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CONTINUED FRACTIONS AND IRRATIONALITY

EXPONENTS FOR MODIFIED ENGEL AND PIERCE

SERIES

ANDREW N. W. HONE AND JUAN LUIS VARONA

Abstract. An Engel series is a sum of reciprocals of a non-decreasing
sequence (xn) of positive integers, which is such that each term is divis-
ible by the previous one, and a Pierce series is an alternating sum of the
reciprocals of a sequence with the same property. Given an arbitrary ra-
tional number, we show that there is a family of Engel series which when
added to it produces a transcendental number α whose continued frac-
tion expansion is determined explicitly by the corresponding sequence
(xn), where the latter is generated by a certain nonlinear recurrence of
second order. We also present an analogous result for a rational number
with a Pierce series added to or subtracted from it. In both situations (a
rational number combined with either an Engel or a Pierce series), the

irrationality exponent is bounded below by (3 +
√

5)/2, and we further
identify infinite families of transcendental numbers α whose irrational-
ity exponent can be computed precisely. In addition, we construct the
continued fraction expansion for an arbitrary rational number added to
an Engel series with the stronger property that x2j divides xj+1 for all
j.

1. Introduction

Given a sequence of positive integers (xn), which is such that xn|xn+1 for
all n, the sum of the reciprocals is the Engel series

(1.1)

∞∑
j=1

1

xj
=

∞∑
j=1

1

y1y2 · · · yj
,

where y1 = x1 and yn+1 = xn+1/xn for n ≥ 1, and the alternating sum of
the reciprocals is the Pierce series

(1.2)

∞∑
j=1

(−1)j+1

xj
=
∞∑
j=1

(−1)j+1

y1y2 · · · yj
.
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2 CONTINUED FRACTIONS AND IRRATIONALITY EXPONENTS

(It should be assumed that (xn) is eventually increasing, in the sense that for
all n there is some n′ > n with xn′ > xn, which guarantees the convergence
of both sums (1.1) and (1.2).) Every positive real number admits both
an Engel expansion, of the form (1.1), and a Pierce expansion (1.2) [5].
Although they are not quite so well known, Engel expansions and Pierce
expansions are in many ways analogous to continued fraction expansions,
both in the sense that they are determined recursively, and from a metrical
point of view; for instance, see [6] for the case of Engel series.

In recent work [7], the first author presented a family of sequences (xn)
generated by a nonlinear recurrences of second order, of the form

(1.3) xn+1xn−1 = x2n

(
1 + xnG(xn)

)
, n ≥ 2, G(x) ∈ Z[x],

where the polynomial G takes positive values at positive arguments, such
that the corresponding Engel series (1.1) yields a transcendental number
whose continued fraction expansion is explicitly given in terms of the xn.
More recently [17], the second author proved that, when the sequence (xn)
is generated by a recurrence like (1.3), an analogous result holds for the
associated Pierce series (1.2), although the structure of the corresponding
continued fractions is different. In fact, in the latter work the polynomial
G(xn) was replaced by an arbitrary sequence of positive integers, as it had
already been noted in [9] that the recurrence (1.3) could be modified in
this way and further allow the explicit continued fraction expansion to be
determined for the sum of an arbitrary rational number r = p/q and an
Engel series, that is

(1.4) α =
p

q
+

∞∑
j=2

1

xj
, with x1 = q.

In the next section we show that the initial conditions for the sequence
(xn) can be specified more generally than in [9], allowing dependence on a
non-negative integer parameter m, and present analogous results for a family
of transcendental numbers defined by a rational number with a Pierce series
added to or subtracted from it, of the form

(1.5) α =
p

q
±
∞∑
j=2

(−1)j

xj
.

In section 3 it is proved that, in both cases (1.4) and (1.5), α has irrationality
exponent µ(α) ≥ (3 +

√
5)/2, and if the nonlinear recurrence for (xn) has

a particular form then µ(α) can be computed precisely. Explicit continued
fractions for series of the form (1.4) with the stronger property that x2j |xj+1

for all j are constructed in the final section, generalizing the results in [8].

2. Explicit continued fractions

Before proceeding, we fix our notation for continued fractions and briefly
mention some of their standard properties, which can be found in many
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books [3, 5, 10]. We denote a finite continued fraction by

(2.1) [a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an

=
pn
qn
,

where a0 ∈ Z, aj ∈ Z>0 and pn/qn is in lowest terms with qn > 0. Every
r ∈ Q can be written as a finite continued fraction (2.1), although this
representation is not unique (see (2.5) below). Each α ∈ R \ Q is given
uniquely by an infinite continued fraction with convergents pn/qn of the
form (2.1), that is (with a0 = bαc)

(2.2) α = [a0; a1, a2, . . . ] = lim
n→∞

[a0; a1, a2, . . . , an] = lim
n→∞

pn
qn
.

The three-term recurrence relation satisfied by the numerators and de-
nominators of the convergents is encoded in the matrix relation

(2.3)

(
pn+1 pn
qn+1 qn

)
=

(
pn pn−1
qn qn−1

)(
an+1 1

1 0

)
,

valid for n ≥ −1, with (
p−1 p−2
q−1 q−2

)
=

(
1 0
0 1

)
.

By taking the determinant of both sides of (2.3), one obtains the identity

(2.4) pjqj−1 − pj−1qj = (−1)j−1, j ≥ 1.

Note that any finite continued fraction can be rewritten as another one of
different length, since one can always apply one of two operations, namely

(2.5) [a0; a1, a2, . . . , aj ] =

{
[a0; a1, a2, . . . , aj − 1, 1], if j = 0 or aj > 1,

[a0; a1, a2, . . . , aj−1 + 1], if aj = 1,

and both operations change the parity of the length.
Henceforth we fix a rational number r = p/q in lowest terms, with q ≥ 1,

and an integer parameter m ∈ Z≥0. Without loss of generality, because of
(2.5), we may specify the continued fraction of r to be

(2.6)
p

q
= [a0; a1, a2, . . . , a2k],

with the index of the last partial quotient being even (and shifting r by an
integer changes a0 but otherwise makes no difference). Given y0 ∈ Z>0,
which in due course will be fixed differently according to the context, we
define two sequences (yn)n≥0 and (xn)n≥1 via the recursion relations

(2.7) yj = yj−1(1 + ujxj), xj+1 = xjyj , for j ≥ 1, with x1 = q,

where (un)n≥1 is an arbitrary sequence of positive integers. Note that the
second relation guarantees the property xj |xj+1 required for an Engel series
or a Pierce series. It is an immediate consequence of (2.7) that, given x1 = q
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and x2 = x1y1 = qy0(1 + u1q), the subsequent terms of the sequence (xn)
are determined by the nonlinear recurrence

(2.8) xn+1xn−1 = x2n (1 + un xn), n ≥ 2.

It may happen that the sequence (un) is defined entirely in terms of the
sequence (xn), by specifying a function G such that

(2.9) un = G(xn), G : Z>0 → Z>0,

which means that (2.8) becomes an autonomous recurrence of the form (1.3),
although the function G need not necessarily be a polynomial. Yet in general
the recurrence (2.8) is non-autonomous, whenever (un) is specified by

(2.10) un = Ĝ(xn, n), Ĝ : Z>0 × Z>0 → Z>0,

where Ĝ is a non-trivial function of its second argument.
The following theorem extends the results of [9] (corresponding to the

case m = 0), being themselves extensions of [7] (corresponding to p/q = 1).

Theorem 2.1. Let α be given by the series

(2.11) α =
p

q
+

∞∑
j=2

1

xj
,

for (xn) defined by (2.7) with

(2.12) y0 = mq + q2k−1 + 1,

where q2k−1 is the denominator of the (2k − 1)th convergent of (2.6). Then
the continued fraction expansion of α has the form (2.2), where the partial
quotients aj coincide with those of (2.6) for 0 ≤ j ≤ 2k, while

(2.13) a2k+1 = m+u1y0, and a2k+2j = xj , a2k+2j+1 = uj+1yj , ∀j ≥ 1.

Proof: The proof consists of showing that the partial sums of the series
(2.11) coincide with the convergents with even index, that is

(2.14)
p

q
+

N∑
j=2

1

xj
=
p2k+2N−2
q2k+2N−2

,

and then taking the limit N →∞. We omit the details, since the inductive
proof of (2.14) is almost identical to that of Theorem 2.1 in [9], with part of
the hypothesis being that the denominators of the convergents are

(2.15) q2k+2N−3 = yN−1 − 1, q2k+2N−2 = xN

for N ≥ 1. The only difference is in verifying the base step: specifically,
that, for N = 1, the three-term recurrence q2k+2N−1 = a2k+2N−1q2k+2N−2 +
q2k+2N−3 gives the correct expression for q2k+1. But when N = 1, by using
(2.12) and (2.13), together with the first recursive relation in (2.7), the right-
hand side becomes (m+ u1y0)q + y0 −mq − 1 = y0(1 + u1x1)− 1 = y1 − 1,
which is the required formula for q2k+1. �

Continued fractions for some alternating series whose sum is a transcen-
dental number were considered in [4], and the Pierce series in [17] provide
other examples. As a first attempt at generalizing the latter results, we
consider a rational number added to a Pierce series.
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Theorem 2.2. Suppose x1 = q > 1, and let α be given by the series

(2.16) α =
p

q
+
∞∑
j=2

(−1)j

xj
,

for (xn) defined by (2.7) with

(2.17) y0 = mq + q2k−1 − 1,

where q2k−1 is the denominator of the (2k − 1)th convergent of (2.6), and
the restriction m ≥ 1 should be imposed if q2k−1 = 1. Then the continued
fraction expansion of α has the form (2.2), where the partial quotients aj
coincide with those of (2.6) for 0 ≤ j ≤ 2k, while

(2.18) a2k+1 = m+ u1y0 − 1,

and

(2.19) a2k+3j−1 = 1, a2k+3j = xj − 1, a2k+3j+1 = uj+1yj − 1 ∀j ≥ 1.

Proof: Let SN denote the Nth partial sum of the series (2.16), that is

SN =
p

q
+

N∑
j=2

(−1)j

xj
.

We will show by induction that

SN = [a0; a1, a2, . . . , a2k+3N−3],

and then the result follows in the limit N → ∞. As part of the inductive
hypothesis, we also require the following expressions for the denominators
of the convergents, for N ≥ 1:

(2.20) q2k+3N−3 = xN , q2k+3N−2 = yN − xN + 1, q2k+3N−1 = yN + 1.

For the base case N = 1 it is clear that S1 = p/q is given by (2.6), and
q2k = q = x1, while by using the three-term recurrence it follows from
(2.17), (2.18) and (2.7) that

q2k+1 = a2k+1q2k + q2k−1 = (m+ u1y0 − 1)q + y0 −mq + 1
= y0(1 + u1x1)− x1 + 1
= y1 − x1 + 1,

and q2k+2 = a2k+2q2k+1 + q2k = y1 − x1 + 1 + x1 = y1 + 1, which confirms
(2.20) in this case. For the inductive step, the first expression in (2.20) is
also verified with the three-term recurrence, as

q2k+3N = a2k+3N q2k+3N−1 + q2k+3N−2
= (xN − 1)(yN + 1) + yN − xN + 1
= xNyN = xN+1,

using (2.7) once more, and the other two expressions for the denominators
of the convergents are verified similarly. Now let Mn+1 denote the matrix
on the left-hand side of (2.3), and let

An =

(
an 1
1 0

)
;
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then observe that

M2k+3N = M2k+3N−3A2k+3N−2A2k+3N−1A2k+3N

= M2k+3N−3

(
uNxNyN−1 − 1 uNyN−1

xN 1

)
.

The first column of the above identity yields the formula

(2.21) p2k+3N = (uNxNyN−1 − 1)p2k+3N−3 + xNp2k+3N−4,

and the analogous expression for q2k+3N . Hence

p2k+3N = (yN − yN−1 − 1)p2k+3N−3 + xNp2k+3N−4
= (yN − q2k+3N−4)p2k+3N−3 + q3k+3N−3p2k+3N−4
= yN p2k+3N−3 + (−1)N+1,

where we have used (2.20) and the first relation in (2.7), followed by (2.4).
(Note that the calculation leading to the latter expression is slightly different
in the base case N = 1, involving the use of (2.17) and (2.18), but the
conclusion is the same.) Thus, using the first formula in (2.20), and the fact
that yN/xN+1 = 1/xN , we have

p2k+3N/q2k+3N = xN+1
−1 (yN p2k+3N−3 + (−1)N+1

)
= p2k+3N−3/q2k+3N−3 + (−1)N+1/xN+1.

So by the inductive hypothesis,

p2k+3N

q2k+3N
= SN +

(−1)N+1

xN+1
= SN+1,

as required. �

Remark 2.3. The assumption that q > 1 implies k ≥ 1 in (2.6), and is
made to ensure that a2k+3 > 0. However, when q = 1, the appearance of a
zero in the continued fraction can be dealt with by applying the concatenation
operation

(2.22) [. . . , A, 0, B, . . .] 7→ [. . . , A+B, . . .]

(see Proposition 3 in [11], for instance).

In the same spirit as [9], it is perhaps more natural to replace the first
term in (1.2) with an arbitrary r ∈ Q, resulting in a rational number minus
a Pierce series. Such a modified Pierce series can be obtained immediately
from (2.16), simply by regrouping the terms as

(2.23)

(
p

q
+

1

x2

)
− 1

x2
+

1

x3
− · · · = p′

q′
−
∞∑
j=2

(−1)j

x′j
,

where, since q = x1 divides x2, p
′ = p(x2/q) + 1 ∈ Z, q′ = x2 and x′j = xj+1

for j ≥ 1. In the proof of the preceding theorem, the initial term of the
regrouped series appears with the continued fraction expansion p′/q′ = S2 =
[a0; a1, . . . , a2k+3], ending in a partial quotient with an odd index.

In order to formulate the most general result possible, we once again
start with an arbitrary r = p/q ∈ Q and m ∈ Z≥0, but this time take the
continued fraction expansion

(2.24)
p

q
= [a0; a1, a2, . . . , a2k+1],
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ending in an odd index, which is always possible by (2.5). The following
result includes the regrouped series (2.23) obtained from Theorem 2.2 as
the special case m = 0.

Theorem 2.4. Suppose x1 = q > 1, and let α be given by the series

(2.25) α =
p

q
−
∞∑
j=2

(−1)j

xj
,

for (xn) defined by (2.7) with

(2.26) y0 = mq + q2k − 1,

where q2k is the denominator of the 2kth convergent of (2.24), and the re-
striction m ≥ 1 should be imposed if q2k = 1. Then the continued fraction
expansion of α has the form (2.2), where the partial quotients aj coincide
with those of (2.24) for 0 ≤ j ≤ 2k + 1, while

(2.27) a2k+2 = m+ u1y0 − 1,

and

(2.28) a2k+3j = 1, a2k+3j+1 = xj − 1, a2k+3j+2 = uj+1yj − 1 ∀j ≥ 1,

with the denominators of the convergents being given by

(2.29) q2k+3j−2 = xj , q2k+3j−1 = yj − xj + 1, q2k+3j = yj + 1 ∀j ≥ 1.

We omit the proof of the above, based on showing that the partial sums
are given by

p

q
−

N∑
j=2

1

xj
=
p2k+3N−2
q2k+3N−2

,

since the steps are essentially the same as for Theorem 2.2, but the formulae
(2.29) have been included for completeness.

Remark 2.5. Similarly to (2.23), the case m = 0 of Theorem 2.2 can be
obtained from Theorem 2.4 by combining the first two terms of the series
(2.25) into one. The series (2.11) can be reduced to the case m = 0 of
Theorem 2.1 in the same way.

3. Irrationality exponents

The irrationality exponent µ(α) of a real number α is defined to be the
supremum of the set of real numbers µ such that there are infinitely many
rational numbers P/Q satisfying the inequality 0 < |α − P/Q| < 1/Qµ.
For an irrational number, µ(α) ≥ 2, since the convergents of its continued
fraction expansion (2.2) provide infinitely many P/Q with |α − P/Q| <
1/Q2. In fact, in the sense of Lebesgue measure, almost all real numbers
have irrationality exponent equal to 2, while a famous theorem of Roth [12]
says that every algebraic irrational number has µ(α) = 2. Large classes of
transcendental numbers with µ(α) = 2 are presented in [2], but as we shall
see, the transcendental numbers defined by the modified Engel and Pierce
series above do not belong to these classes.

The transcendence of each of the numbers α defined in the previous section
is essentially a consequence of the rapid growth of the associated sequence



8 CONTINUED FRACTIONS AND IRRATIONALITY EXPONENTS

(xn). According to the result of Lemma 2.2 in [9], xn+1 > x
5/2
n for n ≥ 3,

which allows one to show that µ(α) ≥ 5/2, but here we present a significant
improvement on this result.

Lemma 3.1. For all ε > 0, there is some N such that

(3.1) xn+1 > xµ
∗−ε
n , µ∗ =

3 +
√

5

2
,

for all n ≥ N .

Proof: From (2.8) and the fact that yn = xn+1/xn > 1 for n ≥ 1, it is clear

that xn+1 > x2n for n ≥ 2, which implies that xn−1 < x
1/2
n for n ≥ 3. Thus,

using (2.8) once again it follows that xn+1 > x3n/xn−1 > x
5/2
n , which is the

basic estimate given in [7, 9]. To improve on this, we proceed by induction,
assuming that

xn+1 > xρkn for n ≥ k + 2,

and then from (2.8), the same argument as before (for k = 0) gives

(3.2) xn+1 > x3n/xn−1 > x
ρk+1
n for n ≥ k + 3, where ρk+1 = 3− ρ−1k ,

with ρ0 = 2. The solution of the recurrence for ρk in (3.2) is obtained via
ρk = fk+1/fk, which implies fk+2 − 3fk+1 + fk = 0, so that the sequence
(fk) is just 1, 2, 5, 13, 34, . . ., i.e. a bisection of the Fibonacci numbers. Hence
limk→∞ ρk = (3 +

√
5)/2 = µ∗, and the result follows. �

Corollary 3.2. All of the numbers α defined in Theorems 2.1, 2.2 and 2.4
are transcendental, with irrationality exponent µ(α) ≥ (3 +

√
5)/2.

Proof: This follows from the same argument as used to prove Theorem 4 in
[7], and Theorem 2.3 in [9], so we only sketch the details. For any ε > 0, the
terms of the sequence (xn) satisfy the inequality (3.1) for sufficiently large n.
Due to the fact that the partial sums of the series (2.11), (2.16) and (2.25)
coincide with particular convergents of the continued fraction expansion of
α, and the fact that, from (2.15), (2.20), and (2.29), the denominators of
these convergents coincide with the terms of the sequence (xn), a comparison
with a geometric series shows that for all δ > 0, the inequality∣∣∣∣α− P

Q

∣∣∣∣ < 1

Qµ∗−δ

holds for infinitely many rational approximations P/Q. �

The irrationality exponent can be computed explicitly in terms of the
continued fraction expansion of α, using one of the formulae below:

(3.3) µ(α) = 1 + lim sup
n→∞

log qn+1

log qn
= 2 + lim sup

n→∞

log an+1

log qn

(see [2], or Theorem 1 in [16], for instance). If the function Ĝ in (2.10) is
chosen suitably, then these limits can be evaluated precisely.

Theorem 3.3. For some integer d ≥ 1, let

(3.4) λ =
d+ 2 +

√
d(d+ 4)

2
,
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and let α be given by a modified Engel or Pierce series, defined according
to one of Theorems 2.1, 2.2 or 2.4, with the sequence (un) in (2.7) being
specified by a polynomial in xn, namely

(3.5) un =

d−1∑
j=0

v(j)n xd−1−jn ,

where for each j, the coefficient (v
(j)
n ) is an integer sequence, with v

(0)
n ∈ Z>0,

n ≥ 1, and as n→∞, for some ν < λ,

(3.6) log v(0)n = O(νn), and v(j)n = O(v(0)n ), j = 1, . . . , d− 1.

Then α has irrationality exponent µ(α) = λ.

Proof: If un is given by (3.5), then setting Λn = log xn and taking loga-
rithms in (2.8) yields

(3.7) Λn+1 − (d+ 2) Λn + Λn−1 = ∆n,

where, with v
(d)
n = 1,

∆n = log v(0)n + log

1 +
d∑
j=1

v
(j)
n

v
(0)
n

x−jn

 = log v(0)n +O(x−1n ) = O(νn)

as n→∞, by (3.6). By adapting the method of [1], the solution of (3.7) is
found formally as

(3.8) Λn = Aλn +B λ−n +
n−1∑
j=1

(
λn−j − λj−n

λ− λ−1

)
∆j ,

for constants A,B which can be fixed from the initial values Λ1 = log q,
Λ2 = log x2 (cf. Proposition 5 in [7]). Hence

(3.9) Λn ∼ C λn, C = A+
∞∑
j=1

λ−j∆j

λ− λ−1
,

and C > 0 since xn → ∞ as n → ∞. Then in the case of modified Engel
series, from the formulae (2.15) there are two different cases for the first
limit in (3.3): when n is even, the limit is

1 + lim
N→∞

log(yN − 1)

log xN
= 1 + lim

N→∞

ΛN+1 − ΛN
ΛN

= λ

from the asymptotic behaviour (3.9), while for odd n it is 1 + 1/(λ−1) ≤ λ,
where this inequality holds for all λ ≥ (3 +

√
5)/2; so the limit superior is λ.

For the modified Pierce series in Theorem 2.2, from (2.20) the corresponding
limit varies with n mod 3, and gives λ, 2 or 1 + λ/(λ− 1) ≤ λ, so again the
limit superior is λ, and the case of Theorem 2.4 is identical. �

Theorem 3.4. For all ν ≥ (3 +
√

5)/2 there are infinitely many α defined
by modified Engel or Pierce series with irrationality exponent µ(α) = ν.

Proof: If ν is one of the special values (3.4) then for any fixed r = p/q
and m there are uncountably many choices of the sequence (un) that take
the form (3.5), satisfy (3.6) and produce α with distinct continued fraction
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expansions. So suppose that d ≥ 1 (and hence λ) is fixed, and take any
ν > λ and (un) of the same form as in (3.5), except that now

(3.10) log v(0)n ∼ C ′ νn, and v(j)n = O(v(0)n ), j = 1, . . . , d− 1

for some C ′ > 0 (for instance, one could take v
(0)
n = dexp(C ′νn)e). Then the

formal expression (3.8) for the solution of (3.7) is still valid, but now from
(3.10) the sum on the right is the dominant term, growing like νn as n→∞.
Substituting this leading order asymptotic behaviour back into (3.7) yields

Λn ∼ C νn, C =
(
ν − (d+ 2) + ν−1

)−1
C ′ > 0,

and then the first limit in (3.3) is evaluated as before to yield µ(α) = ν. �

4. More explicit continued fractions

In [8] one of us obtained the explicit continued fraction expansion for an
Engel series (1.1) with the stronger divisibility property

(4.1) x2j |xj+1, with zj+1 =
xj+1

x2j
∈ Z>0, j ≥ 1

being an arbitrary sequence of ratios. (In fact the condition zj ≥ 2 was
imposed in [8], but it was explained how to deal with some zj = 1 by
applying the operation (2.22).) Series of this particular form include

(4.2)

∞∑
n=0

1

u2n

for integer u ≥ 2, which for u = 2 is known as the Kempner number. All of
the numbers (4.2) are transcendental, with irrationality exponent 2 [2]; their
continued fraction expansions were found in recursive form in [13], with a
non-recursive representation described in [14], and further generalizations
with a similar recursive structure being given in [15] and later [11]. The
continued fraction expansion of an Engel series (1.1) with the stronger di-
visibility property above has the same sort of recursive structure, defined by
a particular subsequence of the convergents with finite continued fractions
whose length approximately doubles at each step. Here we further general-
ize this result by considering an arbitrary r = p/q ∈ Q added to an Engel
series of this type, of the form (1.4) with the property (4.1).

Given a finite continued fraction (2.1) for n ≥ 2, written as [a0;a], where
a = (a1, a2, . . . , an) is the word defining the fractional part, it is convenient
to define the following family of transformations:

(4.3) ϕz : [a0;a] 7→ [a0;a, z − 1, â],

where the word â is given by

â = (1, an − 1, an−1, . . . , a2, a1).

For each z, starting from a continued fraction whose final partial quotient has
index n, ϕz produces a new continued fraction ϕz([a0;a]) whose final partial
quotient has index 2n + 2. It is also helpful to define the one-parameter
family of transformations

(4.4) ϕ∗z : [a0;a] 7→ [a0;a, z − 1,a∗],
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where the word at the end is

a∗ = (an−1 + 1, an−2, . . . , a2, a1).

For the latter family, [a0;a] is sent to ϕ∗z([a0;a]), whose final partial quo-
tient has index 2n. The transformation ϕ∗z is just the result of applying
ϕz to a continued fraction (2.1) for which an = 1, followed by using the
concatenation operation (2.22) to remove the zero that appears.

Our interest in the above transformations is due to

Lemma 4.1.
pn
qn

+
(−1)n

zq2n
= ϕz([a0;a]).

Proof: This is a corollary of Proposition 2 in [11], and follows from the
remarks made beneath the proof given there. The case of even n = 2k also
follows from the proof of Proposition 2.1 in [8]. �

We now consider a rational number r = p/q added to an Engel series with
the property (4.1). Without loss of generality, we exclude the case r ∈ Z
(when q = x1 = 1), since when x2 ≥ 2 one can instead take p′/q′ = p/q+1/x2
as the initial rational term.

Theorem 4.2. Let p/q ∈ Q \ Z be a rational number in lowest terms, with
continued fraction expansion

C1 = [a0;a]

taken in the form (2.6), and let (xn)n≥1 be the integer sequence defined by

x1 = q, xj+1 = x2jzj+1, j ≥ 1,

where (zn)n≥2 is an arbitrary sequence of positive integers. Define a sequence
of finite continued fractions according to

C2 =

{
ϕ∗z2(C1), if a2k = 1,

ϕz2(C1), otherwise,

and, for all j ≥ 2, with the restriction zj ≥ 2 imposed,

Cj+1 =

{
ϕ∗zj+1

(Cj), if a1 = 1,

ϕzj+1(Cj), otherwise.

Then the modified Engel series

(4.5) α =
p

q
+

∞∑
j=2

1

xj

has continued fraction expansion limN→∞ CN .

Proof: We show by induction that the partial sum

SN =
p

q
+

N∑
j=2

1

xj

has continued fraction expansion CN , and then the result for α given by (4.5)
follows in the limit N →∞. When N = 1 we have S1 = p/q = pn1/qn1 = C1,
where n1 = 2k is the index of the final partial quotient of C1, chosen to be
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even as in (2.6). If an1 = a2k = 1, then we apply the transformation (4.4)
with z = z2, and otherwise we apply (4.3). In either case we obtain a new
continued fraction C2 whose final partial quotient has an even index, n2 say,
with an2 = a1. At each subsequent step N = j, we have a continued fraction
Cj , with an even number nj being the index of its final partial quotient, that
is anj = a1, so that to obtain Cj+1, if a1 = 1 then we must apply (4.4) with
z = zj+1, or (4.3) otherwise. Then, from Lemma 4.1 we have

Sj+1 = Sj +
1

xj+1
=
pnj

qnj

+
1

zj+1q2nj

= Cj+1,

where we used the additional hypothesis that qnj = xj . So the induction
is almost complete, apart from the verification that qnj+1 = xj+1 is also a
consequence of the above. However, Cj+1 equals

pnj+1

qnj+1

=
pnj (xj+1/qnj ) + 1

xj+1
=
pnjxjzj+1 + 1

xj+1
,

since qnj = xj and xj+1 = x2jzj+1. Now any prime P that divides xj+1 must
divide xj or zj+1, so the numerator on the right-hand side above is congruent
to 1 mod P . Thus the fraction on the right-hand side, with denominator
xj+1, is in lowest terms, and since the convergent pnj+1/qnj+1 is also in
lowest terms this means that qnj+1 = xj+1 as required. �

Remark 4.3. The case where one or more of the zj = 1 (as in the sum (4.2),
for instance) can be dealt with by applying (2.22). For various examples of
this, see [8].

Example 4.4. For a given denominator q it is sufficient to consider 0 <
p/q < 1, so picking q = x1 = 5 and zj = (j+ 1)2 + 1 for j ≥ 2, α is the sum

p

5
+

1

52 · 10
+

1

54 · 102 · 17
+

1

58 · 104 · 172 · 26
+

1

516 · 108 · 174 · 262 · 37
+ · · · ,

and we list the continued fractions for 1 ≤ p ≤ 4 in order:

[0; 4, 1, 9, 5, 16, 1, 4, 9, 1, 4, 25, 1, 3, 1, 9, 4, 1, 16, 5, 9, 1, 4, 36, 1, 3, 1, 9, 5, 16, . . .],

[0; 2, 2, 9, 1, 1, 2, 16, 1, 1, 1, 1, 9, 2, 2, 25, 1, 1, 2, 9, 1, 1, 1, 1, 16, 2, 1, 1, 9, 2, 2, . . .],

[0; 1, 1, 1, 1, 9, 2, 1, 1, 16, 2, 2, 9, 1, 1, 1, 1, 25, 2, 1, 1, 9, 2, 2, 16, 1, 1, 2, 9, 1, 1, . . .],

[0; 1, 4, 9, 1, 3, 1, 16, 4, 1, 9, 4, 1, 25, 5, 9, 1, 4, 16, 1, 3, 1, 9, 4, 1, 36, 5, 9, 1, 3, . . .].
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[6] P. Erdős, A. Rényi and P. Szüsz, On Engel’s and Sylvester’s series, Ann. Univ. Sci.
Budapest. Eotvos Sect. Math. 1 (1958), 7–12.

[7] A. N. W. Hone, Curious continued fractions, nonlinear recurrences and transcendental
numbers, J. Integer Seq. 18 (2015), article 15.8.4, 10pp.

[8] A. N. W. Hone, On the continued fraction expansion of certain Engel series, J. Number
Theory 164 (2016), 269–281.

[9] A. N. W. Hone, Continued fractions for some transcendental numbers, Monatsh.
Math. 182 (2017), 33–38.

[10] A. Ya. Khinchin, Continued Fractions, University of Chicago Press, 1964. Reprint:
Dover, 1997.

[11] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory
40 (1992), 237–250.

[12] K. F. Roth, Rational approximation of algebraic numbers, Mathematika 2 (1955),
1–20; Corrigendum, Mathematika 2 (1955), 168.

[13] J. O. Shallit, Simple continued fractions for some irrational numbers, J. Number
Theory 11 (1979), 209–217.

[14] J. O. Shallit, Explicit descriptions of some continued fractions, Fibonacci Quart. 20
(1982), 77–81.

[15] J. O. Shallit, Simple continued fractions for some irrational numbers. II, J. Number
Theory 14 (1982), 228–231.

[16] J. Sondow, Irrationality measures, irrationality bases, and a theorem of Jarńık, talk
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