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ABSTRACT Currently, carbon dioxide (CO2) waveforms measured by capnography are used to estimate
respiratory rate and end-tidal CO2 (EtCO2) in the clinic. However, the shape of the CO2 signal carries
significant diagnostic information about the asthmatic condition. Previous studies have shown a strong
correlation between various features that quantitatively characterize the shape of CO2 signal and are used to
discriminate asthma from non-asthma using pulmonary function tests, but no reliable progress wasmade, and
no translation into clinical practice has been achieved. Therefore, this paper reports a relatively simple signal
processing algorithm for automatic differentiation of asthma and non-asthma. CO2 signals were recorded
from 30 non-asthmatic and 43 asthmatic patients. Each breath cycle was decomposed into subcycles, and
features were computationally extracted. Thereafter, feature selection was performed using the area (Az)
under the receiver operating characteristics curve analysis. A classification was performed via a leave-one-
out cross-validation procedure by employing a support vectormachine. Our results showmaximum screening
capabilities for upward expiration (AR1), downward inspiration (AR2), and the sum of AR1 and AR2, with
anAz of 0.892, 0.803, and 0.793, respectively. The proposedmethod obtained an average accuracy of 94.52%,
sensitivity of 97.67%, and specificity of 90% for discrimination of asthma and non-asthma. The proposed
method allows for automatic classification of asthma and non-asthma condition by analyzing the shape of
the CO2 waveform. The developed method may possibly be incorporated in real-time for assessment and
management of the asthmatic conditions.

INDEX TERMS Area, quantitative, feature, classifier, asthma.

I. INTRODUCTION
Quantitative analysis of the respired carbon dioxide (CO2)
waveform shape carries significant diagnostic information
for the classification of asthma exacerbation and its sever-
ity level [1]–[7]. During an asthma attack, the inflamed or
sensitive trachea causes the tracheal muscle to repeatedly
contract, and an excess amount of mucus to be secreted,
which leads to airway obstruction, and symptoms such as
difficulty breathing, chest pain, and coughing [8]. In addition,
asthma is presumed to be a high-risk and non-curable disease;
hence, early screening or prediction of asthma may possibly

control and minimize the morbidity and mortality rate of
asthma attacks [9]. The existing method for early identifica-
tion of asthma is based on the healthcare provider’s physical
assessment utilizing a spirometer or peak flow meter, which
are manual and unreliable if patients are noncooperative [10].
In addition, they require a set of instructions to be followed
and deep, quick, and complete in-and-out breaths to be used
during the maneuver [11], [12]. Thus, young, elderly, injured,
anesthetized, sore, and ill patients are often unable to perform
these tests [13]. Therefore, capnography has been proposed as
a patient-independent asthma assessment device.
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FIGURE 1. Four breath cycles extracted from a CO2 signal recorded
for 2.5 minutes. A-B, A-C, A-B-C-D-E, and D-E, represent the upward
expiratory (4mmHg <= CO2 <= 10mmHg), absolute expiratory
(4mmHg <= CO2 = Max (A-B-C-D-E)), complete breath cycle
(4mmHg <= CO2 <= 4 mmHg), and downward inspiratory phase
(10 mmHg <= CO2 <= 4 mmHg) respectively, refer to cycle 2. P, Q, R,
and T indicate the gas of anatomic dead space (airway), vacating of
alveoli gas progressing, alveolar gas, and inspiratory down-stroke of gas.
α- angle lies between Q and R, while β- angle lies between R and T,
refer to cycle 1.

The capnography device measures and displays the CO2
signal, end-tidal CO2 (EtCO2), respiratory rate (RR) and
inspired CO2 (ICO2) as a waveform and as numeric values
continuously from the carbon dioxide partial pressure in a
sample of expiratory air (PeCO2) [1]. The normal CO2 signal
looks like a square waveform as presented in Fig. 1 (refer
to breath cycle three), followed by an alternating inspiration
(ICO2 equal to zero) and expiration phase [14]–[16].

The expired portion of each breath cycle consists of three
phases: 1) the latency phase, ‘‘P’’, which represents the exha-
lation of the anatomical dead space (PeCO2 = 0) and is
difficult to differentiate from prior inhalation; 2) the upward
expiration phase, ‘‘Q’’, which has a rapid increase in PeCO2
indicating the exhalation of mixed air; 3) the alveolar plateau
phase that consists of ‘‘R’’, which reveals the purging of
alveolar air (a slight increase in PeCO2) that consists of
a peak at the end of exhalation, ‘‘S’’, known as end-tidal
carbon dioxide (EtCO2), which is immediately followed by
inspiration, ‘‘T’’ and ‘‘U’’ [1] that are both angles (α and β)
and indicate the changes between Q, and R and R and T as
shown in Fig. 1 (refer to breath cycle 3). It is believed that
features provided by these phases, specifically the alveolar
and upward expiration phases, can reveal asthma exacerba-
tion [1]–[3], [12], [17], [18].

Several studies have been conducted with the subjects
suffering from asthma that have demonstrated significant
correlations between CO2 signal indices computed using
capnography and the standard spirometry and peak flow
meter index [1]–[3], [17], [18]. These studies are of great
interest since capnographic measurements are patient inde-
pendent and can be applied with young, elderly, injured or
even unconscious patients and could, therefore, be used as an
alternative to the standard pulmonary function test to monitor
airways obstruction in a number of clinical conditions.

The study conducted by You et al. [17] (1992) revealed that
computation of the slope of the alveolar phase of a CO2 signal
has a good correlation between the capnographic index and

spirometric parameters. Furthermore, You et al. [1] (1994)
proposed multiple indices to provide a better representation
of bronchial obstruction. Specifically, they measured eight
indices (S1, S2, S3, SR, AR, SD1, SD2 and SD3) from each
valid breath cycle and compared the mean values of these
indices with spirometric indices and found that the angle (α)
between the ascending phase (Q, refer to Fig. 1, breath cycle
3) and the alveolar plateau (R, refer to Fig. 1, breath cycle 3),
was the most significant. However, real-time implementation
is still challenging due to the random time-based setting
criteria. Later, the study conducted by Yaron et al. [2] (1996)
found that the derivative of the alveolar phase differed signif-
icantly between asthmatic and non-asthmatic patients. How-
ever, this study used manual methods to extract the features.
Thereafter, an apparent trend has developed for the extrac-
tion of CO2 signal features in the belief that the incorpo-
ration of these features into CO2 monitoring devices may
provide a patient independent method to understand asthma
exacerbation.

In 2009, Hisamuddin et al. [18] reported that the slope of
phase 3 (R, refer to Fig. 1) and α-angle (refer to Fig. 1) dif-
fered significantly between asthma and non-asthma patients,
which coincides with the finding of Howe et al. [3] (2011).
However, the above-mentioned studies were conducted at
a low sampling rate (10 Hz) and used setting criteria and
linear trend methods in order to calculate the slope, which
required the sample distribution to be linear. In fact, obtaining
simple linear data sets in real time is quite difficult due
to the uneven removal of CO2 samples from the alveoli.
In addition, the studies conducted by Langhan et al. [19]
and Howe et al. [3] divulged that time-based setting criteria
are challenging to implement in the real-time environment.
These authors also stated that the quantification and analysis
of the CO2 waveform cannot be easily employed in the emer-
gency department and are not clinically useful. Furthermore,
Kazemi et al. (2013) computed the power spectral den-
sity (PSD) from each breath cycle and proposed a new fea-
ture for differentiating the asthmatic condition, which may
possibly overcome the limitations of previous studies [6].
However, computation of the PSD is complex and requires
higher level calculations. In addition, the computation time is
relatively slow and requires more memory compared to other
time domain features.

To the best of our knowledge, currently, no significant
progress has been made regarding the incorporation of the
above-discussed features into a real-time CO2 measurement
device, nor has a translation to clinical practice been achieved.
Therefore, here we propose the area (ARi) and derivative(
dco2
dt

)
as new prognostic indices for the screening of asthma

and non-asthma, which may possibly be easily incorporated
into real-time CO2 measurement devices due to the sim-
plicity of the algorithm. We employed Simpson’s rule to
compute the ARi of the upward expiration (AR1, A-B, refer
to breath cycle 2), downward inspiration (AR2, D-E, refer to
breath cycle 2), absolute expiration (AR3, A-B-C, refer to
breath cycle 2), complete breath cycle (AR4, A-B-C-D-E,
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refer to breath cycle 2), sum of upward expiration and inspi-
ration (AR1 + AR2), and the derivative

(
dco2
dt

)
of the com-

plete expiratory phase (refer to Fig. 1, breath cycle 2, A-C)
for the discrimination of asthma and non-asthma. There-
after, the optimum features were selected based on the
non-parametric test, receiver operating characteristics (ROC)
curve. The selected features were then fed to support vec-
tor machine (SVM), k-Nearest Neighbor (k-NN) and Naive
Bayes (NB) classifiers to obtain the maximum accuracy with
a minimum set of features.

The work of the paper is organized as follows. Section II
outlines (A) data recording, preprocessing, outlier removal
and rectification, (B) automatic CO2 waveform segmenta-
tion that includes valid breath detection and segmentation of
each valid breath cycle into subcycles, (C) feature extraction,
(D) feature selection, and (E) the statistical supervised clas-
sifier method, followed by a performance measurement of
the proposed method presented in (F). The findings and dis-
cussion of the proposed system are presented in Section III.
A conclusion is made in Section IV.

FIGURE 2. Overview of the proposed system for asthma screening based
on CO2 signal features.

II. METHODS
The proposed method for the classification of asthma and
non-asthma based on the CO2 signal’s features is summa-
rized in Fig. 2. The proposed method consists of a series of

processing steps, namely, recording and preprocessing to
reduce the bandwidth and smooth the CO2signal, CO2 wave-
form segmentation that includes automatic segmentation of
the expiration and inspiration phase and valid breath detec-
tion steps of each breath cycle of the CO2 signal, followed
by subdivision of expiration and inspiration phases, feature
extraction and selection from the CO2 signal for discrimi-
nating the asthmatic condition, and classification of asthma
using the supervising statistical classifier. Each of these steps
is explained in detail in the following sections.

A. DATA RECORDING AND PREPROCESSING
The CO2 data used in this study were collected from the
Emergency Department of Penang Hospital, Penang and
Pusat Kesihatan, UTM, Malaysia via a simple sampling
method [3]. The data was recorded using a newly developed
real-time human respiration CO2 measurement device [20]
that was designed based on sidestream technology, with a
sampling rate of 100 Hz for 2.5 minutes. For this, a nasal
cannula was placed into the nose of the patients and they were
instructed to breathe in and out in a relaxed manner at their
own comfort.

Seventy-three subjects, aged 13-84 years, participated in
this study, 43 of these had an asthmatic disease that was
identified and annotated by emergency physicians from the
Penang Hospital and Pusat Kesihatan, UTM,Malaysia, while
30 were non-asthmatic. The inclusion criteria for the study
were patients who had a complaint wheezing, increased work
of breathing, cough, or shortness of breath and those suf-
fering from asthma. Patients were excluded from the study
in the case of an unclear diagnosis of asthma or severe
life-threatening conditions that required immediate attention
and treatment. The study protocol was approved by the Med-
ical Research and Ethics Committee (MREC), Ministry of
HealthMalaysia (Ref: (13) KKM/NIHSEC/P17-1027). Addi-
tionally, in order to record their demographic information,
an informed consent form was collected from all the partici-
pants before being involved in the study.

1) PREPROCESSING
Sixteen consecutive breaths with regular shapes (approxi-
mately 72 s, may vary with respiratory rate) were extracted
from the two and half minutes of recorded CO2 data from
each subject, as presented in Fig. 3. Amean value was derived
from the sixteen breaths for further processing. The complete
data set was divided into two parts, the CO2 signal of the
non-asthmatic patient (CO2NAP) and the CO2 signal of the
asthmatic patient (CO2AP), with numbers added to the end of
these codes to represent specific patients (e.g., CO2AP4 rep-
resents the data of the fourth asthmatic patient).

The CO2 signals were filtered via a low pass filter
(fc, 10 Hz) to limit the bandwidth of the signal. As reported
by Yang et al. [21] (2010), human respiration CO2 signals lie
within 10 Hz. Thereafter, a 50 Hz notch filter was applied to
remove power line interferences, followed by moving aver-
age filter (span, 8) to smooth the shape of the signal [22].
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FIGURE 3. The pre-processed CO2 signal recorded for two and half
minutes from each subject, CO2AP8 indicates the 8th asthmatic patient
CO2 signal. The upper left CO2 signals, restricted between the red lines,
indicate sixteen breath cycle extracted from the whole signal (CO2AP8).

The process of the moving average filter was applied using
Equation 1:

y (p) =
1

2p+1
(y (p+q)+y (p+ q− 1) . . . . . .+ y (p− q))

(1)

where y (p) indicates the result of q-smooth points, p is
the adjacent data values on either side of y (p) and 2p + 1
represents span width.

2) OUTLIER REMOVAL AND RECTIFICATION
Outlier removal involves the pathologic CO2 signal that
seems to be more irregular and chaotic than the healthy CO2
signal, which tends to be more consistent and is found more
often in asthmatic patients. The outliers were removed by
applying exhalation inclusion criteria that included exhibiting
a positive or negative deviation from the mean expiration
above a specified multiple of the standard deviation. Addi-
tionally, a feature was validated only if it did not diverge
more than a specified value of the standard deviation from
the record mean, as advocated by Asher et al. [23] (2014).
In addition, a sliding window lasting for 4.5 s was created to
extract the maximum and minimum CO2 values from each
breath cycle, because typically each breathing cycle ranges
from 1.5 to 4.5 s for pediatric, young adults and elderly
subjects [24], [25].

Furthermore, a sub-sliding window lasting between
1.5 to 4s was chosen to extract exactly the shape of the
CO2 signal for feature extraction and to avoid unnecessary
CO2waveform patterns that may be caused due to an inept
expiratory valve, where the exhaled breath is reinspired.
As reported by Landis and Romano [26], this occurs when
subjects take breaths superseding mechanical ventilation,
or when cardiogenic oscillations caused by the rhythmic
increase and decrease in intrathoracic volume with each car-
diac cycle. Figs. 4 A and B present the CO2 signal recorded

FIGURE 4. (A) validated CO2 signal (B) Outlier CO2 signal (red circled CO2
signals represent i) rebreathing condition; ii) overriding mechanical
ventilation during breathing; iii) cardiogenic oscillations; iv) breath-hold
or short halt inspiration and then resumed breath).

from a healthy subject with red circle differentiating the
validated CO2 signal and outlier CO2 signal, respectively.
The results revealed that validated CO2 signal appears con-
sistent across breaths, while the outlier CO2 signal deviates
appreciably from the remaining CO2 signal.

B. AUTOMATIC CO2 WAVEFORM SEGMENTATION
The procedure for the segmentation of the expiration and
inspiration phases, valid breath detection, and subdivision
of the expiration and inspiration into subparts, from the
complete breath cycle is presented in Fig. 1 (refer to breath
cycle 2, A-B, A-C, D-E, and A-E). For this, the maximum
CO2 value was calculated from each breath cycle (recording
time 4.5 s) by applying the simple max-min algorithm. The
algorithm works based on the filtering or rule to detect the
maximum CO2 values. According to this, the maximum CO2
value was considered as the greatest value in either of the
following cases: (a) the maximum CO2 value present during
the restricted recording time of each breath cycle, or (b) the
maximumCO2 value for the previous breath if reduced by the
maximum allowable breath to breath CO2 values (1-4mmHg)
as advocated by Jaffe and Orr [27]. Further, the inspiratory
phase of the breath was computed by subtracting the template
of the maximum CO2 waveform (refer breath cycle 2 of
Fig. 1, A-B-C) from the complete waveform (refer breathe
cycle 2 of Fig. 1, A-B-C-D-E).

Furthermore, breath validation was performed for both
the exhalation and inspiration phases by computing the
derivative

(
dCO2
dt

)
and a mean of each phase. The exhalation

phase was assumed valid when the mean was found to be
positive; on the contrary, a negative mean value denotes the
inspiration phase as presented in Fig. 5, which shows the
CO2 signal (blue solid line) and its dCO2

dt (green solid line)
for a healthy subject (CO2NAP4). The dCO2

dt of the expiration
phase seems to be positive, followed by negative slope values
for the inspiratory phase. Thus, valid breath detection was
performed for the expiration and inspiration phases prior to
the sub-division of these phases.

Thereafter, a threshold algorithm was adopted to
automatically segment each phase into sub-phases in
order to extract the features as suggested in an earlier
study [1], [3], [17], [18], [28]. The existing methods that
are either manual or criteria based include time, which may
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FIGURE 5. The CO2 signal (blue solid line) and its
(

dco2
dt

)
(green solid

line), intersection point of black dot lines represent the maximum CO2
values, the derivative (green dash line) seems to be positive until the
maximum CO2 that represents the absolute expiration phase, followed by
negative derivative (blue dot line) that reveal the downward inspiration
phase.

exclude significant waveform information as reported by
Howe et al. [3]. Hence, we consider dividing these phases
using the simple threshold method by considering the y-axis
(CO2, mmHg) rather than the x-axis (time). Here, we first
limited each breathing cycle to be between 4 to 4 mmHg
by applying threshold method as suggested by You et al. [1]
and Howe et al. [3] who state that expired CO2 must have
come from the lungs to reach a level of 4 mm Hg. Thereafter,
a threshold was created lasting between 4 to 10mmHg, which
resembles part of the upward expiratory phase (A-B, refer to
Fig. 2). Further, the absolute expiratory phase (A-B-C, refer
to Fig. 2) was separated from the complete breath cycle by
restricting the waveform until the maximum value of CO2 as
shown in Equation 2. Thereafter, the downward phase (D-E,
refer to Fig. 1) was detected from the complete breath cycle
by confining between 10 to 4 mmHg using the threshold
method. Thereafter, features were extracted based on the
segmentation of each breath cycle.

Absolute expiration phase� 4

<= CO2 = Max(CO2value, A-B-C-D-E) (2)

C. FEATURE EXTRACTION OF CO2 SIGNAL
The time domain features were extracted from the segmented
part of the CO2 signals in order to differentiate asthma and
non-asthma conditions. The five features (AR1, AR2, AR3,
AR4, and dCO2

dt ) were estimated from the CO2 signal as
illustrated in Fig. 2. AR1, AR2, AR3, and AR4 represent the
ARi of upward expiration, downward inspiration, absolute
expiration, and complete breath cycle, respectively, while
dCO2
dt indicates the derivative of the entire expiratory phase.

In addition, the sum (AR1 + AR2) was derived from AR1 and
AR2 in order to classify the asthmatic condition. We chose
to compute the AR and dCO2

dt because it is believed that these
phases may increase or decrease during an asthma attack as
presented in Fig. 6.

FIGURE 6. CO2 signal of sixteen consecutive breath of non-asthmatic and
asthmatic subjects, the red solid line indicates the CO2NAP5 – a CO2
signal of the 5th non-asthmatic patient; black solid line represents the
CO2 signal of the 41th asthmatic subject.

The ARi of each quantified breath cycle was computed
using Simpson’s rule comparing with the trapezoidal because
it is more accurate as it approximates the CO2 signal with a
sequence of quadratic parabolic segments instead of straight
lines. Thus, the result is more accurate and may provide
significant information about asthmatic changes. The proce-
dure for the computation of the ARi is presented in Fig. 7.
Equation 3 was used to calculate the ARi as follows:

Ai =
dt
6

i∑
j=0

(
Cj−1 (t) + 4Cj (t)+ Cj+1 (t)

)
(3)

Where, C(t) and dt represent the CO2 signal and sampling
interval, respectively.

Furthermore, dCO2
dt of the absolute expiration phase was

calculated using Equation 4 and themean slope of each breath
cycle was determined. Thereafter, the best-suited features
were identified by applying the feature selection algorithm
as reported in section D.

yi =
(xi − xi−1)

dt
(4)

Where, i and dt indicate the number of CO2 samples and
sampling time between the samples, respectively.

D. FEATURE SELECTION
Feature selection is necessary in order to select the optimum
features from a set of extracted features that are both pertinent
and non-redundant [29]. It is believed that some of the fea-
tures may consist of redundant and/or irrelevant information
that may degrade the performance of the classifier if not
removed [30].

The feature selection method is divided into three
categories, namely, the embedded, wrapper and filter
method [31], [32]. The wrapper and embedded interact with
the classifier and include interaction between feature subsets
and model selection. In addition, they are able to consider
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FIGURE 7. Procedure to compute the ARi for each quantized breath cycle.

feature dependencies. However, these methods have some
common limitations, such as a higher risk of overfitting more
than filter techniques and being computationally expensive.
In contrast to these methods, the filter technique easily scales
to a large datasheet, is computationally simple, fast, and does
not depend upon the classifier. Additionally, the feature selec-
tion algorithm can be performed only once, andmore than one

classifier method can be evaluated. Hence, we proposed to
use a filter-based feature selection algorithm presented earlier
in [33] to select the optimum set of CO2 signal features for
differentiating asthma and non-asthma conditions.

The filter technique evaluates the features by considering
the intrinsic properties of the CO2 signal. It is based on the
score of relevant features and the features that have low scores
are supposed to be removed from the machine learning.
Hence, we employed a ROC test [33], which is a fraction of
true positives and false positives, for a binary classification
system. The ROC considered two specific groups, asthmatic
and non-asthmatic, for each feature. Thus, the ROC curve
coincides with the diagonal AUC (Az, 0.5), but the features
can differentiate two groups whenever the ROC curve reaches
the upper left corner, i.e., is close to 1.

The feature is not considered to be statistically significant
if the area under the curve (AUC, Az) is found to be less
than or equal to 0.5, which is in agreement with earlier
studies [32], [34]. Usually, an Az of 0.5, 0.7 to 0.8, 0.8 to 0.9,
and more than 0.9 advocates no discrimination, acceptable,
excellent, and outstanding, respectively, as suggested by
Hosmer and Lemeshow [35], Ware et al. [36]. Thus, based
on the maximum and minimum value of Az, the features were
chosen for the classification purpose.

E. STATISTICAL SUPERVISED CLASSIFIER METHOD
In this study, statistical supervised classifiers were used
to categorize asthma and non-asthma conditions based on
the ARi and dCO2

dt . The approach incorporates a set of
d-dimensional feature vectors as an input to a statistical
supervised classifier. Here, we chose to integrate the SVM
classifier based on the radial basis function (RBF) for the
classification of asthma and non-asthma [5], [37]. This
approach is considered to be a good classifier that has been
used in bioinformatics, engineering, computer vision, and
other fields. It uses an optimum hyperplane to differenti-
ate the asthmatic and non-asthmatic groups by maximizing
the distance from the decision boundaries [38]–[40]. It can
also tackle simple, linear and nonlinear classification tasks,
as well as more complex tasks. It enables mapping of the
input data point from the input space to a high dimensional
feature space where the classification problem can be easily
simplified. The SVM is executed using the C++ library
known as LIBSVM [41], and the parameters of the RBF
kernel function (kernel width, γ , and penalty constant, C) are
optimized by a grid-search to achieve a maximum result [42].
The process of the grid-search algorithm can be found
elsewhere [42]. Furthermore, for the sake of comparison,
the k-NN with k = 1, 2, and 3 and NB classifiers were also
applied [6], [40].

The performance of the classifiers was evaluated using
leave-one-out (LOO) cross-validation [43] rather than k-fold
because it allowed all possible partitions to be explicitly
tested. This approach includes data from the original data as
test data and the leftover data is considered as training data.
The procedure is performed by dividing the P dataset into
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k mutually exclusive subsets P1, P2, . . . ,Pk. The classifier
is trained and tested k-times; each time n = 1, . . . , k , it is
trained on P/Pk , and tested on Pk . Although the training and
testing sets are taken from the same datasets, cross-validation
is not considered to produce biased results [44], [45]. In addi-
tion, LOO is assumed to be statistically efficient for small
data sizes and hence it is applied here as it suits these circum-
stances [43].

F. PERFORMANCE MEASUREMENT
The performance of the classifier was measured in terms of
sensitivity, specificity, precision, and accuracy using the con-
fusionmatrices [46]. The sensitivity evaluates if the asthmatic
CO2 signal data is correctly identified by the classifier, while
specificity is the proportion of the non-asthmatic CO2 signal
correctly recognized by the classifier. The precision provides
information about the consistency of classifier’s sensitivity
and specificity when repeated multiple times, whereas the
accuracy compares the actual result to what it supposed to
be [46]. The sensitivity, specificity, precision, and accuracy
are expressed mathematically as follows:

Sensitivy (SEN) =
(TP)

(TP+ FN)
(5)

Specificity (SPE) =
(TN)

(TN+ FP)
(6)

Precision (Pre) =
(TP)

(TP+ FP)
(7)

Accuracy (ACC) =
(TP+ TN)

(TP+ TN+ FP+ FN)
(8)

Where, TP, TN, FP, and FN indicate the true positive,
true negative, false positive and false negative, respectively.
In addition, the error rate was calculated using the following
expression:

Er = 1−
(Sen+ Spc)

2
(9)

III. RESULTS AND DISCUSSION
Here, we have proposed an approach that quantitatively ana-
lyzes respired CO2 waveforms for classification of asthma
and non-asthma using a new prognostic index (ARi) and

dco2
dt ,

which can possibly be implemented in real time due to the
ease and simplicity of the algorithm. A total of 73 sets of CO2
data were collected, including data from 43 asthmatics with a
mean+standard deviation (SD) of 31.64+14.60, and 30 non-
asthmatics with mean+SD (24.86+5.25). Further, five shape
features (AR1, AR2, AR3, AR4,

dco2
dt ) were extracted from

sixteen-consecutive regular-shaped CO2 waveforms for each
subject. Additionally, the feature (AR1 + AR2) was derived
fromAR1 andAR2. Themean and SD of the extracted features
are provided in Table 1.

Table 1 shows that the areas (AR1, AR2, AR3, AR4, and
AR1 + AR2) for the asthmatic CO2 signal possess a higher
mean value than the non-asthmatic CO2 signal, while the
dco2
dt of the expired phase is deceased is asthmatic patients

TABLE 1. Mean and standard deviation (SD) of the estimated features for
the CO2NAP (30) and CO2AP (43) CO2 signals.

FIGURE 8. Absolute expiration phase of the asthmatic patient (black solid
line) and its

dCO2
dt (red solid line); complete expiration phase of the

non-asthmatic patient (green solid line) and its derivative (light blue solid
line); the slope of non-asthmatic possess higher peak than asthmatic.

compared to non-asthmatic patients. Further, the dCO2
dt of the

absolute expiratory phase revealed that the mean value of the
slope for the asthmatic group was lower than that of the non-
asthmatic group. Fig. 8 depicts the derivative of the absolute
expiration phase for the asthmatic and non-asthmatic patients.

Table 2 lists the p-values, area (Az) under the ROC curve
and standard error (SE) values that aid in ranking the fea-
tures, which can be used as feature vectors for the classifier.
The p-values reveal that all the features were statistically
significant (p < 0.01) for the comparison of asthma and
non-asthma groups. However, the Az and corresponding SE
values indicate that AR1, AR2, and AR1 + AR2 and dCO2

dt
were the strongest indices among all those whose mean val-
ues were significantly different between asthmatic and non-
asthmatic. The Az and corresponding SEvalues indicate that
the ARi of the upward expiratory phase (AR1, Az = 0.89 with
SE = 0.04), downward inspiratory phase (AR2, Az = 0.80
with SE = 0.06), sum of upward expiratory and downward
inspiratory phase (AR1 + AR2, Az = 0.79 with SE = 0.06),
and derivative ( dCO2

dt , Az = 0.71 with SE = 0.06) are more
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TABLE 2. Statistical significance of distinguishable Az , p-value, and
standard error (SE) of the features used for the classification of the
asthmatic and non-asthmatic condition.

FIGURE 9. Illustration of ROC curves to identify the best-suited features
for differentiating asthma and non-asthma conditions. The up triangle
(AR1) possesses the higher sensitivity and specificity, followed by down
triangle (AR2), left triangle (AR1 + AR2), right triangle

dCO2
dt , circle (AR3),

and square (AR4).

highly statistically considerable than the rest of the features
for the discrimination asthma and non-asthma conditions.

However, it should be noted that the rest of the features
also exhibit the good Az values, which can be used for the
asthma classification. Thus, we have combined the features
based on the Az and p-value as feature vectors for the SVM,
KNN, and NB classifier to maximize the accuracy of the
discrimination of asthma and non-asthma. Fig. 9 depicts the
feature capabilities based on their corresponding Az values.
Further, all six were ranked and sets of three and four fea-

tures were provided to the SVM, KNN and NB classifier via
the LOO procedure for the automatic classification of asthma
and non-asthma. The set of features AR1, AR2, AR1 + AR2
and AR1, AR2, AR1 + AR2,

dCO2
dt exhibited the maximum

accuracy = 94.15% and minimum error rate = 5.47, with
an SVM RBF kernel function- width (γ , 0.1) and penalty
constant (C, 1000) as presented in Fig. 10. Table 3 illustrates

FIGURE 10. A plot of average accuracy (%), precision (%), sensitivity (%)
and specificity (%) versus different classifiers with sets of the feature.
SVM, K, and NB represent the support vector machine, k-NN, and Naive
Bayes classifier, whereas 3, 4 and 6 indicate the set of features AR1, AR2,
AR1 + AR2; AR1, AR2, AR1 + AR2,

dCO2
dt ; and AR1, AR2, AR3, AR4,

AR1 + AR2,
dCO2

dt , respectively. Up-ward triangle, downward triangle,
rectangle, and circle elucidate accuracy, precision, sensitivity, and
specificity, respectively.

FIGURE 11. A plot of average accuracy (%), sensitivity (%) and
specificity (%) versus different cross-validation (10-fold and LOO) for
SVM classifier. 10-fold and LOO stand for k-fold and leave-one-out
cross-validation while 3, 4 and 6 indicate the set of features AR1, AR2,
AR1 + AR2; AR1, AR2, AR1 + AR2,

dCO2
dt ; and AR1, AR2, AR3, AR4,

AR1 + AR2,
dCO2

dt , respectively. Black rectangle red circle and upward
triangle represent the accuracy and error of the classifier with 10-fold
and LOO.

that the SVM classifier possesses higher sensitivity (97.67%)
and specificity (90.0%) with an Az of 0.938 than KNN
and NB. Fig. 11 shows the plot of the average accuracy (%),
sensitivity (%) and specificity (%) for the different sets of
features using 10-fold and LOO cross-validation for the SVM
classifier. The plot reveals that there is the slight change in
the performance of the SVM using the 10-fold and LOO.
The 10-folds cross-validation possesses slightly higher accu-
racy than the LOO. Hence, we chose to use LOO over the
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TABLE 3. Average results obtained from the SVM, KNN and NB classifiers using AR1, AR2, AR3, AR4, AR1 + AR2 and
dCO2

dt .

10-fold cross-validation as it offers less bias and is efficient
with smaller data sets.

In this work, a new indices-based method is proposed for
the classification of asthma, which may possibly be imple-
mented in real time due to ease and simplicity of the fea-
tures computation procedure. Table 4 illustrates a comparison
of the existing and proposed work aimed at discriminating
asthma by extracting features from the shape of the CO2
waveform. All the features extracted from our study exhibit
good discriminatory capabilities for asthma and non-asthma,
as presented in Table 2. The features AR1 (upward expira-
tory phase), AR2 (downward inspiratory phase), AR1 + AR2
(sum of the area of upward expiratory and downward inspi-
ratory phases) and dCO2

dt possess higher Az values (ranges:
0.714-0.892) and low standard error (ranges: 0.063-0.042)
and hence were chosen as feature vectors for the classi-
fier, in order to maximize the accuracy. These features were
extracted using a simple threshold and uncomplicated math-
ematical Equation (refer to Equations 2, 3 and 4), contrary to
setting criteria [1]–[3], [17], [18], which involve higher and
more complicated mathematics, [5], [6] keeping in mind that
this concept may possibly be easily integrated into real-time
CO2 measurement devices in the future.

The recording duration of the CO2 signal for each breath
was 1.5 to 4.5 s in order to extract the maximum and min-
imum CO2 values, as the respiratory rate was found to be
slower with elderly asthmatic subjects [23]. The details of the
implemented algorithm for the computation of maximum and
minimum CO2 values can be found in section B and are in
agreement with an earlier study [26].

We also incorporated an algorithm for the removal of out-
liers using a statistical method (i.e., mean and SD), which in
agreement with earlier studies [11] reporting asthmatic data.

Furthermore, the breath size was limited between 1.5 and 4 s
for the extraction of the features as we analyzed both the
expiration and inspiration phase. The reason to select this
duration is that the studies conducted by You et al. (1994)
considered absolute expired phase to be significant, which
lasts between 0.8 s and 3 s, and Yaron et al. (1996) assumed
that a valid expired breath ranged from 1.5 to 2.5 s. Hence,
we considered each breath cycle valid with the duration
of 1.5 s to 4 s.

Further, we found that AR1 and AR2 were increased inde-
pendently for the asthmatic patient as per our hypothesis
(Table 1). Themean values for the sixteen consecutive breaths
of AR1 and AR2were 1.56 and 2.22, respectively, for the
asthmatic patients compared with healthy individuals (AR1,
0.84 and AR2, 1.73). This contradicts the similar studies
conducted by You et al. [1] and Kean et al. [12] However,
they computed the area from the half of the end-tidal peak
value above a threshold by limiting the x-axis (time, 0.25 s)
compared to our proposed method (y-axis, limiting between
4 and 10 mmHg), which revealed that the area decreases
with asthmatic subjects. The previously used method may
possibly miss significant CO2 values, whereas the proposed
Simpson’s rule is considered to be fairly accurate as it applies
a sequence of quadratic parabolic segments to determine
the ARi. Furthermore, the derivative of absolute expiratory
phase was found to be lower for the asthmatic group, which
agreeswithYou et al. [1], where theymeasured the slope from
0 to 0.2 s using linear regression.

Further, the extracted features were sent to the different
classifiers for the classification of asthma and non-asthma.
Table 3 illustrates that the SVM classifier obtained higher
accuracy, sensitivity, and specificity compared to k-NN
and NB. In addition, the asthma discrimination capability of
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TABLE 4. Studies carried out for the differentiation of asthmatic and non-asthmatic conditions using CO2 signal features.

SVM is found to be outstanding [35] with an Az of 0.938,
compared to k-NN (0.895), and NB (0.834) for higher ranked
features (refer to Table 2).

It can also be noticed that although the k-NN classifier
exhibited an accuracy of 90% with a set of 4 features, its sen-
sitivity (95.34%), specificity (83.33%), and Az values were
lower than the proposed machine learning method (SVM).
In addition, the performance of the proposed method in terms
of accuracy (94.52%), and sensitivity (97.67%) are close to
the previous studies, reported by Betancourt et al. [5] and
Kazemi et al. [6]. However, the specificity (90.0%) of the
proposed method is slightly higher than that in the previ-
ous study [5]. Furthermore, the computation and execution
time of each feature and the proposed classifier were 0.24 s
and 0.03 s, respectively, which is lower in comparison with an
earlier study [5], [48]. These qualities provide a platform for
the implementation of the proposed methods into a low-cost
processor and/or microcontroller.

This study presents a relatively simple signal processing
algorithm-based method that may lead to implementation
in the real-time environment to help the physicians screen

for asthma. Here, for the first time, we developed a non-
invasive and patient-independent method to automatically
quantitate and analyze CO2 waveform shapes, which has the
potential to be implemented into real-time CO2 measurement
devices for automatic classification of asthmatic conditions.
In the future, this approach should be extended to enable
tracking of changes in asthma severity level and response
to treatment over time. In addition, the proposed approach
may be incorporated into a real-time human respiration CO2
measurement device for asthma classification, which is in
progress at the BSP research group.

IV. CONCLUSION
Asthma is a major noncommunicable and preventable disease
that characterized by inflammation or swelling of smaller air-
ways (bronchioles) of the lung in response to different stim-
uli. Early screening and continued treatment of asthma may
possibly control the morbidity and mortality rate. This study
shows how the shape of the CO2 signal changes in the asth-
matic condition; specifically, an area of upward expiration
(AR1), downward inspiration (AR2), the sum of both phases
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and the derivative ( dCO2
dt ) significantly increase or decrease.

Therefore, we can classify individuals with and without
asthma by computing the area and derivative of these phases.
This work reports an automatic asthma classification system
that consists of estimating the ARi from the respired CO2
waveform. Using the proposed method, we have achieved
an accuracy of 94.52%, sensitivity of 97.67%, and speci-
ficity of 90.0% by utilizing the SVM classifier via the LOO
procedure. In addition, the average feature estimation and
execution times were 0.24 s and 0.03 s, respectively. Thus,
the proposed method can be implemented in a real-time
environment or can be used to develop a CAD system, which
can help physicians screen for asthmatic conditions. Further,
the developed approach will be integrated into a real-time
human respiration CO2 measurement device for asthma clas-
sification, which is under development by the BSP research
group in coordination with physicians.
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