϕU δVE δVN δVU δL δλ δH εbsx εbsy εbsz ∇bs
x ∇bs

y ∇bs
z

T
,

x2 = ρx ρy ρz θx θy θz θx θy θz
T

14
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Here, the attitude matrix of main system Cn
b is denoted as

Ta. Ta, H1, H2, and H3 are as follows:

where φm, θm, and γm denote the heading, pitch, and roll of
the main system, respectively.

The UPS for transfer alignment of airborne distrib-
uted POS postprocessing can be summarized into two
parts: the forward filtering solution and the backward
smoothing solution.

Figure 3 shows the data flaw of UPS used in airborne
distributed POS and the relation between the state vector
estimation of forward filtering x̂Fk and backward recursion
x̂Sk at time k and k + 1. In forward filtering solution, the filter
results are applied to the nominal trajectory during each fil-
tering step and will be reset to zero after the correction of
strapdown navigation (velocity, position, and attitude). The
function of the backward smoothing solution is to compen-
sate for the estimation of the forward filter stored during
the forward filtering process. The filtering and smoothing
are calculated at the main system rate. And after each

estimation points, a strapdown inertial navigation algorithm
is performed to provide the navigation information.

4. Simulation and Analysis

In order to analyze the performance of the proposed UPS,
numerical simulation is provided and the comparison with
the URTSS using the simulated data of a distributed POS
based on one flight trajectory is presented as well.

4.1. Design of Simulation. In this subsection, a typical “S+U”
shaped flight trajectory of airborne earth observation is
designed. Figure 4 shows the plane trajectory and trajectory
parameters, respectively. In Figure 4, the AB and CD segment
can be considered as the imaging segment.

Cn
b =

cos γm cos φm − sin γm sin θm sin φm −cos θm sin φm sin γm cos φm + cos γm sin θm sin φm

−cos γm sin φm + sin γm sin θm cos φm cos θm cos φm sin γm sin φm − cos γm sin θm cos φm

−sin γm cos θm sin θm cos γm cos θm

, 19
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Parameters of flight trajectory are listed as follows: initial
latitude is 40°, longitude is 116°, and height is 500m; initial
flight velocity is 100m/s; and initial heading angle, pitch
angle, and roll angle are 40°, 0°, and 0°, respectively. Firstly,
the aircraft flies 100 seconds at constant velocity; secondly,
the aircraft turns 60° clockwise (100 seconds) and then turns
60° anticlockwise (100 seconds); and thirdly, the aircraft flies
400 seconds at constant velocity, finally turns 180° clockwise
(100 seconds), and continually flies 400 seconds at constant
velocity. Total flight time is 1300 s.

4.1.1. Data Generation. A trajectory generator is used to
generate the theoretical data of the scheduled flight trajec-
tory, which includes position, velocity, attitude, and the
output data of gyros and accelerometers. The real outputs
of the main system are obtained by adding the corresponding
measurement noise to the theoretical position, velocity, and
attitude. Then, the theoretical outputs of gyros and acceler-
ometers are converted by rigid misalignment angles and
flexure angles, and the constant noise and random noise are
added to be the inertial sensor outputs of the subsystem.
Meanwhile, the motion parameter benchmarks of subsystem
can be obtained through transforming theoretical position,
velocity, and attitude by flexure angle.

4.1.2. Parameters of the Main System and Subsystem. The
measurement noises of the main system at heading, pitch,
roll, and velocity are 0 005°(1σ), 0 0025°(1σ), 0 0025°
(1σ), and 0 005m/s (1σ), respectively. Both gyro constant
drift and random drift of subsystem are 0 01°/h. Both

accelerometer constant bias and random bias of the sub-
system are 50μg.

4.1.3. Other Parameters. The rigid misalignment angle of
the subsystem relative to the main system is ρ =
0 5∘ 0 5∘ 0 5∘ T, and the lever arm between the main
system and subsystem is rbm = 5m 0 1m 0 1m T. For
multiantenna SAR, these antennae are fixed under both
sides of the wing. So the flexure angle rotated around
the vertical axis is large, while the flexure angles around
the other two axes are small. Accordingly, the correlation
time of the second-order Markov processes is selected as
2 s, 5 s, and 2 s, and the covariances of flexure angles are
0.01, 0.15, and 0.01, respectively. The curves of flexure
angle and flexure angle rate selected in this simulation
are shown in Figures 5 and 6. All the initial attitude errors
are 40∘. The particle number is 100. The data update rate
of the subsystem is 100Hz and the filter frequency is 1Hz.

4.2. Simulation Results and Analysis. The differences between
theoretical motion parameters of subsystem and their
estimates obtained from estimation, called estimate errors,
are used to assess and compare the performance of UPS
and URTSS.

Figures 7–10 show the estimate error curves of UPS and
URTSS, including the estimate errors of attitude, velocity,
position, and baseline. The means of root mean square error
(RMSE) and standard deviation (STD) values of motion
information estimate errors in imaging segments AB and
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Figure 3: The data flaw of UPS used in airborne distributed POS.
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CD are calculated and shown in Table 1. The calculation
formulas of RMSE and STD are given as follows:

RMSE =
∑n′

i=1 ei
2

n′
,

STD =
∑n′

i=1 ei − e 2

n′
,

21

where ei denotes the ith estimate error, n′ denotes the
number of estimate error, and e denotes the mean of all
estimate error.

For attitude estimation, from Figure 7 and Table 1, we
can see that there is a large and obvious trend item in the
heading estimation error of URTSS, and the estimation
error of URTSS on pitch and roll is prone to be affected
by maneuver and their value are bigger than UPS even
after 180° clockwise. Compared with URTSS, when the
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initial misalignment angle is 40°, the attitude estimation error
of UPS is significantly reduced and the error curves are more
stable both on AB and CD segments; the estimation accuracy

on heading and pitch of UPS is obviously better than that of
URTSS, and only the STD on roll of UPS is slightly lower
than that of URTSS.
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For velocity estimation, Figure 8 and Table 1 show
that the estimation accuracy on east velocity and north
velocity of UPS is better than that of URTSS and the
error curves of URTSS are prone to be affected by
maneuver, especially in the initial ‘S’ shape flight, the
estimation error of velocity of URTSS is unstable and
very large; the estimation accuracy on up velocity of
UPS is lower than that of URTSS.

For position estimation, Figure 9 and Table 1 show that
the estimation accuracy on the latitude and longitude of
UPS is better than that of URTSS, and the estimation accu-
racy on the height of UPS is lower than that of URTSS, which
corresponds to the up velocity error result. The estimation
error of latitude and longitude of URTSS in the initial ‘S’

shape flight (from 0 s to 300 s) is very large due to the large
velocity error in this stage.

Besides, the space distance between the main system and
subsystem (i.e., the baseline between two antennas of SAR) is
a very important parameter for interference precision of
interferometric SAR and the higher the measurement
accuracy of the baseline, the higher the object’s digital
elevation model accuracy of the interferometric SAR. Here,
the baseline error is calculated by theoretical position and
real position output of the main system and subsystem.
From Figure 10 and Table 1, we can see that the baseline
error curve of UPS is more stable and the baseline
estimation accuracy of UPS is better than that of URTSS
both on RMSE and STD.
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From the simulation result, we can see that the estimation
accuracy of motion parameters of the proposed method is
higher than that of the URTSS as a whole.

5. Conclusion

In this paper, a nonlinear smoother called UPS has been
proposed to deal with the off-line transfer alignment estima-
tion of airborne distributed POS. In the UPS, UKF, PF, and
smoothing are combined together to provide the respective
advantages from each of them to improve estimation accu-
racy. The validity of the proposed algorithm is verified by
simulation test and comparison with URTSS on the estima-
tion accuracy of motion parameters and baseline. The
simulation results show that UPS can improve estimation
accuracy and has more adaptability to the maneuver than
that of URTSS. This method is a better choice for off-line
transfer alignment in distributed POS with large misalign-
ment and will greatly improve the resolution of flexible
baseline interferometric SAR imaging. The next work is
that the practical flight experiment based on long flexible
baseline will be implemented to validate the performance
of this method.
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Table 1: Means of RMSE and STD values of estimate errors.
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