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Abstract

We present some observations on the tau-function for the fourth Painlevé equa-
tion. By considering a Hirota bilinear equation of order four for this tau-function,
we describe the general form of the Taylor expansion around an arbitrary mov-
able zero. The corresponding Taylor series for the tau-functions of the first and
second Painlevé equations, as well as that for the Weierstrass sigma function,
arise naturally as special cases, by setting certain parameters to zero.

1 Introduction

The six Painlevé equations (denoted P; — Py) can be considered as nonlinear ana-
logues of the classical functions: they admit a Hamiltonian representation [15], all of
them (apart from P;) possess Bécklund transformations [2], and they each arise as a
compatibility condition for an associated isomonodromy problem [13]. General solu-
tions of Painlevé equations have asymptotics in terms of elliptic functions, which was
originally obtained (for P; and Pj;) by Boutroux [1]. It is also known that through a
limiting procedure, usually called the coalescence cascade, it is possible to obtain all
the equations P, — P; just from equation Py (see e.g. [12]). Furthermore, the equa-
tions P, Pr;r and Pry share the property that all their local solutions are meromorphic
and possess a meromorphic continuation in the whole complex plane [11].

The Hamiltonian functions for P- Py are polynomials h; = h;(q, p, ) in the canon-
ically conjugate phase space variables ¢, p, and are rational in the independent variable
z. Letting a prime denote differentiation with respect to z, the Hamiltonian formulation
allows each of the Painlevé equations to be formulated as a first order system,
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The functions h; themselves, as functions of the time z, solve certain differential
equations; these functions, defined by o;(2) = h;(q(2),p(2), 2), where ¢(z), p(z) satisty
(1), are usually called “sigma functions” [13, 15]. Every solution of the Painlevé equa-
tion can be written in terms of the solution of a corresponding differential equation for
oj, which is of second order and second degree. Moreover, the sigma function is given
in terms of the logarithmic derivative of a tau-function. In some sense, one can view
the sigma function or the tau-function as being more fundamental than the solution of
the Painlevé equation, since in applications (such as in the theory of random matrices
[7]) these are usually the main objects of interest.

In recent work [10] we have shown how the recursive formula for the coefficients in
the Laurent series expansion of solutions of the first Painlevé equation can be considered
as an extension of the analogous formula for the Weierstrass p function. In addition, the
recursive formulae for the Taylor expansion of the tau-function around one of its zeros
lead to natural extensions of the expressions found by Weierstrass [18] for the elliptic
sigma function (not to be confused with the sigma function of the Painlevé equations).
The key to these recursive formulae was the use of a Hirota bilinear equation for the
tau-function, amenable to the same method that was applied to the elliptic sigma
function in [3].

The purpose of this short article is to derive recursive formulae for the expansion
of the tau-function of the fourth Painlevé equation around a movable zero. Bilinear
equations for Py tau-functions have been derived previously, either as a system of two
equations relating two tau-functions [9], or as a symmetric system involving three tau-
functions (see e.g. Theorem 3.5 in [14]). However, by starting from the equation for
the sigma function oy, we can use a single Hirota bilinear equation of fourth order to
obtain the Taylor series expansion of the P, tau-function around a zero. By exploiting
the freedom in the definition of oy, we introduce additional parameters into the sigma
function equation, and show how the corresponding series solutions for both P;; and
Py arise directly from the same bilinear equation as degenerate special cases, by setting
suitable parameters to zero, while all of these series can be viewed as natural extensions
of the elliptic case treated in [3].

In the next section we briefly review the Hamiltonian formulation of the fourth
Painlevé equation and the corresponding sigma equation, before introducing a “shifted”
sigma equation (given by (11) below), which is suitable for studying series expansions
around movable poles, as well as the degeneration to P;;, Pr and elliptic functions.
Section 3 is concerned with the properties of the tau-function for Ppy, the corresponding
bilinear equation, and the presentation of the main result, namely the recursion for
the Taylor coefficients (Theorem 3.2). The fourth section is devoted to a numerical
application of the main result, using it to calculate approximations to the zeros of a
particular tau-function for P;;, and we end with some conclusions and suggestions for
future work.



2 Hamiltonian and sigma equation for Py
The fourth Painlevé equation can be derived from the Hamiltonian function

hrv(a,p,2) = C(ap? = ) + ¢ (e — el + (e5 = e)a) + (es — Cap)z, (2)

where ¢ # 0 and e; for j = 1,2,3 are parameters. The corresponding Hamilton’s
equations (1) are given explicitly by (hereafter a prime denotes a derivative with respect
to 2)

¢ =Cq(2p—q)+( Mea—e3) — Czq, P =(p(2g—p)+ (' (er —e3) + Cap. (3)

The ordinary differential equation of second order satisfied by ¢ arises by eliminating
p from (3), to yield
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q 2q+24q+42q+2C2 a)at (4)
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= ey + ez — 2e + (2 ﬁz—%,

which (up to rescaling ¢ and z) is just the fourth Painlevé equation Pp,. By symmetry,
upon eliminating ¢ from (3), it follows that p satisfies

" (p')2 3.9 3 3.2 (1 4.2 ~> B
p 2% + 50 =207+ (5¢0 ap+p7 (5)
with )
d:61+€3_262_c27 6:_%7

so that —p satisfies the same form (4) of Py as ¢ does, but for different values of the
parameters «, 3.

There is a certain amount of redundancy in the choice of parameters used above.
Although the parameter ¢ appears inessential, as (providing it is non-zero) it can always
be removed by rescaling ¢, p and z, it will be needed in what follows. As for the three
quantities e;, j = 1,2, 3, the solutions of Py only depend on the differences e; — ey,
but the inclusion of the term ezz in (2) shows that the sigma function

orv(z) = hrv(q(2),p(2), 2)
also depends on the parameter

. e1+ertes
3 (6)

Indeed, by taking derivatives of the Hamiltonian with respect to z, it follows that the
sigma function satisfies the following equation of second order and second degree:

(07y)? = ¢H(zapy — o) + 4oy — 1) (o] — ea)(ohy — e3) = 0. (7)
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Moreover, ¢ and p are given in terms of the solution of the latter equation by

_ ory = Clzopy — o) _ ory + 20y — o) 8)
2oy —e) T 2(opy —e)

The freedom to permute ey, e5, €3 shows that generically the same solution of (7) pro-
vides six different solutions of the equation (4), with different «, [3; this is one mani-
festation of the affine Ay symmetry for Py [15], which can be seen more easily from
its symmetric form [14].

q

Henceforth we regard the sigma equation (7) as the fundamental object of interest,
and proceed to consider the behaviour of solutions near singularities. Since ¢(z) and
p(z) are both meromorphic for all z € C (see e.g. [11] or [17]), it follows from (2) that
orv(z) is also a globally meromorphic function, and it is straightforward to see that its
only possible singularities are movable simple poles with a local Laurent expansion of
the form

O'Iv(Z) =

+B—|—O<(z—zo)>, (9)

Z— 20
where both the pole position zy and the quantity B (resonance parameter) are arbitrary.
For fixed values of the coefficients e; and ¢, any solution of the second order equation
(7) is completely specified by a particular choice of the two values zp, B in (9), which
is then determined on the whole complex plane by analytic continuation.

In order to understand how the solution of (7) depends on the parameters zy, B, it
is convenient to shift
Z — 2+ 2, 0'H/—>0—|-B, (10)

which leads to an equation of the form

(2 = (Y =2 4+ 2(k% —A) (25 = 2) +4(X)° — ¥ +g5=0 (11

where
n=C
and for = p* 4+ 123 /12, the dependent variable ¥ is given by
%(2) = o(z) — pz, (12)

with the parameters &, A, g2, g3 being polynomials in 7, 2z, B and the e;. Having fixed
the pole to lie at z = 0, and shifted away the parameter B, the function X(z) satisfying
(11) depends only on the 5 parameters 7, k, A, g2, g3, while o(z) depends on p also.

Lemma 2.1. For ( # 0, via translations of the form (10), there is a one-to-one
correspondence between solutions of (7) with a pole at some zy € C, and functions

o(z) =X(2) + pz

with a pole at z = 0, where ¥(z) is the solution of (11) specified by the local Laurent

expansion

N(z) = é + O(2%). (13)



Remark 2.2. The above result applies to any solution of (7) with at least one pole;
in particular, this excludes certain trivial solutions which are linear in z. If we scale
(4) so that ¢ = 1, then all solutions of Py which are transcendental, meaning that
they are neither rational nor can be reduced to solutions of a Riccati equation, have
infinitely many simple poles with residue +1 and infinitely many with residue —1 [8].
The formula (8) shows that (for ( = 1) ¢ has a pole with residue —1 at places where
ory has a simple pole, and ¢ does not depend on the parameter pu, so its behaviour
near such a pole is completely determined by a function X specified as above. Poles
of ¢ with residue +1 correspond to places where oy has a zero with o}, — e1; the
behaviour at such poles can also be determined by using the well known observation
of Okamoto [15] that when ¢ = 1 every solution of (4) can be written as the difference
of two Hamiltonians, i.e.

q(2) = o1v(z) — orv(2),

where &y satisfies (7) but with suitably shifted parameters.

For future reference, we record the equation of third order that results by taking
the derivative of (11) and removing a factor of ¥’ that is

1
S+ 6(X)? - 2(nz —28)X + (nz — K)S — Az — 592 = 0. (14)

Clearly the parameter g3 in (11) is a first integral for the above equation.
We now consider the degenerate case n = ¢(* = 0, which is no longer related to Py .

Proposition 2.3. If n =0 and k # 0, then
v=20"=2(2"+p) with p=—Ak"" (15)

satisfies the Pxxxry equation in the form

1 0?
v’ — 5(1/)2 +20% + (k2 — 6u)v* + 5 = 0, (16)
where
(2 =16p° — 4gopr — 4gs,
Thus 'y
v+
= 17
“ 20 (17)
satisfies the second Painlevé equation Prp in the form
" 3 ]‘
u’ =2u’ + (kz — 6p)u+ 0 — 35 (18)
and conversely v is given in terms of u and its first deriwative by
r oo 1
v=—u —u— =(kz — 6p). (19)
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Proof. 1f n =0, then (11) reduces to the sigma equation for Pj;, provided that x # 0.
Upon multiplying (14) by v/2 =3’ — Ax~! and subtracting off half of (11), the terms
involving ¥ are eliminated, and what remains is the equation (16) for v, which is
referred to as Pxxxyv in [12]. Every solution of (16) gives a solution of (18), and
vice-versa, according to the formulae (17) and (19). O

Remark 2.4. The relations (17) and (19) can be rewritten as

, Ohy ., Ohy

() —

1 1
- i wat with h11:u2v—€u+5112+5(&2—6u)v,

which is the Hamiltonian formulation of Pj; found in [15]. The standard version of
(16), or that of (18), has = 0. However, the situation for n = 0, k # 0 is completely
analogous to that in Lemma 2.1: we can use expansions around z = 0 for X, of the
form, (13) to obtain local Laurent expansions for the standard version of Pxyxy (or
Pyy) around a pole in an arbitrary position z.

When 1 = k = 0, then a further degeneration occurs.
Proposition 2.5. If n=rk =0 and A # 0, then
w= -

satisfies the first Painlevé equation Py in the form

1
w’ = 6w® — Az — 592 (20)

while if n = k = A = 0, then the general solution of (11) is given in terms of the
Weierstrass zeta function with invariants gs, g3 by

¥(z) = ((2 — 20392, 93) + B, (21)
for zg, B arbitrary, so X! = —p(z — 20; g2, 93) 1s an elliptic function of z.
Proof. Up to replacing A — 6, this coincides with the case considered in [10]. O

3 Tau-function and bilinear equation

For the sigma equation in the form (11), the tau-function 7(z) is defined by

Y(z) = % log 7(2). (22)

Since ¥ is meromorphic, with its only singularities being simple poles with residue +1,
the above formula implies that 7(z) is holomorphic, but is only defined up to overall



scaling 7 — At for an arbitrary non-zero constant A. By substituting (22) into (11),
an equation of third order which is homogeneous of degree four in 7 results, that is

7_2<7_///>2 _ 67'7'/7'”7'”/ + 4(7_/)37_/// + 47_(7_//)3 _ 3(7_/7_//)2
2
—2(nz — 2k) (TT” — (7”)2) +2(nz — K) (7’27’7'” - T(T’)3) (23)
+(2 2 =+ go)T2(1)2 — (2Az + go) T3 + 22X + g3t = 0.
Taylor expansions of (23) around a movable zero, which correspond to a movable simple
pole in (11), take the form
7(2) = Co(z — 20) + Ci(z — 20)* + Coz — 20)> + ..., Cy # 0,

where zy (the position of the zero) and Cy, C are arbitrary, while all subsequent co-
efficients are determined uniquely in terms of these three parameters. By considering
gauge transformations of the form

7(z) = Aexp(Bz)71(z), A#0, (24)

the initial coefficient Cy can be set to 1, and C; can be set to 0; in that case one can
check that the next coefficient C, is also 0. The overall effect of the transformation
(24) is to send

Y= X+ B,

which results in changing the parameters in (11) and (23). However, this change does
not affect the form of the equation, and thus we obtain an alternative version of Lemma
2.1, reformulated in terms of the tau-function.

Lemma 3.1. For ( # 0, via translations of the form (10), there is a one-to-one
correspondence between solutions of (7) with a pole at some zy € C, and functions

d
o(z) = 7 log 7(2) + pz

with a pole at z = 0, where 7(2) is the solution of (23) specified by the local Taylor
eTpansion

7(2) = 2+ O(z%). (25)

The degree four equation (23) is somewhat awkward for computing the coefficients
in the local expansion

T(2) =) Cpzt! (26)
n=0
around a zero at z = 0. It is much more convenient to take the derivative of (23), so
that after removing an overall factor one finds the bilinear (degree two) equation
Dit-1—z2(nz —26)D?1 -7+ 2(nz — k)77 — (2A2 + go)7* = 0, (27)
which has been written concisely in terms of the Hirota derivative defined by

d d

D2f - 9(e) = (= 1) SOl (28)
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The equation (27) also follows immediately by making the substitution (22) in (14).
The quantity g3 in (23) also corresponds to a first integral of (27).

In order to describe the expansion of the tau-function around a zero, we use the
bilinear equation (27), and note that the action of the Hirota operators D? and D? on
monomials is given by

Dgzj R = ajvkz”kd, Dﬁz” N bjykz]+k_4,

where the multipliers appearing on the right-hand side are

aj,kzzlg(—1)f(é> (22), bj,k:4!§(—1)f<é> (42).

The resulting recursion relation leaves the coefficients Cy, C; and Cg undetermined.
The freedom to chose Cj in (27) corresponds to the value of the first integral gs, so in
order to match the term at order 27 arising from (23), the correct value of Cs must
be inserted in the recursion. Before stating the result, it is convenient to define the
shifted multipliers

CALj’k = Q5 — 2k’, a;k = Q4K — k.

Theorem 3.2. The coefficients C,, in the expansion (26) obey the recursion
n(n® =1)(n = 6)Con = =537 bjrini1—CiCny + 51320 dje1n-3-C;Cnay

n—3 x n—4
A Zj:% aj+1,n—2—jcj0n—3—j + %92 ijo Can—4—j
+AY ) CiChsj.

(29)
To obtain the expansion in the form (25), the free coefficients must be fized as
1 93
Co=1 Cr=0 Co = ——K> — .
o S “T 50407 T 840

With the latter choice, each coefficient C, is a weighted homogeneous polynomial of
total degree n in Qlk,n, g, A, g3] with weights 3,4,4,5,6 respectively, so that

Pn(/ia 17, 92, >\7 g3)
(n+1)! ’

where Pn(fg’%a 64777 54927 55)‘7 5693) = fnPn(K'7 7, 92, )\7 93) fOT all 6 € C*

C, = (30)

This above result extends the analogous recursion for the Taylor series coefficients
of the Weierstrass sigma function [3] and for the tau-function of the first Painlevé
equation [10]. We record the first few polynomials P,, here:

PO = 1, P1 = PQ = O, P3 = —h, P4 = 277 - %‘92,
Ps = —6\, Pg= r? — 6gs, Pr = —k(11n + ¢2),
Ps = 120 4 6gon + 51Ak — 2g2, Pg = 17k% — 42(n + g2) X + 108g3k.

Computer calculations up to Pygg suggest that, after suitable scaling of the variables
92, g3, these polynomials have integer coefficients. The form of the expression (30)
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implies that the Taylor series solution of (23) with leading order (25) can be written
as a multiple sum

A l Z
_ At 60" (%) X" (6g5)"
() jkl;m setann K ) X698 T B o 1)1

3j+4k+4l4+5m+-6n+1

(31)

where A 1mn € Q.
Conjecture 3.3. The series (31) has
Ajkimn €L Vi k,l,m,n>0.

Remark 3.4. In the case kK = n = X\ = 0, Weierstrass [18] considered the series for the
elliptic sigma function in the form (31), and Onishi proved that 2'24" Ay 0., € Z for
all I, n [16], while in [10] we already found considerable numerical evidence to suggest
that AO,O,l,m,n € 7.

The tau-function transforms in a very specific way when it is expanded around
another zero, at a location €2 # 0.

Proposition 3.5. Let 7(z) = 7(z;m, K, A, g2, g3) denote the solution of (23) having the
Taylor expansion (25) around z = 0, and suppose that this function also vanishes at

2=Q%#0. Then

1 ~
T(Z + Qa n, K, )‘7927g3> = Aexp (BZ + 5&22>7—<2a 7, "%7 )‘7g27g3)7 (32)
where
" Q) 1
A=7(Q g L= —Q(Qn — 2 =k —Q

A= A—Bn—Fij,  Go= ga+ 1202 +20N+2BR, s = 95— Jafi+47° — B*n+2BX\.

Proof. Upon replacing z — z + Q in (23), and introducing
7(2) d logT(z + Q)
o(z) = —log7(z
dZ g Y

we see that & satisfies an equation of the general form (7), and has a pole at z = 0
because 7(£2) = 0. If we now set

7(z) = X(z) + B+ [iz, (34)

with i given by the expression in (33), then for any choice of B, g)(z) satisfies an
equation of the canonical form (11), but with different coefficients &, A, g, g3. Now we
further require that

5(2) = L log7(z),



Figure 1: Approximation to the poles of the symmetrical solution of (37).

where 7 has the Taylor expansion (25) around z = 0. By integrating both sides of (34)
and exponentiating, we see that

T(z+ Q) = Aexp (Bz + %/122)%(,2),

for some A # 0. By performing a Taylor expansion on each side of the above relation
up to terms of order z* , we obtain the expressions for A and B as in (33), as well as
the equation

~ TW(Q) 7_//(Q)2

=50 Q)P
The latter formula can be seen to be consistent with the previous expression for fi by
setting z = Q in (23). Hence 7(z) satisfies the same equation (23) but with parameters
%, \, Go, g3 found from the equation corresponding equation (11) for f](z) H

Remark 3.6. The expression (32) is a generalization of the classical formula for trans-
formation of the Weierstrass sigma function under shifting by a period (see e.g. §20.421
in [19]).

4 Numerical example: poles in Pxxxry

The numerical evaluation of Painlevé transcendents and the structure of their pole fields
is a very active research area (see e.g. [4]-[6] and references therein). The recursion
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relation in Theorem 3.2 is extremely convenient for computing numerical approxima-
tions to the tau-function close to the origin, by truncating the Taylor series for 7(z).
The roots of the polynomials obtained by truncation provide approximations to the
zeros of the tau-function lying near to z = 0, or equivalently the positions of the poles
of the sigma equation.

As an example, we consider the case of parameters
77:/\292293:0» ’i:l: (35)

for which the function 7(z) = 7(z;0,1,0,0,0) is such that

v(z) = % log 7(2) (36)

satisfies the Pxxx v equation in the canonical form
1
v — 5(1}')2 +20% + 20? = 0, (37)

with parameter ¢ = 0, while from (17) we have that

satisfies Pr; in the form
" 3 1
v =2u +ZU_§' (38)

For the parameter values (35), the equation (11) admits a trivial solution ¥ = const,
giving v = 0, but we have neglected such solutions here, by considering the generic
situation where ¥ has poles (cf. Lemma 2.1). (In fact, setting v = 0 in (19) yields a
Riccati equation, corresponding to the special case that (38) is solved in Airy functions.)
The tau-function 7(z) = 7(z;0,1,0,0,0) given by the Taylor series defined in Theorem
3.2 is such that the expansion (31) takes the special form

A L35+l
Ajz

7(2) = Z m> Aj = 40,0005 (39)

§=0
which is invariant under the order 3 symmetry
z = wz, T— wlz, w = exp(27i/3). (40)

Hence the zeros of 7 have the same symmetry: if 2 £ 0 is a zero of 7, then so are
w and w?Q). These zeros of T are the simple poles of ¥, and the double poles of v,
i.e. the particular solution of (37) defined by (36). Similarly, the associated function
u that satisfies the case (38) of Py has simple poles with residue —1 at these same
positions, as well as simple poles with residue +1 at the places where v vanishes, all of
them symmetrically placed on triangles centred at 0.

For illustration, in Figure 1 we have plotted the approximate positions of some of
the zeros of 7 (or the equivalently the poles of ¥ and v). To begin with, the first
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201 non-zero terms of the series (39) were found. The first few coefficients have prime
factorizations

Ag=1,A;, = —1,Ay =1, A3 = 17, Ay = =557, A5 = 59 - 349, Ag = —1017719,
A, =5-72.59-4391, Ag = —5 - 13 - 131 - 550439, Ag = 52 - 7 - 2224640081,
Ay = —52 - 570919 - 2406689, A, = 52 - 41 - 61 - 46043405500, . . .

and it appears to be the case that
Aj=0mod5 Vj>7, A;=0mod7 Vj>14.

To prove either of these two statements seems not to be simple. However from the
bilinear equation (27) it follows that the coefficients A; are determined by the quadratic
recurrence:

A 14+18n3 2_24 144
(TL + 1)An+3 — 9n"+18n 85n 61— An o4

(3n+7)! 0
323 0 (3n— 3]+4) (3g+4) a3n~y+6,2J+6An J+1AJ+1

(3n47)!
t5 ZJ 1 B3, +7)1 (3774 b3(n j)+73]+4An g+2A i+1

subject to the initial conditions 1210 =1, 1211 = —1 and 1212 = 1. The values of a;; and
b are defined by the action of the Hirota operators D? and D* on polynomials (see
before Theorem 3.2).

Given these coefficients, we took the polynomial

200 4. .3+l

Peor(z) = ]Z_; m,

and calculated its roots numerically in order to produce the figure. By comparing the
values of the roots with those of the successive approximations Pag, Pao, Peo, Pso, etc.
we were able to confirm that the values of the zeros closest to 0 were converging to a
high degree of accuracy. For instance, the non-zero roots closest to the origin lie at
O, wQ, w2y, and the next closest roots are at s, w s, wQy, where

Q2 ~ 3.10938452954168950042, €y ~ —3.97992802289816587870,

to 20 decimal places. The largest roots of the polynomial, which can be seen to coa-
lesce on the boundary of the figure, are numerical artefacts; they do not provide good
approximations to the zeros of the tau-function.

Remark 4.1. Due to the homogeneity of the parameters x, g3, all of the tau-functions
7(2;0,k,0,0, g3) admit the symmetry (40).

Remark 4.2. Non-polynomial rational solutions of the sigma equation are also in-
cluded in the formulation of Lemma 2.1. For example, for the parameter values

9

/’7:)\:92:0a I{:17 g3:_1_6a
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the equation (11) has the rational solution

2
z
N(z)= - — =
()=5-%,

IS

corresponding to the tau-function
7(2;0,1,0,0,—9/16) = zexp(—z>/24),

which illustrates the symmetry (40) explicitly. This corresponds to

which are rational solutions of the Pxxx v equation (16) and the Pj; equation (18),
respectively, with k =1, p =0, ¢ = 3/2.

5 Conclusions

Our analysis shows that the “shifted” sigma equation for Py, given by (11), is a funda-
mental object which contains not only the general solution of Py, but also that of P;y,
Py, and the Weierstrass o function. Although the connection between Painlevé tran-
scendents and elliptic functions has a long history at the level of asymptotic expansions
[1], the results presented here show that from the viewpoint of the sigma function the
Painlevé transcendents are multi-parameter extensions of elliptic functions. Further-
more, although there is a coalescence cascade Py — Py — Py, this requires taking
asymptotic limits of both the dependent and independent variables [12], whereas at the
level of the solution of (11) one has Pry D Pir D Py, with the inclusion denoting that
a parameter has been set to zero. It would be interesting to see if this approach can be
extended to the sigma function of Py, in which case all the other Painlevé equations
would be included as special cases.

In future work we propose to consider Mittag-Leffler expansions of the solutions of
(11), and the asymptotic behaviour of the coefficients in Laurent expansions for the
solutions of the sigma equation, as well as the corresponding Painlevé equations. It
would also be good to obtain precise a priori bounds on the growth of the polynomials
P,, appearing in Theorem 3.2, as this would yield an independent proof that the tau-
function is holomorphic (hence providing yet another proof of the Painlevé property
for Pr, Pir and Ppy; cf. [17]). The arithmetic properties of the coefficients A; . jm., in
(31) are also worthy of further study.
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