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Abstract A monic Jacobi matrix is a tridiagonal matrix which contains the
parameters of the three-term recurrence relation satisfied by the sequence of
monic polynomials orthogonal with respect to a measure. The basic Geronimus
transformation with shift α transforms the monic Jacobi matrix associated
with a measure dμ into the monic Jacobi matrix associated with dμ/(x − α) +
Cδ(x − α), for some constant C. In this paper we examine the algorithms
available to compute this transformation and we propose a more accurate
algorithm, estimate its forward errors, and prove that it is forward stable. In
particular, we show that for C = 0 the problem is very ill-conditioned, and we
present a new algorithm that uses extended precision.
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1 Introduction

Given a measure μ, with supp μ ⊂ R, one can define a linear functional L on
the space P of polynomials with real coefficients in the following way:

L (p) =
∫

p(x)dμ(x), p ∈ P, (1)

which is well defined provided that the moments Ln := L (xn) are finite,
n = 0, 1, 2, . . . In that case, we say that L is a moment functional. Moreover,
if the leading principal submatrices of the Hankel matrix M = (Li+ j)

∞
i, j=0 are

nonsingular, then L is said to be quasi-definite, and there exists a sequence of
polynomials {Pn}∞n=0 orthogonal with respect to μ, that is, [4]

1. deg(Pn) = n for all n ≥ 0.
2. L (Pn Pm) = Knδn,m, where Kn �= 0 and δn,m is the “Kronecker delta”

defined by

δn,m =
{

0, if m �= n,
1, if m = n.

In particular, {Pn}∞n=0 is said to be a monic sequence of orthogonal polynomials
(MOPS) if the leading coefficient of each polynomial is equal to one. Every
MOPS satisfies a three-term recurrence relation (TTRR):

xPn(x) = Pn+1(x) + Bn+1 Pn(x) + Gn Pn−1(x), (2)

P−1(x) ≡ 0, P0(x) ≡ 1, Bn, Gn ∈ R, G0 = L0, Gn �= 0 for all n ≥ 0.

The previous set of equations can be written in matrix notation as

xp = Jp,

where p = [P0(x), P1(x), P2(x), . . .]T and

J =

⎡
⎢⎢⎢⎣

B1 1 0 ...

G1 B2 1 ...

0 G2 B3 ...
...

...
...

. . .

⎤
⎥⎥⎥⎦ .

This semi-infinite tridiagonal matrix J is called the monic Jacobi matrix
associated with the functional L . It is very unusual to denote the entries of
a matrix by capital letters, but since the algorithms to compute the Geronimus
transformation involve two monic Jacobi matrices, for the sake of clarity,
we denote by capital letters the entries in the input matrix and by the same
lowercase letters the entries in the output matrix.
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For a moment functional L , a polynomial π , and a real number α, let πL
and (x − α)−1L be the moment functionals defined by

(πL ) (p) = L (πp),

(
(x − α)−1L

)
(p) = L

(
p(x) − p(α)

x − α

)
.

In the literature there are numerous results studying the connection be-
tween the recurrence relations of polynomials orthogonal with respect to
two allied measures [1, 2, 7, 15, 24]. This relationship can be extended to
the corresponding Jacobi matrices. Two examples stand out as particularly
important:

– Given L and α ∈ R, the transformation that gives the monic Jacobi matrix
associated with (x − α)L in terms of the monic Jacobi matrix associated
with L is called the Christoffel transformation or Darboux transformation.

– Given L , we consider the linear functional G := (x − α)−1L + Mδ(x −
α), where α ∈ R is out of the support of the measure that defines L , and M
is a nonzero constant. This transformation performs a rational modification
of the measure that defines the functional L and add a Dirac mass in
α. Notice that M = G0, the first moment of G . The transformation that
gives the monic Jacobi matrix associated with G in terms of the monic
Jacobi matrix associated with L is called the Geronimus transformation
or Darboux transformation with free parameter.

These transformations can be considered as reciprocal in the following sense:

Lemma 1 [25] Let L and G be two linear functionals and α a real number.
Then,

(x − α)G = L if and only if G = (x − α)−1L + G0δ(x − α).

If the functional L is expressed in integral form as in (1), then

G (p(x)) = [
(x − α)−1L + G0δ(x − α)

]
(p(x)) =

∫
p(x)

dμ

x − α
+ Cp(α),

where C = G0 − μ0 and μ0 = ∫ dμ

x−α
. Therefore, this transformation depends

on two free parameters α and C. From now on we call the transformation that
gives the monic Jacobi matrix associated with the functional G in terms of the
monic Jacobi matrix associated with L the Geronimus transformation with
shift α and parameter C.

The Geronimus transformation was first studied by Geronimus in 1940.
Among numerous papers by Geronimus on orthogonal polynomials there
are two [13, 14] which contain ideas that anticipated many investigations
in modern mathematical physics. The main contribution by Geronimus was
a deep investigation of both Darboux transformations. The first non-trivial
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application of these transformations was proposed by Geronimus himself in
[13]. This application is connected to the problem of classifying all sequences
of orthogonal polynomials such that its derivatives form another set of or-
thogonal polynomials. In the last two decades, these transformations have
attracted the interest of various specialists in different branches of mathe-
matics and mathematical physics for their applications to different topics such
as Discrete Integrable Systems [20, 22, 23], Quantum Mechanics, Bispectral
Transformations in Orthogonal Polynomials [16–18], and Numerical Analysis
[5, 7, 8, 10, 12].

The problem of the numerical computation of the Geronimus transforma-
tion with shift α and parameter C of a Jacobi matrix J has been extensively
studied when C = 0 and the shift α is close to the support of the measure μ

[5, 8, 10]. However, we have not found any papers on the case C �= 0, or when
C = 0 and the shift is not close to the support of the measure.

The objectives of this paper are the following:

– to investigate the numerical behavior of the available algorithms to com-
pute the Geronimus transformation,

– to present a new algorithm which is more accurate than the previous ones
(Algorithm 3, specially when the shift moves away from the support of the
measure,

– to explain why the numerical behavior of any algorithm to compute the
Geronimus transformation is considerably different for C = 0 and C �= 0.

We also estimate the forward errors (Theorem 2) produced by the new
algorithm with O(n) cost, and prove that this algorithm is componentwise
forward stable (Theorem 8), which means that the magnitude of the errors
produced by this algorithm are the best ones that can be expected because
they reflect the sensitivity of the problem to perturbations in the input data
(Theorem 2). No need to say that forward stability does not imply small
forward errors when the problem is ill-conditioned.

We also show that this algorithm is more accurate than the previous ones,
specially when the shift moves away from the support of the measure and
C �= 0 (Section 4.4). We prove that the problem of computing the Geronimus
transformation is extremely ill-conditioned when C = 0 (Subsection 4.5) and
therefore, a significant loss of accuracy can be expected in this case. However,
we also show that by computing a few outputs with extended precision, the
algorithm becomes much more accurate (See Table 7).

The paper is structured as follows: in Section 2 we give a brief account of the
main theoretical results needed. In Section 3 we analyze the available forward
and backward algorithms, and in Section 4 we introduce a new algorithm. We
present a backward error analysis of this algorithm (Theorem 4.1) and provide
a condition number for the problem (Definition 2 and Theorem 3) that allows
us to estimate the forward errors produced by the new algorithm in O(n) flops.
Finally, we show several numerical experiments to illustrate the performance
of this new method and we prove that it is componentwise forward stable.
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2 Theoretical results on the Geronimus transformation

Throughout this section, L is a quasi-definite moment functional, {Pn} the
sequence of monic polynomials orthogonal with respect to L , J the monic
Jacobi matrix associated with {Pn}, and α a real number outside the support of
the measure that defines L .

Let J − αI = U L denote a decomposition of J − αI as a product of an
upper triangular matrix U and a unit lower triangular matrix L, where

U =

⎛
⎜⎜⎜⎝

u1 1 0 . . .

0 u2 1 . . .

0 0 u3 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎝

1 0 0 . . .

l1 1 0 . . .

0 l2 1 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ , (3)

whenever it is possible. It is easy to check that whenever the U L factorization
of J − αI exists, it is not unique. In fact, the entry u1 can be considered a free
parameter. Then, given α and u1, we say that J̃ = LU + αI is the Geronimus
transform of J with shift α and parameter u1.

Necessary and sufficient conditions for the existence of the Geronimus
transform with shift α and parameter u1 of a monic Jacobi matrix J are given
in [1] and [25].

It is also clear that J̃ is a tridiagonal semi-infinite matrix. By Favard’s
theorem [4], J̃ generates a new sequence of monic orthogonal polynomials if
and only if the entries of J̃ in positions (i + 1, i) for i ≥ 1 are all nonzero. In this
case, the MOPS associated with J and J̃, respectively, can be related through
the matrix L, as we next show.

Lemma 2 Let J be a monic Jacobi matrix and let α ∈ R be such that J − αI has
an UL factorization. Let u1 ∈ R and let J̃ be the Geronimus transform with shift
α and parameter u1 of J. Assume that {Pn} and {Qn} are, respectively, the MOPS
associated with J and J̃. If J − αI = U L is the UL factorization of J − αI such
that J̃ = LU + αI, then L is the change of basis matrix from {Pn} to {Qn}, i.e.
Q = LP, where Q and P are, respectively, the column vectors containing the
polynomials in {Pn} and {Qn}.

Proof Multiply J − αI = U L by L on the left to get

L(J − αI) = (LU)L. (4)

Replace LU by J̃ − αI in (4) and multiply by L−1 on the right to get

L(J − αI)L−1 = J̃ − αI

Thus, J − αI is similar to J̃ − αI. Considering the relation xQ = J̃Q, we have

(x − α)Q = ( J̃ − αI)Q = L(J − αI)L−1 Q

and multiplying by L−1 on the left we have

(x − α)L−1 Q = (J − αI)L−1 Q
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and hence x(L−1 Q) = J(L−1 Q), and L−1 Q is a MOPS p satisfying xp = Jp.
By uniqueness L−1 Q = P, which implies the result. �	

It can be proven [1, 25] that if the matrix J − αI = U L, with U and L as in
(3), then the Geronimus transform with shift α and parameter u1 is the Jacobi
matrix associated with a functional G given by

G = (x − α)−1L + G0δ(x − α),

where G0 is the first moment of the functional G . Next we show the relationship
between G0 and the parameter u1 involved in the U L factorization of J.

Lemma 3 Let L be a quasi-definite moment functional, and J the corre-
sponding Jacobi matrix. Then, the Geronimus transform of J with shift α and
parameter u1 is associated with the moment functional

G = (x − α)−1L + L0

u1
δ(x − α),

where L0 is the first moment of the functional L . Moreover, if the integral
representation of L is given by

L (p) =
∫

p(x)dμ(x),

then the Geronimus transform of J is associated with the moment functional
with integral representation

G (p) =
∫

p(x)
dμ(x)

x − α
+
(

L0

u1
− μ0

)
p(α),

where μ0 = ∫ dμ(x)

x−α
and p ∈ P.

Proof By Lemma 1, (x − α)G = L . Let {Pn}∞n=0 and {Qn}∞n=0 be the
MOPS with respect to L and G , respectively. Then, if we denote P =
[P1(x), P2(x), ....]t, and Q = [Q1(x), Q2(x), ....]t, we get

((x − α)G )
(
QQt) = L

(
QQt) .

Taking into account Lemma 2,

G
(
(x − α)QQt) = L

(
LPPt Lt) .

Considering the recurrence relation that {Qn} satisfies and the linearity of L
and G ,

G
(
( J̃ − αI)QQt

)
= LL

(
PPt) Lt

( J̃ − αI)G
(
QQt) = LDpLt
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where Dp is the diagonal matrix whose diagonal elements are given by
(Dp)ii = L (P2

i ) for all i. Thus,

( J̃ − αI) = L
(

DpLt D−1
q

)
= LU,

where Dq is defined similarly to Dp. Notice that Dp and Dq are invertible
matrices by definition of orthogonal polynomials.

Finally, this implies that u1 = L0/G0, and the result follows. The last part of
the lemma is obtained by considering the integral representation of L , that is,

G (p) =
∫

p(x)
dμ(x)

x − α
− p(α)

∫
dμ(x)

x − α
+ L0

u1
p(α).

�	

From the point of view of the algorithms that we will present in the next
section, we need to use the fact that the MOPS {Pn(x)}∞n=0 obeys a three term
recurrence relation of the form:

yn+1 = (α − Bn+1)yn − Gn yn−1, n ≥ 0. (5)

Now it is important to note that if α /∈ supp μ, then the functions
{ρn(α, C)}∞n=−1 defined by

ρn(α, C)=−G (Pn(x))=−
(∫

Pn(x)
dμ

x − α
+CPn(α)

)
, n≥0, ρ−1(α, C) = 1

obey the same TTRR satisfied by the sequence of orthogonal polynomi-
als Pn(x) for every value of C. Moreover, when C = 0 it turns out that
{ρn(α, C)}∞n=−1 is the minimal solution of this recursion, which means that

lim
n→∞

ρn(α, 0)

gn
= 0,

for any other solution of the TTRR, say gn, which is independent of ρn(α, 0).
The solution gn is called dominant, see [10] for more details on the general
theory.

As a consequence of this situation, when C = 0, it is not recommended
to use the three-term recurrence relation in the forward direction (for in-
creasing n) to generate {ρn(α, C)}∞n=−1, due to numerical instability. However,
the TTRR can be used in the backward direction, and the process can be
reformulated in terms of the associated continued fraction

yn

yn−1
= Gn

α − Bn+1−
Gn+1

α − Bn+2−
Gn+2

α − Bn+3− ..., n = 0, 1, 2, ...

which converges to the ratio of minimal solutions according to Pincherle’s
theorem [11].
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Let us define the following quantities:

rn−1 := ρn(α, C)

ρn−1(α, C)
= Gn

α − Bn+1−
Gn+1

α − Bn+2−
Gn+2

α − Bn+3− ..., n = 0, 1, 2, ...

(6)
Note that, in particular, r−1 = ρ0(α, C) = −(μ0 + C). The importance of

these variables in the Geronimus transformation will be given in Lemma 4,
which expresses the quantities rk defined in (6) in terms of the entries in the
subdiagonal of the matrix L in the U L factorization of J − αI.

Lemma 4 Let {Pn} be the sequence of monic polynomials orthogonal with re-
spect to the linear functional L (p) = ∫

pdμ. Let C, α ∈ R, and α /∈ supp μ. As-
sume that J − αI = U L is the U L factorization of J − αI such that J̃ = LU +
αI is the monic Jacobi matrix associated with G (p) = ∫

p(x)/(x − α)dμ +
Cp(α). Then,

rk−1 := ρk(α, C)

ρk−1(α, C)
= −lk, for all k ≥ 1, (7)

where lk = L(k + 1, k).

Proof The result can be proven by induction. After dividing by ρk−1(α, C) the
TTRR

ρk(α, C) = (α − Bk)ρk−1(α, C) − Gk−1ρk−2(α, C), k ≥ 1,

consider the expression for lk given in Algorithm 1. �	

3 Algorithms for computing the Geronimus transformation and numerical
experiments

In this section we examine the currently available algorithms for numerically
generating a Geronimus transform of a monic Jacobi matrix J. First we present
the standard algorithm which can be derived from the matrix version of the
Geronimus transformation given in (8). Then, we present other algorithms
used in the literature.

When C = 0 and the shift α is close to the support of the measure,
researchers [5, 10] recommend a split strategy, that is, to use a “forward
algorithm” when the shift α approaches the support of the measure, and a
“backward algorithm” when the shift moves away from the support.

When C �= 0, we can still use the “forward algorithms”. However, the
“backward algorithm” does not converge and is not useful as we explain
below. In this section, we also show, through numerical experiments, that the
“forward algorithms” and the “backward algorithm” (when available) become
less accurate as the shift moves away from the support of the measure.

From now on all the results refer to leading principal submatrices of monic
Jacobi matrices. Since we are interested in the numerical analysis of algorithms
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that implement the Geronimus transformation, we can only consider finite
matrices. We denote by Jn(B, G) the n × n leading principal submatrix of J,
where B = [B1, ..., Bn]T , and G = [G1, ..., Gn−1]T and J̃n(b , g) is the n × n
leading principal submatrix of J̃, b = [b 1, ..., b n]T being the elements on the
main diagonal of J̃n(b , g), and g = [g1, ..., gn−1]T the elements on the first
lower subdiagonal. Then, the finite version of the Geronimus transformation
with shift α and parameter u1 is given by

Jn(B, G) − αIn = UnLn + lnenet
n, J̃n(b , g) = LnUn + αIn, (8)

where en denotes the n-th column of the n-by-n identity matrix and Mn denotes
the leading principal submatrix of order n of any matrix M.

Since we can only consider a finite leading principal submatrix of the initial
monic Jacobi matrix as input for any algorithm to compute the Geronimus
transformation, in order to determine the appropriate value of the free para-
meter u1, the parameters C, μ0, and L0 need to be known (as Lemma 3 shows).
Thus, in all the algorithms in this paper we consider as inputs B, G, α, C, μ0,
and L0.

The following pseudocode gives the standard algorithm to compute the
Geronimus transform with shift α and parameters C, μ0, and L0 of an n × n
monic Jacobi matrix Jn(B, G). This algorithm is obtained from (8). Notice that

U L =

⎡
⎢⎢⎢⎣

u1 + l1 1 0 0 · · ·
u2l1 u2 + l2 1 0 · · ·

0 u3l2 u3 + l3 1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎦ , LU =

⎡
⎢⎢⎢⎣

u1 1 0 0 · · ·
u1l1 l1 + u2 1 0 · · ·

0 u2l2 l2 + u3 1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎦ .

Algorithm 1 Given an n × n monic Jacobi matrix Jn(B, G), this algorithm com-
putes its Geronimus transform J̃n(b , g) of order n with shift α and parameters
C, μ0, and L0.
u1 = L0/(C + μ0)

b 1 = u1 + α

for i = 1 : n − 1
li = Bi − ui − α

gi = ui ∗ li

ui+1 = Gi/ li

b i+1 = ui+1 + li + α

end
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The computational cost of Algorithm 1 is 6n − 2 flops. This algorithm
is closely related to the qd-algorithm proposed by Rutishauser. In [21],
Rutishauser introduces σ -degree monic polynomials p(ν)

σ (x), depending on an
additional integer parameter ν and with the initial condition p(ν)

0 (x) ≡ 1. These
polynomials satisfy two basic relations:

p(ν)
σ (x) = xp(ν+1)

σ−1 (x) − q(ν)
σ p(ν)

σ−1(x) (9)

and

p(ν+1)
σ (x) − p(ν)

σ (x) = −e(ν)
σ p(ν+1)

σ−1 (x). (10)

Compatibility of these relations yields a three-term recurrence relation for
the polynomials p(ν)

σ (i.e. p(ν+1)
σ−1 are orthogonal polynomials), together with

nonlinear relations for the coefficients q(ν)
σ and e(ν)

σ (i.e. the qd-algorithm).
Relation (9) is equivalent to the Christoffel transformation from polynomials
p(ν)

σ (x) to polynomials p(ν+1)
σ (x), while relation (10) is equivalent to Geron-

imus transformation from polynomials p(ν+1)
σ (x) to polynomials p(ν)

σ (x). These
transformations are not shifted, that is, α = 0. However, already in the classical
book [6, pg. 460], a generic scheme of the shifted Rutishauser algorithm is
presented.

If we denote by {Pn} and {Qn} the sequence of polynomials whose Jacobi
matrix is J and J̃, respectively, condition (10) is equivalent in our notation to

Pn − Qn = −ln Pn−1,

(see (3) and Lemma 2).
Next we present an algorithm slightly different than Algorithm 1 that can

be obtained by replacing lk by −rk−1, using Lemma 4, and eliminating the
variables uk in Algorithm 1.

Algorithm 2 (Forward algorithm) Given an n × n monic Jacobi matrix
Jn(B, G), this algorithm computes its Geronimus transform J̃n(b , g) of order n
with shift α and parameters C, μ0, and L0.
r−1 = −(μ0 + C)

G0 = L0

for k = 0 : n − 2
rk = −Bk+1 + α − Gk/rk−1

end
b 1 = B1 + r0

g1 = L0 ∗ r0/r−1

for k = 2 : n − 1
b k = Bk + rk−1 − rk−2

gk = Gk−1rk−1/rk−2

end
b n = Bn + rn−1 − rn−2

The computational cost of this algorithm is 7n − 3 flops.
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Notice that both Algorithms 1 and 2 are “forward algorithms” since they
compute ln and rn, respectively, for increasing values of n. However we call
Algorithm 2 “Forward Algorithm” because this is the algorithm proposed by
W. Gautschi [10] in the split strategy for C = 0.

W. Gautschi also proposes an alternative algorithm when C = 0, in which
the quantities rk are computed backwards. Namely, given an initial value
m ≥ n:

rm = 0, ri−1 = Gi

α − Bi+1 − ri
, i = m, m − 1, . . . , 1,

together with r−1 = L0/(α − B1 − r0). Observe that this is equivalent to (6).
The quantities b k and gk are then computed in the same way as in the forward
algorithm.

In [10] Gautschi studies the properties of Algorithm 2 and the backward
method. He states that the forward algorithm is better when α is very close
to the support of the measure and the order n of Jn(B, G) is not too large;
otherwise, the backward algorithm is advised.

This backward algorithm can produce very accurate Jacobi matrices but,
unlike the forward methods, it may require infeasibly large initial matrices
Jm(B, G) to produce an output matrix J̃n(b , g) of quite moderate dimension.
Estimators for determining the advised initial order m of Jm(B, G) are given
in [9] but they are only well-defined for the classical families of orthogonal
polynomials.

Elhay and Kautsky [5] also suggest a split strategy in the case C = 0,
the backward algorithm being the same as the one proposed by Gautschi.
However, the forward algorithm they propose, called the Inverse Cholesky
algorithm, is more expensive than Algorithm 2 (computational cost of at least
O(n2)) and their numerical experiments in [5] show comparable performance.

3.1 Numerical experiments

Here we present some numerical experiments that show the accuracy of the
algorithms presented in the previous subsection.

In order to check the accuracy of the algorithms, we have computed the
following componentwise forward errors:

error b = max
k=1...n

{∣∣∣∣∣
b k − b̂ k

b k

∣∣∣∣∣
}

, error g = max
k=1...n−1

{∣∣∣∣gk − ĝk

gk

∣∣∣∣
}

, (11)

where b̂ k and ĝk denote the outputs computed by a given algorithm in
standard double precision, i.e., u ≈ 1.11 × 10−16 is the unit roundoff of the
finite arithmetic, while b k and gk denote the outputs obtained by running the
same algorithm with 64 decimal digits of precision.

The experiments have been done using MATLAB 7.6.0 and the variable
precision arithmetic of its Symbolic Math Toolbox. In all our tests, theoretical
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error bounds guarantee that the outputs obtained by running the algorithms
with 64 decimal digits of precision have more than 50 significant decimal digits.

We have applied Algorithm 1, Algorithm 2 and the Backward Algorithm to
the following Jacobi matrices:

1. The 60-by-60 monic Jacobi matrix corresponding to the Jacobi polynomials
with parameters a = −1/3 and b = 1/7.

2. The 60-by-60 monic Jacobi matrix corresponding to the Laguerre polyno-
mials with parameter a = −1/3.

In both cases, we considered a broad range of values for the shift α and two
different values for the parameter C = {0, 10}. For other nonzero values of C,
the behavior of the algorithms is similar to that of C = 10. The results can be
found in Tables 1, 2, 3, and 4.

Notice that when C = 0, the three algorithms lose all their accuracy as
the shift α moves away from the support. When C �= 0, the accuracy of the
algorithms also decreases as α moves away from the support although in a
more moderate way. Notice that the numerical behavior of Algorithm 1 and
the Forward Algorithm seems very similar.

4 A new algorithm

In this section we present a new algorithm to compute a Geronimus transform
of a monic Jacobi matrix J. We will show that, with this new algorithm, the
accuracy increases as α moves away from the support of the measure when C �=
0. In Section 4.6 we will also show that this new algorithm is forward stable.
This means that the forward errors we get from this algorithm are the best that
can be expected taking into account the conditioning of the problem.

This new algorithm does not improve the accuracy when C = 0 because,
as we will show in Subsection 4.3, the problem of computing the Geronimus
transformation of a monic Jacobi matrix when C = 0 is very ill-conditioned.
We will also show that the conditioning of the problem depends strongly on
the computation of the very first outputs and the accuracy increases notably
when computing those outputs with extended accuracy and taking them as new
inputs of the same algorithm.

The new algorithm that we present in this section only requires as input
a monic Jacobi matrix of the same size as the output matrix. The numerical

Table 1 Algorithm 1–algorithm 2–backward algorithm

α Error b Error g Error b Error g Error b Error g

−1.0001 1.4 10−11 2.2 10−16 2.5 10−11 6.7 10−16 1.3 10−11 4.4 10−15

−1.1 16.78 1.7 29.26 0.18 25 1.6
−2 2.43 2.16 2.43 2.16 1.4 4.5
−10 43.32 1.57 43.32 1.57 26.3 1.21

Forward errors for Jacobi polynomials with a = −1/3, b = 1/7, n = 60, C = 0
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Table 2 Algorithm 1–algorithm 2

α Error b Error g Error b Error g

−1.0001 2.27 10−12 2.7 10−16 2.97 10−12 3.33 10−16

−1.1 1.5 10−11 2.5 10−16 2.15 10−11 4.44 10−16

−10 2.05 10−10 3.38 10−16 2.74 10−10 4.2 10−16

−100 1.06 10−9 3.35 10−16 1.16 10−9 4.44 10−16

−106 1.25 10−5 3.35 10−16 7.55 10−6 2.22 10−16

Forward errors for Jacobi polynomials with a = −1/3, b = 1/7, n = 60, C = 10

experiments will also show that the new algorithm do not improve significantly
the accuracy when the shift has a moderate size due to the conditioning of the
problem.

Let us define new variables {ti}n−1
i=1 as ti := li + α. Then, the following new

algorithm to compute the Geronimus transformation with shift α and parame-
ters C, μ0, and L0 can be derived. Notice that the variables l1, ..., ln−1 have
disappeared since they have been replaced by t1, ..., tn−1.

Algorithm 3 (New algorithm) Given an n × n monic Jacobi matrix Jn(B, G),
this algorithm computes its Geronimus transform J̃n(b , g) of order n with shift
α and parameters C, μ0, and L0.
u1 = L0/(C + μ0)

b 1 = u1 + α

for i = 1 : n − 1
ti = Bi − ui

gi = (ti − α) ∗ ui

ui+1 = Gi/(ti − α)

bi+1 = ui+1 + ti
end

The computational cost of Algorithm 3 is 5n − 2 flops.
A matrix version of this new algorithm is

Jn(B, G) − αIn = Un (Tn − αDn) + lnenet
n, J̃n(b , g) = (Tn − αDn) Un + αIn,

Table 3 Algorithm 1–algorithm 2–backward algorithm

α Error b Error g Error b Error g Error b Error g

−0.0001 2.1 10−16 3.64 10−16 1.72 10−15 4, 35 10−16 4.9 10−1 4.7 10−1

−0.1 1.45 10−15 2.14 10−15 6.76 10−15 1.07 10−14 4.8 10−16 6.7 10−16

−1 1.71 10−6 2.83 10−6 1.7 10−6 2.83 10−6 7 10−7 10−6

−10 2.74 44.65 2.74 44.67 1.4 2.5

Forward errors for Laguerre polynomials with a = −1/3, n = 60, C = 0
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Table 4 Algorithm 1–algorithm 2

α Error b Error g Error b Error g

−0.0001 2.01 10−16 3.32 10−16 1.73 10−15 3.86 10−16

−0.1 1.04 10−15 2.18 10−16 1.73 10−15 4.1 10−16

−1 2.28 10−16 2.18 10−16 2.1 10−16 4.36 10−16

−10 3.72 10−16 4.26 10−16 6.19 10−16 4.39 10−16

−100 3.92 10−15 2.7 10−16 2.25 10−15 2.99 10−16

−106 1.08 10−10 2.16 10−16 1.08 10−10 4.01 10−16

Forward errors for Laguerre polynomials with a = −1/3, n = 60, C = 10

where

Un =

⎛
⎜⎜⎜⎝

u1 1 0 ... 0
0 u2 1 ... 0
...

...
. . .

. . .
...

0 0 ... 0 un

⎞
⎟⎟⎟⎠ , Tn =

⎛
⎜⎜⎜⎝

1 0 0 ... 0
t1 1 0 ... 0
...

...
. . .

. . .
...

0 0 ... tn−1 1

⎞
⎟⎟⎟⎠ , Dn =

⎛
⎜⎜⎜⎝

0 0 0 ... 0
1 0 0 ... 0
...

...
. . .

. . .
...

0 0 ... 1 0

⎞
⎟⎟⎟⎠ .

Some numerical results are presented in Tables 5 and 6, namely, the com-
puted forward errors by Algorithm 3. Those tables also include the condition
number, which will be defined in Subsection 4.2 and whose explicit expression
is given in Theorem 3. Notice that the accuracy of the outputs increases as
|α| increases when C �= 0. However, no improvement can be observed when
C = 0.

Before carrying out a rigorous roundoff error and stability analysis of the
algorithm, we can explain why the accuracy of the outputs improves when C �=
0. Notice that the new algorithm is obtained from Algorithm 1 through some,
apparently, slight modifications which actually have a significant influence on
stability and accuracy.

We have observed that some harmful cancellations in the computation of
the outputs bi by Algorithm 1 may arise. A significant situation where this
problem can be clearly understood appears when the shift α is large. It can
easily be shown that lim|α|→∞ uk = 0 for k ≥ 2 (see Lemma 5 in Section 4.3),
and therefore li = Bi − α − ui ∼ −α when |α| → ∞ and i ≥ 2, and then bi+1 =
ui+1 + li + α ∼ (−α) + α when |α| → ∞ and i ≥ 2. The reader should notice
that this cancellation is avoided in Algorithm 3.

Table 5 New algorithm

α Error b Error g cond Error b Error g cond

−1.0001 7.55 10−12 2.22 10−16 3.46 105 1.34 10−12 2.7 10−16 3.59 104

−1.1 16.04 1.7 4.87 1016 4.05 10−12 2.5 10−16 1.22 105

−10 43.32 1.57 1.83 1017 5.53 10−13 3.38 10−16 1.12 104

−100 2.89 2.96 1.33 1017 4.74 10−14 3.35 10−16 1.13 103

−1000 9.69 10.65 7.64 1016 8.4 10−15 3.35 10−16 113.81
−106 0.35 0.53 8.61 1016 1.64 10−15 3.35 10−16 38.4

Forward errors for Jacobi polynomials
a = −1/3, b = 1/7, n = 60, C = 0 (left) and C = 10 (right)
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Table 6 New algorithm

α Error b Error g cond Error b Error g cond

−0.0001 2.11 10−16 3.64 10−16 4.23 2.11 10−16 3.32 10−16 4.27
−0.1 1.45 10−15 2.14 10−15 1.19 103 1.04 10−15 2.18 10−16 54.64
−1 1.71 10−6 2.83 10−6 2.92 1011 2.1 10−16 2.18 10−16 5.89
−10 2.74 44.67 2.5 1017 1.96 10−16 4.26 10−16 4.48
−100 2.24 3.83 4.97 1017 2.11 10−16 2.7 10−16 3
−106 1.15 1.21 4.24 1016 2.2 10−16 2.16 10−16 3

Forward errors for Laguerre polynomials
a = −1/3, n = 60, C = 0 (left) and C = 10 (right)

From Lemma 5 in Section 4.3 we also observe that some harmful cancella-
tions may occur in Algorithm 1 when C = 0 in the computation of b 1, l1, and
u2, but these are not eliminated by Algorithm 3. In fact, these cancellations
cannot be eliminated because they reflect the ill-conditioning of the problem.

4.1 Backward error analysis of Algorithm 3

We use the standard model of floating point arithmetic [19]:

f l(x op y) = (x op y)(1 + δ) = x op y
1 + η

, |δ|, |η| ≤ u,

where x and y are floating point numbers, op = +, −, ∗, /, and u is the unit
roundoff of the machine. From now on, given a vector v, |v| denotes the vector
whose entries are the absolute values of the entries of v.

We develop our error analysis in the most general setting. For this purpose
we assume that the shift α and C are real numbers, and we denote by α̂

and Ĉ the nearest floating point numbers to α and C. Similarly, we denote
by L̂0 and μ̂0 the nearest floating point numbers to L0 and μ0. Moreover,
we assume that the input parameters B1, ..., Bn−1 and G1, ..., Gn−1 are each
affected respectively by the small relative errors εB1 , ..., εBn−1, εG1 , ..., εGn−1 ,
where max1≤i≤n−1{|εBi |, |εGi |} ≤ Du, D being a moderate constant. These er-
rors in the inputs may come from the rounding process when storing them
in the computer. In addition, for the Jacobi matrices associated with families
of classical orthogonal polynomials, the inputs Bi and Gi are computed using
well-known formulae which may cause further errors.

Theorem 1 Let Jn(B, G) be a monic Jacobi matrix of order n. Let J̃n(b , g) be
the Geronimus transform with shift α and parameters C, μ0, and L0 of Jn(B, G).
Let α̂, μ̂0, and Ĉ be the nearest floating point numbers to α, μ0, and C. Consider
the application of Algorithm 3 to the matrix with floating point entries Jn(B̂, Ĝ)

where

B̂i = Bi(1 + εBi), Ĝi = Gi(1 + εGi), 1 ≤ i ≤ n − 1,
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and

max
1≤i≤n−1

{|εBi |, |εGi |
} ≤ Du,

for a positive integer D such that Du � 1. If J̃n(b̂ , ĝ) is the matrix computed
by Algorithm 3, and L̂, T̂ are the computed intermediate matrices appearing in
Algorithm 3, then

Jn(B + 
B, G + 
G) − α̂In = Ûn(T̂n − α̂In),

J̃n(b̂ + 
b̂ , ĝ + 
ĝ) = (T̂n − α̂In)Ûn + α̂In

where this transformation has parameters Ĉ, 
L0, and μ̂0, and

|α̂ − α| ≤ u|α|
|
L0| ≤ 3u|L0| + O(u2),

|μ̂0 − μ0| ≤ u|μ0|
|Ĉ − C| ≤ u|C|,
|
Bi| ≤ (D + 1)u(|Bi| + |ûi|) + O(u2), 1 ≤ i ≤ n − 1,

|
Gi| ≤ (D + 2)u|Gi| + O(u2), 1 ≤ i ≤ n − 1,

|
b̂ i| ≤ u|b̂ i|, 1 ≤ i ≤ n,

|
ĝi| ≤ 2u|ĝi| + O(u2), 1 ≤ i ≤ n − 1.

Proof First observe that

t̂i = (
Bi
(
1 + εBi

)− ûi
) (

1 + εti

)
, |εti | ≤ u

and we get

|
Bi| = ∣∣t̂i + ûi − Bi
∣∣ ≤ (

(D + 1) u + Du2
) (|Bi| + ∣∣ûi

∣∣) .
Assume that the floating point number closer to L0 is L0(1 + εL). Then,

û1 = L0(1 + εL)(1 + εu1)(1 + δu1)

Ĉ + μ̂0

, |εL|, |εu1 |, |δu1 | ≤ u.

Therefore,

|
L0| =
∣∣∣L0 − û1(Ĉ + μ̂0)

∣∣∣ ≤ (3u + 3u2 + u3)|L0|.

ûi+1 = Gi
(
1 + εGi

)
t̂i − α̂

(
1 + δui+1

) (
1 + εui+1

)
,
∣∣δui+1

∣∣ , ∣∣εui+1

∣∣ ≤ u

which implies

|
Gi| = ∣∣(t̂i − α̂
)

ûi+1 − Gi
∣∣ ≤ (

(D + 2)u + (2D + 1)u2 + Du3
) |Gi|.
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Finally,

b̂ i
(
1 + εbi

) = ûi+1 + t̂i,
∣∣εbi

∣∣ ≤ u.

ĝi
(
1 + εgi

) (
1 + δgi

) = (
t̂i+1 − α̂

)
ûi,

∣∣εgi

∣∣ , ∣∣δgi

∣∣ ≤ u,

and the results follow in a straightforward way. �	

In plain words, Theorem 1 says that the computed Geronimus transform
J̃n(b̂ , ĝ) with shift α and parameters C, μ0, and L0 is almost the exact
Geronimus transform of Jn(B + 
B, G + 
G) with shift α̂ and parameters
C + 
C, μ̂0, and L̂0.

Definition 1 [19] A method for computing y = f (x) is called mixed forward-
backward stable (or numerically stable) if, for any x, it produces a computed ŷ
satisfying

ŷ + 
ŷ = f (x + 
x), |
ŷ| ≤ ε|ŷ|, |
x| ≤ η|x|,
provided that ε and η are sufficiently small. Informally, a mixed forward–
backward stable algorithm produces almost the right answer for almost the
right data.

We conclude that Algorithm 3 is componentwise stable in a mixed forward-
backward sense [19] if |ûi| = O(|Bi|), for 1 ≤ i ≤ n. However the following
problem arises: |
Bi|/|Bi| can be much larger than u if |ûi| is much larger
than |Bi|. Unfortunately, this can happen as the following numerical exper-
iments show. Consider the sequence of Jacobi polynomials with parame-
ters −1/3, 1/7, and the shift α = −2. Taking into account Theorem 1, we
compute a bound for the backward error as (ε · errback), where errback =
maxi=1:n−1

{
1 + ∣∣ûi/Bi

∣∣} , and we get

n = 10 n = 100 n = 1000
errback, C = 0 7.23 103 3.5 105 5.9 106

errback, C = 10 418 5.7 104 5.9 106

The previous table shows that the upper bound of the backward error is not
“small”. Therefore, we cannot assure mixed forward-backward stability.

4.2 Condition number

The main goal of this section is to develop a bound that allows us to estimate
the forward errors of Algorithm 3 in O(n) operations. We also present
some numerical experiments showing that the bound obtained gives a good
prediction of the forward errors produced by this algorithm.
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To bound the errors in Algorithm 3, we study the sensitivity of the
Geronimus transformation with respect to perturbations of the initial data,
i.e., the parameters of the monic Jacobi matrix Jn(B, G), the shift α, and
the parameters C, μ0 and L0. We consider perturbations associated with
the backward errors found in Theorem 1 and we measure the sensitivity of
the problem by using the notion of componentwise relative condition number.
This condition number, together with Theorem 1, allows us to get a tight upper
bound on the forward errors obtained by the application of Algorithm 3 to a
monic Jacobi matrix. This bound is presented in Theorem 2. In the following
definition the variables u1, u2, . . . , un correspond to the diagonal entries of U
in the UL factorization of Jn(B, G) − αI.

Definition 2 Let J̃n(b , g) be the Geronimus transform of order n with shift α

and parameters C, μ0, and L0 of the n × n monic Jacobi matrix Jn(B, G). Let
J̃n(b + 
b , g + 
g) be the Geronimus transform of order n with shift α + 
α

and parameters C + 
C, μ0 + 
μ0, and L0 + 
L0 of the n × n monic Jacobi
matrix Jn(B + 
B, G + 
G). Let us define

DB :=max

{
max

1≤i≤n−1

{ |
Bi|
|Bi|+|ui|

}
, max

1≤i≤(n−1)

{|
Gi|
|Gi|

}
,
|
α|
|α| ,

|
C|
|C| ,

|
μ0|
|μ0| ,

|
L0|
|L0| ,

}
,

where the quotient |
α|/|α| has to be understood as zero if α = 0. Then, the
relative componentwise condition number of the Geronimus transformation
with shift α and parameters C, μ0, and L0 with respect to perturbations
associated with the backward errors in Theorem 1 is defined as

κ(B, G, α, C, μ0, L0) := lim
δ→0

sup
0≤DB≤δ

max

{
max
1≤i≤n

{ |
bi|
|bi|

}
, max

1≤i≤(n−1)

{ |
gi|
|gi|

}}

DB
.

The condition number κ(B, G, α, C, μ0, L0) is infinite if some of the de-
nominators appearing in the relative changes of the outputs bi, i.e. |
bi|/|bi|,
are zero. However, bi = 0 will only happen for extremely particular values
of the shift α and the rest of the parameters. In those cases, other condition
numbers have to be considered. For instance, measuring absolute changes in
the corresponding components of b , or measuring relative normwise changes
of b . We do not consider these particular situations in this work. Notice that
gi �= 0 for all i since gi = (ti − α)ui and both factors li = ti − α and ui are
nonzero.

The condition number κ(B, G, α, C, μ0, L0) allows us to give an upper
bound on the forward errors produced by Algorithm 3, as the following
theorem shows.
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Theorem 2 Let J̃n(b , g) and ˆ̃Jn(b̂ , ĝ) be the exact and computed Geronimus
transform with shift α and parameters C, μ0, and L0 from Algorithm 3. Then,

max
k

{∣∣∣∣∣
b k−b̂ k

b k

∣∣∣∣∣ ,
∣∣∣∣gk− ĝk

gk

∣∣∣∣
}
≤
(

(D + 2)u
1−(D+2)u

)
(1+κ(B, G, α, C, μ0, L0))+O(u2),

where the left hand side of the previous inequality is a shorthand expression for
(11) and D is the constant used in Theorem 1.

Proof By definition of κ(B, G, α, C, μ0, L0),∣∣∣∣
bi

b i

∣∣∣∣ ≤ κ(B, G, α, C, μ0, L0)DB,

where ∣∣∣∣
bi

b i

∣∣∣∣ =
∣∣∣∣∣
b̂ i + 
b̂ i − bi

b i

∣∣∣∣∣
by Theorem 1. Because of Theorem 1 again,

DB ≤ (D + 2)u + O(u2).

Therefore, to first order,
∣∣∣∣
bi

b i

∣∣∣∣ =
∣∣∣∣∣
b̂ i + 
b̂ i − bi

b i

∣∣∣∣∣ ≤ κ(B, G, α, C, μ0, L0)(D + 2)u.

Since ∣∣∣∣∣
b̂ i − bi

b i

∣∣∣∣∣−
∣∣∣∣∣

b̂ i

b i

∣∣∣∣∣ ≤
∣∣∣∣∣
b̂ i + 
b̂ i − bi

b i

∣∣∣∣∣ ,
we get ∣∣∣∣∣

b̂ i − bi

b i

∣∣∣∣∣ ≤ κ(B, G, α, C, μ0, L0)(D + 2)u +
∣∣∣∣∣

b̂ i

b i

∣∣∣∣∣ .
Notice that by Theorem 1,∣∣∣∣∣


b̂ i

b i

∣∣∣∣∣ =
∣∣∣∣∣

b̂ i

b̂ i

∣∣∣∣∣
∣∣∣∣∣
b̂ i

b i

∣∣∣∣∣ ≤ u

∣∣∣∣∣
b̂ i − bi + bi

b i

∣∣∣∣∣ ≤ u

(
1 +

∣∣∣∣∣
b̂ i − bi

b i

∣∣∣∣∣
)

.

Therefore,∣∣∣∣∣
b̂ i − bi

b i

∣∣∣∣∣ ≤ (D + 2)u

(
1 + κ(B, G, α, C, μ0, L0) +

∣∣∣∣∣
b̂ i − bi

b i

∣∣∣∣∣
)

and the result follows for the b ′
is. The result for gi can be proven similarly. �	
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We will provide a way to compute κ(B, G, α, C, μ0, L0), and therefore a
bound on the forward errors, with O(n) cost. It is essential to remark that we
have checked on the reliability of the bound on the forward errors running
many numerical experiments, where we have observed that the bound does
not overestimate significantly the actual errors. For an example, check Tables 5
and 6.

The entries b and g of the Geronimus transform J̃n(b , g) of Jn(B, G) are
rational functions of the inputs B, G, α, C, μ0, and L0, and, as a consequence, b
and g are differentiable functions of these parameters whenever the denomina-
tors are different from zero. Therefore, κ(B, G, α, C, μ0, L0) can be expressed
in terms of partial derivatives [3]. More precisely:

κ(B, G, α, C, μ0, L0) = max{ max
1≤k≤n

{κ(b k)}, max
1≤k≤n−1

{κ(gk)}}, (12)

where

κ(b k) :=
k−1∑
i=1

κBi(b k) +
k−1∑
i=1

κGi(b k) + κα(b k) + κC(b k) + κL0(b k) + κμ0(b k),

(13)

κ(gk) :=
k∑

i=1

κBi(gk) +
k−1∑
i=1

κGi(gk) + κα(gk) + κC(gk) + κL0(gk) + κμ0(gk),

(14)
where, for k = 1, the sums

∑0
i=1 are understood to be zero and

κBi(b k) :=
∣∣∣∣ |Bi| + |ui|

b k

∂b k

∂ Bi

∣∣∣∣ , κC(b k) :=
∣∣∣∣ C
b k

∂b k

∂C

∣∣∣∣ , (15)

κα(b k) :=
∣∣∣∣ α

b k

∂b k

∂α

∣∣∣∣ , κGi(b k) :=
∣∣∣∣Gi

b k

∂b k

∂Gi

∣∣∣∣ , (16)

κL0(b k) :=
∣∣∣∣L0

b k

∂uk

∂L0

∣∣∣∣ , κμ0(b k) :=
∣∣∣∣μ0

b k

∂b k

∂μ0

∣∣∣∣ , (17)

and analogously for κ(gk).
In Theorem 3, we give recurrence relations for computing κ(b k) and κ(gk)

that lead to an explicit expression for κ(B, G, α, C, μ0, L0). Our first step to
prove Theorem 3 is to express the intermediate variables uk in Algorithm 3,
and the outputs b k and gk as functions of the data B, G, α, C, μ0, and L0. Then,
we obtain expressions for the partial derivatives of each of these functions with
respect to their arguments. A detailed proof of this theorem can be found in
Appendix 1.

Theorem 3 Let Jn(B, G) be any n × n Jacobi matrix, and let α, C, μ0, and
L0 be real numbers such that Jn(B, G) − αI has an U L factorization, where
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u1 = L0/(C + μ0). Let U be the upper bidiagonal factor in the U L factor-
ization of Jn(B, G) − αI. If u1, u2, ..., un are the entries of U in positions
(1,1),(2,2),...,(n,n), then

κ(b 1) =
∣∣∣∣ α

b 1

∣∣∣∣
∣∣∣∣1 + ∂u1

∂α

∣∣∣∣+
∣∣∣∣ u1

b 1

∣∣∣∣ |κ∗(u1)|,

κ(b k) = |uk|
|b k| + |γk−1uk − 1|

|b k|
[|Bk−1| + |uk−1|

(
1 + κ∗(uk−1)

)]

+ |α|
|b k|

∣∣∣∣(γk−1uk − 1)
∂uk−1

∂α
+ γk−1uk

∣∣∣∣ , k ≥ 2,

κ(gk) = |γk|
[|Bk| + |uk| + |δk|κ∗(uk)

]+
∣∣∣∣ α

gk

∣∣∣∣
∣∣∣∣δk

∂uk

∂α
− uk

∣∣∣∣ , k ≥ 1,

where

κ∗(u1) = 1 + |C| + |μ0|
|C + μ0| ,

κ∗(uk) = 1 + |γk−1|
[|Bk−1| + |uk−1|(1 + κ∗(uk−1)

]
, k ≥ 2,

∂uk

∂α
=

⎧⎪⎪⎨
⎪⎪⎩

− u1

C + μ0

∂μ0

∂α
, k = 1

γk−1uk

(
1 + ∂uk−1

∂α

)
, k > 1

and

γk := 1

Bk − uk − α
, δk := Bk − 2uk − α, k ≥ 1.

Remark 1 It is possible to develop a roundoff error analysis of Algorithm 1
similar to the analysis done for Algorithm 3. To begin with, backward
error bounds for Algorithm 1 can be found. Then, it is also possible to
deduce recurrence relations for a relative componentwise condition num-
ber, κA(B, G, α, C, μ0, L0), for the Geronimus transformation with respect
to perturbations in the input data associated with the backward errors of
Algorithm 1. Finally, the condition number κA(B, G, α, C, μ0, L0) can be used
in a counterpart version of Theorem 2 for Algorithm 1 to bound the forward
errors. We do not include the details of these results to keep the paper concise.
However, we would like to remark that it is easy to prove that

κ(B, G, α, C, μ0, L0) ≤ κA(B, G, α, C, μ0, L0)

for all monic Jacobi matrices Jn(B, G), all shifts α, and all the possible values
of the parameters C, μ0 and L0. This fact, together with the numerical
experiments in Subsection 3.1, show that Algorithm 3 is more accurate than
Algorithm 1.

Similar remarks can be made regarding Algorithm 2.
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4.3 Stability and accuracy of the new algorithm for large shifts

There are some interesting results that we can prove related to the stability
and accuracy of Algorithm 3 beyond the fact of being more accurate than
Algorithm 1 or 2. It can be proven that, for large enough values of the shift
α and under some small constraints, for C �= 0, Algorithm 3 is accurate, i.e., it
produces outputs with componentwise forward errors of order O(u). To prove
this, we will show that

lim|α|→∞ κ(B, G, α, C, μ0, L0) = max

{
3,

|B1| + 3|L0/C|
|B1 − L0/C|

}

Therefore, Theorem 2 guarantees accuracy if the quantity on the right is
“small”. The numerical experiments in Subsection 3.1 show that this is not the
case for Algorithms 1, 2, or the backward algorithm. In fact, it can be proven
that the accuracy of those algorithms decreases as |α| grows.

Let us recall that, if C �= 0, according to Theorem 1, if |ûi| = O(|Bi|) for
1 ≤ i ≤ n, then Algorithm 3 is mixed forward-backward stable, which is the
usual requirement for a numerical algorithm to be considered stable [19, p.
7]. More precisely, in this case, it can be said that the computed Geronimus
transform J̃n(b̂ , ĝ) with shift α and parameters C, μ0, and L0 of Jn(B, G) is an
O(u) relative componentwise perturbation of the exact Geronimus transform
with shift α̂ and parameters Ĉ, μ̂0, and 
L0 of Jn(B + 
B, G + 
G), where

L0, 
B and 
G are O(u) relative componentwise perturbations of the exact
inputs L0, B and G. In this context, another goal of this subsection is to prove
that for large enough values of the shift, |ui| � |Bi| and then Algorithm 3 is
stable. We have to admit that this will be proven for the exact values of ui and
not for the computed values ûi, thus we are only proving stability up to O(u2)

terms.
Here we will also show that the condition number κ(B, G, α, C, μ0, L0)

becomes very large as |α| grows when C = 0. In Appendix 2 we show that this
condition number has the same magnitude as the standard condition number
of the problem which implies that no accuracy can be expected from any
algorithm to compute the Geronimus transformation when C = 0 and the shift
moves away from the support of the measure. Moreover, Lemma 5 shows that
|B1| + |u1| � |B1| when |α| grows which implies that no stability can either be
expected from Algorithm 3.

We start with some technical lemmas. Firstly, the different numerical be-
havior of the Geronimus transformation when C = 0 and when C �= 0 can be
partially explained by using the following result. Notice that the parameter u1

can be seen as a function of α.

Lemma 5 Let Jn(B, G) be the leading principal submatrix of a monic Jacobi
matrix J. Let α, C, μ0, and L0 be real numbers such that there is a unique U L



Numer Algor (2010) 54:101–139 123

factorization of Jn(B, G) − αI. Let uk, 1 ≤ k ≤ n, be the main diagonal elements
in the U factor. Then,

– if C �= 0,

lim|α|→∞ u1 = L0

C
, lim|α|→∞ uk = 0, k ≥ 2.

As a consequence, when C �= 0, Algorithm 3 is stable for |α| large enough if
|L0/C| = O(|B1|).

– if C = 0,

lim|α|→∞ |u1| = ∞, (u1 ∼ −α),

lim|α|→∞ u2 = G1

B1
, lim|α|→∞ uk = 0, k ≥ 3.

Proof First, assume C �= 0. The proof follows directly from the expressions:

u1 = L0

C + μ0
, uk = Gk−1

Bk−1 − uk−1 − α
, k ≥ 2,

using induction and the fact that μ0 → 0, since

lim|α|→∞ αμ0 = lim|α|→∞ α

∫
dμ

x − α
= −L0.

The limit and the integral can be interchanged if α /∈ supp μ, because α/(x −
α) is a continuous function. As a consequence, u1 → L0/C when |α| → ∞ if
C �= 0.

When C = 0, the previous result gives u1 ∼ −α, so u2 → G1/B1 when |α| →
∞. This implies that u3 → 0 and the second claim follows by induction. �	

Lemma 6 When C �= 0 it is true that γk → 0 and γkδk → 1 when |α| → ∞,
k ≥ 1.

Proof It follows from the definition of γk and δk and the asymptotic properties
of uk in Lemma 5. �	

Lemma 7 Let Jn(B, G) be the leading principal submatrix of a monic Jacobi
matrix J of size n. Let α, C, μ0, and L0 be real numbers such that there is a
unique U L factorization of Jn(B, G) − αI. Let u1 be the element in position
(1, 1) in the U factor. Then,

lim|α|→∞
∂uk

∂α
=
{−1, C = 0 and k = 1,

0, otherwise.

Proof Taking into account the definition of u1, when α /∈ supp μ then

∂u1

∂α
= −L0

(C + μ0)2

∂μ0

∂α
= − L0

(C + μ0)2

∫ b

a

dμ

(x − α)2 .
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The result follows from the observation that

μ0 = −L0

α
+ O(α−2),

∂μ0

∂α
= L0

α2
+ O(α−3), |α| → ∞.

For k ≥ 2 we can use induction on k, noting that

∂uk

∂α
= uk

Bk−1 − uk−1 − α

(
1 + ∂uk−1

∂α

)
.

and considering Lemma 5. Note that ∂uk/∂α = O(α−1) when |α| → ∞. �	

4.4 Asymptotic analysis of the condition number when C �= 0

In this subsection we present an analysis of the condition number of Algo-
rithm 3 when C �= 0.

Lemma 8 If C �= 0, then

lim|α|→∞
B1 − 2u1 − α

u1

∂u1

∂α
= 0, lim|α|→∞ α

∂uk

∂α
= 0, k ≥ 1

Proof From the previous estimations it follows that when C �= 0 then

∂u1

∂α
= − L 2

0

Cα2
+ O(α−3),

so the second part of the lemma is true for k = 1. Assume that the result holds
for k − 1. Then, notice that

α
∂uk

∂α
= uk

α

Bk−1 − uk−1 − α
+ uk

Bk−1 − uk−1 − α

(
α

∂uk−1

∂α

)
.

Taking limits the second result follows. The first part of the lemma is obtained
directly from the asymptotic estimations of ∂u1/∂α and α∂u1/∂α given above
and the fact that u1 → L0/C when α → ∞ and C �= 0. �	

Theorem 4 If C �= 0, then

lim|α|→∞ κ∗(u1) = 2, lim|α|→∞ κ∗(uk) = 1, k ≥ 2.

lim|α|→∞ κ(b k) = 1, for k �= 2, lim|α|→∞ κ(b 2) = |B1| + 3|L0/C|
|B1 − L0/C| .

lim|α|→∞ κ(g1) = 3, lim|α|→∞ κ(gk) = 1, k ≥ 2.
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Proof We prove the result by induction on k. Since lim|α|→∞ μ0 = 0,

lim|α|→∞ κ∗(u1) = 2.

It is easy to show that κ∗(u2) = 1. Assume that lim|α|→∞ κ∗(uk−1) = 1 for some
k ≥ 3. Then, taking into account Lemma 5, we get

lim|α|→∞ |γk−1 Bk−1| = 0, lim|α|→∞ |γk−1uk−1| = 0,

which implies the result for uk. Recall that b 1 = u1 + α. Then, taking into
account Theorem 4, Lemmas 5 and 7 the result follows for k = 1. For k = 2, we
apply Theorem 4, Lemmas 5–8, bearing in mind that b k = Bk−1 + uk − uk−1,
k ≥ 2.

lim|α|→∞
|u2|
|b 2| = 0, lim|α|→∞

|B1| + |u1|
|b 2| = |B1| + |L0/C|

|B1 − L0/C| ,

lim|α|→∞
|γ1u2 − 1|

∣∣∣∣ u1

b 2

∣∣∣∣ κ∗(u1) = 2

∣∣∣∣ L0/C
B1 − L0/C

∣∣∣∣ ,

lim|α|→∞

∣∣∣∣ α

b 2

∣∣∣∣
∣∣∣∣∂b 2

∂α

∣∣∣∣ = lim|α|→∞

∣∣∣∣ α

b 2

∣∣∣∣
∣∣∣∣∂u2

∂α
− ∂u1

∂α

∣∣∣∣ = 0.

Let k ≥ 3, then

lim|α|→∞
|uk|
|b k| = 0, lim|α|→∞

|γk−1uk − 1| |Bk−1| + |uk−1|
|b k| = 1,

lim|α|→∞
|γk−1uk − 1|

∣∣∣∣uk−1

b k

∣∣∣∣ κ∗(uk−1) = 0,

lim|α|→∞

∣∣∣∣ α

b k

∣∣∣∣
∣∣∣∣∂b k

∂α

∣∣∣∣ = lim|α|→∞

∣∣∣∣ α

b k

∣∣∣∣
∣∣∣∣∂uk

∂α
− ∂uk−1

∂α

∣∣∣∣ = 0,

by Lemma 8 and the result for b k follows. Finally, for k = 1,

lim|α|→∞ |γ1|[|B1| + |u1|] = 0, lim|α|→∞ |γ1δ1|κ∗(u1) = 2,

lim|α|→∞

∣∣∣∣ α

g1

∣∣∣∣
∣∣∣∣(B1 − 2u1 − α)

∂u1

∂α
− u1

∣∣∣∣
= lim|α|→∞

∣∣∣∣ α

B1 − u1 − α

∣∣∣∣
∣∣∣∣B1 − 2u1 − α

C + μ0

∂μ0

∂α
− 1

∣∣∣∣ = 1.

The last equality follows from Lemma 8.
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For k ≥ 2, notice that

lim|α|→∞ |γk|[|Bk| + |uk|] = 0, lim|α|→∞ |γkδk|κ∗(u1) = 1,

lim|α|→∞

∣∣∣∣ α

gk

∣∣∣∣
∣∣∣∣(Bk − 2uk − α)

∂uk

∂α
− uk

∣∣∣∣
=
∣∣∣∣ α

Bk − uk − α

∣∣∣∣
∣∣∣∣Bk − 2uk − α

uk

uk

Bk−1 − uk−1 − α

(
1 + ∂uk−1

∂α

)
− 1

∣∣∣∣ = 0.

taking into account Lemma 7. �	

Theorem 5 Let κ(B, G, α, C, μ0, L0) be the condition number for the Geron-
imus transformation with shift α and parameters C �= 0, μ0, and L0 introduced
in Definition 12. Then

lim|α|→∞ κ(B, G, α, C, μ0, L0) = max

{
3,

|B1| + 3|L0/C|
|B1 − L0/C|

}
.

This implies that Algorithm 3 is accurate for |α| large enough as long as
|B1|+3|L0/C|
|B1−L0/C| is small.

Proof It is a direct consequence of Theorems 3 and 4. �	

4.5 Asymptotic analysis of the condition number when C = 0

Next we present a similar analysis of the condition number for the case C = 0.
Note the different behavior of κ(b k) and κ(gk) with respect to the previous
subsection.

Theorem 6 If C = 0, then

lim|α|→∞ κ∗(u1) = 2, lim|α|→∞ κ∗(u2) = ∞.

lim|α|→∞ κ∗(u3) = 1 + 3

∣∣∣∣G1

B2
1

∣∣∣∣ , lim|α|→∞ κ∗(uk) = 1, for all k ≥ 4,

lim|α|→∞ κ(b 1) = ∞, lim|α|→∞ κ(b 2) = 3

∣∣∣∣1 − G1

B2
1

∣∣∣∣ ,

lim|α|→∞ κ(b 3) = ∞, lim|α|→∞ κ(b k) = 1, for k ≥ 4

lim|α|→∞ κ(g1) = ∞, lim|α|→∞ κ(g2) = ∞,

lim|α|→∞ κ(g3) = 1 + 3

∣∣∣∣G1

B2
1

∣∣∣∣ , lim|α|→∞ κ(gk) = 1, for k ≥ 4
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Proof The result for u1 follows in a straightforward way. In the expression for
κ∗(u2) notice that

lim|α|→∞
|u1|

|B1 − u1 − α| (1 + κ∗(u1)) = ∞

taking into account Lemma 5.
Notice that κ∗(u3) can also be expressed as

1 + |B2|
|B2 − u2 − α| + |u2|

|B2 − u2 − α|
(

2 + |B1|
|B1 − u1 − α|

)

+ |u2|
|B1 − u1 − α|

|u1|
|B2 − u2 − α| (1 + κ∗(u1)).

Notice that the limit when |α| grows of the first three terms in the previous
expression is 1, while the limit of the last term is 3|G1/B2

1|. Now it is easy to
show the result for k = 4. The rest of the cases follow by induction.

In order to compute the condition numbers of the b ’s, note first that

κ(b 1) =
∣∣∣∣ α

b 1

∣∣∣∣
∣∣∣∣1 + ∂u1

∂α

∣∣∣∣+ 2

∣∣∣∣ u1

b 1

∣∣∣∣ .
Taking into account Lemmas 7 and 5, the result follows. In a similar way it

is possible to prove the result for the other condition numbers κ(b k) and κ(gk).
�	

The previous results suggest that better accuracy can be obtained when
computing the Geronimus transformation with C = 0 using the new algorithm
(Algorithm 3) if at least the following outputs are computed with extended
accuracy: u1, u2, u3, b 1, b 2, b 3, b 4, g1, g2, g3 and then use these values as inputs
of the same algorithm. Check Table 7 for new numerical results. The compu-
tations of the 4-by-4 principal leading submatrix of the Geronimus transform
J̃ as well as the the first three main diagonal entries of the factor U were done
with 64 decimal digits of precision.

Table 7 Algorithm with extended accuracy

α Error b Error g α Error b Error g

−1.0001 1.31 10−11 2.22 10−16 −0.0001 2.1 10−16 3.64 10−16

−1.1 91.26 1.74 −0.1 1.83 10−16 2.31 10−16

−2 9.3 10−3 1.67 10−2 −1 1.41 10−7 2.34 10−7

−10 1.41 10−5 5.73 10−7 −10 4.5 10−3 9.3 10−3

−100 5.29 10−10 5.28 10−10 −100 2.38 10−8 4 10−8

−1000 1.59 10−12 1.59 10−12 −1000 3.65 10−12 3.59 10−12

−106 2.21 10−16 2.22 10−16 −106 2.2 10−16 2.89 10−16

Forward errors for n = 60 and C = 0. On the left, Jacobi polynomials with a = −1/3, b = 1/7. On
the right, Laguerre polynomials with a = −1/3
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4.6 Forward stability of Algorithm 3

The purpose of this section is to prove that the forward error bound we have
found for Algorithm 3 is the best one can expect, because it reflects the sen-
sitivity of the transformation to componentwise relative perturbations in the
data. We have seen that Algorithm 3 is neither backward stable nor stable in
the mixed backward-forward sense, and therefore we consider a weaker notion
of stability. An algorithm is said to be forward stable if it produces forward
errors of similar magnitude to those produced by a backward stable algorithm
[19, p. 9]. In this section we show that Algorithm 3 is componentwise forward
stable. In order to prove that, we define the relative componentwise condition
number of the Geronimus transformation with shift α and parameters C, μ0,
and L0 with respect to small componentwise relative perturbations of B, G, α,
C, μ0, and L0.

κS(B, G, α, C, μ0, L0) = lim
δ→0

sup
0≤DC≤δ

max

{
max

1≤i≤(n)

{ |
bi|
|bi|

}
, max

1≤i≤(n−2)

{ |
gi|
|gi|

}}

DC
,

(18)
where

DC = max

{
max

1≤i≤(n)

{ |
Bi|
|Bi|

}
, max

1≤i≤(n−1)

{ |
Gi|
|Gi|

}
,
|
α|
|α| ,

|
C|
|C| ,

|
μ0|
|μ0| ,

|
L0|
|L0|

}
.

Recurrent expressions for κS(B, G, α, C, μ0, L0) can be obtained in a similar
way as we got recurrent expressions for κ(B, G, α, C, μ0, L0).

Theorem 7 Let Jn(B, G) be any n × n monic Jacobi matrix, and let α, C, μ0,
and L0 be real numbers such that Jn(B, G) − αI has a unique U L factorization
with u1 = L0/(C + μ0). Let U be the upper bidiagonal factor in the U L
factorization of Jn(B, G) − αI. If u1, u2, ..., un are the entries of U in positions
(1,1),(2,2),...,(n,n), then

κS(b 1) =
∣∣∣∣ α

b 1

∣∣∣∣
∣∣∣∣1 + ∂u1

∂α

∣∣∣∣+
∣∣∣∣ u1

b 1

∣∣∣∣
∣∣κ∗

S(u1)
∣∣,

κS(b k) = |uk|
|b k| + |γk−1uk − 1|

|b k|
[|Bk−1| + |uk−1|κ∗

S(uk−1)
]
,

+
∣∣∣∣ α

b k

∣∣∣∣
∣∣∣∣(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

∣∣∣∣ , k ≥ 2,

κS(gk) = |γk|
[|Bk| + |δk|κ∗

S(uk)
]+

∣∣∣∣ α

gk

∣∣∣∣
∣∣∣∣δk

∂uk

∂α
− uk

∣∣∣∣ , k ≥ 1,



Numer Algor (2010) 54:101–139 129

where

κ∗
S(u1) = 1 + |C| + |μ0|

|C + μ0| ,

κ∗
S(uk) = 1 + |γk−1|

[|Bk−1| + |uk−1|κ∗
S(uk−1)

]
, k ≥ 2,

and

∂uk

∂α
=

⎧⎪⎪⎨
⎪⎪⎩

− u1

C + μ0

∂μ0

∂α
, k = 1,

γk−1uk

(
1 + ∂uk−1

∂α

)
, k > 1.

Proof Analogous to the proof of Theorem 3. �	

To prove that Algorithm 3 is componentwise forward stable is equivalent
to prove that κS(B, G, α, C, μ0, L0) and κ(B, G, α, C, μ0, L0) have the same
order of magnitude, by taking into account Theorem 2.

By using Theorem 7, we can prove Theorem 8, after considerably long
and delicate algebraic manipulations are performed. The complete proof can
be found in Appendix 2. This theorem states that the condition numbers,
κ(B, G, α, C, μ0, L0) and κS(B, G, α, C, μ0, L0) that we have defined for the
Geronimus transformation are of the same order of magnitude, which implies
that Algorithm 3 is forward stable.

Theorem 8 Let κ(B, G, α, C, μ0, L0) and κS(B, G, α, C, μ0, L0) be the condi-
tion numbers introduced, respectively, in Definition 2 and (18) for the Geron-
imus transformation with shift α and parameters C, μ0 and L0, then

κS(B, G, α, C, μ0, L0) ≤ κ(B, G, α, C, μ0, L0) ≤ 8 κS(B, G, α, C, μ0, L0).

(19)

This result together with the fact that κ(B, G, α, C, μ0, L0) ≥ 1 implies that
Algorithm 3 is componentwise forward stable.
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Appendix 1: Proof of Theorem 3

In this section we include the proof of Theorem 3. First, we express the
intermediate variables uk of Algorithm 1, and the outputs b k and gk as
functions of the data B, G, α, C, μ0, and L0. Then we obtain expressions of
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the partial derivatives of each of the functions with respect to their arguments.
From Algorithm 1, we get

u1 = L0

C + μ0
, uk = Gk−1

Bk−1 − uk−1 − α
, k ≥ 2, (20)

and hence, for k ≥ 2, uk can be seen as a function of
B1, ..., Bk−1, G1, ..., Gk−1, α, C, μ0, and L0. Notice that u1 is a function
of α, C, μ0, and L0 only.

The proofs of the next three lemmas have been omitted because the results
can easily be obtained through direct computations.

Lemma 9 If α, C, μ0 and L0 are real numbers such that Jn(B, G) − αI has
a unique U L factorization, then uk has the following partial derivatives with
respect to B1, ..., Bk−1, G1, ..., Gk−1, α, C, μ0 and L0.

∂uk

∂ Bi
=

⎧⎪⎨
⎪⎩

0, k = 1
−γk−1uk, i = k − 1, k > 1

γk−1uk
∂uk−1

∂ Bi
, i < k − 1, k > 1

∂uk

∂Gi
=

⎧⎪⎨
⎪⎩

0, k = 1,

γk−1, i = k − 1, k > 1

γk−1uk
∂uk−1

∂Gi
, i < k − 1, k > 1

∂uk

∂α
=

⎧⎪⎪⎨
⎪⎪⎩

− u1

C + μ0

∂μ0

∂α
, k = 1

γk−1uk

(
1 + ∂uk−1

∂α

)
, k > 1

∂uk

∂C
=

⎧⎪⎪⎨
⎪⎪⎩

−u1

C + μ0
, k = 1

γk−1uk
∂uk−1

∂C
, k > 1

∂uk

∂L0
=

⎧⎪⎪⎨
⎪⎪⎩

1

C + μ0
, k = 1

γk−1uk
∂uk−1

∂L0
, k > 1

∂uk

∂μ0
=

⎧⎪⎪⎨
⎪⎪⎩

−u1

C + μ0
, k = 1

γk−1uk
∂uk−1

∂μ0
, k > 1
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Here

γk−1 := 1

Bk−1 − uk−1 − α
, k ≥ 2. (21)

From Algorithm 1, we also get

b 1 = u1 + α, b k = Bk−1 + uk − uk−1, k ≥ 2 (22)

and, therefore, for k ≥ 2, the variable b k can be seen as a function of
B1, ..., Bk−1, G1, ..., Gk−1, α, C, μ0, L0. Notice that b 1 is only a function of α,
C, μ0, and L0.

Lemma 10 If α, C, μ0 and L0 are real numbers such that Jn(B, G) − αI has
a unique U L factorization, then the partial derivatives of b k with respect to
B1, ..., Bk−1, G1, ..., Gk−1, α, C, μ0, and L0 are

∂b k

∂ Bi
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i = 1, k = 1

1 + ∂uk

∂ Bk−1
, i = k − 1, k > 1

∂uk

∂ Bi
− ∂uk−1

∂ Bi
, i < k − 1, k > 1

∂b k

∂Gi
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, k = 1
∂uk

∂Gk−1
, i = k − 1, k > 1

∂uk

∂Gi
− ∂uk−1

∂Gi
, i < k − 1, k > 1

∂b k

∂α
=

⎧⎪⎪⎨
⎪⎪⎩

∂u1

∂α
+ 1, k = 1

∂uk

∂α
− ∂uk−1

∂α
, k > 1

∂b k

∂C
=

⎧⎪⎪⎨
⎪⎪⎩

∂u1

∂C
, k = 1

∂uk

∂C
− ∂uk−1

∂C
, k > 1

∂b k

∂L0
=

⎧⎪⎪⎨
⎪⎪⎩

∂u1

∂L0
, k = 1

∂uk

∂L0
− ∂uk−1

∂L0
, k > 1

∂b k

∂μ0
=

⎧⎪⎪⎨
⎪⎪⎩

∂u1

∂μ0
, k = 1

∂uk

∂μ0
− ∂uk−1

∂μ0
, k > 1
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It also happens that gk = (Bk − uk − α)uk, k ≥ 1, so gk is a function of
B1, ..., Bk, G1, ..., Gk−1, α, C, μ0, L0.

Lemma 11 If α, C, μ0 and L0 are real numbers such that Jn(B, G) − αI has
a unique U L factorization, then the partial derivatives of gk with respect to
B1, ..., Bk, G1, ..., Gk−1, α and C are

∂gk

∂ Bi
=

⎧⎪⎨
⎪⎩

uk, i = k

δk
∂uk

∂ Bi
, i < k

∂gk

∂Gi
= δk

∂uk

∂Gi
, i < k

∂gk

∂α
= δk

∂uk

∂α
− uk, k ≥ 1

∂gk

∂C
= δk

∂uk

∂C
, k ≥ 1

∂gk

∂L0
= δk

∂uk

∂L0
, k ≥ 1

∂gk

∂μ0
= δk

∂uk

∂μ0
, k ≥ 1

Here δk := Bk − 2uk − α for k ≥ 1.

Next, we define some quantities that will be useful in order to compute the
condition number κ(B, G, α, C, μ0, L0) introduced in (12). Let us call

κ∗(uk) :=
k−1∑
i=1

κBi(uk) +
k−1∑
i=1

κGi(uk) + κC(uk) + κL0(uk) + κμ0(uk), (23)

where

κBi(uk) :=
∣∣∣∣ |Bi| + |ui|

uk

∂uk

∂ Bi

∣∣∣∣ , κC(uk) :=
∣∣∣∣ C
uk

∂uk

∂C

∣∣∣∣ , (24)

κGi(uk) :=
∣∣∣∣Gi

uk

∂uk

∂Gi

∣∣∣∣ , κL0(uk) :=
∣∣∣∣L0

uk

∂uk

∂L0

∣∣∣∣ , κμ0(uk) :=
∣∣∣∣μ0

uk

∂uk

∂μ0

∣∣∣∣ . (25)

Note that the subscript of these auxiliary “condition numbers” indicates
with respect to which input variable the specific condition number is computed.
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The quantities κ∗(uk) can be computed recursively as the following lemma
shows:

Lemma 12 Let α, C, L0, and μ0 be real numbers such that Jn(B, G) − αI has a
unique U L factorization. Then,

κ∗(u1) = 1 + |C| + |μ0|
|C + μ0|

κ∗(uk) = 1 + |γk−1 Bk−1| + |γk−1uk−1|(1 + κ∗(uk−1)), k ≥ 2,

κ(b 1) =
∣∣∣∣ α

u1 + α

∣∣∣∣
∣∣∣∣1 + ∂u1

∂α

∣∣∣∣+
∣∣∣∣ u1

u1 + α

∣∣∣∣ κ∗(u1),

κ(b k) = |γk−1uk| + |γk−1uk − 1|
|b k|

[|Bk−1| + |uk−1|
(
1 + κ∗(uk−1

)]+

+
∣∣∣∣ α

b k

∣∣∣∣
∣∣∣∣(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

∣∣∣∣ , k ≥ 2.

where γk−1 is defined in (21).

Proof If k = 1 then

κ∗(u1) = κC(u1) + κL0(u1) + κμ0(u1) = 1 + |C| + |μ0|
|C + μ0| .

Assume now that k > 1. Then, if i = k − 1,

κBk−1(uk) = |Bk−1| + |uk−1|
|uk|

∣∣∣∣ uk

Bk−1 − uk−1 − α

∣∣∣∣ = |Bk−1| + |uk−1|
|Bk−1 − uk−1 − α| .

κGk−1(uk) =
∣∣∣∣Gk−1

uk

∣∣∣∣
∣∣∣∣ 1

Bk−1 − uk−1 − α

∣∣∣∣ = 1.

Similarly, if i < k − 1,

κBi(uk) = |Bi|+|ui|
|uk|

∣∣∣∣ uk

Bk−1 − uk−1 − α

∣∣∣∣
∣∣∣∣∂uk−1

∂ Bi

∣∣∣∣=
∣∣∣∣ uk−1

Bk−1 − uk−1 − α

∣∣∣∣ κBi(uk−1).

κGi(uk) =
∣∣∣∣Gi

uk

∣∣∣∣
∣∣∣∣ uk

Bk−1 − uk−1 − α

∣∣∣∣
∣∣∣∣∂uk−1

∂Gi

∣∣∣∣ =
∣∣∣∣ uk−1

Bk−1 − uk−1 − α

∣∣∣∣ κGi(uk−1).

Finally,

κC(uk) =
∣∣∣∣ C
uk

∣∣∣∣
∣∣∣∣ uk

Bk−1 − uk−1 − α

∣∣∣∣
∣∣∣∣∂uk−1

∂C

∣∣∣∣ =
∣∣∣∣ uk−1

Bk−1 − uk−1 − α

∣∣∣∣ κC(uk−1).

The remaining two condition numbers are computed in a similar way.
These expressions lead us to the recurrence relation for κ∗(uk) in a straight-

forward way from (23).
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For k = 1,

κC(b 1) =
∣∣∣∣ C
b 1

∣∣∣∣
∣∣∣∣ u1

C + μ0

∣∣∣∣ , κα(b 1) =
∣∣∣∣ α

b 1

∣∣∣∣
∣∣∣∣1 + ∂u1

∂α

∣∣∣∣ .

κL0(b 1) =
∣∣∣∣ u1

b 1

∣∣∣∣ , κμ0(b 1) =
∣∣∣∣ u1

b 1

∣∣∣∣
∣∣∣∣ μ0

C + μ0

∣∣∣∣ .

Assume now that k > 1. For i = k − 1,

κBk−1(b k) = |Bk−1|+|uk−1|
|b k|

∣∣∣∣ uk

Bk−1 − uk−1 − α
− 1

∣∣∣∣= |Bk−1|+|uk−1|
|b k| |γkuk−1| ,

κGk−1(b k) =
∣∣∣∣Gk−1

b k

∣∣∣∣
∣∣∣∣ 1

Bk−1 − uk−1 − α

∣∣∣∣ =
∣∣∣∣ uk

b k

∣∣∣∣ .

For i < k − 1

κBi(b k) = |Bi| + |ui|
|b k| |γk−1uk − 1|

∣∣∣∣∂uk−1

∂ Bi

∣∣∣∣ = |γk−1uk − 1|
∣∣∣∣uk−1

b k

∣∣∣∣ κBi(uk−1),

κGi(b k) =
∣∣∣∣Gi

b k

∣∣∣∣ |γk−1uk − 1|
∣∣∣∣∂uk−1

∂Gi

∣∣∣∣ = |γk−1uk − 1|
∣∣∣∣uk−1

b k

∣∣∣∣ κGi(uk−1).

Finally,

κα(b k) =
∣∣∣∣ α

b k

∣∣∣∣
∣∣∣∣(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

∣∣∣∣ ,

κC(b k) =
∣∣∣∣ C
b k

∣∣∣∣
∣∣∣∣(γk−1uk − 1)

∂uk−1

∂C

∣∣∣∣ = |γk−1uk − 1|
∣∣∣∣uk−1

b k

∣∣∣∣ κC(uk−1).

The rest of the condition numbers can be obtained in a similar way. The result
follows by (13) and (23). �	

The expression for κ(gk) can be found following a similar procedure.

Appendix 2: Proof of Theorem 8

It can be seen from their explicit expressions that both numbers κ∗(uk) and
κ∗

S(uk) are larger than one. Moreover they are of the same order of magnitude
as the following lemma shows.

Theorem 9

κ∗
S(uk) ≤ κ∗(uk) ≤ 2κ∗

S(uk) for all k ≥ 1.



Numer Algor (2010) 54:101–139 135

Proof The first inequality is clear. Notice that the second inequality is true for
k = 1. In order to prove the second inequality for k > 1, note that

κ∗(uk)=1+|γk−1 Bk−1|+
k−2∑
i=1

(2 + |γi Bi|)
k−1∏

j=i+1

|γ ju j|+
k−1∏
j=1

|γ ju j|
(

2+ |C|+|μ0|
|C + μ0|

)
,

κ∗
S(uk)=1+|γk−1 Bk−1|+

k−2∑
i=1

(1+|γi Bi|)
k−1∏

j=i+1

|γ ju j|+
k−1∏
j=1

|γ ju j|
(

1 + |C|+|μ0|
|C + μ0|

)
,

where
∑0

i=1 ≡ 0 and
∑−1

i=1 ≡ 0, i.e., for k = 1 the summations are not present.
The result follows from the previous expressions. �	

It is also easy to prove that κ(b k) and κS(b k) are of the same order of
magnitude for all k ≥ 1.

Theorem 10 For 1 ≤ k ≤ n,

κS(b k) ≤ κ(b k) ≤ 3κS(b k).

Proof Again, the first inequality is obvious. In order to prove the second one
take into account Theorem 9 and the fact that 1 ≤ κ∗

S(uk) for all k to get

κ(b k) ≤
∣∣∣∣ uk

b k

∣∣∣∣+
∣∣∣∣γk−1uk − 1

b k

∣∣∣∣ [|Bk−1| + |uk−1|3κ∗
S(uk−1)]

+
∣∣∣∣ α

b k

∣∣∣∣
∣∣∣∣(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

∣∣∣∣ ,
and the result follows. �	

Proving that κ(gk) and κS(gk) are of the same magnitude is not always
possible. It is not true in general that κ(gk) is upper bounded by a multiple
of κS(gk). However, the lemma below shows that whenever κ(gk) and κS(gk)

have different orders of magnitude, then κ(gk) is bounded by 8κS(b k+1). The
technical Lemma 13 will be needed to prove our claim.

Lemma 13 Let us assume that 3
4 < γkuk < 3

2 for some k. If γkuk > 4 |γk Bk|, then

– if γkuk+1 > 15/8 or γkuk+1 < 3/8, then

5

12
<

∣∣∣∣uk+1 − 1/γk

b k+1

∣∣∣∣ .
– if 3/8 ≤ γkuk+1 ≤ 15/8, then

1

4
<

∣∣∣∣ uk+1

b k+1

∣∣∣∣ .
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Proof Since γkuk > 4 |γk Bk|,

−3

8
< γk Bk <

3

8
. (26)

We consider two possible situations: γk > 0 and γk < 0. Let us begin by
assuming that γk > 0.

1. If γk > 0, then uk > 0. From (26) we get

−3

8

1

γk
< lk + uk + α <

3

8

1

γk
.

Therefore,

− 15

8γk
− lk < α < − 3

8γk
− lk. (27)

Then, from (27), and taking into account that b k+1 = uk+1 + lk + α, we get
the following bounds

uk+1 − 15

8γk
< b k+1 < uk+1 − 3

8γk
.

Notice that both bounds of b k+1 will be positive if uk+1γk > 15/8, and both
bounds will be negative if uk+1γk < 3/8.

– Let us assume that uk+1γk > 15/8, then uk+1 − 1/γk > 0 and

uk+1 − 1/γk

uk+1 − 3
8γk

<

∣∣∣∣uk+1 − 1/γk

b k+1

∣∣∣∣ .

Therefore,

7

12
<

1

1 + 5
8

1
uk+1γk−1

<

∣∣∣∣uk+1 − 1/γk

b k+1

∣∣∣∣ .

– Let us assume now that uk+1γk < 3/8. Then, uk+1 − 1/γk < 0 and

−uk+1 + 1/γk

−uk+1 + 15
8γk

<

∣∣∣∣uk+1 − 1/γk

b k+1

∣∣∣∣ .

As a consequence,

5

12
<

1

1 + 7
8

1
1−uk+1γk

<

∣∣∣∣uk+1 − 1/γk

b k+1

∣∣∣∣ .

– Finally, suppose that 3
8 ≤ uk+1γk ≤ 15

8 . Then, uk+1 > 0. If b k+1 > 0, we
get

5

4
<

uk+1γk

uk+1γk − 3
8

<

∣∣∣∣ uk+1

b k+1

∣∣∣∣ .
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If b k+1 < 0, then

1

4
<

uk+1γk

−uk+1γk + 15
8

<

∣∣∣∣ uk+1

b k+1

∣∣∣∣ .
2. When γk < 0, a similar proof gives the same bounds.

�	

Now we can prove Theorem 11. Let us remark that Theorem 8 is a trivial
consequence of Theorems 10 and 11. Notice that, from the expressions for
κ(gk) and κS(gk), and taking into account that κ∗(uk) and κ∗

S(uk) are of the
same order of magnitude by Theorem 9, it can easily be deduced that κ(gk)

and κS(gk) have similar orders of magnitude when ukγk is not close to one. This
is covered in the first two items of Theorem 11. The most difficult situation,
i.e., when ukγk is close to one, is presented in the last item. Let us recall that
uk �= 0 for all k because Gk−1 �= 0 for monic Jacobi matrices corresponding to
sequences of orthogonal polynomials.

Theorem 11 For 1 ≤ k ≤ n − 1,

1 if ukγk < 0, then

κS(gk) ≤ κ(gk) ≤ 3κS(gk).

2 if 0 < ukγk ≤ 3/4 or ukγk ≥ 3/2, then

κS(gk) ≤ κ(gk) ≤ 8κS(gk).

3 if 3
4 < ukγk < 3

2 for some k,

3.1 if ukγk ≤ 4|Bkγk|, then

κS(gk) ≤ κ(gk) ≤ 5κS(gk).

3.2 if ukγk > 4|Bkγk|, then

(a) if κ(gk) ≥ 4
3 ukγk, then

κS(gk) ≤ κ(gk) ≤ 8κS(gk).

(b) if κ(gk) < 4
3 ukγk, then

κS(gk) ≤ κ(gk) ≤ 8κS(b k+1).

Proof Considering the definitions of κ(gk) and κS(gk), it is easy to see that

κS(gk) ≤ κ(gk), for all k.

In the rest of the proof, notice that

γkδk = Bk − 2uk − α

Bk − uk − α
= 1 − uk

Bk − uk − α
= 1 − γkuk.

Denote a = ukγk. We need to compare the quantities |a| + 2|1 − a|κ∗
S(uk)

and |1 − a|κ∗
S(uk). Note also that κ∗

S(uk) ≥ 1.
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1. If a < 0 then |a| + 2|1 − a| = 2 − 3a ≤ 3(1 − a), and hence

|a| + 2|1 − a|κ∗
S(uk) ≤ (|a| + 2|1 − a|)κ∗

S(uk) ≤ 3|1 − a|κ∗
S(uk),

so κ(gk) ≤ 3κS(gk).
2. If 0 ≤ a ≤ 3/4, then |a| + 2|1 − a| = 2 − a, so

|a| + 2|1 − a|κ∗
S(uk) ≤ (|a| + 2|1 − a|)κ∗

S(uk) ≤ 8|1 − a|κ∗
S(uk),

and therefore κ(gk) ≤ 8κS(gk).
3. If a ≥ 3/2 then |a| + 2|1 − a| = 3a − 2 ≤ 5(a − 1), so

|a| + 2|1 − a|κ∗
S(uk) ≤ (|a| + 2|1 − a|)κ∗

S(uk) ≤ 5|1 − a|κ∗
S(uk),

and κ(gk) ≤ 5κS(gk).

3.1 If 3
4 < γkuk < 3

2 and ukγk ≤ 4|Bkγk| then, taking into account the
expressions for κ(gk) and κS(gk), the result follows.

3.2 If 3
4 < γkuk < 3

2 and ukγk > 4|Bkγk| then, the condition κ(gk) ≥ 4
3 ukγk

implies

8κS(gk) ≥ 4

{
|γk|[|Bk| + |δk|κ(uk)] + |γkα|

∣∣∣∣1 − δk

uk

∂uk

∂α

∣∣∣∣
}

≥ 4κ(gk) − 4|ukγk| > κ(gk).

On the other hand, if κ(gk) < 4
3 ukγk and uk+1γk > 15

8 or uk+1γk < 3
8 ,

then by Lemma 13

κS(b k+1) ≥
∣∣∣∣uk+1 − 1/γk

b k+1

∣∣∣∣ |ukγk| >
5

12
|ukγk|,

which implies

κ(gk) <
16

5
κS(b k+1).

When κ(gk) < 4
3 ukγk and 3

8 ≤ ukγk ≤ 15
8 , by Lemma 13

κS(b k+1) ≥ 1

4
.

Moreover, since ukγk < 3
2 , κ(gk) < 4

3 ukγk ≤ 2, which implies

κ(gk) ≤ 8κS(b k+1).

�	
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