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ABSTRACT: Forces acting on a functional nanomaterial during operation can cause plastic
deformation and extinguish desirable catalytic activities. Here, we show that sacrificial materials,
introduced into the catalytic composite device, can absorb some of the imposed stress and protect
the structural integrity and hence the activity of the functional component. Specifically, we use
molecular dynamics to simulate uniaxial stress on a ceria (CeO2) nanocube, an important functional
material with respect to oxidative catalysis, such as the conversion of CO to CO2. We predict that the
nanocube, protected by a “soft” BaO or “hard” MgO sacrificial barrier, is able to withstand 40.1 or
26.5 GPa, respectively, before plastic deformation destroys the structure irreversibly; the sacrificial
materials, BaO and MgO, capture 71 and 54% of the stress, respectively. In comparison, the
unprotected nanoceria catalyst deforms plastically at only 2.5 GPa. Furthermore, modeling reveals
the deformation mechanisms and the importance of microstructural features, insights that are
difficult to measure experimentally.

KEYWORDS: molecular dynamics, catalytic reactivity, mechanical properties, ceria nanocubes, stress−strain curves, nanomaterials

■ INTRODUCTION

The properties of a functional material can be tuned by
changing its size and shape (metamaterial sculpting) as an
alternative to elemental control.1 It is therefore not surprising
that the properties of functional materials are being revisited as
a function of nanostructuring, as evidenced, in part, by the
creation of 70 new journals devoted to nanoscience.2 However,
the consequence of traversing to the nanoscale can be severe.
For example, small forces can translate to considerable
pressures when contact areas are reduced to the nanoscale.
In particular, when the same force acts upon a contact area that
is reduced from 1 cm2 to 10 nm2, the pressure increases by 13
orders of magnitude. Plastic deformation of a nanomaterial will
irreversibly extinguish any desirable properties; therefore, it is
vital to understand the mechanical properties of functional
nanomaterials. For example, Huang et al. showed that the
intercalation of Li into SnO2 nanowires introduced consid-
erable localized stress. This resulted in plastic deformation and
pulverization of the material; such major mechanical effects
plague the performance and lifetime of high-capacity anodes in
lithium-ion batteries.3

A catalytically important functional nanomaterial, ceria,
CeO2, has been the subject of intense scrutiny because of its
remarkable properties, including surface activity,4 redox and
defect chemistry,5 oxygen transport6 with application for
energy materials (including solid oxide fuel cells),7 catalysis,8

nanomedicine,9 and chemical mechanical planarization.10,11

For example, ceria, in nanoform, has been shown to be a highly
active catalyst; CeO2 nanocubes can catalyze CO to CO2 at
room temperature in contrast to the parent bulk material.12

Currently, ceria is used as a component of three-way
automobile exhaust catalysts,13 and if ceria is to be replaced

by its nanostructured counterpart, it must resist damage under
the harsh environmental conditions associated with its
operation, such as extremes of temperature, impact, friction,
and wear.
Current composite catalysts include features such as

expanding mats and enclosures to protect the active material
in working conditions.14 The design of the composite catalyst
can therefore be informed by considering the sacrificial ability
of some of the component materials of the composite catalyst.
An additional consideration is that many nanosystems are

composed of multiple nanomaterials, for example, nano-
composites. Here, it is important to understand not only
how each component responds individually to stress but also in
combination. For example, if stress is imposed upon a core−
shell system, how does the system partition the stress? Does
the shell accommodate some of the strain and then impose the
residual stress upon the inner core? If the shell is “harder” than
the core, would the partition of stress be different to the
reverse? Such an understanding will reveal insight into
“sacrificial” and protective nanomaterials.
Stress can originate from a variety of sources in addition to

mechanical load, operational vibration, or friction. For
example, the differences in the thermal expansion coefficients
of two interfaced materials will induce stress when a system is
exposed to high-temperature fluctuations. Similarly, intercala-
tion and substitution cause localized lattice expansion that will
impart stress on neighboring regions that have not (yet)
intercalated an ion.15
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Some insight into this area is already available. In particular,
during the mechanical testing of nanomaterials, the anvils, used
to communicate pressure upon the test material, will likely
themselves deform;16 a soft anvil, such as a metal, will likely
suffer greater deformation than a hard anvil, such as
diamond.17 Accordingly, we question how anvil hardness
influences the catalytic and mechanical properties and
deformation behavior of a material measured using such
anvils. The relationships between the mechanical properties
and nanostructure have been investigated experimentally using
nanoindentation,18 transmission electron microscopy
(TEM),19 and atomic force microscopy.20 Characterizing the
structural changes and time-resolved stress−strain properties is
challenging experimentally.21 Computer simulation can there-
fore play a key complementary role to gain insight into these
changes at the atomistic level and track their progress.
Notwithstanding its remarkable properties and diverse range

of applications, there is limited information pertaining to the
mechanical properties of nanoceria reported in the open
literature. This does not mean that the mechanical strength of
nanoceria has gone entirely unconsidered, though the research
is not always in agreement. For example, simulating uniaxial
force, Caddeo et al.22 determined a yield strength of 12 GPa at
0.20 strain for a ceria nanocube. In contrast, also using
simulated uniaxial force, cubic nanoporous ceria reported by
Sayle et al. determined a yield strength range of 5.4−13.8 GPa
at 0.06−0.08 strain, dependent on the axial direction.23

Although the reported yield strengths are of a similar
magnitude, the strain of the porous material is less than half
that of the nanocube. Comparatively, the bulk material,
measured via density functional theory (DFT) was reported
by Sakanoi et al. to have a yield strength of 22.7 GPa at 0.09
strain.24

The influence of the anvil structure such as the surface
roughness25 and indenter shape26 has been investigated and
shown to influence the measured strength of the subject
material. This highlights the importance of including shape and
surface defects in computational simulations. If a material
contains surface steps and deformations, it will have an impact
on the measured hardness.
Here, we simulate a ceria nanocube under compression

between fixed and deformable anvils and use MgO and BaO as
systems representative of hard and soft anvils, respectively. We
explore the deformation within the nanoceria test material and
deformation suffered by the anvils, as well as the effect this may
have on the catalytic activity.

■ METHODS
Potential Models. All simulations are based on the Born model of

the ionic solid. The energy of the system is given by
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where the first term represents the Coulombic interaction between
ions, i and j, of charges Qi and Qj, respectively, at a distance of rij. The
second and third terms represent the Buckingham form with the
potential values22,27 presented in Table 1. All cation−cation
interactions were set to zero.
Building Atomistic Models. Simulated amorphization and

recrystallization28 was used to generate atom-level models of the
anvils. This technique, analogous to experiment, enables micro-
structural features to evolve during the crystallization step. The
structural models are therefore more realistic in that they capture

structural features observed experimentally. These include surface
steps, vacancies (Figure 1), interstitials, dislocations, and grain-
boundaries. This is important because the mechanical properties of a
material are governed by its microstructure.29

The atomistic structure of the model ceria nanocube comprises six
{100} surfaces, with extensive surface relaxation along the edges in
accord with the real nanomaterial.30 The atomistic structures for the
MgO and BaO anvils comprise {100} surfaces with a variety of steps
and edged stepped {100} surfaces, in accord with the real materials.31

Further details are given in the Supporting Information.
Elastic Constants. The elastic constants of the MgO and BaO

anvils were calculated with the GULP code,32 using potential
parameters reported in Table 1.

Uniaxial Compression. Uniaxial compression was performed
under constant volume (NVT) molecular dynamics (MD) simu-
lation.33 The atoms at the back of one anvil were then moved by 0.02
Å every 100 steps (step size 0.002 ps) to give a compression rate of
0.1 Å ps−1 (10 ms−1). The strain within the system is expressed as

ε =
−L L
L

( )ni

i (2)

where ϵ is the strain, Li is the initial distance between the anvils, and
Ln is the distance after each 100 steps of the compression (each
movement of the anvil). As only uniaxial compression is considered,
the strains are reported as positive values between 0 and 1.

Structural Analysis. Molecular graphics analysis and visualization
was performed using VMD34 and Materials Studio.

Stress Partitioning. During the compressions, the total imposed
stress is partitioned between the anvils and the ceria nanocube. It is
therefore important to deconvolute the total stress to reveal how
much stress is captured by the anvils and the subsequent residual
stress imposed upon the nanoceria. We describe how we calculated
these values in the Supporting Information.

■ RESULTS
Stress−Strain Relationship. The stress−strain curves for

the ceria nanocube using nondeformable (fixed), hard (MgO),
and soft (BaO) anvils are shown in Figure 2. These figures
show the total stress (black), the stress absorbed by the anvils
(gray), and the residual stress acting upon the ceria nanocube
(orange/green/blue). Details of the highlighted events

Table 1. Buckingham Potential Parameters Used in the
Molecular Dynamic Simulations

atom i atom j A/eV ρ/Å C/eV Å−6

Ce4+ O2− 1986.83 0.3511 20.40
Mg2+ O2− 1428.50 0.2945 0.00
Ba2+ O2− 931.70 0.3939 0.00
O2− O2− 22 764.00 0.1494 27.88

Figure 1. (a) Image showing the ceria nanoparticle, colored white,
sandwiched between two anvils, colored red. The structural
complexity of the anvil can be seen in (b), (c), and (d). (b) shows
a void on the surface of the anvil, (c) shows a void along the edge of
the anvil, and (d) shows a variety of steps on the anvil surface.
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(numbered on the graphs) are presented in Table 2, with
larger figures, and further details given in the Supporting
Information. The yield strength was determined when both of
the following criteria were satisfied: sudden system stress
release (drop in the stress−strain curve) and a corresponding
plastic deformation event in the ceria nanoparticle. In particular,
there are several occurrences of sudden system stress release.
However, these events correspond to the sacrificial material
capturing the stress, via a plastic deformation event and not the
nanoceria catalyst.
Experimentally, Young’s modulus is based upon the total

stress, without consideration of stress partitioning. Here, we
report Young’s modulus and yield strength calculated for the
ceria nanocube using hard, soft, and fixed anvils, in Table 3.
The yield strength, the first point of irreversible plastic
deformation, is referred to as moderate/major deformation and
was determined by visual analysis. This is seen as a point of

discontinuity in the stress−strains (i.e., Figure 2b(2)). Minor
deformations were considered potentially reversible through
the removal of the anvils and extended equilibration time, for
example Figure 2b(1).

Structure and Radial Distribution Function. Nanoceria
can catalyze an oxidation/reduction reaction by capturing,
storing, and releasing oxygen.35 The catalytic activity is
dependent upon the surface(s) exposed. In particular, ceria
{111} surfaces are thermodynamically more stable than {100}
surfaces. On the other hand, it is energetically easier to extract
oxygen from the {100} surfaces, and therefore, nanoceria,
which exposes {100} surfaces is catalytically more active than
nanoceria exposing {111}.
Our model ceria nanocube exposes six {100} surfaces,

Figure 3, and therefore a key indicator of the catalytic activity
is the structural preservation of the fluorite crystal structure
and {100} surfaces under uniaxial loading. Figure 3 shows the
structure of the ceria nanocube under 20% compression with
BaO (soft), MgO (hard), and no sacrificial material for
protection. Inspection of the model ceria nanocubes, using
molecular graphics, reveals that the structural integrity of the
{100} surfaces and fluorite crystal structure is retained when
protected by BaO and partially retained with MgO.
Conversely, with no sacrificial material, the nanocube deforms
plastically, resulting in an almost amorphous particle, Figure 3
(orange).
The calculated radial distribution functions (RDFs) provide

additional insight into the structural deformations and are
shown in Figure 4. Inspection of the RDF reveal that when
protected by BaO, the ceria nanocube retains long-range order.
Specifically, the RDF trace is almost identical for the ceria
nanocube under 0 and 20% strain, Figure 4 (blue). Conversely,
when protected by MgO, the peaks start to broaden, Figure 4

Figure 2. Stress−strain curves of nanoceria using: (a) fixed anvils, (b) MgO anvils, and (c) BaO anvils. In each stress−strain curve, the total stress
(black), stress on anvil (gray), and residual stress on nanoceria sample (orange/green/blue) are given. The numbers correspond to the data points
highlighted in Table 2 and represent significant events during the deformation process.

Table 2. Details Describing Events during the Deformation of the Nanocube, at the Locations Given in Figure 2, as Observed
through Visual Analysisa

fixed anvils hard anvils (MgO) soft anvils (BaO)

strain, stress deformation event strain, stress deformation event strain, stress deformation event

1 0.06, 2.2 twist (particle) 0.07, 5.6 particle (minor) 0.06, 2.8 anvil, anvil
2 0.10, 2.5 particle (moderate) 0.09, 7.4 anvil and particle (minor) 0.08, 4.2 anvil, anvil
3 0.15, 5.0 particle (moderate) 0.15, 10.6 anvil and particle (minor) 0.09, 4.9 particle (minor)
4 0.20, 7.8 particle (moderate) 0.17, 12.1 particle (minor) 0.095, 5.0 particle corner (minor)
5 0.26, 10.7 particle (moderate) 0.21, 12.1 particle (major) 0.12, 7.2 particle rotates slightly
6 0.30, 12.4 particle (moderate) 0.16, 10.0 anvil and particle (minor)
7 0.22, 11.6 particle (major)

aStress values are reported in GPa; emphasized data (bold font) relates to the yield point. Further details given in Supporting Information.

Table 3. Mechanical Properties of a Ceria Nanocube,
Calculated Using Soft, Hard, and Fixed Anvilsa

soft anvils
(BaO)

hard anvils
(MgO) fixed anvils

yield strain 0.22 0.17 0.10
particle yield strength [%] 11.6 [29%] 12.1 [46%] 2.5 [100%]
anvil yield strength [%] 28.5 [71%] 14.4 [54%]
total strength 40.1 26.5 2.5
anvil elastic constants, C11,
C12

122, 58 393, 164 ∞, ∞

Young’s modulus (particle) 88 75 56

aYield strength, total strength, elastic constants, and Young’s modulus
are reported in GPa. Percentage yield strength, [%], relates to the
partitioning of the stress between the ceria nanoparticle and the anvil.
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(green), indicating some structural deformation. Unprotected,
the long-range order is almost completely extinguished, Figure
4 (orange).
The atom-level structures and calculated RDFs are

consistent with the calculated yield strain of each system,
Figure 2, Table 2. At 20% strain, we expect almost complete
loss of structural integrity for the unprotected ceria nanocube
(yield strain 10% at 2.5 GPa), partial loss for the MgO-
protected nanocube (yield strain 17% at 26.5 GPa), and
minimal to no loss for the BaO-protected nanocube (yield
strain 22% at 40 GPa) Figure 4.
We propose that BaO and MgO act “sacrificially”, preserving

the structure and hence catalytic activity of the nanoceria
catalyst. The softer material (BaO) provides the greatest
protection and can withstand uniaxial stresses of up to 40 GPa.

■ DISCUSSION
It is well known that anvil hardness affects measured stress,
though not to what extent. Accordingly, (hard) diamond anvils
are commonly used to ensure that the imposed stress is
communicated almost completely to the sample. Conversely,
measurements using more malleable anvils16 may over-report
the yield stress because of load partitioning. Our calculations
reveal that the soft (BaO) anvil can capture as much as 71% of
the imposed stress. As expected, the harder anvil captures less

of the imposed stressin this case, 54% (MgO anvil), Table 3.
The use of soft anvils makes it possible to gain insight into
protective or “sacrificial” materials. Here, stress partitioning is
key to their performance. This is especially important for
devices that comprise composite functional materials, such as
batteries,15 fuel cells,7 chemical mechanical planarization
slurries,11 and catalysts.8

It might appear that stresses of GPa magnitude are unlikely
during operating conditions. However, for nanomaterials,
where surface areas can be of the order of tens of nm2,
localized regions can easily suffer such high levels of stress.
Examples may include Li intercalation (charge cycling of
batteries), friction,36 impact,37 and even temperature fluctua-
tions38 (relative expansion coefficients of composite nanoma-
terials). Caution must therefore be exercised in using
documented information when designing devices that will be
subject to high levels of operational stress.
Further to this, “real” materials contain microstructural

features including differences in morphology, grain-boundary,
dislocation, and point defect concentrations, which emanate
from the synthetic protocol.39 As mechanical properties are
governed by its microstructure, measured values can therefore
differ by orders of magnitude. For example, Sato et al.
determined a fracture strength of 0.25 GPa, measured using
Vickers indentation,40 whereas Sakanoi et al.24 calculated a
fracture strength of 22.70 GPa for the same material using
DFT.
More recently, microstructural features have been intro-

duced into model structures, enabling more realistic simu-
lations of mechanical properties.22,23 By using a simulated
amorphization and crystallization technique to generate the
atom-level models, it enables microstructural features to evolve
“naturally” within the model, analogous to their evolution
during the crystallization step in synthesis.
The study of nanocompression, as opposed to indentation, is

possible experimentally and is starting to gain interest among
the nanomaterial community.42 Recently, an in situ TEM study
of multicycle rubbing of ceria nanoclusters was performed by
Bhatta et al.41 using a flat diamond probe. The study revealed
plastic deformation of the nanoceria with evidence of fracture
formation. In addition, Epicier et al.43 explored how the
oxidation state of ceria nanoparticles affects the mechanical
properties; stress−strain curves revealed the pseudoelastic
response of the material. Epicier also iterates the experimental
challenges associated with in situ microstructural character-
ization and advocates the use of MD as a complementary tool,

Figure 3. Cation structure of nanoceria at 20% compression using
fixed anvils (top left), MgO anvils (top center), and BaO anvils (top
right). Here, the loss of ordered structure can be seen in varying
degrees, with fixed anvils suffering the most loss of structure and BaO
the least. The atom-level structure of the perfect CeO2 {100} surface
and the morphology of the ceria nanocube is shown bottom left and
bottom right, respectively.

Figure 4. Radial Distribution Functions, RDF, within nanoceria using (a) fixed anvils, (b) MgO anvils, and (c) BaO anvils, at both 0 and 20%
compression, highlighting the loss of long-range order.
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specifically, the capability of MD simulations to provide atom-
level insight into areas such as stress-induced nucleation of
dislocations, which emanate from the surface.
The Boussinesq problem relates to determining the elastic

state in a linearly elastic isotropic half-space, which is subject to
an applied load concentrated perpendicular to its boundary.44

Elasticity therefore plays a vital role in contact mechanics,45

and in recent years, nanoindentation has become fairly
effective for measuring the mechanical properties, such as the
elastic modulus and yield stress of nanomaterials.46 These
experimental techniques have time resolution in the order of
microseconds or larger and may therefore not resolve all
mechanical deformation events occurring within the material.
Computational methods, such as MD, have nanosecond
resolution enabling these subtle “stress-quenching” events to
be captured at the atomic level, giving exceptional detail of the
in situ mechanical deformation. Conversely, the time window
accessible to MD simulations is normally microseconds or less,
and therefore, the deformation rate is normally high.
Accordingly, experiment and simulation together offer
complementary insight.

■ CONCLUSIONS
We predict using MD simulation that deformable anvils can act
as a protective barrier for catalytically active nanomaterials
such as ceria. In particular, we use MD to simulate the
deformation of a ceria nanocube sandwiched between soft BaO
and hard MgO anvils and compare the results with
deformation of the nanoceria when unprotected. We find
that the nanoceria resists plastic deformation up to 40.1 GPa
(BaO), 26.5 GPa (MgO), and 2.5 GPa (unprotected). Our
simulations reveal that the soft anvils increase nanoparticle
protection by absorbing more of the stress; the BaO and MgO
anvils are able to capture 71 and 54% of the imposed stress,
respectively.
Our simulations reveal the importance of considering

deformable anvils, which include microstructural features,
such as dislocations and surface roughening, when simulating
stress-induced plastic deformation. In particular, the yield
strength of nanoceria, measured as the residual stress acting
upon the nanoparticle just before plastic deformation, was
calculated to be 11.6 GPa (softBaO), 12.1 GPa (hard
MgO), and 2.5 GPa (no anvil).
Analysis of the structures reported in this study gives an

indication of a change in the catalytic behavior of nanoceria
under uniaxial stress, thereby affecting the activity of the
functional material, with further evidence presenting the effects
of a hostile environment on this behavior.
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