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ON THE NUMBER OF PAIRWISE TOUCHING SIMPLICES

BAS LEMMENS AND CHRISTOPHER PARSONS

Abstract. In this note it is shown that the maximum number of pair-
wise touching translates of an n-simplex is at least n + 3 for n = 7, and
for all n ≥ 5 such that n ≡ 1 mod 4. The current best known lower
bound for general n is n + 2. For n = 2k

− 1 and k ≥ 2, we will also
present an alternative construction to give n+2 touching simplices using
Hadamard matrices.

1. Introduction

A classic problem in discrete geometry is to determine for a given convex
body K in R

n the maximum number of pairwise touching translates of K.
This number is called the touching number of K and is denoted by t(K). It
is well-known that for any convex body K in R

n,

t(K) ≤ 2n,

and equality holds if, and only if, K is a parallelotope, see [3, 9, 10]. On the
other hand, it is unknown if for each convex body K in R

n the inequality
t(K) ≥ n + 1 holds when n ≥ 4, see [4, Section 2.3].

This paper concerns the touching number of n-dimensional simplices, ∆n.
This number was studied by Koolen, Laurent and Schrijver in [7]. They
showed, among other things, that t(∆n) ≥ n+2 for all n ≥ 3 and t(∆3) = 5,
see Figure 1. In [8] the first author gave examples that showed that t(∆4) ≥ 7
and t(∆5) ≥ 9.

The main goal of this short note is to present a construction that gives
the following small improvement of the lower bound for t(∆n).

Theorem 1.1. For n = 7 and n ≡ 1 mod 4, with n ≥ 5, we have that

t(∆n) ≥ n + 3.

The problem of determining t(∆n) is known [7, 8] to be equivalent to
finding the maximum size of ℓ1-norm equilateral sets in a hyperplane. We
will discuss the equivalence between these two problems in the next section.
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2 BAS LEMMENS AND CHRISTOPHER PARSONS

Figure 1. Five pairwise touching tetrahedra

2. Equilateral sets

A convex body K in R
n which is centrally symmetric, i.e., x ∈ K if and

only if −x ∈ K, is the unit ball of a norm ‖ · ‖K on R
n. Indeed, for x ∈ R

n

we can define the norm by

‖x‖K = inf{λ > 0: x ∈ λK}.

A set S in a normed space (Rn, ‖ · ‖) is called an equilateral set if there
exists a constant δ > 0 such that

‖s − t‖ = δ for all s 6= t in S.

The maximum size of an equilateral set in (Rn, ‖·‖) is the equilateral dimen-

sion of (Rn, ‖·‖), and is denoted by e(Rn, ‖·‖). Note that the constant δ > 0
does not play a role, as we can always scale the equilateral set. Clearly, if K
is a centrally symmetric body in R

n, then S = {s1, . . . , sp} is an equilateral
set in (Rn, ‖·‖K) with pairwise distance 2 if, and only if, the set of unit balls
with centers s1, . . . , sp is a configuration of p pairwise touching translates of
K.

The equilateral dimension has been studied for many normed spaces, see
for example [1, 11, 12]. Particular attention has been given to so called
ℓp-norms which are defined as follows. For 1 ≤ p < ∞, the ℓp-norm on R

n

is given by ‖x‖p = (
∑

i |xi|
p)1/p. For the ℓ1-norm it has been conjectured

by Kusner [6] that e(Rn, ‖ · ‖1) = 2n, but at present this has only been
confirmed for 1 ≤ n ≤ 4, see [2, 7]. Obviously, 2n is a lower bound for
e(Rn, ‖ · ‖1), as the set of standard basis vectors and their opposites form
an equilateral set. The best known upper bound is Cn log n, where C > 0
is a constant, which was obtained using probabilistic methods by Alon and
Pudlak [1].

The touching number for the n-dimensional simplex turns out to be equiv-
alent to determining the maximum size of an ℓ1-norm equilateral set con-
tained in a hyperplane. More precisely, if h(n) is the maximum size of an
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ℓ1-norm equilateral set in Hα = {x ∈ R
n :

∑

i xi = α} for some α ∈ R, then

(2.1) t(∆n) = h(n + 1) for all n ≥ 1,

see [7, 8]. For example, the ℓ1-norm equilateral set

(2.2) S = {(2, 0, 1, 1), (0, 2, 1, 1), (1, 1, 2, 0), (1, 1, 0, 2), (2, 2, 0, 0)}

in the hyperplane H4 ⊆ R
4 corresponds to the configuration of 5 pairwise

touching translates of a tetrahedron depicted in Figure 1. The examples
of equilateral sets in Table 1 were found with the aid of a computer. In
particular, we see that t(∆7) ≥ 10, which settles the n = 7 case in Theorem
1.1.

Table 1. Equilateral sets

n = 5 n = 6 n = 8
(4, 0, 1, 1, 2) (4, 0, 1, 1, 1, 1) (0, 4, 2, 2, 0, 4, 2, 2)
(0, 4, 1, 1, 2) (0, 4, 1, 1, 1, 1) (4, 0, 2, 2, 4, 0, 2, 2)
(1, 1, 4, 0, 2) (1, 1, 4, 0, 1, 1) (2, 2, 0, 4, 2, 2, 0, 4)
(1, 1, 0, 4, 2) (1, 1, 0, 4, 1, 1) (2, 2, 4, 0, 2, 2, 4, 0)
(2, 2, 0, 0, 4) (1, 1, 1, 1, 4, 0) (8, 2, 1, 1, 0, 2, 1, 1)
(0, 0, 2, 2, 4) (1, 1, 1, 1, 0, 4) (4, 4, 4, 4, 0, 0, 0, 0)
(2, 2, 2, 2, 0) (2, 2, 2, 2, 0, 0) (4, 4, 0, 0, 4, 4, 0, 0)

(2, 2, 0, 0, 2, 2) (4, 4, 0, 0, 0, 0, 4, 4)
(0, 0, 2, 2, 2, 2) (4, 0, 4, 0, 0, 4, 0, 4)

(4, 0, 0, 4, 0, 4, 4, 0)

It is interesting to note that in these examples all the nonzero coordinates
are powers of 2. We have looked into those type of examples in more detail,
which let to the construction in Proposition 4.1. At present, however, we
have no clear understanding of why these coordinate values generate large
examples.

Before we prove Theorem 1.1, we mention that the inequalities

h(n) ≤ e(Rn, ‖ · ‖1) ≤ h(2n − 1)

are known [7, 8] to hold for all n ≥ 1, Thus, e(Rn, ‖ · ‖1) grows linearly in n
if, and only if, h(n) does.

3. Proof of Theorem 1.1

For each n ≡ 2 mod 4 with n ≥ 6 we shall construct an ℓ1-norm equilateral
set in Hα = {x ∈ R

n :
∑

i xi = α} of size n + 2, where α = (n − 2)2/2. The
result then follows from equation (2.1). So let n ≡ 2 mod 4 with n ≥ 6.
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Define

v1 = (b, 0, a, a, . . . , a, a),

v2 = (0, b, a, a, . . . , a, a),

v3 = (a, a, b, 0, . . . , a, a),

v4 = (a, a, 0, b, . . . , a, a),

...

vn−1 = (a, a, a, a, . . . , b, 0),

vn = (a, a, a, a, . . . , 0, b),

in R
n, where a = (n − 4)/2 and b = n − 2. Furthermore let

vn+1 = (

k
︷ ︸︸ ︷
y, y, . . . , y,

n−k
︷ ︸︸ ︷
z, z, . . . , z) and vn+2 = (

n−k
︷ ︸︸ ︷
z, z, . . . , z,

k
︷ ︸︸ ︷
y, y, . . . , y)

in R
n. We now show that if we take

k = (n − 2)/2, y = (n − 6)/2, and z = (n − 2)/2,

then V = {v1, . . . , vn+2} is an ℓ1-norm equilateral set in Hα, where α =
(n − 2)2/2 and the distance is 2(n − 2).

To verify this we note first that b ≥ z ≥ a ≥ y ≥ 0. For i = 1, . . . , n the
coefficient sum of vi is given by

b + (n − 2)a = (n − 2) + (n − 2)(n − 4)/2 = (n − 2)2/2.

Similarly the coefficient sum for the vectors vn+1 and vn+2 is equal to

(n − k)z + ky = (n + 2)(n − 2)/4 + (n − 2)(n − 6)/4 = (n − 2)2/2.

Let 1 ≤ i 6= j ≤ n. For i = 2k − 1 and j = 2k, the distance between vi

and vj is given by

‖vi − vj‖1 = |b − 0| + |0 − b| = 2(n − 2),

and for all other i 6= j,

‖vi − vj‖1 = |b − a| + |0 − a| + |a − b| + |a − 0| = 2(b − a) + 2a = 2(n − 2).

Also

‖vn+1 − vn+2‖1 = k|z − y| + k|y − z| = (n − 2)
(

n−2
2

− n−6
2

)
= 2(n − 2).

Finally the distance between any of the first n vectors and the last two is
calculated as in either the case of v1 and vn+1,

‖v1 − vn+1‖1 = |b − y| + |0 − y| + (k − 2)|a − y| + (n − k)|a − z|

= (n − 2) + (n − 6)/2 + (n + 2)/2

= 2(n − 2),
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or, as in the case of v1 and vn+2,

‖v1 − vn+2‖1 = |b − z| + |0 − z| + (n − k − 2)|a − z| + k|a − y|

= (n − 2) + (n − 2)/2 + (n − 2)/2

= 2(n − 2).

Thus, V is an ℓ1-norm equilateral set in Hα of size n + 2. Table 2 shows
examples in dimensions n = 6, 10 and 14.

Table 2. Equilateral sets of size n + 2

n = 6 n = 10 n = 14
(4,0,1,1,1,1) (8,0,3,3,3,3,3,3,3,3) (12, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(0,4,1,1,1,1) (0,8,3,3,3,3,3,3,3,3) ( 0,12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(1,1,4,0,1,1) (3,3,8,0,3,3,3,3,3,3) ( 5, 5,12, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(1,1,0,4,1,1) (3,3,0,8,3,3,3,3,3,3) ( 5, 5, 0,12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(1,1,1,1,4,0) (3,3,3,3,8,0,3,3,3,3) ( 5, 5, 5, 5,12, 0, 5, 5, 5, 5, 5, 5, 5, 5)
(1,1,1,1,0,4) (3,3,3,3,0,8,3,3,3,3) ( 5, 5, 5, 5, 0,12, 5, 5, 5, 5, 5, 5, 5, 5)
(2,2,2,2,0,0) (3,3,3,3,3,3,8,0,3,3) ( 5, 5, 5, 5, 5, 5,12, 0, 5, 5, 5, 5, 5, 5)
(0,0,2,2,2,2) (3,3,3,3,3,3,0,8,3,3) ( 5, 5, 5, 5, 5, 5, 0,12, 5, 5, 5, 5, 5, 5)

(3,3,3,3,3,3,3,3,8,0) ( 5, 5, 5, 5, 5, 5, 5, 5,12, 0, 5, 5, 5, 5)
(3,3,3,3,3,3,3,3,0,8) ( 5, 5, 5, 5, 5, 5, 5, 5, 0,12, 5, 5, 5, 5)
(4,4,4,4,4,4,2,2,2,2) ( 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,12, 0, 5, 5)
(2,2,2,2,4,4,4,4,4,4) ( 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0,12, 5, 5)

( 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,12, 0)
( 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0,12)
( 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4)
( 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6)

4. Hadamard matrices

In this section we will give an alternative construction that shows that
t(∆n) ≥ n + 2 for all n = 2k − 1 with k ≥ 2 using ℓ1-norm equilateral sets
and Hadamard matrices. Recall that an n×n matrix H = [hij ] with entries
hij ∈ {−1, 1} for all i and j, is called a Hadamard matrix if HHT = nI.
There exists a simple well-known construction of Hadamard matrices of size
2k. Define H1 = [1] and

H2k+1 =

[
H2k H2k

H2k −H2k

]

for all k ≥ 1. So,

H2 =

[
1 1
1 −1

]

, H4 =







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1







, . . . .
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Now suppose k ≥ 2. Let v1, . . . , v2k

∈ R
2k

denote the rows of the
Hadamard matrix H2k , and define the set

Vk = {v3} ∪ {vi : i = 5, . . . , 2k}.

Furthermore let Wk = {w1, w2, w3, w4} ∈ R
2k

be given by

w1 = (1,−1, 0, 0, 1,−1, 0, 0, . . . , 1,−1, 0, 0),

w2 = (−1, 1, 0, 0,−1, 1, 0, 0, . . . ,−1, 1, 0, 0),

w3 = (0, 0, 1,−1, 0, 0, 1,−1, . . . , 0, 0, 1,−1),

w4 = (0, 0,−1, 1, 0, 0,−1, 1, . . . , 0, 0,−1, 1).

Proposition 4.1. For each k ≥ 2 the set Vk ∪Wk is an ℓ1-norm equilateral

set of size 2k + 1 in H0 = {x ∈ R
2k

:
∑

i xi = 0}.

Proof. Let k ≥ 2. It is easy to show that each u ∈ Vk ∪ Wk lies in H0. Also
note that any two distinct points vi and vj in Vk satisfy

‖vi − vj‖1 = 2k,

as the rows in H2k differ in exactly 2k−1 places. The reader can check that
‖wi − wj‖1 = 2k for all 1 ≤ i 6= j ≤ 4.

So, it remains to show that

(4.1) ‖vi − wj‖1 = 2k for all vi ∈ Vk and wj ∈ Wk.

We use induction on k. Note that if k = 2, we have that

V2∪W2 = {(1, 1,−1,−1), (1,−1, 0, 0), (−1, 1, 0, 0), (0, 0, 1,−1), (0, 0,−1, 1)},

which is an ℓ1-norm equilateral set with distance 4. Now suppose that (4.1)
holds for k. Denote the points in Vk+1 by v̄i and the points in Wk+1 by
w̄j . Note that for j = 1, . . . , 4 we have w̄j = (wj , wj), where wj ∈ Wk.
Also observe that for i = 3, 5 . . . , 2k we have v̄i = (vi, vi), and for i =

2k + 1, . . . , 2k+1 we have v̄i = (vi−2k

,−vi−2k

), where vi ∈ Vk.
So, for i = 3, 5, . . . , 2k and j = 1, . . . , 4, we have that

‖v̄i − w̄j‖1 =
2k+1

∑

l=1

|v̄i
l − w̄j

l | = 2
2k
∑

l=1

|vi
l − wj

l | = 2 · 2k = 2k+1

by the induction hypothesis. Also for i = 2k + 1, . . . , 2k+1 and j = 1, . . . , 4,
we have that

‖v̄i − w̄j‖1 =

2k
∑

l=1

(|vi−2k

l −wj
l |+ |vi−2k

l +wj
l |) =

2k
∑

l=1

(1−wj
l +1+wj

l ) = 2k+1,

as vi
l ∈ {−1, 1} and −1 ≤ wj

l ≤ 1 for all l. �
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The reader should note that the equilateral set Vk ∪Wk can be seen as a
generalization of the equilateral set S in (2.2), as V2 ∪ W2 = S − (1, 1, 1, 1).
Furthermore, the example in Table 1 with n = 8 is also of this type, if one
ignores the point (8, 2, 1, 1, 0, 2, 1, 1).
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