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abstract

We present an application of statistical graphical models to simulate economic variables for the

purpose of risk calculations over long time horizons. We show that this approach is relatively

easy to implement, and argue that it is appealing because of the transparent yet flexible means of

achieving dimension reduction when many variables must be modelled. Using United Kingdom

data as an example, we demonstrate the development of an economic scenario generator that

can be used by life insurance companies and pension funds. We compare different algorithms

to select a graphical model, based on p-values, AIC, BIC, and deviance. We find the economic

scenario generator to yield reasonable results and relatively stable structures in our example,

suggesting that it would be beneficial for actuaries to include graphical models in their toolkit.
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1. Introduction

Actuaries and financial risk managers use an Economic Scenario Generator (ESG) to

identify, manage and mitigate risks over a range of time horizons. In particular, pension

schemes and other long-term businesses require ESGs to simulate projections of assets

and liabilities in order to devise adequate risk mitigation mechanisms. ESGs thus need

to provide reasonable simulations of the joint distribution of several variables that are

required for the valuation of assets and liabilities. In this paper, we discuss how a graphical

model approach is used to develop an ESG.

A wide range of ESGs are currently in use in the financial services industry. These

models have varying levels of complexity and are often proprietary. They are periodi-

cally recalibrated, and tend to incorporate a forecasting dimension. For instance, they

may incorporate a vector autoregression model. Additionally, many rely on a cascading

structure, where the forecast of one or more variables is then used to generate values for

other variables, and so on. In each case, these models face the difficult trade-off between

accurately capturing short-term dynamics (requiring greater complexity) and long-term

interdependencies. Further, the introduction of additional variables may require a signif-

icant reworking of the cascading structure in such models.

For the purpose of risk calculation over long periods, previous authors have adopted

the simpler approach of modelling the underlying correlations between the innovations to

the variables e.g. the residuals or the error terms in an autoregression. Graphical models

achieve this in a parsimonious manner, making them useful for simulating data in larger

dimensions. In graphical models, dependence between two variables is represented by

an “edge” in a graph connecting the variables or “nodes”. This approach allows us to

assume conditional independence between two variables (that are not directly connected

by an edge) and to set their partial correlations to zero. The two variables could then

be connected via one or more intermediate variables, so that they could still be weakly

correlated.

An objective of this paper is to encourage the use of graphical models and demonstrate

their appeal for actuarial applications. As a result, we compare different algorithms to

select a graphical model, based on the Akaike Information Criterion (AIC), the Bayesian

Information Criterion (BIC), p-values and deviance. We find them to yield reasonable

results and relatively stable structures in our example. The graphical approach is fairly
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easy to implement, is flexible and transparent when incorporating new variables, and thus

easier to apply across different datasets (e.g. countries). Similar to other reduced form

approaches, it may require some constraints to avoid violation of both theory-based and

practical rules. It is also easy to use this model to introduce arbitrary economic shocks.

We provide an application of the graphical model approach in which we identify an

ESG suitable for use by a life insurance company or a pension fund in United Kingdom that

invests in equities and bonds. While more complex modelling of the short-term dynamics

of processes is certainly feasible, our focus is on the joint distribution of innovations over

the long-term. To this end, we seek the simplest time series dynamic that produces an

adequate model, by fitting an autoregressive process to each of the series in our model

and then estimate the graphical structure of the contemporaneous residuals. We find that

simulations from this simple structure provide plausible distributions that are comparable

to an established benchmark. The goal in our paper is to retain as simple a time series

model as possible to highlight the potential of the graphical structure, even when there

is a limited series of data available (as in some countries). However, we also discuss how

graphical models can be used to model more complex dynamics if needed, such as to

introduce nonlinear dependence through regime shifts.

Overall, we argue that this approach to developing ESGs is a useful tool for actuaries

and financial risk managers concerned about long term asset-liability modelling. Below,

we provide a brief background on ESGs proposed for the insurance industry. In the

next section, we provide a short introduction to the graphical modelling method we will

apply. In sections that follow, we will first describe our dataset, and then using it as an

illustration, discuss the various approaches to selecting an appropriate graphical model.

We will also provide some comparisons to a published model.

1.1 Background and Motivation

ESGs have been in use for a long time, and play a central role in quantifying the

risks to the economic survival of a firm over the life of its commitments. Some of the

key variables required to estimate the distribution of future assets and liabilities include

returns to stocks and bonds, as well as discount rates.

A key requirement for an ESG is to present coherent future scenarios of all relevant

variables jointly, rather than to simulate them without paying attention to their interlink-

ages. For a review of the considerations in developing and using an ESG, see Pedersen
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et al. (2016).

One of the earliest published models taking this into account, and aimed at actuarial

requirements was that of Wilkie (1986). This model is based on a carefully calibrated

cascading structure that builds up future scenarios in an explicit sequence, taking into

account the dynamic properties of the individual variables being modelled. It has sub-

sequently been updated and extended in a series of papers (Wilkie, 1995; Wilkie et al.,

2011). While the general principles remain the same, the authors have applied new tech-

niques and have updated information about the original and newly introduced variables

to generate fresh forecasts. In particular, Wilkie and Şahin (2016, 2017a,b,c, 2018a,b)

thoroughly analyse the model structure and estimation, and incorporate new methods to

refine the modelling of individual and joint dynamics of different series.

Several other models and variations have been developed, both in the public domain

and in the proprietary commercial domain (see, e.g. Mulvey et al., 1998, 2000; Ahlgrim

et al., 2004).1 Huber (1997) has provided a detailed analysis of the Wilkie model. Other

models developed along the same principles include Yakoubov et al. (1999). Whitten and

Thomas (1999) and Ahlgrim et al. (2005) are among papers that propose the introduc-

tion of nonlinear elements, such as threshold effects or regime switching. Chan (2002)

proposed a general vector auto regression moving average structure to overcome some of

the restrictions in previous models. This is only a partial list of a large literature on ESGs

based on a vector autoregression (VAR) representation. Other authors have proposed the

inclusion of no-arbitrage constraints across markets when applying equilibrium models

(see, e.g. Smith, 1996; Thomson and Gott, 2009).

In a cascading structure, one could, for instance, begin by modelling either the short

or long government bond yield and the term spread. Together, these variables could act as

inputs in the price inflation process. As an example, Mulvey et al. (1998) model inflation

as a diffusion process that depends on the short rate, the long rate and has a stochastic

volatility component. These variables, along with inflation, then act as inputs to the

next variable being modelled. At each stage, a number of constraints may be needed

and the system then builds up into a tightly structured process with joint dynamics.

1The providers of commercial models regularly update the scenarios generated due to changes in the
starting values of the variables or the parameter estimates in the model itself. In addition, in USA, the
Society of Actuaries and the American Academy of Actuaries jointly manage an ESG used for regulatory
capital calculations, which is publicly available from their website.
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In such models, there exists a natural tension between short-run dynamics and longer

term predictability as in any vector autoregression framework. Further, the procedure for

constructing such structures often involves multiple testing schemes for model selection

- an issue that may require more attention as the complexity of the individual models

increases.

One of the motivations for the current paper is to offer a complementary approach to

developing ESGs that is somewhat easier to implement and more flexible when one needs

to incorporate new information. Graphical models provide a simple visual summary of the

linkages being modelled and allow the modeller to use their judgement in a transparent

manner when attempting dimension reduction. The models can generally be estimated

and used to generate simulations easily and quickly.

As demonstrated by Ang and Piazzesi (2003), one can improve the representation of

the dynamics of variables such as interest rates by incorporating other correlated variables

in the model, which is what the graphical model achieves without specifying more complex

processes. Given that our goal is to capture more long-term stable relationships and allow

for variation across them, the simplicity helps us avoid the trade-offs imposed by short-

term versus long-term forecasting (see, e.g. Christoffersen and Diebold, 2000).

An early application of graphical models to risk estimation was proposed by Porteous

(1995). Subsequently, this model has been updated and applied in a number of papers (see,

e.g. Porteous and Tapadar, 2005, 2008a,b; Porteous et al., 2012; Yang and Tapadar, 2015).

As the primary focus of these papers was risk quantification of financial services firms,

detailed discussions of the development and methodology of the ESG were not included.

In this paper we demonstrate the steps in building a graphical model for simulating

economic scenarios and discuss the issues that arise.

2. Graphical models

A graph, G = (V , E), is a structure consisting of a finite set V of variables (or vertices

or nodes) and a finite set of edges E between these variables. The existence of an edge

between two variables represents a connection or some form of dependence. The absence

of this connection represents conditional independence.

For instance, if we have a set of three variables V = {A,B,C}, where A is connected

to B and not to C, but B is connected to C, A is connected to C via B. A is then
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conditionally independent of C, given B. Such a structure can be graphically represented

by drawing circles or solid dots representing variables and lines between them representing

edges. The graphical model described above with three variables, A, B and C, is shown

in Figure 1. We can see that there is a path between A and C, which goes through

B. The graphs we consider here are called undirected graphs because the edges do not

have a direction (which would otherwise be represented by an arrow). Such graphs model

association rather than causation.

A

B

C

Figure 1: A graphical model with 3 variables and 2 edges.

Another way of looking at graphical models is that they are excellent tools for mod-

elling complex systems of many variables by building them using smaller parts. In fact,

graphical models may be used to represent a wide variety of statistical models including

many of the more sophisticated time series models used in actuarial science today. Recent

standard and accessible texts on graphical models include Edwards (2012) and Højsgaard

et al. (2012). The latter provides detailed guidance on the use of packages written in

R to estimate graphical models. In this paper, we make use of these standard packages

wherever possible. Our aim is to demonstrate the use of the undirected graph to develop

a parsimonious representation of the economic variables that can then be easily used for

simulation.2

Graphical models are non-parametric by nature, but they may be used to represent

parametric settings, a feature that is desirable for applications such as ours. Due to the

2Although we do not discuss directed graphs here, they are widely applied for causal inference. For
instance, an arrow from A to B and one from B to C in Figure 1 would establish an indirect causal link
between A and C (mediated by B), whereas an arrow from A to C would represent a direct causal link.
Such a structure would also be useful if we were modelling a time series. An advantage of using graphical
models with causal structures is that they may help discriminate between strong and weak effects through
dimension reduction.
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easy translatability between the traditional modelling structure (covariance matrices) and

the graphical structure in multivariate normal settings, we will focus on the parametric

approach here and show that it leads to reasonable outcomes with our modelling strategy.

Such models are known as Gaussian Graphical Models.

One of our key goals is to be able to represent the covariance structure with dimension

reduction, and the graphical model will allow us to achieve that by effectively capturing

conditional independence between pairs of variables and shrinking the relevant bivariate

links to zero while allowing for weak correlations to exist in the simulated data. For

the multivariate normal distribution, if the concentration matrix (or inverse covariance

matrix) K = Σ−1 can be expressed as a block diagonal matrix, i.e.:

K =


K1 0 · · · 0

0 K2 · · · 0
...

...
. . .

...

0 0 · · · Km

 , (1)

then the variables u and v are said to be conditionally independent (given the other

variables) if kuv = 0 where K = (kuv). To achieve this block diagonal structure, variables

may need to be reordered.

As the concentration matrix K depends on the scales of the underlying variables, it

is sometimes easier to analyse the partial correlation matrix ρ = (ρuv), where:

ρuv =
kuv√
kuu kvv

. (2)

Note that ρuv = 0 if and only if kuv = 0.

For our example graphical model in Figure 1 the partial correlation matrix would

look like:

ρ =

 1 ρAB 0

ρAB 1 ρBC

0 ρBC 1

 , (3)

where ρAB 6= 0 and ρBC 6= 0. So, variables A and C are independent given variable B.

Note that this could still generate non-zero unconditional correlation between A and C.
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Before illustrating the application of this structure, we will first describe the data in

the next section.

3. Data

In order to build a minimal economic model, which can be used by a life insurance company

or a pension fund in United Kingdom, we require retail price inflation (I), salary inflation

(J), stock returns and bond returns over various horizons.

The data we use in this paper has been generously provided by David Wilkie, who

has carried out a range of checks and matching exercises to construct all the relevant time

series. Following his procedure in Wilkie (1986), we model dividend yield (Y ), dividend

growth (K) and Consols yield (C) to construct stock and bond returns. Consols yield is

the yield on perpetual UK government bonds.

We use the complete dataset provided by David Wilkie, which consists of annual

values from 1926 to 2017 as at the end of June each year. An excerpt of the data can be

found in Wilkie et al. (2011).
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4. Modelling

We are interested in simulating the selected variables jointly, so we may first wish

to take a look at the historical pairwise correlations. These are given in Table 1. It

appears that price and salary inflation and long-term bond yields are all highly correlated

with each other, but the other correlations are relatively smaller. A graphical model

promises to provide the flexible framework needed to generate scenarios consistent with

this long-run dependence structure.

Table 1: Historical correlations.

It Jt Yt Kt Ct

It 1
Jt 0.83 1
Yt 0.35 0.28 1
Kt 0.37 0.35 −0.08 1
Ct 0.64 0.73 0.17 0.27 1

4.1 Correlations in levels or in innovations

As discussed above, graphical models may capture vector autoregression frameworks

and models with latent variables or states, but our aim is to provide an adequate model

that is as simple as possible. When simulating, there is a philosophical question as to

whether one should produce scenarios from a tightly structured model of the levels of

the variables, or whether one should focus on the innovations in the time series processes

of these variables. By construction, the innovations should be i.i.d once a well-specified

regression model has been fitted. We take the view that contemporaneous changes in

variables beyond those predicted by their own past values offer a useful handle on the

range of scenarios to be produced (see, e.g. Jondeau and Rockinger, 2006, for the usefulness

of such an approach).

Over the 90-year history of these variables, there have been several events, but one

could still argue that there is long-term mean reversion in most series, albeit at different
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rates. This may be a good reason to focus our attention on modelling the joint innovations

in the series. Rather than model the joint dynamics of variables using a large number

of constraints and parameters, we can minimise the number of constraints required by

restricting them to situations that would rule out inadmissible values.

Given that the aim of our ESG is to emphasise long-run stable relationships and to

generate a distribution of joint scenarios, we take the approach of estimating the joint

distribution of the residuals of individual time series regressions. This focuses on the

dependence between innovations and, we argue, may allow for a richer set of scenarios

generated with relatively simple models. For each variable, we will first estimate a time

series model independently and then we will fit a graphical model for the time series

residuals across variables.

At the annual frequency we consider here, the dynamics of the variables can arguably

be adequately represented by a simple AR(1) process in most cases. For each time series

Xt, we use the following AR(1) time-series model formulation:

µx = E[Xt] (4)

Zt = Xt − µx (5)

Zt = βx Zt−1 + ex,t where ex,t ∼ N(0, σ2
x). (6)

The parameter estimates from the AR(1) regressions are provided in Table 2.

Table 2: Time series parameter estimates.

µ β σ

It 0.0404 0.6102 0.0387
Jt 0.0528 0.7801 0.0282
Yt 0.0468 0.6718 0.0085
Kt 0.0527 0.4263 0.0852
Ct 0.0617 0.9674 0.0083

Note: All parameter estimates for µ and β are statistically significant at the 5% level

In addition, the fit appears satisfactory in the sense that there does not appear to be

significant residual dependence in the errors. Partial autocorrelation plots of the residuals

from these regressions are provided in Figure 2 for reference. While an AR(1) fit appears
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Figure 2: Plots of partial autocorrelation functions (PACF) of the residuals.
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adequate for the purposes of our model, one can choose an alternative univariate time

series model if deemed appropriate, as we are interested in the innovations from the model.

4.2 Fitting a graphical model to the residuals

To estimate a Gaussian Graphical Model for the residuals, we assume that:

et = (eIt , eJt , eYt , eKt , eCt) ∼ N (0,Σ).

Estimation is carried out based on maximum likelihood, with model selection explained in

detail in the next subsection.3 The correlations between the residuals are given in Table

3.

Table 3: Correlations of residuals.

It Jt Yt Kt Ct

It 1
Jt 0.56 1
Yt 0.34 0.25 1
Kt 0.31 0.28 0.08 1
Ct 0.31 0.13 0.43 0.13 1

The resulting partial correlation matrix is given in Table 4. Clearly, some of the

partial correlations in the matrix are small. Our goal is to identify the graph(s), with the

minimum number of edges, which describe the underlying data adequately.

As there are 5 variables in the model, the minimum number of edges required for a

connected graph (i.e. where there exists a path between any two nodes) is 4. The graph

with the maximum possible number of edges is the saturated model with 5C2 = 10 edges.

We will call this Model ES (E for edges and S for saturated). The model with no edges

is the independence model, i.e. all variables are independent of each other, and we will

call it Model E0 (as there are no edges).

3We have used the following R (R Core Team) packages in the analysis: gRbase (Dethlefsen and
Højsgaard, 2005), Rgraphviz (Gentry et al., 2010), gRim (Højsgaard et al., 2012), igraph (Csardi and
Nepusz, 2006), and SIN (Drton and Perlman, 2008).
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Table 4: Partial correlations of residuals.

It Jt Yt Kt Ct

It 1
Jt 0.48 1
Yt 0.16 0.11 1
Kt 0.18 0.15 −0.06 1
Ct 0.20 −0.09 0.37 0.06 1

In total, there are 210 = 1024 distinct models possible. But we will focus only on

those models that are selected, based on certain desirable features.

4.3 Desirable features and model choice

Selection of a graphical model can be carried out by traditional statistical criteria.

This is usually done in an iterative procedure, where we consider our model selection

criterion of choice before and after adding (or removing) an edge between two variables.

One may begin with Model E0 or ES and proceed in a pre-defined sequence. In each case,

disciplined judgement may be applied, for instance, by plotting the p-values associated

with individual edges and choosing a desired cut-off point. The statistical criteria include

AIC, BIC, p-values of individual partial correlation estimates, and deviance.4 Below, we

provide a set of tables summarising the results of the estimation procedures, followed by

a discussion of the criteria used in the procedures.

In Table 5, we present summary statistics of the following models:

Model E0: The independence model with no edges.

Model E4: The optimal model according to BIC.

Model E5: The optimal model according to AIC.

Model E6: The optimal model using simultaneous p-values at confidence level α = 0.6.

Model ES: The saturated model with all possible edges.

4It is possible to use the graphical model “language” to estimate other standard models such as
Markov switching or latent Markov models. For direct modelling of multivariate time series, relevant
model selection approaches have been proposed by Runge (2013) and Wolstenholme and Walden (2015)
among others.
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The graphical structure of Models E4, E5 and E6 are given in Figure 3.

Table 5: Summary of graphical model fit.

Edges logL AIC BIC Deviance iDeviance

Model E0 0 1106.48 −2202.96 −2190.25 82.09 0.00
Model E4 4 1143.82 −2269.64 −2246.75 7.42 74.67
Model E5 5 1145.70 −2271.40 −2245.96 3.66 78.43
Model E6 6 1146.66 −2271.33 −2243.35 1.73 80.36
Model ES 10 1147.53 −2265.06 −2226.91 0.00 82.09

Parameter estimation based on the maximum likelihood approach aims to maximise

the likelihood, or log-likelihood logL, of a specified model. Let l̂ be the maximised value

of the log-likelihood. Usually, a model with a higher maximised log-likelihood is preferred.

In a nested model framework, a model with more parameters will naturally lead to

a higher log-likelihood. This is evident from the logL measures given in Table 5, where

the saturated Model ES has the highest log-likelihood and the independence Model E0

has the lowest log-likelihood. But, if parsimony is a desirable feature, a saturated model

need not be the preferred model.

In a nested model framework, one can define the notion of Deviance of a model, with

maximised log-likelihood l̂, as:

Deviance = 2((l̂sat − l̂)), (7)

where l̂sat is the maximised log-likelihood of the saturated model. So Deviance represents

the log-likelihood ratio relative to the saturated model. On the other hand, iDeviance of

a model, with maximised log-likelihood l̂, measures the log-likelihood ratio relative to the

independence model and is defined as:

iDeviance = 2((l̂ − l̂ind)), (8)

We can see from the Deviance and iDeviance values in Table 5 that Models E4, E5 and

E6 are much closer to the saturated model than the independence model.

Among these nested models, one can define optimality based on penalised log-likelihood,

where a penalty term is introduced to reflect the number of parameters in the model. Typ-
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Model E4: Graphical model with 4 edges.
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Model E5: Graphical model with 5 edges.
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Model E6: Graphical model with 6 edges.
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Figure 3: Optimal graphical models based on different selection criteria.
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ically, this requires minimising the negative of a penalised likelihood:

− 2 logL+ k × p, (9)

where p is the number of (independent) parameters and k is an appropriate penalty factor.

Different values of k are used in practice, e.g. k = 2 gives the AIC and k = log n,

where n is the number of observations, gives the BIC.

In Table 5, Model E4 is the optimal model according to BIC and Model E5 is the

optimal model according to AIC.

Model E6 is obtained using a special form of thresholding called the SINful approach

due to Drton and Perlman (2007, 2008). The principle here is based on a set of hypotheses:

H = {Huv : eu ⊥⊥ ev | all other variables },

for which the corresponding nominal p-values are P = {puv}. These are then converted to

a set of simultaneous p-values P̃ = {p̃uv}, which implies that if Huv is rejected whenever

p̃uv < α, the probability of rejecting one or more true hypotheses Huv is less than α.

In particular Drton and Perlman (2008) suggest two α thresholds to divide simulta-

neous p-values into three groups: a significant set S, an intermediate set I and a non-

significant set N and hence the name SINful.

Figure 4 plots the simultaneous p-values for our dataset. The significant set, S,

contains the edges between the residuals between price and salary inflation and also

between dividend yield and Consols yield, even at a level of α = 0.01. Setting the second

α threshold at 0.6 leads to the inclusion of 4 edges in the intermediate set I. These edges

connect price inflation to all other variables and salary inflation to dividend growth. The

remaining 4 edges form the non-significant set N. The resulting model using the edges in

sets S and I produces Model E6 in Table 5 and Figure 3. Here, we have used judgement

from a visual overview of the p-values to determine that there appear to be three distinct

groups of edges. One could potentially choose 0.4 or 0.5 as the threshold in place of 0.6.

However, this claim is equivalent to arguing that the edges 1-3 and 2-4 belong to the

set N, which one may or may not be comfortable claiming. Thus, this process remains

transparent.
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Figure 4: Plots of simultaneous p-values.

4.4 Other desirable features

Our next step will be to use the models above to generate scenarios over long periods

in the future. For this purpose, in addition to dimension reduction, the modularity feature

of the graphical model becomes very important.

A clique is a subset of variables in a graph such that all the variables in this subset

are connected to each other. In other words, the subgraph represented by the clique is

complete or saturated within itself. A maximal clique is one that is not the subset of

another larger clique. When simulating variables using the multivariate normal distri-

bution, such a clique is the unit from which we simulate. As a result, if the maximum

size of a clique exceeds 3, then the gains from dimensionality reduction in estimation are

significantly forfeited at the time of simulation. Graphs with such a preferred structure
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are referred to as triangulated. Visual evaluation of the graphical structure to address

this is therefore a useful instance of applying judgement while choosing between models.

In all the models, E4, E5 and E6, the structures are amenable to simulation due to the

cliques being at most of size 3.

Another way to characterize this desirable property is through the graph’s decom-

posability, which allows for the derivation of an explicit MLE formula (see, e.g. Edwards,

2012, and references therein). Essentially, decomposability implies the ability to describe

the model in a sequential manner, such as in the form of a set of regressions. When

simulating from an estimated model, this allows us to simulate variables in a sequence,

conditional on the realisations of previous variables. The standard stepwise model se-

lection algorithms usually allow the user to automatically disregard nondecomposable

graphs.

Overall, of the three models we have identified, Model E4 is the minimal. However,

the addition of the two links to get to Model E6 is intuitively appealing and consistent with

economic theory as well as empirical evidence. It is well known that inflation expectations

influence consol yields (Campbell and Ammer, 1993) and we also expect salary inflation

and dividend growth to be related over the long term. Allowing for these links (albeit with

weak correlation) helps in using our simple dynamic structure to capture these associations

in the distribution of scenarios.

4.5 Scenario generation

Using Model E6 as an example, we outline the steps required for simulating future

economic scenarios:

Step 1: The initial values of the economic variables, i.e. (I0, J0, Y0, K0, C0) are set at

their respective observed values at the desired start date.

Step 2: To simulate (It, Jt, Yt, Kt, Ct) at a future time t, given their values at time (t−1),

we first need to generate the innovations: et = (eIt , eJt , eYt , eKt , eCt).

For Model E6, as can be seen from Figure 3, (eIt , eJt , eKt) and (eIt , eYt , eCt) are the

two cliques with eIt being the common variable. We choose one of the cliques, say

(eIt , eJt , eKt), and simulate it from the underlying trivariate normal distribution.

Then the other clique, (eIt , eYt , eCt), is simulated using a bivariate conditional nor-

mal distribution (eYt , eCt) given the value of eIt already simulated for the first clique.
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This shows how a graphical model approach can help reduce the computationally

intensive task of simulating from a five-dimensional normal distribution to two sim-

pler tasks of simulating from a trivariate and a bivariate normal distributions. In

other words, for standard matrix inversion algorithms, it is a decrease in complexity

from O(53) to O(33).

Using the simulated innovations (eIt , eJt , eYt , eKt , eCt), the values of (It, Jt, Yt, Kt, Ct)

can then be calculated using Equations 4–6.

Step 3: Step 2 is repeated sequentially for the required time horizon to obtain a single

realisation of a simulated future scenario.

Step 4: Steps 1–3 are then repeated for the desired number of simulations.

5. Simulation Results

We generate simulated values starting from the last data point available, which is

2017. In this example, we have produced 10,000 paths for the joint set of variables.

In addition to the scenarios generated through the graphical model, we also simulate

the same number of paths based on the Wilkie model as a benchmark. In what follows,

we will present the results alongside to allow for a discussion of the performance of our

approach.

5.1 Marginal distributions

The simulation results can be viewed in terms of the marginal distributions of the

variables and also in terms of their joint realisations. As a first sense check, we look at

“fan charts” of the distributions of the five variables over the length of the simulations.

These charts, based on Model E6 are presented in Figure 5. Models E4, E5 and E6

produce qualitatively similar results, so we show the plots for Model E6 as it has an

intuitively appealing structure. For each variable, we place the chart from the Wilkie

model alongside for easy visual comparison.

The different speeds of convergence to the long-term mean are clearly visible across the

different series. However, this is not simply an artefact of the different AR(1) estimates.

While correlations in innovations feed into the cross-autocovariances of the series, the

impact is varied on account of the different levels of memory in the processes. This is
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Figure 5a: Fanplots of simulations of price inflation, salary inflation and dividend yield
from the Model E6 and the Wilkie model.
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consistent with what we would expect over the short-term when starting the simulation

from the current values of the series. In the long run all series have marginal distributions

around their long-term means.

It also appears that the overall long-term picture of the marginals from our model

are broadly similar to those from the Wilkie model. The main differences (albeit small)

appear in the slower rate of mean reversion of the forecasts for salary inflation. The

graphical model also generates a wider distribution of Consols and dividend yields than

the Wilkie model.

The fan charts offer a useful sense-check as they can help identify potential violations

of common sense economic constraints that one would like to avoid in the simulations. For

instance, due to the exceptionally low long-term bond yields in the recent environment,

we have imposed a constraint that the long-term yield does not fall below 0.05%. Should

a value below this be predicted, it is simply set at the minimum value instead. While we

have chosen this value to be consistent with current practice, recent experience suggests

that the modeller may choose to lower the boundary or even do away with this constraint

altogether. The model without the constraint does not preclude negative yields.

These types of constraints may have an impact on the correlations among the simu-

lated variables, so it may also be useful to check the correlations, which we do next.

5.2 Distribution of correlations along simulated paths

We can also examine the range of “realised” or estimated correlations that arise in

the simulated data. This helps get an additional view of the risk captured in the range

of simulated scenarios, as estimated correlations would vary for each path or sample.

In Figure 6, we provide the pairwise correlations among the simulated versions of the

variables based on Model E6 and the Wilkie model. For each simulation path we calculate

one estimate of the correlation. We then plot the distribution of these correlation estimates

across the simulations.

While many of the correlation profiles are very similar between the two approaches,

there is a pronounced difference in the case of price and salary inflation. One might argue

that the correlation in the Wilkie model is very constrained due to the model structure, it

is also the case that the graphical model produces a very wide range of correlation values

for the two variables. The differences in correlation profiles may partly be explained

by the differences in persistence and variability between retail price inflation and salary
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inflation, and partly as a consequence of the Gaussian structure of the graphical model

and its focus on innovations (as compared to the Wilkie model’s approach). However, it is

not clear that one outcome is preferred to the other, so we do not consider any remedies.

5.3 Bivariate heat maps

The policy-oriented user is ultimately interested in the joint values of stock and bond

returns indices, inflation and wages that the models generate. To discuss the output in

this context, we plot the bivariate heat maps generated by the simulations for Model E6

and the Wilkie model. The pairs we consider are: first, annual stock returns and annual

bond returns; and second, annual price inflation and annual salary inflation. We overlay

the map with annual observations of the relevant pairs from the historical data available.

These plots are provided in Figures 7 and 8 respectively. The heatmaps represent densities

that integrate to 1, with the same colour representing the same quantile level. Only

very subtle differences can be observed across the models, and they all do an arguably

reasonable job of capturing the historical distribution. The correlations between price and

salary inflation appear tighter for the Wilkie model than the graphical models, which is to

be expected from the different approaches taken. However, the models apply appropriate

mass to the relevant areas of the distribution by comparison to historical data.

An additional check we can perform is to look at the (annualised) total returns of

stocks and bonds over different horizons. We do this in Figure 9 for Model E6 and Figure

10 for the Wilkie model.

As expected, the shape/sign of the bivariate correlation appears to be more stable for

the graphical model than the Wilkie model. This is because we identified this type of long-

run stable dependence as an objective for our models. An interesting outcome, however,

is the mass placed by the graphical model on an extreme zone during the shorter horizons.

Given the recent history of exceptional policy intervention by developed countries that

exceeded the GDP of most countries in the world, this is not a surprising result. It is

mainly driven by exceptionally low yields so that small absolute changes in yields can

lead to very high returns. This feature does not appear in the Wilkie model, which may

partly be because the Wilkie dynamics are more tightly constrained and do not allow

the yields to frequently get pushed back down to the lower bound. In the graphical

model, as the yields bounce away from a lower bound, they may be pushed back down

by developments in other variables such as price inflation. This feature speaks to the



24

ability of a simple graphical model with AR(1) dynamics and dependent innovations to

also capture shorter-term risks.

5.4 A life insurance annuity example

We now consider a simulation example on a simple life insurance annuity contract.

As the main purpose of this example is to highlight the stochastic variability of the un-

derlying economic factors, we have used a simple Gompertz-Makeham model for force

of mortality at age x: µx = αβx. The estimated parameters are α = 0.00008 and

β = 1.093, based on the England and Wales data from Human Mortality Database

(https://www.mortality.org/) for ages 60–99 and years 1961–2013. We have not mod-

elled future mortality improvements and the uncertainties involved in future mortality

projections.

Consider a portfolio of immediate life annuities of £1 payable annually in arrears (for

a maximum of 40 years) sold to a cohort of 60-year old individuals, all of whom follow

the same mortality model as specified above. We assume that the assets are invested

equally in bonds and equities; and rebalanced at the end of each year. Figure 11 shows

the distributions of the price of the annuity based on the projected economic scenarios

from the Model E6 and the Wilkie Model.

Both the distributions show similar characteristics, including right skewness and sim-

ilar averages: £12.5 for Model E6 and £13 under the Wilkie Model. However, the

dispersion or variability under Model E6 is higher. This is a direct consequence of the

greater variability that can be observed in the bivariate heat maps of the Consols total

return and share total return as shown in Figure 7.
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Figure 6: Correlations of variables for simulations from the Model E6 and the Wilkie model.
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Figure 7: Plots of simulated share and Consols total returns from the Model E6 and the
Wilkie model, where the black dots represent historical observations.
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Figure 9: Plots of simulated share and Consols total returns from the Model E6.
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Figure 10: Plots of simulated share and Consols total returns from the Wilkie model.
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Figure 11: Distribution of price of an immediate annuity of £1 payable annually in
arrears (for a maximum of 40 years) sold to a cohort of 60-year old individuals.

6. Discussion

We have provided a step by step analysis of the data used to build a graphical de-

pendence structure of the residuals from the simplest, but adequate, time series model

of five variables. This has partly been for ease of exposition and partly to use the same

data as applied in the benchmark paper. The use of a simple AR(1) model, which we

have shown to be at least adequate for the current dataset, demonstrates the potential of

graphical models to generate the rich structures required for long term risk management

applications. However, this does not preclude the possibility that actuaries may wish to

develop more complex models of time series, with many more dimensions for their own

applications. Extending the procedures demonstrated in this paper is straightforward in
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such cases. In most cases, such procedures would lead to intermediate models, between

the relatively agnostic structure of the graphical models and the highly parameterized

structure of a cascading model.

It is also possible to apply other graphical modelling techniques to focus on specific

concerns, for instance, issues of non-Gaussianity or nonlinearity and high persistence

in the time series. One of the insights we confirmed was that, as is well known from

the macroeconomics and finance literature, a model that generates different regimes for

correlation in good and bad times could improve the forecast distributions. Despite relying

on a simple dynamic and a multivariate normal distribution for the innovations, the

model captures some of these effects simply through the design of a suitably reduced

form dependence structure. However, it is possible to model regime shifts directly in

graphical models. Recent work on graphical models includes improvements in time series

modelling (e.g., Wolstenholme and Walden, 2015), in identifying separate subsamples

(using, for instance, stratification as in Nyman et al. (2017)), and in jointly estimating the

dependence structure and change points in time series using a single algorithm (Gibberd

and Roy, 2017).

Drton and Maathuis (2017) provides a useful overview of recent developments in

graphical models, including directed graphs. The use of directed graphs in cases where

the (statistical) causality is clear and well established may assist in improving graphical

models, but also risks exposing the modeller to regime shifts. When the economic causality

is not fully established, a directed graph may increase the wrong way risk of certain

scenarios more than and undirected graph, which is another reason to be cautious about

additional assumptions in long term risk modelling.

7. Summary and conclusions

We have attempted to demonstrate the transparency, flexibility and portability of

graphical models for developing an ESG. There are undoubtedly other, more structural,

models in the large vector autoregression literature that could effectively capture the joint

dynamics of variables. However, such models must by necessity be tightly parameterised

and ultimately require some dimension reduction approach as the number of variables

increases. Instead, we have seen that the simple model with AR(1) dynamics combined
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with graphically modelled innovations can generate rich and reasonable distributions for

use in long-term risk management.

The fitted model performs comparably to the established benchmark and has the

additional advantage of easy portability to new datasets, transparency, and flexibility.

Although for ease of exposition, we have considered only five UK economic variables in

this paper, the model can easily accommodate extensions to a wider range of economic

variables and also for many different countries. We do not claim that this model is superior

compared to other available models, as all models have their strengths and limitations.

Our broader objective in this paper is to promote the use of statistical graphical

modelling approach for actuarial functions. We envisage that the techniques outlined in

this paper can be modified and adapted to a wide range of actuarial applications, includ-

ing modelling of cause-specific mortality and morbidity rates; investigation of insurance

claims based on a range of insurance risk rating categories; analysing the relationships

between different sources of risks for quantifying risk-based solvency capital requirements;

to suggest a few possibilities.

As access to ever larger datasets improves, actuarial researchers and practitioners will

need to seek out and develop ever more innovative and sophisticated tools and techniques

to analyse data and extract the most relevant information from these extensive datasets

for decision making purposes. In this paper, we demonstrated the usefulness of one such

dimension reduction technique in the form of statistical graphical models.
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