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Abstract

This paper proposes a new model and investigates its special case model, both of which model

the failure process of a series system composed of multiple components. We make the following

assumption: (1) once the system fails, the failed component can be immediately identified and

replaced with a new identical one, and (2) once the system fails, only the time of the failure is

recorded; but the component that causes the system to fail is not known. The paper derives a

parameter estimation method and compares the performance of the proposed models with nine other

models on artificially generated data and fifteen real-world datasets. The results show that the two

new models outperform the nine models in terms of the three most commonly used penalised model

selection criteria, the Akaike’s information criterion (AIC), corrected Akaike’s information criterion

(AICc) and Bayesian information criterion (BIC), respectively.

Keywords: Maintenance, non-homogeneous Poisson process, superimposed renewal process, Akaike

information criterion, higher order Markov process.

1 Introduction

Modelling the failure process of a repairable system is an important research topic since it is needed

in various applications such as maintenance policy optimisation and lifecycle costing (see, Huang,

Huang, and Ho (2017); Olde Keizer, Teunter, and Veldman (2017); Cha, Finkelstein, and Levitin

(2018); Yang, Ye, Lee, Yang, and Peng (2018), for example).

In the last three decades, researchers have developed many failure process models, which include

the geometric process (GP) (Lam, 1988), the virtual age models (Kijima, 1989), the arithmetic
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reduction of intensity (ARI) models and the arithmetic reduction of age (ARA) models (Doyen

& Gaudoin, 2004), and many other models. The reader is referred to Wu and Scarf (2017) for a

classification of the existing failure process models. In addition, Doyen, Gaudoin, and Syamsundar

(2017) study the possibility of building imperfect maintenance models with a geometric reduction

of age or geometric reduction of Intensity. Wu (2018) proposes a new model, the doubly geometric

process (GDP), which overcomes two limitations of the GP: the GDP can model stochastically non-

monotonic inter-arrival times of recurrent event processes and recurrent event processes where the

inter-arrival time distributions have varying shape parameters.

Most of the existing models depict the effectiveness of repair either with a fixed parameter (for

example, the ratio of the GP (Lam, 1988) or the repair efficiency parameter ρ in the ARI models and

the ARA models (Doyen & Gaudoin, 2004)), which is referred to Model type A, or with the number

of many parameters (for example, the degree of the nth repair, An, in the virtual age models (Kijima,

1989) or the parameters in each renewal process in the super-imposed renewal process (SRP) (p264,

Hoyland and Rausand (2004))), which is referred to Model type B. Model type A may be useful for

the one-component system scenarios where the effectiveness of repair on failures may be the same

and Model type B is useful for the scenarios with many failure data, which can be used to estimate

all the parameters in the model. However, neither of them may be suitable for modelling the failure

process of a multicomponent system for two reasons: (1) the effectiveness of repair on failures of

different components is normally different and it may therefore be inadequate to use one parameter

to depict those repair effectiveness, (2) in the real world, failure data are too sparse to obtain stable

estimates for models with many parameters. This paper aims to develop new models to address

these two drawbacks.

1.1 Modelling the failure process of a series system

Let’s consider the failure process of a series system composed of multiple components. Whenever

a component fails, it is replaced with a new identical component. Suppose the replacement time is

negligible. There are the following two scenarios in terms of data availability.

Component level. Once the system fails, both the time to the kth failure (denoted by Tk for

k = 1, 2, ..., n) and the component (denoted by Ck) that causes the system to fail are recorded.

System level. Once the system fails, only the time of the failure is recorded. But the component

that causes the system to fail is not known.

On modelling the failure process of a system when failure data are only available at the system level,

the widely used failure process for such a scenario is a super-imposed renewal process (SRP), which
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is formed by the union of all the failures of the series system. It has been shown, for example, by

Drenick (1960), unless the individual renewal processes are HPPs (homogeneous Poisson processes),

an SRP is not a renewal process. When the number of components is large and time is large enough,

an SRP behaves as an HPP (p264, Hoyland and Rausand (2004)). Zhang, Tian, Escobar, and

Meeker (2017) proposes a procedure for estimating the component lifetime distribution based on

system level data when the components are identical and assumed to be structured in series. The

SRP may be useful as it is close to the real practice: a failed component is normally replaced with

a new identical one and most real-world systems can be regarded as series systems. However, the

application of the SRP may be hindered by the fact that it needs to know the renewal process of

each individual component, that is, both Tk and Ck should be available for modelling. It is known

that “one major problem associated with reliability data is, ironically, the lack of sufficient data to

properly run statistical analyses, as many authors mentioned repeatedly” (Louit, Pascual, & Jardine,

2009), data, Ck, about which component causes the system to fail may not be recorded and may

therefore be sparse. As such, it is not possible to estimate the lifetime distribution of each individual

component and then obtain the failure intensity function of the system based on the system structure

information. Hence, there is a need to develop failure process models based on the limited number

of failure data of a system even if the causes of system failures is not identified. That is, a failure

process model is needed for the scenario when Ck is not available, Tk is available, and n is small.

Assuming that Ck is not available and Tk is available, Wu and Scarf (2017) propose two models,

Model I and Model II, to model the failure process of a real series system. With artificially generated

data, they found that Model II outperforms Model I and four other models (i.e., the renewal process,

the geometric process, the non-homogeneous Poisson process with the power law intensity, and the

generalised renewal process). Model II regards the failure process of a real series system equivalent to

that of a virtual system composed of two subsystems: subsystems 1 and 2. Subsystem 1 contains one

virtual component(VC) and subsystem 2 is composed of a pre-specified number m of VCs. Broadly

speaking, whenever the real system fails, minimal repair is assumed to be conducted on subsystem 1

and the oldest VC in subsystem 2 is assumed to be replaced with a new identical VC. The number of

VCs in subsystem 2 is the integer number that has the maximum value of the maximum likelihood

values for possible m’s (Wu & Scarf, 2017).

A drawback of Model II is that it includes too many parameters. For example, if both the intensity

functions of the failure processes of the two subsystems are two-parameter power law functions, then

Model II has four unknown parameters that must be estimated from failure data. This number may

be too large if Model II has to be built on a small number of failure data, which may hinder it from

a wide application.
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On the basis of the above discussion, we conclude that models with good performance and a small

number of parameters are needed for modelling the failure process of a series system for the scenario

only if Tk (k = 1, 2, ..., n) are available.

1.2 The proposed method

To model the failure process of a series system, this paper proposes a new model, referred to as the

ESI (Exponential Smoothing of Intensity) model, and investigates one of its special case models,

which is called the MAI (Moving Average of Intensity) model. The ESI model simply regards the

failure process of a real-world system equivalent to that of a virtual system composed of a number

of different VCs and the MAI assumes that those VCs are identical. In either model, we assume: if

the real system fails, the oldest VC is replaced. We then develop the models for the virtual system

instead of the failure process of each individual VC.

As can be seen, both the ESI and the MAI models simulate the failure process of a multi-component

system but do not need to know the renewal process of each component. As such, they may find a

wider application than the SRP.

It should be noted that the MAI model does not have any additional parameter over a given

intensity function such as the power law intensity function, whereas the ESI model has one more

parameter than that of the MAI model.

1.3 Summary

The rest of the paper is structured as following. Section 2 introduces the models, investigates their

properties, gives a parameter estimation method. Section 3 compares the proposed models with nine

existing models on both artificially generated data and real-world data. Section 4 discusses methods

of extending the proposed models and potential applications. Section 5 concludes the paper and

plans future work.

2 Model development

Let {Tk : k = 1, 2, · · · } be the successive failure times of a series system composed of multiple

components, starting from T0 = 0, and Nt be the number of failures up to time t. Whenever a

component fails, it is replaced with a new identical component. Suppose the replacement time is

negligible. Let Ht− denote the history of the failure process up to t (exclusive of t). The failure

process of the system can be defined equivalently by the random processes {Tk}k≥1 or {Nt}t≥0 and
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is characterised by the intensity function,

λ(t|Ht−) = lim
∆t↓0

P{Nt+∆t −Nt = 1|Ht−}
∆t

, (1)

where P{Nt+∆t−Nt = 1|Ht−} is the probability that the system fails within the interval (t, t+ ∆t),

given the history of failures up to time t, Ht− (Cox & Lewis, 1966).

2.1 The exponential smoothing of intensity model

Model II proposed in (Wu & Scarf, 2017) outperforms the four existing models (i.e., the renewal

process, the geometric process, the non-homogeneous Poisson process and the generalised renewal

process), which encourages us to propose a new model, referred to as the exponential smoothing of

intensity (ESI) model.

Similar to Wu and Scarf (2017), in this paper, we distinguish three systems: i) the real system,

which may be a car or an air-conditioner; ii) the system, that is, the mathematical model of the

system, e.g. a series system with a number of non-repairable, non-identical components; and iii) the

virtual system, which consists of VCs.

Strictly, to introduce the ESI model, we make the following assumptions with descriptions where

needed, which are similar to the assumptions of the virtual subsystem of model II in Wu and Scarf

(2017).

(a) Suppose the failure process of a real series system of multiple components. Once the system

fails, the failed component can be immediately identified and replaced with a new identical one.

The occurrences of the failures of the components in the real system are assumed to statistically

independent.

(b) Denote t(> 0) as a time variable starting from the time when the real system is started at time

t = 0.

(c) The real system is assumed to be equivalent to a virtual system that is composed of m different

VCs in series. The virtual system itself does not fail and is assumed to fail as the same time

when the real system fails. The occurrences of the failures of the VCs are assumed to statistically

independent.

(d) The failure process of the real system is modelled with the intensity process of the virtual system

as described below.
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(d.i) Before the first failure of the real system, the VCs have intensity functions 1
m
λ0(t),

1
m
ρλ0(t), . . . , 1

m
ρm−1λ0(t), respectively, where ρ ∈ (0, 1], k ∈ {1 . . .m}, and λ0(t) is a

continuous function of time with λ0(t) > 0. Hence, 1
m
ρm−1λ0(t) < 1

m
ρm−2λ0(t) < · · · <

1
m
λ0(t). 1

m
λ0(t) is the largest intensity function and its associated VC may be more likely

to fail than the other VCs with smaller intensity functions.

(d.ii) After the first failure of the real system occurs at T1, the VC with intensity 1
m
λ0(t) is

replaced with a new VC with intensity 1
m
ρm−1λ0(t − T1) and the intensity function of a

VC from the other m− 1 VCs becomes the product of its previous intensity and ρ−1. To

be more specifically, the intensity function of a component from the m− 1 VCs changes

from 1
m
ρm−kλ0(t) to 1

m
ρm−k−1λ0(t) for k = 1, . . . ,m−1, respectively. Similarly, if the real

system fails at TNt and 2 ≤ Nt < m, the VC with intensity function 1
m
λ0(t) is replaced

with a new VC with intensity 1
m
ρm−1λ0(t− TN) and the intensity function of a VC from

the other m−1 VCs becomes the product of its previous intensity and ρ−1. Table 1 shows

the changes of the intensity functions of the VCs after the first and the second failures of

the real system, respectively.

Table 1: Changes of the intensity functions of the VCs after the first 3 failures of the real system

t ∈ (0, T1] t ∈ (T1, T2] t ∈ (T2, T3] t ∈ (T3, T4]
1
m
λ0(t) −→ 1

m
ρm−1λ0(t− T1) −→ 1

m
ρm−2λ0(t− T1) −→ 1

m
ρm−3λ0(t− T1)

1
m
ρλ0(t) −→ 1

m
λ0(t) −→ 1

m
ρm−1λ0(t− T2) −→ 1

m
ρm−2λ0(t− T2)

1
m
ρ2λ0(t) −→ 1

m
ρλ0(t) −→ 1

m
λ0(t) −→ 1

m
ρm−1λ0(t− T3)

. . . . . . . . . . . . . . . . . . . . .
1
m
ρm−1λ0(t) −→ 1

m
ρm−2λ0(t) −→ 1

m
ρm−3λ0(t) −→ 1

m
ρm−4λ0(t)

(d.iii) If the real system fails at TNt and Nt > m, the VC with intensity 1
m
λ0(t−TNt−m) (which is

the oldest VC in the virtual system) is replaced with a new VC with intensity 1
m
ρm−1λ0(t−

TN) and the intensity function of a VC from the other m− 1 VCs becomes the product

of its previous intensity and ρ−1. Table 2 shows the changes of the intensity functions of

the VCs after the TNtth and the TNt+1th failures of the real system, respectively.

The assumption that the VC with the intensity function 1
m
λ0(t) fails first (for 1 ≤ Nt ≤ m) or

the oldest VC fails first (for Nt > m) is made on the virtual system. For a real system, due to the

randomness of the failure occurrences, it is not possible to know exactly which component might

have caused the system to fail. As such, a model with some assumptions has to be developed to

approximate the real situation.
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Table 2: Changes of the intensity functions of the VCs after the TNtth and the TNt+1th failures of
the real system

t ∈ (TNt−1, TNt ] t ∈ (TNt , TNt+1] t ∈ (TNt+1, TNt+2]
1
m
λ0(t− TNt−m) −→ 1

m
ρm−1λ0(t− TNt) −→ 1

m
ρm−2λ0(t− TNt)

1
m
ρλ0(t− TNt−m+1) −→ 1

m
λ0(t− TNt−m+1) −→ 1

m
ρm−1λ0(t− TNt+1)

1
m
ρ2λ0(t− TNt−m+2) −→ 1

m
ρλ0(t− TNt−m+2) −→ 1

m
λ0(t− TNt−m+2)

. . . . . . . . . . . . . . .
1
m
ρm−1λ0(t− TNt−1) −→ 1

m
ρm−2λ0(t− TNt−1) −→ 1

m
ρm−3λ0(t− TNt−1)

Assumptions (d.i), (d.ii) and (d.iii) are inspired by the principle of the simple exponential smooth-

ing model that has broad applications in time series forecasting (see Chapter 4 in the book by

Makridakis, Wheelwright, and Hyndman (2008), for example). For a given time series Yt, let Ŷt+1

denote the forecast of Yt. With the simple exponential smoothing method, Ŷt+1 can be estimated by

Ŷt+1 = α0

t−1∑
k=0

(1− α0)kYt−k + (1− α0)tY0. (2)

where α0 is the smoothing factor, and 0 < α0 < 1 (Makridakis et al., 2008). The exponential

smoothing assigns exponentially decreasing weights as the observation get older, which agrees with

the fact that older components may have larger intensity functions than younger ones.

Assumptions (d.ii) and (d.iii) give recently installed components relatively more weight in fore-

casting than the older components. They imply that the replacement method relates to not only the

actual elapsed time of a VC but also the times of failures of the real system.

It is noted that the geometric process and its extensions make a similar assumption that the

replacement relates to the times of failures of the real system (see Lam (1988); Bordes and Mercier

(2013); Wu (2018), for example).

Then, from the Assumptions (a–d), the failure intensity of the virtual system after the Nt-th failure

is given by

λ(t|Ht−) =



1

m

m−1∑
k=0

ρm−k−1λ0(t), for Nt = 0,

1

m

(
Nt−1∑
k=0

ρm−k−1λ0(t− TNt−k) +
m−1∑
k=Nt

ρm−k−1λ0(t)

)
, for 1 ≤ Nt < m,

1

m

m−1∑
k=0

ρm−k−1λ0(t− TNt−k), for Nt ≥ m.

(3)

where ρ > 0. t is the time since the system starts, t ∈ (0,+∞). We refer to the count process with
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intensity λ(t|Ht−) as an ESI model, or more precisely, an ESI(m) model.

λ(t|Ht−) in (3) is interpreted below.

• Before the first system failure, i.e., for the case when Nt = 0, according to Assumptions (c)

and (d.i), the intensity function of the virtual system is
1

m

m−1∑
k=0

ρm−k−1λ0(t), which is the sum

of the intensity functions of the m VCs in series structure.

• For the case when 1 ≤ Nt < m, based on Assumption (d.ii), the ages of some VCs are t and

those of the other VCs are younger than t due to replacement. Those VCs with age t have failure

rate functions 1
m
ρm−k−1λ0(t) for Nt ≤ k ≤ m − 1, respectively. Hence, the failure intensity

function of the part composed of those VCs aged t is
1

m

m−1∑
k=Nt

ρm−k−1λ0(t). Those VCs with

age younger than t have failure intensity functions 1
m
ρm−k−1λ0(t− TNt−k) for 0 ≤ k ≤ Nt − 1,

respectively. Hence, the failure intensity function of the part composed of those VCs with age

younger than t is 1
m

∑Nt−1
k=0 ρm−k−1λ0(t− TNt−k).

As such, the failure intensity function of the entire virtual system for 1 ≤ Nt < m is given by

1

m

(
Nt−1∑
k=0

ρm−k−1λ0(t− TNt−k) +
m−1∑
k=Nt

ρm−k−1λ0(t)

)
.

• For the case when for Nt ≥ m, according to Assumption (d.iii), the failure intensity functions

of the VCs are ρm−k−1λ0(t − TNt−k), respectively. Hence, the failure intensity function of the

virtual system is
1

m

m−1∑
k=0

ρm−k−1λ0(t− TNt−k).

Remarks

• If m = 1, then λ(t|Ht−) = λ0(t− TNt) and the process is the renewal process.

• It should be noted that λ(t|Ht−) does not require the monotonicity of λ0(t) in t. Similar

requirements are needed by some existing models, for example, the ARIm and ARAm models

assume that the initial intensity function is strictly increasing (Doyen & Gaudoin, 2004).

If the intensity λ0(t), which is also called the initial intensity function in the cases of ARA and ARI,

is an increasing function, then the intensity of the failure process model in some existing models

such as ARIm and ARAm (Doyen & Gaudoin, 2004), Kijima I and Kijima II models (Kijima, 1989)

converges to infinite for t→∞. Unlike those models, λ(t|Ht−) in the ESI model does not converge

to infinity for t→∞ even if λ0(t) is an increasing function in t, which is proved in Lemma 1.
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Denote Gk(t) as the probability distribution of time to the k-th failure, Tk, of the component with

intensity function λ0(t). Then we can obtain the following lemma.

Lemma 1 For a given m, if
∫∞

0
λ0(u)dGk(u) <∞, then E[λ(t|Ht−)] <∞ for t→∞.

It is easy to establish Lemma 1: if t → ∞, λ(t|Ht−) =
1

m

m−1∑
k=0

ρm−k−1λ0(t− TNt−k). Hence, the

expected value E

[
1

m

m−1∑
k=0

ρm−k−1λ0(t− TNt−k)

]
=

1

m

m−1∑
k=0

ρm−k−1

∫ ∞
0

λ0(u)dGk(u) <∞.

An implication of Lemma 1 is its ability to model the failure process of multi-component systems.

This is because: The intensity function of a one-component system may become infinite whereas the

intensity function of a multi-component system may become equilibrium (Drenick, 1960), as long

as any failed component in the system is replaced with a new identical component. It should be

reminded that most of the existing models including Kijima’s virtual age models, i.e, Kijima I and

Kijima II (Kijima, 1989), are not able to model such a failure process as their intensity functions

converge to infinity for t→∞.

One can also easily establish the following lemma.

Lemma 2 • If λ0(t) is an increasing function in t, then λ(t|Ht−) is an increasing function for

t ∈ (T+
Nt
, T−Nt+1);

• If λ0(t) is a decreasing function in t, then λ(t|Ht−) is a decreasing function for t ∈ (T+
Nt
, T−Nt+1).

Lemma 2 implies that: if λ0(t) is an increasing function in t, then the intensity of the process is

increasing in t between adjacent failures. This result is exactly the case for many systems as they

are ageing or deteriorating between adjacent failures. However, it should be noted that λ(t|Ht−) is

a non-monotone function over time t(∈ (0,+∞)) even if λ0(t) is a monotone function.

Unlike Model II (Wu & Scarf, 2017) in which all the VCs in subsystem 2 are identical, the VCs in

the ESI model are different in the sense that they have different intensity functions.

The ESI model is a simpler model than Model II as it contains fewer parameters. For example,

for the ESI model, if the power law intensity function is assumed to each VC, then the ESI model

only contains three parameters.

2.2 The moving average of intensity model (MAI)

The ESI model has one more parameter than λ0(t). We may remove this additional parameter by

setting it to be one, that is, let ρ = 1, which means Assumptions (d.i), (d.ii) and (d.iii) become
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(d.i’) before the first failure of the system, the VCs are identical with intensity function 1
m
λ0(t), and

(d.ii’) assume whenever the real system fails, the oldest VC is replaced with a component with

intensity 1
m
λ0(t).

It should be noted that although the oldest VC has the same form of the intensity function as 1
m
λ0(t),

the argument t in 1
m
λ0(t) of the oldest VC is larger than the one in the new component. That is, the

ages of the m components are different.

If ρ = 1 in the ESI model (3), then the failure intensity of the system after the Nt-th failure

(Nt ≥ 1) reduces to

λ(t|Ht−) =



λ0(t), for Nt = 0,

1

m

(
Nt−1∑
k=0

λ0(t− TNt−k) + (m−Nt)λ0(t)

)
, for 1 ≤ Nt < m,

1

m

m−1∑
k=0

λ0(t− TNt−k), for Nt ≥ m.

(4)

where t ∈ (0,+∞).

We refer to the process with intensity λ(t|Ht−) in (4) as a moving average of intensity (MAI)

model, more precisely, an MAI(m) model. The MAI model assumes that a real system is equivalent

to a virtual system composed of m identical VCs structured in series. If the real system fails, the

virtual system is assumed to fail and a new VC with intensity function 1
m
λ0(t) is used to replace the

oldest VC.

Remarks

• Similar to the ESI model, if m = 1, then λ(t|Ht−) = λ0(t− TNt) and the process is a renewal

process.

• If m → ∞, then for a given t, 1
m

(∑Nt−1
k=0 λ0(t− TNt−k) + (m−Nt)λ0(t)

)
= 1

m

∑Nt−1
k=0 λ0(t −

TNt−k) + (1− Nt
m

)λ0(t)→ λ0(t). That is, λ(t|Ht−)→ λ0(t), which implies that the MAI model

process can be approximated by a NHPP.

• From the above two bullet points, one can see that the MAI model can model perfect, imperfect

and minimal maintenance, where m is the indicator of maintenance effectiveness. Whenever

the real system fails, one out of the m VCs is replaced. A small m implies a large proportion

of the components in a real system is repaired whereas a large m implies a small proportion of

the components is repaired.
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• As can be seen, the number of the parameters in the MAI model is the same as that in λ0(t),

which is vitally important as models with a small number of parameters are favourable for

real-world situations, as discussed above.

• Recalling the failure process model Model II (Wu & Scarf, 2017), which is discussed in Section

1.2, we may regard the MAI model as Model II when its subsystem 1 is taken away and only

its subsystem 2 is remained.

Example 1. Let λ0(t) = 0.05t1.5, then Figure 1 shows λ0(t) and an example of λ(t|Ht−) with

m = 15, where the X-axis represents t and the Y -axis represents the failure intensity.

Example 2. Similar to Example 1, let λ0(t) = 0.2t−0.5, then Figure 2 shows λ0(t) and an example

of λ(t|Ht−) with m = 15.

The λ(t|Ht−) ≥ λ0(t), represented by the zigzag lines in Figure 1 and Figure 2, are plotted with

Monte Carlo simulation. Figure 1 and Figure 2 show that λ(t|Ht−) ≤ λ0(t) and λ(t|Ht−) ≥ λ0(t),

respectively, and both quickly become equilibrium when t becomes bigger. The equilibrium for the

failure intensity as t becomes bigger in Figures 1 and 2 may be interpreted below.

Take Figure 1 as an example on equilibrium. Suppose a series system composed of multiple

components, each of which has an increasing failure rate. At the beginning, all of the components

are new. As times goes by, the failure rate of each component becomes larger and therefore the

failure intensity function of the system increases. A time period later, the system is composed of a

mix of components with different ages and failure rate functions, some of which are large and some

are small. The failure intensity function of the system is then fluctuated around a fixed value.

If λ0(t) is an increasing function in t, then λ0(t−TNt−k) ≤ λ0(t). Similarly, if λ0(t) is a decreasing

function in t, then λ0(t− TNt−k) ≥ λ0(t). Hence, we can obtain Lemma 3.

Lemma 3 • If λ0(t) is an increasing function in t, then λ(t|Ht−) ≤ λ0(t);

• If λ0(t) is an decreasing function in t, then λ(t|Ht−) ≥ λ0(t);

• If λ0(t) = λ0, where λ0 is a constant, then λ(t|Ht−) = λ0.

2.3 Expected number of failures in time interval (0, t]

In this section, we derive the expected number of failures in time interval (0, t] and give a Monte

Carlo simulation example of estimating times to failures, which is useful on how the proposed models

may be used in lifetime forecasting.
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Figure 1: λ(t|Ht−) with m = 15 and λ0(t), where λ0(t) = 0.05t1.5.

Figure 2: λ(t|Ht−) with m = 15 and λ0(t), where λ0(t) = 0.2t−0.5.

2.3.1 Exploring the expected value of failures

Denote Fn(t) = Pr{Tn < t} and Λ0(t) =
∫ t

0
λ0(u)du. From Eq. (3), we obtain

Pr{T1 < t} = 1− exp

(
− 1

m

m−1∑
k=0

ρm−k−1Λ0(t)

)
, (5)
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For 2 ≤ n < m+ 1 and t1 < t2 < · · · < tn−1 < t, we have

Pr{Tn < t|Tn−1 = tn−1, · · · , T1 = t1} = 1−exp

(
− 1

m

n−2∑
k=0

ρm−k−1Λ0(t− tn−k−1)− 1

m

m−1∑
k=n−1

ρm−k−1Λ0(t)

)
,

(6)

For n ≥ m+ 1, we obtain

Pr{Tn < t|Tn−1 = tn−1, · · · , Tn−m = tn−m} = 1− exp

(
− 1

m

m−1∑
k=0

ρm−k−1Λ0(t− tn−k−1)

)
, (7)

where tn−m < tn−m+1 < · · · < tn−1 < t.

According to Ibragimov (2009), Tn forms a Markov process of order m. Further, we have

f(t1, t2, · · · , tn) = f(tn|tn−1, · · · , tn−m) · · · f(tm+1|tm, · · · , t1)f(t1, · · · , tm) (8)

where f(tk|tk−1, · · · , tk−m) = ∂P (Tk<tk|Tk−1=tk−1,··· ,Tk−m=tk−m)

∂tk
, k = m + 1, · · · , n, f(t1, · · · , tm) =

∂mF1,··· ,m(t1,··· ,tm)

∂t1···∂tm , and F1,··· ,m(t1, · · · , tm) = P (T1 < t1, · · · , Tm < tm). Since

f(t1, t2, · · · , tm) = f(tm|tm−1, · · · , t1) · · · f(t2|t1)f(t1), (9)

we have

f(t1, t2, · · · , tn) = f(tn|tn−1, · · · , tn−m) · · · f(tm+1|tm, · · · , t1)f(tm|tm−1, · · · , t1) · · · f(t2|t1)f(t1).

(10)

Since t1 < · · · < tn−1 < t, we obtain,

Fn(t) =

∫ t

0

· · ·
∫ t

0

f(tn|tn−1, · · · , t1)f(t1, · · · , tn−1)dt1 · · · dtn

=

∫ t

0

· · ·
∫ t

0

f(tn|tn−1, · · · , tn−m)f(t1, · · · , tn−1)dt1 · · · dtn

=

∫ t

0

· · ·
∫ t

0

f(t1, · · · , tn−1, tn)dt1 · · · dtn. (11)

Apparently, Nt ≤ n ⇐⇒ Tn ≤ t, hence, we can obtain Pr{Nt = n} = Fn(t) − Fn+1(t). As such,

E[Nt] =
∑∞

n=1 Fn(t).

Due to the complicating expression of Fn(t), it is difficult to obtain a more closed form of expression

of E[Nt]. A Monte Carlo simulation method may therefore be sought, which is illustrated in the

example in the following subsection.
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2.3.2 An example of forecasting the time to the first fifty failures

Let u be a uniformly distributed random variable within interval (0, 1). Denote a =
m−1∑
k=0

ρm−k−1,

bn = −2
n−2∑
k=0

ρm−k−1tn−k−1, bm = −2
m−1∑
k=0

ρm−k−1tn−k−1, c0 =
m ln(1− u)

α
, cn =

n−2∑
k=0

ρm−k−1t2n−k−1,

cm =
m−1∑
k=0

ρm−k−1t2n−k−1. Assume Λ(t) = αt2. From Eq. (5), one can obtain

t1 =

√
−m ln(1− u)

1
m

∑m−1
k=0 ρ

m−k−1
(12)

From Eq. (6), we have

− ln(1− u) =
1

m

n−2∑
k=0

ρm−k−1Λ0(t− tn−k−1) +
1

m

m−1∑
k=n−1

ρm−k−1Λ0(t)

=
α

m

n−2∑
k=0

ρm−k−1(t− tn−k−1)2 +
α

m

m−1∑
k=n−1

ρm−k−1t2

=

(
α

m

m−1∑
k=0

ρm−k−1

)
t2 −

(
2α

m

n−2∑
k=0

ρm−k−1tn−k−1

)
t+

α

m

n−2∑
k=0

ρm−k−1t2n−k−1

(13)

Then, for 2 ≤ n < m+ 1,

tn =
−bn +

√
b2
n − 4a(c0 + cn)

2a
(14)

Similarly, from Eq. (7), we have

− ln(1− u) =
1

m

m−1∑
k=0

ρm−k−1Λ0(t− tn−k−1)

=
α

m

m−1∑
k=0

ρm−k−1(t− tn−k−1)2

=

(
α

m

m−1∑
k=0

ρm−k−1

)
t2 −

(
2α

m

m−1∑
k=0

ρm−k−1tn−k−1

)
t+

α

m

m−1∑
k=0

ρm−k−1t2n−k−1

(15)
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Then, for n ≥ m+ 1,

tn =
−bm +

√
b2
m − 4a(c0 + cm)

2a
. (16)

One can generate pseudo random numbers for the uniformly distribution variable u and then use

Eqs. (12), (14), and (16) to generate t1, t2, · · · . For example, Table 3 shows the first 50 failure times

(i.e., t1, t2, · · · t50) when Λ(t) = 0.00458t2, ρ = 1, and m = 4. One may repeat the process for many

times and use the distribution of the values {t1, t2, · · · } for forecasting. For example, with the same

parameter settings of Λ(t), ρ and m, we repeat the data generation process for 5,000 times and find

that the mean and standard deviation of the total time of the first 50 failures (i.e., t1, t2, · · · t50) are

270.71 and 116.30, respectively.

Table 3: Monte-Carlo simulation of the first 50 failure times, Λ(t) = 0.00458t2, ρ = 1, and m = 4.

18.33 18.48 22.30 28.22 37.32 40.92 46.41 52.79 59.26 64.30
70.21 76.30 82.20 87.79 93.72 99.64 105.46 111.24 117.13 122.99
128.81 134.65 140.51 146.35 152.19 158.03 163.88 169.72 175.57 181.41
187.26 193.10 198.94 204.79 210.63 216.48 222.32 228.16 234.01 239.85
245.70 251.54 257.38 263.23 269.07 274.92 280.76 286.60 292.45 298.29

The above example assumes Λ(t) = αt2. For more complicated forms of Λ(t), more complicated

numerical methods may be used to obtain tn (n = 1, 2, · · · ) based on Eqs. (5), (6) and (7).

2.4 Likelihood and optimisation

Below we consider the likelihood for the failure process of a single system before a specified number

of failures is occurred. If several independent processes are observed, the log-likelihood is merely a

sum of the likelihood of individual ones.

It follows from Andersen et al. (1993, sec. II.7) that under our stated conditions, the likelihood

function for the observations from a single system is derived below.

The probability density function of the time to the first failure is given by

f(t) =
1

m

m−1∑
j=0

ρm−j−1λ0(t) exp

(
− 1

m

∫ t

0

m−1∑
j=0

ρm−j−1λ0(u)du

)
. (17)

Between the first and second system failures, one of the VCs is replaced with a new one and the

others are not replaced. Hence, the newly installed one has age t−t1 and the other m−1 components

have age t. As such, the intensity function of the new component is 1
m
ρm−1λ0(t) and the intensity

functions of the other components are 1
m

∑m−1
j=1 ρm−j−1λ0(t). Similarly, between the (k − 1)th and

15



kth system failures (where k < m), k − 1 VCs are replaced and the others are not replaced. Hence,

the newly installed ones have age t− tm−j−1 for j = 0, · · · , k− 2 and the others have age t. As such,

the intensity functions of the installed components are
∑k−2

j=0 ρ
m−j−1λ0(t− tk−j−1) and the intensity

functions of the other components are 1
m

∑m−1
j=k−1 ρ

m−j−1λ0(t). That is, the conditional probability

density function of t, given the times to the first k failures, t1, · · · , tk (where 2 ≤ k < m) is given by

f(t|t1, · · · , tk) =
1

m

(
k−2∑
j=0

ρm−j−1λ0(t− tk−j−1) +
m−1∑
j=k−1

ρm−j−1λ0(t)

)

exp

(
− 1

m

k−2∑
j=0

ρm−j−1

∫ t−tk−j−1

tk−1−tk−j−1

λ0(u)du− 1

m

m−1∑
j=k−1

ρm−j−1

∫ t

0

λ0(u)du

)
,(18)

and the conditional probability density function of t, given t1, · · · , tk (for k ≥ m) is given by

f(τ |t1, · · · , tk) =
1

m

(
m−1∑
j=0

ρm−j−1λ0(t− tk−j−1)

)
exp

(
− 1

m

m−1∑
j=0

∫ t−tk−j−1

tk−1−tk−j−1

ρm−j−1λ0(u)du

)
. (19)

Hence, given a dataset of n successive failure times t1, · · · , tn, the likelihood function is

L =
1

m

(
m−1∑
j=0

ρm−j−1λ0(t1)

)
exp

(
− 1

m

m−1∑
j=0

ρm−j−1

∫ t1

0

λ0(u)du

)

×
m∏
k=2

[
1

m

(
k−2∑
j=0

ρm−j−1λ0(tk − tk−j−1) +
m−1∑
j=k−1

ρm−j−1λ0(tk)

)]

×
m∏
k=2

exp

(
− 1

m

k−2∑
j=0

∫ tk−tk−j−1

tk−1−tk−j−1

ρm−j−1λ0(u)du− 1

m

m−1∑
j=k−1

∫ tk

tk−1

ρm−j−1λ0(u)du

)

×
n∏

k=m+1

[
1

m

(
m−1∑
j=0

ρm−j−1λ0(tk − tk−j−1)

)
exp

(
− 1

m

m−1∑
j=0

∫ tk−tk−j−1

tk−1−tk−j−1

ρm−j−1λ0(u)du

)]
. (20)

By maximising log(L), one can find optimal parameters α̂, β̂ and ρ̂, respectively.

As a special case, let λ0(t) = αβtβ−1 and let’s derive the likelihood of the MAI model. Substituting

λ0(t) = αβtβ−1 into Eq. (20), and let ∂ log(L)
∂α

= 0 and ∂ log(L)
∂β

= 0, respectively, we can obtain the
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estimators of parameters α and β by solving the following equations.

α̂ =n

[
tβ̂1 +

1

m

m∑
k=2

k−2∑
j=0

(
(tk − tk−j−1)β̂ − (tk−1 − tk−j−1)β̂

)

+
1

m

m∑
k=2

(m− k + 1)(tβ̂k − t
β̂
k−1) +

1

m

n∑
k=m+1

m−1∑
j=0

(
(tk − tk−j−1)β̂ − (tk−1 − tk−j−1)β̂

)]−1

, (21)

and

n/β̂ + log(t1)− α̂tβ̂1 log(t1) +
m∑
k=2

∑k−2
j=0(tk − tk−j−1)β̂−1 log(tk − tk−j−1) +

∑m−1
j=k−1 t

β̂−1
k log(tk)∑k−2

j=0(tk − tk−j−1)β̂−1 +
∑m−1

j=k−1 t
β̂−1
k

+
n∑

k=m+1

∑m−1
j=0 (tk − tk−j−1)β̂−1 log(tk − tk−j−1)∑m−1

j=0 (tk − tk−j−1)β̂−1

=
α̂

m

m∑
k=2

k−2∑
j=0

[
(tk − tk−j−1)β̂ log(tk − tk−j−1)− (tk−1 − tk−j−1)β̂ log(tk−1 − tk−j−1)

]
+
α̂

m

m∑
k=2

(m− k + 1)
(
tβ̂k log(tk)− tβ̂k−1 log(tk−1)

)
+
α̂

m

n∑
k=m+1

m−1∑
j=0

(
(tk − tk−j−1)β̂ log(tk − tk−j−1)− (tk−1 − tk−j−1)β̂ log(tk−1 − tk−j−1)

)
, (22)

respectively.

Substituting α̂ in Eq. (21) into Eq. (22), we can obtain an equation that only contains β̂. Due to

the complexity of the equation, one may pursue a heuristic algorithm such as the genetic algorithm

to find the solution. Once β̂ is obtained, substituting it back to Eq. (21), we can obtain α̂.

One can easily calculate the 2 × 2 observed information matrix I(α̂, β̂). By taking the inverse of

I(α̂, β̂), he/she can obtain the variance and covariance matrix for α̂ and β̂ and then obtain the 2

sided confidence intervals for them.

3 Simulation and case studies

In this section, we use both artificially generated data and real-world data to compare the performance

of the ESI and MAI models with nine existing models. The nine models are: RP (renewal process),

GP (geometric process), NHPP-PL (non-homogeneous Poisson process with the power law intensity),

Kijima I, Kijima II, ARIm, ARAm, BBIP (Bounded Bathtub Intensity Process) and Model II. The
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reader is referred to Kijima (1989) for the details of Kijima I and Kijima II models, to Doyen and

Gaudoin (2004) for the introduction of the ARIm and ARAm models, to Guida and Pulcini (2009)

for the introduction of the BBIP model and to Wu and Scarf (2017) for the introduction of Model II.

The method to estimate the parameters in a model is the maximum likelihood estimation method.

For the purpose of measuring and comparing the performance of the models, we calculate the AIC,

AICc, and BIC values for each model:

AIC = −2 log(L) + 2q, (23)

AICc = −2 log(L) + 2q +
2(q + 2)(q + 3)

n− q − 2
, (24)

and

BIC = −2 log(L) + qlog(n), (25)

respectively, where L is the maximized value of the likelihood for the model, q is the number of

parameters in the model, and n is the total number of failures. The term 2q, 2(q+2)(q+3)
n−q−2

, and qlog(n)

in the AIC, AICc and BIC penalise a model with a large number of parameters, respectively. The

reader is referred to Burnham and Anderson (2002) for details on model performance measures.

Let λ0(t) be the power law, that is, λ0(t) = αβtβ−1, where α > 0 and β > 1. The values of q of the

eleven models are shown in Table 4: models RP, GP and MAI include two parameters, respectively,

whereas Model II and BBIP, in both of which q = 4, incur the highest penalty on their AIC, AICc,

and BIC values, respectively.

Table 4: The number of unknown parameters in each model.

RP NHPP-PL GP Kijima I Kijima II ARIm ARAm BBIP Model II ESI MAI
q 2 2 3 3 3 3 3 4 4 3 2

3.1 Simulation study

In this subsection, we fit the 11 models to artificially generated datasets, and then compare the AIC,

AICc and BIC values of those models.

The following steps, which are similar to the numerical example steps in Wu and Scarf (2017),

compare the performance of the models.

(1) Assume a series system composed of m components. If a component fails, a new identical

component is used to replace the failed one. Replacement time can be neglected.

18



(2) We consider three cases n = 15, 30, 45 for the number of failures. For each case, we assume that

m = 5, 15, 25, respectively, for the number of components in a system.

(3) The time to failure of each component follows a Weibull distribution 1 − e−( t
γ

)η , where the

parameter η and the parameter γ are randomly selected from the uniform distribution, on the

intervals η ∈ (0.5, 4) and γ ∈ (12, 60), respectively.

(4) Using the artificially generated data implied by the above, we fit each of the 11 models: RP,

NHPP, GP, Kijima I, Kijima II, ARIm, ARAm, BBIP, Model II, ESI and MAI, by maximising

their respective log-likelihoods. The reader is referred to Lam (2007) for the likelihoods of the

RP, the GP and the NHPP-PL, respectively, to Yanez, Joglar, and Modarres (2002) for the

likelihood of the Kijima I (the likelihood of Kijima II can be similarly obtained), to Doyen and

Gaudoin (2004) for the likelihood of ARIm (the likelihood of ARAm can be similarly obtained),

to Guida and Pulcini (2009) for the likelihood of the BBIP, and to Wu and Scarf (2017) for the

likelihood of Model II. In all the models, we assume λ0(t) = αβtβ−1.

We repeat the above steps (1) to (4) for 30 repetitions, in each of which the values of γ and η are

different. Calculations are done with a statistical package R (which can be downloaded from www.r-

project.org/). Table 5 shows the mean values and the variances (that are shown in the brackets

under means) of the − log(L) values of the models over the 30 repetition for each combination.

Table 5: The means and standard deviations of (− log(L)) from 30 repetitions.

Estimated values of (− log(L))
Nine existing models New models

q = 2 q = 3 q = 4 q = 3 q = 2
n m RP NHPP-PL GP Kijima I Kijima II ARIm ARAm BBIP Model II ESI MAI

5
45.33 42.40 43.08 41.65 41.17 40.82 41.20 42.18 40.60 40.82 41.00
(5.07) (4.47) (4.21) (4.25) (4.35) (4.21) (4.29) (4.21) (4.23) (4.25) (4.28)

15 15
28.73 24.79 26.72 24.18 23.96 24.15 24.25 24.32 23.14 23.84 24.02
(4.21) (3.38) (3.23) (3.57) (3.68) (3.72) (3.72) (3.23) (3.65) (3.77) (3.67)

25
23.16 19.35 21.62 18.32 18.33 18.36 18.31 18.96 17.53 18.01 18.24
(3.95) (3.58) (3.04) (3.84) (3.74) (3.83) (3.80) (3.47) (3.96) (3.89) (3.87)

5
91.80 86.67 88.15 86.02 85.46 85.30 85.51 86.34 85.09 85.22 85.33
(9.10) (8.13) (8.10) (8.08) (7.99) (8.33) (8.16) (8.10) (8.10) (8.06) (8.17)

30 15
57.69 50.53 53.60 49.96 49.34 50.02 49.92 49.98 48.42 49.06 49.23
(7.70) (6.03) (5.99) (6.19) (6.14) (6.15) (6.12) (5.98) (6.23) (6.13) (6.18)

25
45.03 36.95 41.76 36.46 35.97 36.26 36.26 36.52 35.22 35.67 35.84
(7.32) (5.57) (5.45) (5.66) (5.81) (5.92) (5.79) (5.44) (5.83) (5.93) (5.95)

5
136.12 127.52 130.17 126.61 125.76 125.60 125.71 127.20 125.15 125.41 125.56
(13.97) (11.82) (12.19) (11.69) (11.63) (11.75) (11.66) (11.84) (11.31) (11.68) (11.62)

45 15
84.94 74.17 79.01 73.65 73.12 73.99 73.52 73.49 72.15 72.75 72.96

(11.66) (7.87) (8.77) (7.95) (8.75) (8.24) (7.93) (7.86) (7.73) (8.06) (8.02)

25
64.92 52.24 59.85 51.72 51.31 51.69 51.62 51.68 50.57 51.09 51.30

(12.03) (6.77) (9.13) (6.94) (7.07) (7.20) (7.11) (6.71) (7.00) (7.02) (7.09)
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From Table (5), we have the following observations.

• The value − log(L) of Model II is the smallest among the 11 models in all the 9 cases, the value

− log(L) of the ESI is the second smallest among the 11 models in all the 9 cases, and the value

− log(L) of the MAI is the third smallest among the 11 models in 8 out of the 9 cases.

• One can also calculate the values of AIC, AICc and BIC of the 11 models, respectively, and

compare them. It can be found that the MAI model has the smallest AIC, AICc and BIC

among the 11 models in all the 9 cases. The ESI model has the second smallest AIC, AICc and

BIC among the 11 models in all the 9 cases.

• Among all three models with q = 2, the MAI has the smallest value − log(L) in all the 9 cases.

• Among all six models with q = 3, the ESI has the smallest value − log(L) in all the 9 cases.

From the above observations, one can conclude that (1) Model II outperforms the other 10 models

in term of the likelihood, (2) the MAI and ESI models outperform the other 9 models in terms of

the AIC, AICc and BIC, (3) the MAI has the best performance among the models with q = 2, and

(4) the ESI has the best performance among the models with q = 3.

3.2 Case study

In this section, 15 datasets collected from the real world are used to compare the performance of the

11 models. All the datasets are failure data of certain systems. Their names and sample sizes are

shown in Table 6, where n is the sample size. The last column shows the model used on the dataset

in the corresponding publication shown in the Data source column, i.e., column 4. Details of the

datasets are explained below.

• The hydraulic system failure data. Datasets 1 and 6 in are times between failures of hydraulic

systems, analysed by Kumar and Klefsjö (1992), who use the NHPP-PL to fit those datasets.

• The aircraft engine failure data. Datasets 7 and 10 in are times between failures of the aircraft

engines, published in Proschan (1963).

• The compressor failure data. The failure data related to the U.S.S. Halfbeak No. 3 main

propulsion motor, which are used by Ascher and Feingold (1984) to perform a time terminated

analysis.

• Datasets 11 and 12. Those two datasets contain times-between-failures of a compressor and a

main propulsion motor. Yanez et al. (2002) use Kijima I to fit the datasets.
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• Datasets 13 and 14. Those two datasets are miles-between-failures of two bus engines, analysed

by Guida and Pulcini (2009), who propose an NHPP model, called the BBIP, with intensity

function a1e
−t/a2 + a3(1− e−t/a4), where a1, a2, a3, a4 > 0.

• Dataset 15. Dataset 15 is times-between-failures of a diesel engine, analysed by Lee (1980), who

proposes an NHPP model with the Weibull and log linear rate (NHPP-WLL): a1a2t
a2−1ea3t,

where a1, a2 > 0 and −∞ < a3 <∞.

Table 6: The real-world datasets.

No. Dataset n Data source Model
1 Hydraulic system (LHD 1) 23 Kumar and Klefsjö (1992) NHPP-PL
2 Hydraulic system (LHD 3) 25 Kumar and Klefsjö (1992) NHPP-PL
3 Hydraulic system (LHD 9) 27 Kumar and Klefsjö (1992) NHPP-PL
4 Hydraulic system (LHD 11) 28 Kumar and Klefsjö (1992) NHPP-PL
5 Hydraulic system (LHD 17) 26 Kumar and Klefsjö (1992) NHPP-PL
6 Hydraulic system (LHD 20) 23 Kumar and Klefsjö (1992) NHPP-PL
7 Air conditioner (TBF 7909) 24 Proschan (1963) HPP
8 Air conditioner (TBF 7912) 30 Proschan (1963) HPP
9 Air conditioner (TBF 7913) 27 Proschan (1963) HPP
10 Air conditioner (TBF 7914) 23 Proschan (1963) HPP
11 Compressor 24 Yanez et al. (2002) Kijima I
12 Main propulsion motor 24 Yanez et al. (2002) Kijima I
13 Powertrain System 510 55 Guida and Pulcini (2009) BBIP
14 Powertrain System 514 35 Guida and Pulcini (2009) BBIP
15* Diesel engine 56 Lee (1980) NHPP-WLL

* In dataset 15, there is a value 0, which is replaced with 0.5 in this paper.

We fit the 11 models on the 15 datasets, respectively. with the sole aim to compare their likelihood

and the other performance measures: AIC, AICc and BIC. The results are shown in Table 7, in which

the underlined number is the smallest one in each row.

3.2.1 The results

The last four rows in Table 7 show the average values resulted from the modelling outcomes on the

15 datasets. For example, in column 2 where RP is used, − log(L)=205.09 (located in the 4th row

from the bottom), which means that the average of the values − log(L) on the 15 datasets is 205.09.

Similarly, the RP’s average values of AIC, AICc and BIC on the 15 datasets are 414.17, 415.20, and

416.89, respectively.

From Table 7, we have the observations that are summarised in Table 8 and that are also concluded

in the following.
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Table 7: − log(L) of each model on the real-world datasets.

Estimated value of (− log(L))
Nine existing models New models

q = 2 q = 3 q = 4 q = 3 q = 2
No. RP NHPP GP Kijima I Kijima II ARIm ARAm BBIP Model II ESI MAI
1 129.99 128.50 129.50 128.46 128.50 128.44 128.46 129.09 128.02 128.32 129.38
2 148.72 146.96 148.72 146.96 145.47 145.31 145.32 146.22 144.94 144.20 144.94
3 166.55 163.64 165.39 163.52 163.65 163.48 163.49 164.36 163.96 163.45 163.97
4 158.05 157.09 157.99 157.09 155.89 155.54 155.86 156.23 155.21 154.91 155.44
5 151.20 149.33 150.96 149.32 149.12 148.38 148.36 149.81 148.98 148.87 149.14
6 137.27 136.86 137.12 136.73 135.65 135.55 135.65 136.61 134.77 135.29 135.80
7 125.37 126.30 124.48 125.37 125.37 125.05 125.37 125.96 125.37 125.37 125.37
8 151.94 150.43 151.14 150.41 150.42 150.37 150.42 150.64 150.20 150.24 151.33
9 143.96 144.22 143.10 143.96 143.10 141.19 142.75 143.81 141.80 142.07 142.15
10 119.60 119.66 119.21 119.52 119.56 118.68 119.57 119.47 117.98 118.58 119.55
11 191.06 189.30 190.95 189.32 188.90 188.70 187.82 189.22 188.78 188.12 188.85
12 183.88 182.44 182.70 181.63 182.45 181.55 181.85 183.29 182.37 182.45 182.91
13 543.26 543.57 543.19 542.28 541.88 543.32 543.58 542.52 542.35 542.35 542.87
14 356.18 357.05 356.06 355.88 355.07 354.55 357.06 353.77 354.74 353.98 355.04
15 369.29 368.31 369.14 368.31 368.00 367.06 367.68 367.70 367.89 367.75 368.07

− log(L)* 205.09 204.24 204.64 203.92 203.53 203.14 203.55 203.91 203.16 203.06 203.65
AIC* 414.17 412.48 415.29 413.83 413.07 412.29 413.10 415.83 414.32 412.13 411.31
AICc* 415.20 413.50 417.07 415.62 414.85 414.08 414.88 418.64 417.13 413.91 412.33
BIC* 416.89 415.19 419.36 417.90 417.14 416.36 417.16 421.25 419.74 416.20 414.02

* The value with * on its right upper corner represents the mean of the value.

In Table 8, the last row shows the best model with its frequency in each column. For example,

4×Model II in column 2 means that Model II is the best performed model as it has the smallest

− log(L) in 4 cases, whereas the other models have smaller frequencies of performing as the best.

• Compared the values of the likelihood, Model II outperforms the others as it has the smallest

− log(L), or the largest log(L). Both the ESI and the ARIm models have the second largest

value of the likelihood, as shown in the second column.

• If one simply compares the values of the likelihood among those model with 3 parameters, i.e.,

q = 3, then he/she can find that the ESI has the largest likelihood in 8 out of the 15 cases.

That is, the ESI outperforms the other 3-parameter models in terms of the likelihood, as shown

in the third column.

• If one compares the AIC values of the 11 models, then he/she can find that the ESI has the

smallest AIC value in 10 out of the 15 cases. That is, the MAI outperforms the other 10 models

in term of AIC, as shown in the fourth column.
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• If one compares the values of the AICc and BIC of the 11 models, then he/she can find that the

MAI has the smallest values of the AICc and BIC in 11 out of the 15 cases. That is, the MAI

outperforms the other models in terms of both AICc and BIC, as shown in the fifth column.

It can also be found, surprisingly, the Kijima models including both Kijima I and Kijima II, which

are widely studied and applied in the literature, do not perform so well as either ARAm or ARIm.

Table 8: Results of the performance comparison from Table 7.

ESI MAI
No. − log(L) − log(L) of the ”q = 3” models AIC AICc & BIC
1 Model II ESI NHPP-PL NHPP-PL
2 ESI ESI MAI MAI
3 ESI ESI NHPP-PL NHPP-PL
4 ESI ESI MAI MAI
5 ARAm ARAm MAI MAI
6 Model II ESI MAI MAI
7 GP GP MAI MAI
8 Model II ESI NHPP-PL NHPP-PL
9 ARIm ARIm MAI MAI
10 Model II ESI MAI MAI
11 ARAm ARAm MAI MAI
12 ARIm ARIm NHPP-PL NHPP-PL
13 Kijima II Kijima II MAI MAI
14 BBIP ESI ESI MAI
15 ARIm ARIm MAI MAI

Frequency 4×Model II 8×ESI 10×MAI 11×MAI

3.2.2 Model checking

According to Cook and Lawless (2007) (p93), the martingale residual process is defined as

ε̂(t) = N̄(t)−
∫ t

0

λ(u|Hu−)du, (26)

where N̄(t) is the observable counting process. Plugging λ(t|Ht−) in (3) into (26), one can obtain

ε̂(t) =



N̄(t)− 1

m

m−1∑
k=0

ρm−k−1Λ0(t), if Nt = 0,

N̄(t)− 1

m

(
Nt−1∑
k=0

ρm−k−1Λ0(t− TNt−k) +
m−1∑
k=Nt

ρm−k−1Λ0(t)

)
, if 1 ≤ Nt < m,

N̄(t)− 1

m

m−1∑
k=0

ρm−k−1Λ0(t− TNt−k), if Nt ≥ m,

(27)
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where Λ0(t) =
∫ t

0
λ0(u)du.

The process {ε(t), t ≥ 0} should follow the normal distribution and have uncorrelated increments

if the failure process model with intensity λ(u|Hu−) is correctly specified. We take the MAI model

on dataset 2 as an example in model checking.

With the Cramer-von Mises test, we test the normality of the residuals ε(t) of the MAI model on

dataset 2 and have the result that the p-value of the test is greater than a significance level of 0.05,

therefore we fail to reject the null hypothesis that the residuals is normally distributed. We also

test the serial correlation of the residuals with the Breusch-Godfrey test and fail to reject the null

hypothesis that there is no serial correlation at a significance level of 0.05.

To further check the MAI model, we compare the performance of models RP, NHPP and MAI on

dataset 2. The parameters of the MAI on this dataset are shown in row 2 in Table 9. Row 3 in this

table shows the estimated root-mean-square error (RMSE) of the difference (i.e., the residuals ε̂(t)

in Eq. (26)) between the mean cumulative function (MCF) of the real-world data and the expected

cumulative number of failures of the models RP, NHPP and MAI, respectively, from which one can

see that the MAI has the smallest RMSE among the three models. We also plot the mean cumulative

function of the real-world data (i.e, empirical MCF) and the expected cumulative number of failures

of the models RP, NHPP and MAI, as shown in Figure 3. It can be seen that the MAI fits better

than the other two models.

The reason that we compare the ESI and MAI models with other nine models is merely to show

the performance of the ESI and MAI models. It should be noted, however, using the NHPP model

to approximate the failure process of a series system in which a failed component is replaced may

violate the assumption of NHPP. This is because NHPP can be applied to model the failure process

of a system on which only minimal repair is conducted. In addition, both the renewal process and

the geometric process assume that the gap times Tk − Tk−1 are statistically independent, which may

not hold in the setting in this paper because only a failed component is replaced and the other

components in the system are remained.

Table 9: The estimated parameters of the RP, NHPP-PL and MAI on dataset 2.

Models RP NHPP-PL MAI
Parameters α = 6.64× 10−3, β = 1.012 α = 1.27× 10−4, β = 1.49 α = 4.58−6, β = 1.98,m = 18

Estimated RMSE 1.62 1.46 1.07
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Figure 3: Cumulative air-conditioning failures (empirical MCF on dataset 2) and estimated mean
cumulative functions.

4 Discussion

In this section, we discuss possible extensions and applications of the proposed models.

If the intensity function λ0(t) of the GP, ARIm, ARAm, Kijima I and Kijima II are the same, then

they should have the same number of parameters. As such, to compare the performance of those

models, one may simply compare their log-likelihood values and does not need to compare their AIC,

AICc and BIC values. From the second and third columns of Table 8, one can find that the model

ARIm is the second best model. As such, the ARIm may be used as the basis intensity function in

the MAI model and the failure intensity of the system after the Nt-th failure is given by

λ(t|Ht−) =



λ0(t), if Nt = 0,

1

m

(
Nt−1∑
k=0

λARIm(t− TNt−k) + (m−Nt)λARIm(t)

)
, if 1 ≤ Nt < m,

1

m

m−1∑
k=0

λARIm(t− TNt−k), if Nt ≥ m.

(28)

where λARIm(t) = λ0(t)− ρ
Min(m−1,Nt−1)∑

j=0

(1− ρ)jλ0(TNt−j), see (Doyen & Gaudoin, 2004) for details

about the ARIm model. λ0(t) in Eq. (28) is an increasing function.

The above model has the same number of parameters as that of the ARIm, which may be interesting
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and will be investigated in our future work.

The ESI and MAI models in the preceding section depict the failure process of a multi-component

system. A possible application in maintenance is on development of maintenance policy. Since the

models are not able to exactly pinpoint which component’s failure causes the system to fail, an

inspection may be executed on possible failures of the system to locate the failure cause. As such,

the ESI and MAI models may be useful in development of inspection policies.

Other applications of the ESI and MAI models may be in warranty claim analysis, in which

stochastic process models are importance tools to make forecasting. One may estimate a stochastic

process model such as an ESI model or an MAI model based on historical warranty claim data and

then use the model to project the claim amount in future. In such a scenario, models ESI and MAI

offers modelling methods that make a more precise forecasting. Other examples may include lifecycle

costing that also replies on stochastic process modelling methods with better performance to make

more precise forecasting.

5 Conclusions and future work

This paper proposes a new failure process model, ESI (Exponential Smoothing of Intensity model),

and investigates its special case model, MAI (Moving Average of Intensity model). The models are

developed for modelling the failure process of a repairable multi-component system.

According to the comparison between the two models (ESI and MAI) and nine existing models

on artificially generated data, with respect to the model performance metrics AIC, AICc and BIC,

the MAI outperforms the other ten models and the ESI is the second best model. Based on the

comparison of the eleven models on the fifteen real-world datasets, the MAI outperforms the other

ten models in eleven out of the fifteen cases. If one uses the log-likelihood as a model performance

measure, then the ESI model is the second best performed model among the eleven models on both

the artificially generated data and the fifteen real-world datasets.

More importantly, the MAI model has the same number of parameters as the NHPP if both follow

the same life-time distribution before the first failure. Additionally, it is worth highlighting that

the MAI outperforms the NHPP on the artificially generated data and most cases of the real world

datasets.

It is also worth highlighting that the MAI model can model perfect, imperfect and minimal main-

tenance and has the ordinary renewal process and the NHPP as special cases.

Our future work aims at investigating the probabilistic and statistical properties of the ESI and

MAI models. Another area of our future work is to provide an in-depth analysis of the performance
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of the models proposed in this paper, in a similar vein as those papers by Azaiez and Bier (1995,

1996).
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