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Abstract 10 

As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and 11 

cognitive levels, which are not yet fully understood. The loss of responsiveness is a critical event in 12 

the transition from wakefulness to sleep. Here we seek to understand the electrophysiological 13 

signatures that reflect the loss of capacity to respond to external stimuli during drowsiness using two 14 

complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate 15 

these two methods for the first time by investigating the connectivity patterns captured during 16 

individual microstate lifetimes. While participants performed an auditory semantic classification 17 

task, we allowed them to become drowsy and unresponsive. As they stopped responding to the 18 

stimuli, we report the breakdown of alpha networks and the emergence of theta connectivity. 19 

Further, we show that the temporal dynamics of all canonical EEG microstates slow down during 20 

unresponsiveness. We identify a specific microstate (D) whose occurrence and duration are 21 

prominently increased during this period. Employing machine learning, we show that the temporal 22 

properties of microstate D, particularly its prolonged duration, predicts the response likelihood to 23 

individual stimuli. Finally, we find a novel relationship between microstates and brain networks as 24 

we show that microstate D uniquely indexes significantly stronger theta connectivity during 25 

unresponsiveness. Our findings demonstrate that the transition to unconsciousness is not linear, but 26 

rather consists of an interplay between transient brain networks reflecting different degrees of sleep 27 

depth. 28 

Keywords: drowsiness; responsiveness; EEG microstates; brain connectivity 29 
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Author summary 30 

How do we lose responsiveness as we fall asleep? As we become sleepy, our ability to react to 31 

external stimuli disappears gradually. Here we sought to understand the rapid fluctuations in brain 32 

electrical activity that predict the loss of responsiveness as participants fell asleep while performing 33 

a word classification task. We analysed the patterns of connectivity between anterior and posterior 34 

brain regions observed during wakefulness in alpha band and showed that this connectivity shifted 35 

to slower theta frequencies as participants became unresponsive. We also investigated the dynamics 36 

of brain electrical microstates, which represent an alphabet of quasi-stable global brain states with 37 

lifetimes of 10-100 milliseconds, and found that the temporal dynamics of microstates slowed down 38 

when participants became unresponsive. Using machine learning, we further showed that 39 

microstate dynamics prior to a stimulus predict whether subjects will respond to it. We integrated 40 

microstates and connectivity for the first time to show that a specific microstate captures 41 

connectivity patterns correlated with unresponsiveness during this transition. We conclude that 42 

falling asleep is accompanied by a millisecond-level interplay between distinct brain networks, and 43 

suggest a renewed focus on fine-grained temporal scales in the study of transitions between levels 44 

of consciousness. 45 
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Introduction 46 

As we fall asleep, our brain traverses a series of changes which accompany the loss of sensory 47 

awareness and responsiveness to the external world. Despite the subjective ability to classify 48 

retrospectively one's own state as "awake" or "asleep" (Hori et al., 1994), research continues to 49 

unravel the gradual transitions happening at behavioural (Ogilvie and Wilkinson, 1984), cellular 50 

(Steriade et al., 1993), physiological (Prerau et al., 2014) and cognitive (Goupil and Bekinschtein, 51 

2012) level, starting with early drowsiness and continuing into the deep stages of sleep (Ogilvie, 52 

2001). Characterising these transitions and linking across physiological levels is an important step in 53 

the modern attempt to understand access-consciousness (Block, 1996; Koch et al., 2016) and its 54 

fluctuations in natural, pathological and pharmacological alterations: sleep (Hobson and Pace-55 

Schott, 2002), disorders of consciousness (Giacino et al., 2014), sedation and anaesthesia (Alkire et 56 

al., 2008).  57 

The transition from wakefulness to sleep involves a progressive and sometimes nonlinear loss of 58 

responsiveness to external stimuli (Ogilvie and Wilkinson, 1984). Behavioural unresponsiveness does 59 

not immediately imply unconsciousness (Overgaard and Overgaard, 2011; Sanders et al., 2013). 60 

However, from the perspective of levels of consciousness (Laureys, 2005), the capacity to respond to 61 

external stimuli offers an objective measurement in the process of transition between full 62 

wakefulness and sleep-induced unconsciousness. The question of how we stop responding to stimuli 63 

during drowsiness is related to, but distinct from an investigation of the stages of sleep 64 

conventionally defined by specific electrophysiological grapho-elements (Iber et al., 2007; Ogilvie, 65 

2001). Indeed, the loss of responsiveness is and distributed across sleep stages: one study found a 66 

rate of unresponsiveness of 28% in stage 1, 76% in stage 2, and 95% in stage 3 of sleep (Ogilvie and 67 

Wilkinson, 1984). Here, we are specifically interested in the neural markers that predict our inability 68 

to respond as we drift to sleep. 69 

A traditional approach for investigating this question is to look at the changes in EEG spectral power 70 

and connectivity, which have been shown to vary across levels of consciousness. During relaxed 71 

wakefulness, the EEG of most human subjects is characterised by trains of alpha waves, at around  72 

10 Hz, originating from central-posterior cortical areas (Barry et al., 2007; De Gennaro et al., 2016; 73 

Niedermeyer, 2005a). During the early onset of sleep, these alpha oscillations disappear and an 74 

alpha rhythm with a different cortical origin (Broughton and Hasan, 1995) emerges in anterior 75 

regions (Tanaka et al., 1997), while theta power increases, particularly in central regions (Badia et al., 76 

1994; Niedermeyer, 2005b; Ogilvie, 2001; Wright et al., 1995). Similarly, long-range alpha 77 
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connectivity disintegrates at the onset of sleep, while lower-frequency theta and delta connectivity 78 

increases (Tanaka et al., 2000, 1998; Wright et al., 1995). Several power and connectivity patterns 79 

have been associated with the loss of consciousness, sometimes specifically with the loss of 80 

responsiveness, such as the anteriorisation of alpha power and connectivity in EEG, which has been 81 

described in drug-induced loss of responsiveness (Chennu et al., 2016), and frontoparietal 82 

connectivity in fMRI, which has been proposed as a key signature of consciousness (Laureys, 2005) 83 

and linked to external awareness (Vanhaudenhuyse et al., 2011). In EEG, the disruption of 84 

connectivity between frontal and parietal electrodes at alpha (8-12 Hz) frequencies has been shown 85 

to occur in disorders of consciousness (Chennu et al., 2014) and sedation (Chennu et al., 2016). 86 

Although it is still debated whether these are signatures of conscious processing or of processes that 87 

almost invariably accompany it (Farooqui and Manly, 2017), brain connectivity patterns currently 88 

provide, in practice, useful insights into the transitions between levels of consciousness.  89 

Another method that can be employed to investigate the rapidly changing global state of the brain is 90 

that of EEG microstates. A microstate represents a quasi-stable spatial topography of electric field on 91 

the scalp (Lehmann, 1990, 1971; Lehmann et al., 1987). The conventional method of analysing 92 

microstates in a dataset involves running an unsupervised clustering algorithm on a set of EEG 93 

topographies of highest variance, followed by labelling of all EEG samples based on the similarity 94 

with the four obtained topographies (Murray et al., 2008; Pasqual-Marqui et al., 1995). Four 95 

consistent (Khanna et al., 2014) EEG microstate topographies have been identified in a large 96 

population of healthy subjects of all ages during resting-state wakefulness (Koenig et al., 2002) and 97 

different microstates have been correlated with different cognitive modalities (Lehmann et al., 2010; 98 

Milz et al., 2015; Seitzman et al., 2016), but also with mental disorders, such as narcolepsy (Kuhn et 99 

al., 2015). A resting-state study of sleep (Brodbeck et al., 2012) identified four EEG microstate 100 

topographies in all stages of sleep nearly identical to those of wakefulness, but occurring with 101 

altered temporal parameters. Notably, increased microstate duration was associated with deeper 102 

sleep. On the contrary, a different study (Cantero et al., 1999) reported a shorter duration of 103 

microstates and suggested a larger repertoire of brain states during the hypnagogic period. 104 

Microstates are thought to reflect momentary, global, synchronised (Koenig et al., 2005) networks of 105 

the brain, reflecting building blocks of large-scale cognitive processing required for the continuous 106 

stream of consciousness (Lehmann, 1990). The neural sources underlying microstates are still being 107 

explored (Britz et al., 2010; Milz et al., 2017; Pascual-Marqui et al., 2014). Still, the dynamics of the 108 

sequence of microstates itself can be seen as a “syntax” of neural activity that is in and of itself an 109 
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informative tool for modelling and understanding the rapidly-fluctuating global dynamics of the 110 

brain. 111 

Brain connectivity and microstates hence provide complementary perspectives on the 112 

neurodynamics underlying the loss of responsiveness as we fall asleep. But what is the relationship 113 

between brain networks and microstates? There is evidence that transient brain networks can be 114 

resolved in electrophysiological data (Baker et al., 2014; Pascual-Marqui et al., 2014; Vidaurre et al., 115 

2016), but it is an open question whether these networks co-occur with the lifetime of individual 116 

microstates. We investigate for the first time how spectral connectivity and EEG microstate 117 

dynamics interact as we lose responsiveness during drowsiness. We hypothesise that the spectral 118 

changes occurring with the loss of responsiveness mirror those observed in the transition to sleep 119 

(Ogilvie, 2001), anaesthesia (Chennu et al., 2016; Purdon et al., 2013) and in disorders of 120 

consciousness (Chennu et al., 2014): namely, the disintegration of alpha networks, the loss of 121 

posterior alpha power, and the emergence of lower-frequency connectivity and power. Alongside, 122 

building on previous research on EEG microstate dynamics during sleep (Brodbeck et al., 2012), we 123 

hypothesise similar changes in microstate dynamics accompanying the loss of responsiveness during 124 

drowsiness. Finally, given that resting-state network activity is known to fluctuate at millisecond 125 

level, we hypothesise that the neural changes in that occur during drowsiness underlie the dynamics 126 

of both brain networks and the microstates sequence. Specifically, we investigate the possibility that 127 

individual microstates co-occur with distinct transient brain networks, reflecting fleeting changes in 128 

the global state of the brain during drowsiness. 129 

To address these questions, we use a subset of data from a previously reported auditory 130 

discrimination task where subjects became drowsy and unresponsive (Kouider et al., 2014). The task 131 

involved pressing a button corresponding to the classification of the auditory stimulus into one of 132 

two categories (object or animal). We obtain five minutes of data as subjects performed this task, 133 

before and after the loss of responsiveness due to drowsiness. We first characterise the responsive 134 

and unresponsive periods by analysing microstate-blind spectral power and connectivity changes in 135 

our dataset. Next, we describe the temporal parameters of EEG microstates during responsiveness 136 

and unresponsiveness. To test whether these parameters can reliably predict responsiveness to 137 

individual stimuli, we apply machine learning to predict responses and misses to stimuli in our task, 138 

based only on pre-stimulus microstate parameters. Finally, we investigate the brain connectivity 139 

underlying each of the four canonical microstates after the loss of responsiveness and highlight a 140 

previously unknown relationship between spectral connectivity and EEG microstates. 141 
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Methods 142 

Subjects 143 

Sixteen healthy, native English-speaking, right-handed young adults (mean age = 24, S.D. = 2.75; 6 144 

females) were selected for this experiment out of the eighteen subjects from Experiment 1 in a 145 

previous study (Kouider et al., 2014). Two subjects from this dataset were excluded by visual 146 

inspection due to a failure to remain asleep for a period longer than five minutes, as assessed using 147 

responsiveness to stimuli. The participants were directed to not consume stimulants like coffee and 148 

to sleep 1-2 hours less than normally before the experiment. All of the subjects were assessed as 149 

easy sleepers on the Epworth Sleepiness Scale (scores 7-14). The participants signed a consent form 150 

and were reimbursed for their participation. The experiment was approved by the Cambridge 151 

Psychology Research Ethics Committee. 152 

Experimental procedure 153 

The stimuli consisted of 96 spoken English words chosen from the CELEX lexical database (Linguistic 154 

Data Consortium, University of Pennsylvania). Half of the words denoted animals and the other half 155 

denoted objects. The subjects were asked to classify each stimulus in its respective category (animal 156 

or object) by pressing a button. The stimuli were presented through headphones, with an average 157 

distance of 8.4 seconds (minimum 6.2 seconds) between consecutive stimuli, as the subjects were 158 

lying with their eyes closed in a reclining chair. To facilitate drowsiness, the task was performed in a 159 

dark, acoustically and electrically shielded EEG room, and the participants were told that they could 160 

fall asleep at any point during the experiment, although they were asked not to stop responding 161 

deliberately while still awake. 162 

EEG data acquisition  163 

The electroencephalogram was continuously recorded at 500 samples per second from 64 Ag/AgCl 164 

electrodes (NeuroScan Labs system) positioned and labelled according to the extended 10/20 165 

system, with Cz as a reference and including vertical and horizontal electrooculography channels. 166 

EEG pre-processing 167 

All analyses that follow were performed using custom MATLAB scripts (The MathWorks, Inc., Natick, 168 

Massachusetts, US). The EEGLAB toolbox (Delorme and Makeig, 2004) was used to facilitate data 169 

pre-processing.  170 
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The data was filtered between 1 and 40 Hz and the full channel mean was subtracted from each 171 

channel for baseline correction. The HEOG and VEOG channels were removed. An Independent 172 

Component Analysis (ICA) decomposition was performed using the infomax ICA algorithm (Bell and 173 

Sejnowski, 1995). Components capturing ocular or single-channel artefacts were removed from the 174 

data by visual inspection and considering the correlation with the HEOG and VEOG channels. An 175 

average of 11.6 (S.D. = 8.6) out of 63 components were removed per subject. Channel FT8 was 176 

interpolated using spherical interpolation in all subjects as it was noisy in most recordings. Finally, 177 

channels were re-referenced offline to the common average. 178 

Data segmentation 179 

We classified responsive and unresponsive periods by inspecting the sequence of hits and misses to 180 

individual stimuli. We used a liberal window of 6 seconds to allow for a response to a stimulus, 181 

regardless of its correctness. A lack of response within 6 seconds was marked as a miss. The choice 182 

of a 6-second window for responsiveness was based on our own pilot studies, where we investigated 183 

the longest interval that subjects would make a response during drowsiness in a go task. However, 184 

note that most reaction times were below 3 seconds (Fig. 1) and the reaction times increased 185 

gradually and later in the task, indicating an increase in drowsiness. This was also established in a 186 

previous study on the same data (Kouider et al., 2014). 187 

For balance across participants and the two behavioural states, a total of five minutes of 188 

responsiveness and five minutes of unresponsiveness were extracted from each recording (150000 189 

samples per state, per recording), as shown in Fig. 1. The responsiveness period was taken as the 190 

first 0.5 to 5.5 minutes of data in each recording, acquired immediately after the experiment began 191 

and the participants were still alert and wakeful. This was confirmed by checking that the large 192 

majority of the stimuli were followed by responses during this period; a very small number of 193 

occasional misses occurred in more than half of the participants during this period (e.g., due to 194 

unfamiliarity with the task), but they were not contiguous. Then, a period of unresponsiveness was 195 

selected by visual inspection of the hits and misses after the end of the responsiveness period, with 196 

the aim to find a five-minute interval consisting of as many misses as possible. If a response was 197 

present during the period labelled as unresponsiveness, the 10 seconds preceding and following the 198 

corresponding stimulus were excluded.  199 
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Microstate topographies 200 

The idea of electric microstates of the brain comes from the observation that the topography of the 201 

electric field recorded by EEG over the scalp does not fluctuate randomly, but is instead comprised 202 

of short periods of stability (Lehmann, 1971). Four canonical microstates (Koenig et al., 2002), 203 

conventionally labelled A, B, C and D, have been shown to be consistent across recording sessions 204 

(Khanna et al., 2014) and have been repeatedly confirmed in a wide range of health conditions and 205 

cognitive tasks across multiple studies (Britz et al., 2010; Brodbeck et al., 2012; Grieder et al., 2016; 206 

Katayama et al., 2007; Kikuchi et al., 2011; Koenig et al., 1999; Kuhn et al., 2015; Milz et al., 2015; 207 

Nishida et al., 2013; Pascual-Marqui et al., 2014; Schlegel et al., 2012; Strelets et al., 2003; Tomescu 208 

et al., 2014; Van de Ville et al., 2010).  209 

To compute the microstate topographies, the Global Field Power (GFP), representing the standard 210 

deviation of the electrode values (Lehmann and Skrandies, 1980), was first computed at each time 211 

point. As the number of GFP peaks varied across subjects and condition, we rounded down the 212 

minimum number of peaks available and retained the first 5000 peaks in each condition 213 

(responsiveness and unresponsiveness) from each recording.  214 

The clustering algorithm was implemented in MATLAB and is presented in Box 1. The algorithm is 215 

based on a variant of the method first introduced by (Lehmann et al., 1987), as described in (Murray 216 

et al., 2008), and involves an unsupervised clustering of EEG samples into the specified number of 217 

classes that best explain the input samples. Note that topographical similarity is computed using the 218 

absolute value of the spatial correlation, and the polarity of the map is ignored, as topographies with 219 

inverted polarities are considered to be produced by the same neural generators (Michel et al., 220 

2009). The maximum number of iterations was set to 1000 and the GEV delta was set to 1e-9. 221 
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 222 

Box 1. Microstate clustering algorithm. 223 

We initially employed a cross-validation criterion (Pasqual-Marqui et al., 1995) to determine the 224 

optimal number of microstates fitting the data, as performed in several previous studies (Brodbeck 225 

et al., 2012; Koenig et al., 1999). However, we found that the cross-validation criterion produced 226 

different results for when the number of electrodes was down-sampled from 63 to 30 (7 and 4 227 

maps, respectively). This sensitivity of the cross-validation criterion to the number of electrodes has 228 

been documented in previous literature (Murray et al., 2008). Hence, we decided to fix the number 229 

of microstates to four, in line with previous studies that also fix this number a priori (Khanna et al., 230 

2014; Kikuchi et al., 2007; Koenig et al., 2002; Milz et al., 2015; Schlegel et al., 2012; Strelets et al., 231 

2003; Tomescu et al., 2014). 232 

Microstate labelling 233 

To obtain the sequence of EEG microstates characterising a recording, each EEG sample was 234 

individually assigned to the microstate with the highest corresponding spatial correlation. To correct 235 

for noisy assignments during polarity reversals (Koenig and Brandeis, 2016), we applied a previously-236 

described temporal smoothing algorithm for the microstate sequence (Pasqual-Marqui et al., 1995) 237 

with parameter b set to 5, corresponding to a smoothing neighbourhood of 20ms. This parameter 238 

was chosen to be in the range of mean microstate durations found by (Gärtner et al., 2015) using a 239 

Microstate clustering algorithm 

Input: n average-referenced EEG samples (n x number_of_channels) from GFP peaks. 

Output: k maps that best characterise the data. 

1. Normalize each input sample to a vector of length 1. 

2. Pick k random samples as the initial maps. 

3. Label each sample as i ∈ {1, …k}, where i is the index of the map with highest absolute 

spatial correlation. 

4. Re-compute each map i as the first principal component of each cluster of samples 

labelled i. 

5. Compute the Global Explained Variance (GEV). 

6. If GEV delta is small enough or maximum number of iterations has been reached, end; 

else, go to 3. 
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model of microstate transition processes based on Markov chains (10 ms during wake, 34 ms during 240 

deep sleep). 241 

Microstate properties 242 

Following the full labelling of each recording, three properties were computed for each microstate 243 

per state (responsiveness and unresponsiveness) and per recording:  244 

x The microstate temporal coverage, also called the fractional occupancy, indicating the 245 

percentage of time spent in one microstate; 246 

x The microstate duration, indicating the average length of continuous sequences labelled as one 247 

microstate; 248 

x The Global Explained Variance (GEV), representing the amount of spatial correlation of the 249 

samples with their corresponding microstate topography, normalised by the GFP of the 250 

microstate topography.  251 

Statistics 252 

Interactions between microstate parameters and behavioural state (responsiveness and 253 

unresponsiveness) were performed using a two-way repeated measures ANOVA (Hogg and Ledolter, 254 

1987) with the microstate label and the behavioural state as factors. Sphericity was tested using 255 

Mauchly’s test of sphericity (Mauchly, 1940) and, where violated, was corrected using the 256 

Greenhouse-Geisser procedure (Greenhouse and Geisser, 1959). The Tukey-Kramer method (Tukey, 257 

1949) was used to correct for multiple comparisons. After correction, a conventional threshold of 258 

p=0.05 was used to assess significance. Unless otherwise specified, similar statistical tests were also 259 

performed for the measures that follow. 260 

Responsiveness prediction 261 

We applied machine learning classification to explore whether microstate properties identified in 262 

the ongoing brain dynamics immediately preceding each auditory stimulus in the experimental trials 263 

could predict the presence or absence of a response to that stimulus. Importantly, all trials were 264 

considered for classification, both within and outside the periods labelled as responsive or 265 

unresponsive for the above microstate analysis.  266 

Five seconds of EEG data immediately preceding a stimulus were used to generate the features for 267 

classification. We also investigated using shorter pre-stimulus time periods, down to 1 second of 268 

pre-stimulus data, but we found that classification accuracy increased with a larger amount of pre-269 
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stimulus data over which microstate dynamics could be more accurately estimated. At the same 270 

time, the amount of pre-stimulus data was restricted by the overlap with the previous trial. Trials 271 

overlapping with a response corresponding to the previous stimulus were excluded. By setting the 272 

pre-stimulus window to five seconds, less than 10% of the trials were rejected due to overlap with 273 

the previous trial. 274 

The input features generated for classification consisted of either individual microstate parameters 275 

computed during the five-second pre-stimulus period in each trial, or a combination of these 276 

parameters. The parameters were those we previously characterised at the group level: namely the 277 

mean duration, mean coverage, and mean GEV for each microstate separately. The classifier was 278 

trained separately with the above individual and combined features. As a baseline, the theta-alpha 279 

ratio was also computed for each trial as the ratio between the total power spectral density at 5-6 280 

and 9.5-10.5 Hz respectively, and used as an input feature for the classifier. The classification label 281 

for each trial was generated by labelling it as either as a timely response (1) or a miss (0). 282 

We employed leave-one-subject-out cross-validation to test for the generalisability of the classifier’s 283 

performance. For this, the data was split into 16 folds, with one fold corresponding to a single 284 

participant’s trials. A support vector machine (SVM) (Christianini and Shawe-Taylor, 2000) with a 285 

radial basis function kernel (Vert et al., 2004) was trained repeatedly by excluding one fold at the 286 

time from the training set and using it as a test set. The SVM was optimised by exhaustive search to 287 

use the optimal value for two parameters: the box constraint, which restricts the number of support 288 

vectors, and the kernel scale, both in the range [0.001, 1000] in logarithmic steps of 10. 289 

Platt’s method (Platt, 1999) was used to generate class affiliation probabilities from the trained 290 

classifier. These continuously varying probabilities were then used to discriminate between 291 

responses and misses using both the Receiver Operator Characteristic (ROC) area under the curve 292 

(AUC) (Davis and Goadrich, 2006) and the classification accuracy as the percentage of correct 293 

predictions out of the total number of predictions. The classification accuracy was also computed by 294 

setting the class discrimination threshold as the optimal operating point of the ROC curve and 295 

calculating the percentage of correct predictions, using the threshold as a boundary between the 296 

two target classes. We used Wilcoxon signed rank tests (Gibbons and Chakraborti, 2011) to probe for 297 

significant differences between classification performances. 298 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 
 

Spectral power and connectivity analyses 299 

Spectral power and connectivity during responsiveness and unresponsiveness was investigated in 300 

both microstate-blind and microstate-wise analyses. Before microstate-wise segmentation, the 301 

power spectral density was computed at each EEG sample between 1 and 20 Hz as the absolute 302 

value of the Hilbert transform (Marple, 1999) of the bandpass filtered data within windows of 0.25 303 

Hz. We performed most of the analysis on 1 to 20 Hz and focused on theta and alpha power, whose 304 

ratio has been shown to track the onset of sleep (Šušmáková and Krakovská, 2007) and has been 305 

employed in other studies of drowsiness (Bareham et al., 2014) or impaired consciousness 306 

(Lechinger et al., 2013). For each channel in each recording, the spectral power at each frequency 307 

bin was divided by the sum of spectral power at all bins within 1 to 20 Hz. This ratio was then 308 

multiplied by 100, thereby obtaining relative power contribution percentage at that bin.  309 

The connectivity within each pair of channels was analysed using the Weighted Phase Lag Index 310 

(WPLI) (Vinck et al., 2011), a connectivity measure based on the distribution of phase differences 311 

between signals designed to correct for volume conduction, which has been previously used to 312 

investigate brain connectivity during loss of consciousness (Chennu et al., 2016, 2014; Lee et al., 313 

2013). The WPLI was obtained by pooling over the Hilbert phase of each sample labelled as 314 

belonging to a particular microstate (see Suppl. Fig. 1). 315 

For both spectral power and connectivity, the median across channels was computed to obtain one 316 

value per microstate and frequency of interest. 317 

To further assess topographical changes in connectivity, two sets representing anterior (AFz, Fz, FCz, 318 

AF7, AF3, F1, FC1, F3, FC3, F5, F7, AF8, AF4, F2, FC2, F4, FC4, F6, F8) and posterior (CPz, Pz, POz, Oz, 319 

P1, P2, PO3, PO4, O1, O2, P3, P5, P7, P4, P6, P8, CP3, CP1, CP2, CP4) electrodes were selected for 320 

analysis. Median WPLI connectivity was computed within the anterior and posterior groups 321 

separately for each participant. 322 

Results 323 

Behavioural data 324 

The distribution of responsiveness and reaction times over time confirmed that all the subjects were 325 

responsive for a minimum of six minutes in the beginning of the experimental session and became 326 

unresponsive at a later point. During the unresponsiveness period, participants predominantly 327 

reached sleep stage N1, and rarely N2, as detailed in (Kouider et al., 2014). Fig. 1 shows the response 328 
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reaction times and the misses in each participant, in addition to the selection of data for the 329 

subsequent microstate analysis. During responsive periods, most subjects had no more than one 330 

miss, with a mean of 2.125% of all responses during this period being misses. The grand average of 331 

reaction times during the responsive period was 1.5s (S.D. = 0.7). 332 

Spectral power and connectivity dynamics  333 

Before delving into microstate analyses, we characterised the spectral power and connectivity 334 

patterns during responsive and unresponsive periods. We performed a microstate-blind analysis 335 

focusing on previously reported changes related to early sleep, but also anaesthesia and disorders of 336 

consciousness, including the alteration of posterior, frontal and frontoparietal connectivity within 337 

and between frontal and parietal electrodes. We focused on alpha and theta frequencies, as the 338 

theta-alpha ratio has been shown to be the best discriminator between wake and sleep stage 1 339 

(Šušmáková and Krakovská, 2007). We confirmed that there were no significant differences in the 340 

means of power and median connectivity in beta (12-30 Hz) or gamma (30-40 Hz) between the 341 

responsive and unresponsive periods. Based on the peaks present in alpha and theta bands in our 342 

data at 5.5 and 10 Hz (also see Fig. 6 later), we defined the spectral frequencies of interest in alpha 343 

range at 9.5 to 10.5 Hz and the theta frequencies of interest at 5 to 6 Hz, for both power 344 

contributions and connectivity. 345 

We observed a decrease in mean alpha power contribution (t(1,15) = 3.34, p = 0.0044, Cohen’s d = 346 

0.83) and an increase in mean theta power contribution (t(1,15) = 7.1, p = 3.5e-6, Cohen’s d = 1.77) 347 

going from responsiveness to unresponsiveness. As shown in Suppl. Fig. 2, we noted an alpha peak 348 

in spectral power present around 10 Hz in the large majority of the participants during the 349 

responsive period, which faded during the unresponsive period. Lower-frequency power in the theta 350 

frequency range increased during unresponsiveness. A single notable exception was Subject 12, 351 

whose alpha peak did not shift into theta range during the unresponsive period, however this 352 

subject was preserved in the analysis since there was no evidence that the experiment instructions 353 

were not followed. A grand average topographic plot of power at alpha and theta frequencies (Fig. 354 

2A) revealed that the highest alpha power was located in the posterior area during responsiveness. 355 

During unresponsiveness, theta power was highest in posterior channels. 356 

Investigating connectivity in alpha and theta frequencies using the WPLI, we observed the 357 

disintegration of long-range alpha band connections between frontal and parietal electrodes going 358 

from responsiveness to unresponsiveness (Fig. 2B and Suppl. Fig. 3). A paired t-test confirmed that 359 

the median alpha connectivity between the anterior and posterior channels was significantly higher 360 
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during responsiveness (t(1, 15) = 3.4, p = 0.003, Cohen’s d = 0.85). At the same time, an overall 361 

increase in median frontoparietal connectivity was observed in theta frequencies in 362 

unresponsiveness, but this was not significant (t(1, 15) = 0.4, p = 0.69, Cohen’s d = 0.1).  363 

Microstate topographies  364 

We applied the microstate clustering algorithm on the set of combined samples from the responsive 365 

and unresponsive periods from each subject, in order to obtain four microstate topographies. The 366 

resulting maps matched the four canonical microstate topographies commonly described in 367 

literature, denoted by letters A to D (Fig. 3). A breakdown of microstate topographies obtained for 368 

individual participants is also shown in Suppl. Fig. 4. 369 

Microstate parameters  370 

We investigated whether the dynamics of the rapid succession of microstates in the EEG remains the 371 

same before and after the loss of responsiveness. We computed the duration, the temporal 372 

coverage and the global explained variance (GEV) of each microstate during responsiveness and 373 

during unresponsiveness (Fig. 4).  374 

A repeated measures ANOVA with the microstate and the behavioural state (responsiveness and 375 

unresponsiveness) as factors found significant interactions between microstate and behavioural 376 

state in all of the three microstate parameters investigated: duration (Finteraction = 16.73, 377 

Pinteraction = 2e-7, Cohen’s d = 2.11), temporal coverage (Finteraction = 13.08, Pinteraction = 3e-6, 378 

Cohen’s d = 1.86) and GEV (Finteraction = 17.95, Pinteraction = 8e-8, Cohen’s d = 2.18). Further exploring the 379 

simple effect of state on the parameters within each microstate, the ANOVA revealed that the 380 

duration of all microstates was significantly increased during unresponsiveness (Pstate, A = 0.0001, 381 

Pstate, B = 0.003, Pstate, C = 0.0001, Pstate, D = 3e-6), in agreement with previous literature (Brodbeck et al., 382 

2012). Notably, microstate D had a striking increase in duration (Fig. 4A). At the same time, the 383 

temporal coverage of class D was significantly higher during unresponsiveness (Fig. 4B), whereas the 384 

coverage of microstate B was significantly lower during the same period (Pstate, A = 0.056, Pstate, B = 385 

0.001, Pstate, C = 0.26, Pstate, D = 1e-5). Similarly, the GEV of microstate D (Fig. 4C) was increased during 386 

unresponsiveness, while the GEV of microstates A and B were decreased (Pstate, A = 0.0002, Pstate, B = 387 

0.0002, Pstate, C = 0.17, Pstate, D = 2e-5).  388 
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Single-trial responsiveness prediction 389 

We verified whether microstate parameters in the pre-stimulus window are able to dissociate 390 

responsiveness from unresponsiveness at an individual trial level during the full recordings, and 391 

whether these properties could be generalised across subjects. 392 

Out of all trials, 8% contained a button press event during the five seconds preceding each stimulus 393 

and were excluded from further analysis. The remaining data had a balanced distribution of 1078 394 

responses and 1117 misses out of a total of 2195 trials.  395 

Training a radial basis function kernel support-vector machine repeatedly on the combined-396 

microstate and microstate-wise features to predict the binary outcome of a trial, as a response or a 397 

miss, using one-subject-out cross-validation, confirmed that microstate dynamics were able to 398 

predict responsiveness at an individual trial level and across subjects, with a performance similar to 399 

that of the established theta-alpha ratio of spectral power (Fig. 5).  400 

Combining the duration, temporal coverage, and GEV of each microstate to obtain a 4 x 5 input 401 

feature vector or each trial achieved a mean AUC of 0.8552 (mean classification accuracy of 75.2%). 402 

In comparison, the theta-alpha ratio achieved a mean AUC of 0.8519 (mean classification accuracy of 403 

74.24%). A Wilcoxon signed rank test did not find significant differences between these performance 404 

distributions. When combined, the microstate features and the theta-alpha ratio obtained a mean 405 

AUC 0.8622 (mean classification accuracy of 77.1%).  406 

When used individually as input features for the classification, mean microstate duration performed 407 

remarkably well, achieving a mean AUC 0.8484 (mean classification accuracy of 76.1%). According to 408 

Wilcoxon test, this was not significantly different from the classification performance of the 409 

combined microstate parameters. The duration of microstate D was significantly better at predicting 410 

responsiveness than microstates A-C (pD-{A,B,C}={0.0005, 0.0006, 0.002). 411 

It is worth noting that the one subject for whom the prediction performance was lower in the group 412 

was Subject 12, who was also the only one whose alpha peak remained nearly unshifted after the 413 

loss of responsiveness (Suppl. Fig. 2). 414 

Connectivity differences between microstates 415 

Having established the characteristic temporal patterns exhibited by microstate sequences before 416 

and after drowsiness-induced loss of responsiveness, we next proceeded to investigate their 417 

relationship with the underlying spectral content of the EEG, and the modulation of this relationship 418 
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as subjects become unresponsive. To this end, we investigated the power contributions and the 419 

WPLI connectivity computed across samples belonging to each microstate before and after the loss 420 

of responsiveness. While we do not assume a direct relation between neural sources of EEG 421 

microstates and EEG spectral power and connectivity, our aim is to assess whether the neural 422 

sources of microstates and sources of spectral measures covary at a fine temporal scale. 423 

The spectral power contribution (Fig. 6A) displayed the characteristic alpha peak around 10 Hz 424 

during the responsive period, which faded during the unresponsive period into high power at low 425 

frequencies. This pattern was similar during all microstates. 426 

Likewise, spectral connectivity (Fig. 6B) showed a peak at 10 Hz during responsiveness during all 427 

microstates, which faded during unresponsiveness. The only pattern dissociating between 428 

microstates during responsiveness was a decreased 10 Hz peak during microstate A. On the other 429 

hand, there was a noticeable difference in the level of connectivity during unresponsiveness 430 

between all microstate periods, with microstates D and A exhibiting the highest and the lowest 431 

connectivity, respectively. 432 

The effect size of the interaction between microstate and behavioural state (responsiveness and 433 

unresponsiveness) computed individually at each frequency was indeed generally higher in 434 

connectivity than in power (Fig. 6C). The effect size was largest in connectivity at 5.5 Hz and 10 Hz, 435 

corresponding to the theta and alpha peaks displayed during all microstates during the unresponsive 436 

and responsive periods, respectively. A peak in power contribution was also found at 13.5 Hz, 437 

potentially due to the emergence of sleep spindles at the onset of sleep.  438 

We also attempted to use pre-stimulus WPLI connectivity levels at alpha and theta frequencies in 439 

order to train a classifier to predict responsiveness, using the same procedure as for the microstate 440 

spatiotemporal parameters. No classifiers could be obtained that exceeded a 60% mean accuracy, 441 

either microstate-wise or on the full set of pre-stimulus samples.  442 

Connectivity during microstate D after the loss of responsiveness 443 

Gathering from the evidence of increased temporal presence of microstate D after the loss of 444 

responsiveness, as well as the higher connectivity displayed during this microstate during 445 

unresponsiveness in comparison with the microstates A-C, we next sought to understand the 446 

spectral connectivity patterns captured during microstate D in the selected alpha and theta ranges 447 

during the unresponsiveness period. 448 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 
 

Previous literature suggests that anterior (frontal) and posterior (parietal) scalp regions of interest 449 

(ROI) show key changes in connectivity at the onset of sleep (Morikawa et al., 1997; Tanaka et al., 450 

2000, 1998; Wright et al., 1995), during sedation and after brain injury (Chennu et al. 2017; Chennu 451 

et al. 2014; Chennu et al. 2016). Building upon this, we investigated the within-anterior, within-452 

posterior and between anterior-posterior connectivity during microstate D in comparison with 453 

microstates A-C. For this purpose, we performed three repeated measures ANOVA tests to compare 454 

the median connectivity during microstate D and that during each of the microstates A-C in each of 455 

the six conditions (two frequency bands X three scalp ROIs) during the unresponsive period. Within 456 

each condition, we corrected for the false discovery rate across the three tests (D vs A, D vs B and D 457 

vs C) using Storey’s procedure (Storey, 2002).  458 

Fig. 7 exemplifies the most prominent differences we found in connectivity between samples 459 

covered by microstate D and microstates A-C respectively, during unresponsiveness. 460 

At the selected theta peak, the t-test results showed significantly higher median connectivity within 461 

the anterior region during microstate D compared to each of the other microstates (PD-{A,B,C} = {0.001, 462 

0.008, 0.001}, tD-{A,B,C} = {3.958, 3.069, 4.088}, Cohen’s dD-{A,B,C}={0.990, 0.767, 1.022}). Median 463 

connectivity between the anterior and posterior regions was also significantly higher during 464 

microstate D than in microstates A and C (PD-{A,B,C} = {0.003, 0.297, 0.003}, tD-{A,B,C} = {3.578, 1.081, 465 

3.392}, Cohen’s dD-{A,B,C}={0.894, 0.27, 0.848}). No significant differences were found in median 466 

connectivity within the posterior area. 467 

Conversely, at the selected alpha peak, the repeated measures ANOVA showed significantly lower 468 

median connectivity within the posterior area during microstate D compared to microstates A-C 469 

(PD-{A,B,C} = {0.033, 0.037, 0.033}, tD-{A,B,C} = {2.686, 2.294, 2.559}, Cohen’s dD-{A,B,C}={0.672, 0.573, 0.67}). 470 

At the same time, microstate D captured significantly higher within-anterior median connectivity 471 

than microstate A (PD-{A,B,C} = {0.043, 0.617, 0.055}, tD-{A,B,C} = {2.769, 0.511, 2.297}, Cohen’s 472 

dD-{A,B,C}={0.692, 0.128, 0.574}). No significant difference in median connectivity between anterior 473 

and posterior regions was found during microstate D compared to microstates A-C.  474 

These results confirmed that the timecourse of microstate D uniquely capture a simultaneous 475 

disintegration of posterior alpha connectivity and emergence of frontal theta connectivity, which is 476 

associated with the suppression of responsiveness at the onset of sleep. 477 
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Discussion 478 

Summary 479 

In this study, we used high-density EEG to explore the transient spatiotemporal and spectral 480 

dynamics of electrical brain activity before and after the loss of behavioural responsiveness due to 481 

drowsiness. Importantly, we examined the loss of responsiveness as participants became drowsy 482 

while performing a discrimination task. Hence by design, our study is in contrast to and 483 

complements studies of resting brain activity in the absence of any task, which have often focused 484 

on an investigation of canonical sleep stages. Here, unresponsiveness – the failure to respond to the 485 

auditory cues elicited by increased drowsiness – provided an objective and non-invasive behavioural 486 

criterion in the transitional stage in between full wakefulness and early sleep.  487 

To summarise our findings, we have shown that differences in spectral power and connectivity after 488 

the loss of responsiveness that have been previously shown to differentiate between healthy 489 

wakefulness and sleep, sedation and disorders of consciousness: a decrease in posterior alpha 490 

power and the emergence of theta power, as well as the disintegration of frontoparietal connectivity 491 

in alpha band. Further, microstate characteristics before and after the loss of responsiveness not 492 

only correlate with behaviour at the group level, but also predict behaviour at the level of individual 493 

experimental trials - when microstate D occurred more often during the pre-stimulus period, 494 

participants were less likely to generate a response to the subsequent stimulus. This relationship 495 

highlights a possible functional role of this microstate in modulating behaviour, and the predictive 496 

power of this signature to define the capacity to consciously respond to abstract/semantic stimuli. 497 

Finally, we discovered that while relative spectral power is similar across the temporal microstates, 498 

spectral connectivity is more distinctive. This non-uniform pattern of connectivity across microstates 499 

is modulated by the loss of responsiveness: the timecourse of microstate D captured significantly 500 

increased connectivity in the theta band after the loss of responsiveness, underpinning a novel 501 

profile of interaction between the temporal sequence of microstates and spectral brain connectivity. 502 

Alpha power and connectivity characterise responsive wakefulness 503 

Our analysis of EEG connectivity before microstate segmentation strengthens the evidence for the 504 

fundamental role of the alpha networks in sustaining a state of responsive wakefulness. It is 505 

important to clarify that attribution of connectivity to specific neuroanatomy is limited by the scalp-506 

level analysis we have conducted here, though previous research provides some pointers as to its 507 

neural origins. An independent study by Chennu et al. (2017) involving a different group of healthy 508 
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adults and patients with brain injury has provided indirect information about the potential drivers of 509 

resting alpha connectivity, by correlating it with resting metabolism measured with PET imaging. As 510 

demonstrated in that study, the presence of a robust connectivity network in the alpha band was 511 

correlated with metabolic activity in frontal and parietal cortices encompassing both intrinsic and 512 

extrinsic awareness networks (Vanhaudenhuyse et al. 2010). Further, the body of literature based on 513 

simultaneous EEG-fMRI recordings (Laufs et al. 2003a; Laufs et al. 2003b) has indicated negative 514 

correlations between alpha power and BOLD activity of frontoparietal areas known to be part of the 515 

attentional external awareness network. However, further research is needed to pinpoint the 516 

cortical and subcortical sources of the connectivity patterns and changes we have elucidated here. 517 

Our analysis of scalp-level connectivity highlights that it is not the full disappearance of all 518 

connectivity that drives the loss of responsiveness, but specifically connectivity at alpha frequency. 519 

Indeed, literature shows that connectivity shifts from alpha into lower-frequency theta and delta 520 

frequencies in many contexts. This shift happens when consciousness fades (Chennu et al., 2016, 521 

2014; Ogilvie, 2001; Tanaka et al., 2000, 1998; Wright et al., 1995), but also during natural 522 

fluctuations in alpha power during resting wakefulness, which accompany increases in theta power 523 

and BOLD activity in occipital and parietal areas (Laufs et al. 2006). In the larger picture of states and 524 

levels of consciousness, our findings confirm long-range alpha networks as a common marker of 525 

consciousness, whether this impairment is natural (sleep), pathological (disorders of consciousness) 526 

or pharmacological (sedation). 527 

Microstate D predicts responsiveness across subjects 528 

Upon examining the spatiotemporal parameters of the canonical EEG microstates, we found an 529 

increase in temporal coverage after the loss of responsiveness uniquely specific to microstate D, 530 

along with an increase in its global explained variance, as compared to responsive periods. While the 531 

duration of all microstates was longer during unresponsiveness, the duration of microstate D had a 532 

prominent relative increase. In contrast, the temporal coverage of microstate B decreased in the 533 

unresponsive period, as did the global explained variance of microstates A and B. Further, we 534 

demonstrated that the general state of awareness, as reflected in the ongoing dynamics of pre-535 

stimulus EEG microstates, are indeed informative of the capacity of a subject to respond to a 536 

stimulus during drowsiness at an individual trial level. This finding echoes similar evidence from the 537 

literature, where pre-stimulus microstate properties predict perception of weak stimuli (Britz et al. 538 

2014), accuracy of working memory (Muthukrishnan et al. 2016) and perceptual shifts between 539 

bistable stimuli (Britz et al. 2009). Again, the special significance of microstate D during 540 
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unresponsiveness was visible from its increased ability to predict the likelihood of a response, in 541 

comparison with microstates A-C. In addition, we showed that the increase in duration of this 542 

microstate is the best predictor of responsiveness among all the microstate parameters. 543 

We note that the durations of the microstates we obtained were significantly lower than previous 544 

reports in the literature (Brodbeck et al. 2012; Tomescu et al. 2014; Tomescu et al. 2018). This might 545 

be due in part to our analytical methodology: as specified in the methods, we used a smoothing 546 

neighbourhood of 20ms, in keeping with the range of mean microstate durations reported in the re-547 

analysis of data from (Brodbeck et al. 2012) reported by Gärtner et al. (2015, Neuroimage). 548 

However, our smaller durations could also be attributed to the fact that our participants were 549 

performing an experimental task, which might have led to more rapid changes in dynamical brain 550 

states. This was in contrast to the reports above, in which data were collected in the absence of any 551 

task. Nevertheless, despite the shorter durations, we confirmed the expected presence of WPLI 552 

connectivity in the alpha band within each microstate during wakefulness. Speculatively, the finer 553 

temporal granularity of our microstate decomposition might have made the differences in 554 

connectivity between microstates more apparent during the transition to sleep. 555 

Our usage of machine learning allows us to quantify the performance of the model using its 556 

discrimination accuracy, which speaks for the real-world applicability of the method (Breiman, 557 

2001). Moreover, one-subject-out cross-validation allows us to infer that these results are 558 

generalizable across people. At the same time, as expected, individual variability caps the maximum 559 

possible accuracy when predicting responsiveness. Our results suggest that this cap is around an 560 

accuracy of 75% (mean AUC around 0.85). Interestingly, the theta-alpha ratio, which we used as a 561 

baseline given its sensitivity as a sleep index (Šušmáková and Krakovská, 2007), achieved a similar 562 

classification accuracy as the microstate-based input features. This suggests that microstate 563 

dynamics and spectral oscillations are potentially correlated. Intriguingly, we were not able to use 564 

connectivity as a feature to train a suitable classifier for responsiveness during drowsiness, either 565 

considering or ignoring the microstate sequence, despite strong evidence of major connectivity 566 

changes occurring before and after the loss of responsiveness. This suggests that connectivity better 567 

predicts the level of consciousness estimated over longer time scales, whereas spatiotemporal 568 

microstate dynamics capture short-term changes in brain state that predict responsiveness. 569 

Microstate D captures a distinct connectivity profile after loss of responsiveness 570 

Alongside the distinctive increase in temporal coverage and duration of microstate D, we found a 571 

singular spectral connectivity pattern during this microstate after loss of responsiveness, indicating 572 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 
 
 

increased median connectivity in theta band, particularly in connections within frontal and between 573 

frontal and parietal electrodes. At the same time, median posterior connectivity during microstate D 574 

was reduced during unresponsiveness. Hence, the timecourse of microstate D appears to uniquely 575 

capture a connectivity pattern specific to deeper stages of sleep, in comparison with other 576 

microstates present during the same sleep stage. (Britz et al., 2010) correlated the microstate 577 

timecourses with the timecourse of average spectral power within canonical frequency bands. They 578 

reported finding no relationship between microstate dynamics and the spectral properties of the 579 

EEG signal. Our findings represent the first demonstration that in fact, spectral brain connectivity in 580 

fact presents a significant interaction with temporal microstate dynamics, underpinned by the 581 

connectivity captured by microstate D. Estimation of connectivity from EEG can be affected by 582 

volume conduction and referencing method. We have aimed to minimise the influence of the former 583 

with the use of WPLI-based connectivity. Further, we verified that re-analysis of WPLI connectivity 584 

with reference-free current source density estimates (Kayser and Tenke 2015) identified strong 585 

interactions in the alpha and theta bands, similar to those presented in Fig. 6B (see Suppl. Fig. 5). 586 

There currently exists no consensus on the meaning of individual microstates in terms of their neural 587 

generators. However, microstate D has occasionally been linked to attentional networks. In a study 588 

of fMRI resting-state networks, (Britz et al., 2010) showed a higher correlation of microstate D with 589 

ventral and dorsal frontoparietal networks, functionally associated with attention switching and 590 

directing attention towards external salient stimuli. A decreased duration of this microstate has 591 

been reported in schizophrenia (Koenig et al., 1999; Lehmann et al., 2005; Nishida et al., 2013; 592 

Tomescu et al., 2014) and hallucination (Kindler et al., 2011) – two conditions involving impairments 593 

in task switching and attention (Collerton et al., 2005; Cornblatt and Keilp, 1994). An investigation of 594 

modalities of thinking found an increased microstate D duration in resting-state compared to visual 595 

and verbal task periods (Milz et al., 2015); this was also interpreted as a confirmation of the 596 

previously-mentioned study by (Britz et al., 2010) due to a higher probability of attention switching 597 

during rest (high microstate D duration), as opposed to performing a single goal-oriented task (lower 598 

microstate D duration). On the other hand, (Seitzman et al., 2016) have found an increased duration 599 

of microstate D during a cognitive task as compared to wakeful rest.  600 

Given the weak evidence in the literature associating microstate D with task-related attention 601 

networks, we are cautious in interpreting our findings on this basis. A previous study on the same 602 

data (Kouider et al., 2014) found that a correct response to stimuli is still prepared during 603 

unresponsiveness, suggesting preserved attention. It is possible that our findings indicate more 604 

demand from attention networks as drowsiness increases and subjects become unable to respond to 605 
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the task. In study of microstates during sleep in the absence of any task, (Brodbeck et al., 2012) did 606 

not observe an increase in this microstate during sleep. This suggests that microstate D might indeed 607 

be specifically related to the experimental task. Further, this interpretation is compatible with a 608 

study by Katayama et al. (Katayama et al., 2007), which found that the duration of microstate D was 609 

increased in light (but not deep) hypnosis, a state which produces similar EEG patterns to sleep-610 

induced unresponsiveness (Barker and Burgwin, 1949). 611 

Nonetheless, the spatiotemporal and spectral connectivity dynamics observed in microstate D after 612 

the loss of responsiveness yield an important insight into the dynamics of the transition to sleep. 613 

While connectivity averaged during all microstates reflects typical changes commonly found in the 614 

loss of consciousness in the onset of sleep, anaesthesia or disorders of consciousness – weaker alpha 615 

and stronger theta long-range networks – the individual timecourse of microstate D captures 616 

significantly stronger patterns, despite having a duration no longer than 40ms. This suggests that, 617 

after the loss of responsiveness, the process of falling asleep is not necessarily linear, but rather 618 

consists of an interplay between distinct networks, captured by different microstates, which are at 619 

different points along the transition between wakeful and asleep modes of operation. It is worth 620 

noting that many subjects often became variable in their response times, and eventually 621 

unresponsive, within 5-7 minutes of starting the recording (see Fig. 1), highlighting the natural onset 622 

of drowsiness that could confound many experimental designs, if not appropriately controlled for 623 

(Noreika et al. 2017; Tagliazucchi and Laufs 2014). Further, our work might lend itself to explaining 624 

one of the current riddles of sleep research: why is it that, despite the establishment of a series of 625 

clear EEG markers delimiting wake and several stages of sleep, finding an EEG-based threshold to 626 

separate between the subjective intuition of being awake or asleep has not yet been achieved? 627 

Indeed, it has been reported by Hori et al. (1994) that 26% of all subjects stated that they had been 628 

awake at times when their EEG was classified as stage 2 sleep, which is commonly used to define 629 

“true sleep” (Ogilvie, 2001). The rapid fluctuation of brain networks, some of which are closer to 630 

wakefulness (during microstates A-C) and others closer to sleep (during microstate D) could be the 631 

reason why our momentary introspective state of being “awake” and “asleep” might not concur with 632 

a coarse-grained assessment of EEG over many seconds of data, as usually done during the 633 

identification of sleep stages. Instead, our findings here highlight that further research should focus 634 

on the rapidly changing dynamics of brain networks that appear to capture key dynamics relevant to 635 

our behavioural and perhaps even introspective state, as we drift into unconsciousness. 636 
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Figure Legends 639 

Figure 1. Reaction times and data segmentation into responsiveness and unresponsiveness for individual 640 

participants. The horizontal axis represents recording time and the vertical axis represents reaction time in 641 

seconds. Blue markers indicate responses, while orange markers indicate misses. The blue area corresponds to 642 

the five-minute period of responsiveness, while the orange area corresponds to the five-minute period of 643 

unresponsiveness. 644 

Figure 2. Spectral power topography and WPLI frontoparietal connectivity at alpha (9.5-10.5 Hz) and theta 645 

(5-6 Hz) peaks before and after the loss of responsiveness. Values are averaged across participants. With loss 646 

of responsiveness, power over parietal sensors and connectivity between frontal and parietal sensors shifted 647 

from the alpha to the theta band. 648 

Figure 3. Microstate topographies computed across all subjects. These topographies are plotted in 649 

correspondence with the four canonical microstate topographies commonly described in literature. 650 

Microstate topographies reported by Brodbeck et al. (2012) and Koenig et al. (2002) are shown for 651 

comparison (reproduced here with permission). 652 

Figure 4. Microstate parameters before and after the loss of responsiveness in drowsiness. Within each 653 

panel of grouped scatter box plots, inner boxes represent the standard error of the mean for each microstate 654 

parameter, and outer boxes represent the standard deviation. The mean is shown by a continuous line, the 655 

median is shown by a dotted line, and individual participants are shown as dots. Asterisks show a significant 656 

within-subject main effect of state for a microstate. Duration, temporal coverage and GEV of microstate D all 657 

significantly increased during unresponsiveness.  658 

Figure 5. Classification performance, computed as the area under the ROC curve, for a support-vector 659 

machine (SVM) trained using 5 seconds of pre-stimulus data to classify responses and misses. Input features 660 

to the classifier were microstate parameters or the theta-alpha ratio, individually or combined. Within each 661 

group of grouped scatter box plots, inner boxes represent the standard error of the mean, outer boxes 662 

represent the standard deviation. The mean is shown by a yellow line, the median is shown by a green line 663 

(where distinct from the mean), and individual participants are shown as dots. Microstate parameters were 664 

able to predict responsiveness at an individual trial level across subjects, with a performance similar to that of 665 

the theta-alpha ratio. 666 

Figure 6. Spectral power (panel A) and WPLI connectivity (panel B) captured during individual microstates 667 

before and after loss of responsiveness due to drowsiness. Channel-wise relative power at each frequency 668 

bin was calculated as the power at that bin as a percentage of total power within 1-20Hz. Within each subject, 669 
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for both relative power and WPLI connectivity, the median across channels is plotted. Figures show the grand 670 

average over all subjects. Panel C shows the effect size, computed as Cohen’s d, of the interaction between 671 

behavioural state and microstate at each frequency bin for power contributions and for connectivity. By 672 

convention, 0.2, 0.5 and 0.8 denote small, medium and large effect sizes, respectively. The interaction 673 

between microstate and behavioural state was stronger in connectivity than in power. 674 

Figure 7. Frontal and frontoparietal WPLI connectivity at theta peak (5-6 Hz). Microstate D captured 675 

significantly higher theta connectivity within frontal and between frontoparietal sensors during 676 

unresponsiveness, compared to microstates A-C. 677 
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Supplementary Material 1 

 2 

Supplementary Figure 1. Computation of microstate-wise WPLI connectivity. Instantaneous channel-wise 3 

Hilbert estimates of phase angle at each time sample were pooled together according to the microstate label 4 

assigned to the sample. For each microstate, the pooled Hilbert phase angles at each channel were then used 5 

to compute WPLI between pairs of channels. 6 

 7 

 8 
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 9 

Supplementary Figure 2. Individual subject spectral power contributions before and after loss of 10 

responsiveness.  For each subject, values are averaged over posterior channels (see main text). 11 
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 12 

Supplementary Figure 3. Median WPLI before and after loss of responsiveness in individual subjects. WPLI 13 

values are averaged across all channel pairs. 14 
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 15 

Supplementary Figure 4. Microstate topographies in each subject, computed over the responsive and 16 

unresponsive periods. In each subject, maps are ordered such that they have maximal spatial correlation with 17 

corresponding group-level maps in Fig. 3, ignoring map polarity. 18 

 19 

  

Supplementary Figure 5. WPLI connectivity and interaction effect size after Current Source Density 20 

Estimation. Panels A and B re-plot Figs. 6B and 6C after re-estimating WPLI calculated with current source 21 

density estimates. 22 
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