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Incipient Fault Detection for Traction Motors of
High-Speed Railways Using an Interval Sliding

Mode Observer
Kangkang Zhang, Bin Jiang, Senior Member, IEEE, Xinggang Yan, and Zehui Mao

Abstract—This paper proposes a stator-winding incipient
shorted-turn fault detection method for the traction motors used
in China high-speed railways. Firstly, a mathematical description
for incipient shorted-turn faults is given from the quantitative
point of view to preset the fault detectability requirement. Then,
an interval sliding mode observer is proposed to deal with
uncertainties caused by measuring errors from motor speed sen-
sors. The active robust residual generator and the corresponding
passive robust threshold generator are proposed based on this
particularly designed observer. Furthermore, design parameters
are optimized to satisfy the fault detectability requirement. This
developed technique is applied to an electrical traction motor to
verify its effectiveness and practicability.

Index Terms—Incipient fault detection; interval sliding mode
observer; traction motors.

I. Introduction

AS demands for rail transportation rapidly increasing,
safety and customer satisfaction have become two of

the most important concerns for China Railway High-speed
(CRH). To deal with these issues, intelligent vehicle fault
diagnosis, fault-tolerant and monitoring techniques [1]- [4]
have been developed to find out and tolerate faulty compo-
nents. Traction motors are core power equipments to convert
electricity into mechanical energy in electrical traction systems
of high-speed railways. The sixteen traction motors in each
CRH are all three-phase squirrel-cage asynchronous motors,
which are the most important components to determine the
riding quality. However, as claimed in [5], this kind of motors
has limitations that it will result in premature incipient faults
occurring on stators. The actual fault modes of stators in [5]
are broken down into the following five groups: turn-to-turn,
coil-to-coil, open circuit, phase-to-phase and coil-to-ground. It
is turn-to-turn faults that are the initial stages and quite difficult
to detect due to their incipient nature. However, the initial
turn-to-turn faults may generate increasing heat, and a direct
phase-to-phase or phase-to-ground faults. Thus, the motor is
quickly drooped off the line. Therefore, incipient shorted-turn
fault detection is essential to avoid serous failures and improve
safety of high-speed railways.
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During the past decades, rare model-based fault detection
(FD) results are available for stator-winding incipient shorted-
turn faults. One reason is that it is quite difficult to obtain
the accurate motor faulty mathematical model and expressions
of external and internal electromagnetic interferences. On the
other hand, most of the traditional model-based FD strategies
such as [6], [7] and [8] mainly focus on abrupt faults rather
than incipient faults. Comparing with abrupt faults, incipient
faults evolve more slowly and are smaller in amplitude [9],
which needs FD schemes with strong detectability. In [10], the
exponential function is used to characterize the small evolution
rate feature for incipient faults and FD schemes with adaptive
thresholds are proposed to detect the incipient faults. The
methods developed in both of the two published papers [9]
and [11] are aimed to deal with small evolution rate issue
for incipient faults as well. However, the small amplitude
feature is rarely considered in the existing FD works, even
no proper mathematical description is available for incipient
faults from the quantitative point of view to characterize the
small amplitude feature, which motivates this paper to propose
a mathematical description for incipient shorted-turn faults.
Due to the small amplitude feature, stator-winding incipient
shorted-turn faults are easily submerged by disturbances and
uncertainties caused by measuring errors from speed sensors.
Therefore, to detect incipient shorted-turn faults, particular
incipient fault detection (IFD) technique should be developed
to posses not only strong robustness to disturbances and
uncertainties, but also strong sensitiveness to incipient shorted-
turn faults.

In traditional robust FD systems such as [12] and [13],
the residual generator is firstly designed and optimized to get
a good trade-off between sensitivity to faults and robustness
against disturbances, which is called as active robust FD in
[14] where the design freedom locating only on the dynamics
of residual generators can not satisfy the detectability require-
ments for incipient faults. Using interval observer technique
proposed in [15], an alternative approach is applied to design
dynamical threshold generator to produce more proper thresh-
olds, known as passive robust FD proposed in [14]. Interval
observers are proposed in [15] for the first time to estimate
the set of admissible values of states, and then developed in
[16], [17], [18] and [19] etc., which have been summarized
in the review paper [20]. In [16], a quasi-LPV approximation
for nonlinearities is built based on interval analysis and then,
interval observer is designed for the quasi-LPV system using
the cooperativity theory. For the planar systems with complex
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poles, the time-varying interval observer is designed in [17].
In [18], the L1/L2 performance is introduced to design optimal
interval observers for nonnegative LPV systems and for more
general ones. Unobserverable nonlinear systems are consid-
ered and corresponding interval observers are designed in [19].
An algorithm that propagates the uncertainties is proposed
in [14] based on zonotopes and an interval linear-parameter-
varying (LPV) observer is implemented to design the passive
fault diagnosis method. In the passive interval observer based
fault diagnosis methods, observer gains plays an important role
because they determine residual sensitivities to faults and the
associated adaptive thresholds derived from the uncertainties,
which are analyzed in [21] detailedly. On the other hand,
sliding mode techniques are not only used for control [23],
[24] and [25], but also used for fault diagnosis extensively [9],
[11], [22], [26], [27] and [28] because of inherent robustness
to matched uncertainties and disturbances. Recently, sliding
mode techniques are used for interval observer design such
as in [22], [29] and [30] to improve the inherent robustness
to matched uncertainties. High-order sliding mode techniques
are used to design interval observers for LPV systems in [30],
an interval sliding mode observer is constructed via a convex
sum of an upper estimator and a lower estimator in [29].
Therefore, to combine interval observers and sliding mode
observer techniques together to design active robust residual
generators and passive robust threshold generators will be
pertinent way.

Recently, an interval sliding mode observer is proposed in
[22] to detect incipient sensor faults for linear time-invariant
systems. Built on the author’s previous work in [22], IFD
schemes with detailed analysis and solid results are devel-
oped for the traction motors used in CRH in this paper. A
faulty dynamical model with parameter uncertainties for the
traction motors with stator-winding shorted turns is introduced
from [31]. A novel quantitative mathematical description for
incipient shorted-turn faults is presented via a proposed scale
variable. An interval sliding mode diagnostic observer is
proposed particularly for the faulty dynamical model which
can compensate for observer unmatched uncertainties caused
by measuring errors from the motor speed sensors. Then, IFD
schemes, including residual generator and threshold generator,
are proposed based on this diagnostic observer. Furthermore,
parameters in these IFD schemes are optimized such that the
fault detectability is satisfied. The contribution of this paper
is summarized as follows:

1) A mathematical description for stator-winding incipient
shorted-turn faults is given from the quantitative point
of view.

2) A novel interval sliding mode diagnostic observer is
proposed for faulty dynamical model of traction motors
with uncertainties.

3) IFD schemes using active and passive robust FD tech-
niques are proposed to satisfy the preset fault detectabil-
ity requirements

Notation: In this paper, without special illustrate, ∥ · ∥
represents the 2−norm of a matrix or a vector. For a real
matrix or a vector M, M > 0 (M ≥ 0) means that all its
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Fig. 1. Stator windings a, b, c of the traction motor with shorted-turn faults
on phase a.

entries are positive (nonnegative). For any vector x ∈ Rn,
|x| = col(|x1|, · · · , |xn|) where x1, · · · , xn are elements of x.
For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, both
x1 ≤ x2 and A1 ≤ A2 are defined in element wise. For a matrix
A ∈ Rm×n or a vector x ∈ Rn, A+ = max{0, A}, A− = A+ − A
and x+ = max{0, x}, x− = x+ − x, respectively. In addition, the
symbol En represents the n-dimensional square matrix with all
elements being 1.

II. Preliminaries

One lemma usually used for interval observer design is
shown as follows.

Lemma 1: ( [30]) Let x ∈ Rn be a vector variable satisfying
x ∈ [x, x̄] for some x, x̄ ∈ Rn. If A ∈ Rm×n is a constant matrix,
then Ax ∈ [ϕ, ϕ̄] where ϕ = A+x − A− x̄, ϕ̄ = A+ x̄ − A−x. ∇

Then, the following lemma is introduced based on Lemma
1.

Lemma 2: Let x ∈ Rn be a vector variable satisfying x ∈
[x, x̄] for some x, x̄ ∈ Rn, and ω ∈ R be a scalar variable
satisfying ω ∈ [ω, ω̄] for some ω, ω̄ ∈ R. Then ωx ∈ [ϕ, ϕ̄]
where

ϕ = −ωx + x+ω − x−ω̄ + ω+x − ω− x̄,

ϕ̄ = −ω̄x̄ + x̄+ω̄ − x̄−ω + ω̄+ x̄ − ω̄−x + (ω̄ − ω)(x̄ − x).

Furthermore, if ω̄ − ω ≤ 2∆ω, then ωx − ϕ ∈ [0, χ] and
ϕ̄ − ωx ∈ [0, χ̄] where

χ = (2∆ω + ω+)e + ω−ē + 2∆ω(x+ + x−),
χ̄ = (2∆ω + ω̄+) e + (2∆ω + ω̄−) ē + 2∆ω (x̄+ + x̄−)

with ē = x̄ − x and e = x − x. ∇
Proof: See Appendix A.

A. Stator-Winding Shorted-Turn Faults

Stator windings a, b and c with shorted-turn faults on phase
a is shown in Fig. 1 where as2 represents the shorted turns.
Denote µ as the fraction of shorted turns. Then the leakage in-
ductance of the shorted turns is µLls where Lls is the per-phase
leakage inductance, and the fault impedance is resistance (R f ).
Using the reference frame transformation theory presented in
[32], the machine equations can then be obtained in complex
dq variables as presented in [31]. Let λdr and λqr represent
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stator magnetic flux linkage in dq coordinates respectively,
and ids and iqs represent stator currents in dq coordinates
respectively. Considering the electromagnetic interferences on
positive-sequence and negative-sequence currents, a fourth-
order state-space presentation with single phase stator-winding
shorted-turn faults is obtained by

λ̇qr =a11λqr − npωrλdr + a13iqs + f11i f , (1)
λ̇dr =npωrλqr + a22λdr + a24ids, (2)
i̇qs =a31λqr + a32npωrλdr + a33iqs + b1vqs + f31i f

+ f32vos + d1(t), (3)
i̇ds = − a41npωrλqr + a42λdr + a44ids + b2vds + d2(t), (4)

y =col(iqs, ids) (5)

where ωr is the time-varying rotate speed, both d1(t) and d2(t)
represent the electromagnetic interferences, a11 = − 1

Tr
, a13 =

Lm
Tr
, f11 = − 2µLm

3Tr
, a22 = a11, a24 = a13, a31 = − Lm

σLr LsTr
, a32 =

Lm
σLr Ls
, a33 = − L2

m
σLr LsTr

− Rs
σLs

, a41 = a32, a42 = a31, a44 =

a33, b1 =
1
σLs

b2 = b1, f31 =
2µL2

m
3σLsLr

(
Rs
Ls
− 1

Tr

)
, and f32 =

2Lm
σLr Ls

(
Lm
Ls
− Lr

Lm

)
with Tr =

Lr
Rr

and σ = 1 − L2
m

LsLr
.

Let z1 = col(λqs, λds) and z2 = col(ids, iqs). Then the system
(1)-(4) can be written in a compact form

ż1 =A11z1 + ∆A11z1 + A12z2 + F12 f , (6)
ż2 =A21z1 + ∆A21z1 + A22z2 + B34v + F34 f + d, (7)
y =Ccol(z1, z2) (8)

where f = col(i f , vos) represents fault caused by shorted turns,
v = col(vqs, vds), d = col(d1, d2) and

A11 =

 a11 0
0 a22

 , ∆A11 =

 0 −npωr

npωr 0

 ,
A21 =

 a31 0
0 a42

 , ∆A21 =

 0 a32npωr

−a41npωr 0

 ,
A12 =

 a13 0
0 a24

 , A22 =

 a33 0
0 a44

 ,
F12 =

 f11 0
0 0

 , F34 =

 f31 f32

0 0

 ,
B34 =

 b1 0
0 b2

 , C =
[

0 I2

]
.

It can be seen that A11 and A21 are independent of ωr, but ∆A11
and ∆A21 rely on ωr. It is assumed throughout this paper that
the measured speed signal ω̂r ∈ Ωωr where

Ωωr = {ω̂r ∈ R | |ω̂r − ωr | ≤ ∆ωr, ∆ωr ∈ R } . (9)

Thus, the upper bound and the lower bound of ωr can be
obtained by ω̄r = ω̂r + ∆ωr and ωr = ω̂r − ∆ωr respectively,
and further, ω̄r−ωr ≤ 2∆ωr, 0 ≤ ω̄r−ωr ≤ 2∆ωr, 0 ≤ ωr−ωr ≤
2∆ωr.

Define

φ1 :=
 0 −np

0 0

 , φ2 :=
 0 0

np 0

 ,
φ3 :=

 0 a32np

0 0

 , φ4 :=
 0 0
−a41np 0

 .

Then φ1 < 0, φ2 > 0, φ3 > 0 and φ4 < 0. Moreover, since
a32 = a41, φ3 = −a32φ1 and φ4 = −a32φ2. Let ϕ1 := ωrz1.
Then

∆A11z1 = φ1ϕ1 + φ2ϕ1, ∆A21z1 = φ3ϕ1 + φ4ϕ1. (10)

Based on Lemma 2, for z1 ∈ [z1, z̄1] and ωr ∈ [ωr, ω̄r], there
exist ϕ

1
and ϕ̄1 such that ϕ1 ∈ [ϕ

1
, ϕ̄1]. Then

φ1ϕ1 ∈
[
φ1ϕ̄1, φ1ϕ1

]
, φ2ϕ1 ∈

[
φ2ϕ1
, φ2ϕ̄1

]
, (11)

φ3ϕ1 ∈
[
φ3ϕ1
, φ3ϕ̄1

]
, φ4ϕ1 ∈

[
φ4ϕ̄1, φ4ϕ1

]
. (12)

A reasonable assumption in this study on f , d1(t) and d2(t)
are presented as follows.

Assumption 1: There exist constants d, d̄ and f̄ such that
d ≤ d(t) ≤ d̄ and ∥ f ∥ ≤ f̄ .

Remark 1: Because the fault f in system (6)-(7) caused by
shorted turns is low-frequency, the electromagnetic interfer-
ences with low frequencies are the most significant factor to
influence fault detectability, which are also mainly considered
in this paper. Therefore, it is also reasonable for low-frequency
electromagnetic interferences d to make this assumption. In
addition, the assumption for d and f in Assumption 1 is
popular in interval observers and sliding mode observers (see
[26], [30] and [20]). ∇

B. Incipient Shorted-Turn Fault Description

From (6)-(8), the transfer functions from f to y and
from d to y are obtained respectively by G f (s) =

C (sI − A(ωr))−1 col(F12, F34) and Gd(s) = C (sI − A(ωr))−1

where

A (ωr) =
 A11 + ∆A11 A12

A21 + ∆A21 A22

 .
Then, two incremental quantities, ∆y f and ∆yd caused by f
and d respectively, can be described by ∆y f = G f (s) f and
∆yd = Gd(s)d. Thus,

inf
∆yd,0

∥∥∥∆y f

∥∥∥
2∥∥∥∆yd

∥∥∥
2

=

inf
ω
ϱ
(
G f ( jω)

)
sup
ω
ϱ̄ (Gd ( jω))

× inf
d,0

∥ f ∥2
∥d∥2

where ϱ(·) and ϱ̄(·) represent the minimum and maximum
singular values respectively, and ω is operating frequency of
the induction motors.

Now, a scale variable to describe the developing process of
incipient shorted-turn faults f is ready to be defined by

Γ = inf
∆yd,0

∥∥∥∆y f

∥∥∥
2∥∥∥∆yd

∥∥∥
2

= α inf
d,0

∥ f ∥2
∥d∥2

(13)

where α = inf
ω
ϱ
(
G f ( jω)

)
/sup
ω
ϱ̄ (Gd ( jω)).

Remark 2: It should be pointed out that the scale variable Γ
defined in (13) provides a quantity relationship between fault
f and disturbance d to some extent for traction motors. It
can also be used to distinguish the incipient faults from other
abrupt faults. ∇

For practical induction motors, there exist preset constants
Γ and Γ̄ such that the developing process of stator-winding
shorted-turn faults is divided into three levels. The first level
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is D.1 : 0 ≤ Γ < Γ. In this case, it is unnecessary to detect the
shorted-turn faults because f is small sufficiently in amplitude
and the induction motor operates safely. The second level is
D.2 : Γ < Γ < Γ̄. The shorted-turn faults begin to affect the
normal operation and degrade the performances of motors.
However, f is not large enough in amplitude so that it is
challenging to detect. The third level is D.3 : Γ < Γ < +∞. In
this case, the turns have become shorted seriously which even
stop the running of the motors.

In this study, the shorted-turn faults belonging to D.2 are
mainly considered, which are the so-called “incipient shorted-
turn faults”. A set includes all the incipient shorted-turn faults
can be defined by

Ω f ,Γ =
{
f
∣∣∣Γ ∈ [Γ, Γ̄]

}
. (14)

It should be pointed out that if all f ∈ Ω f ,Γ are detectable,
then the fault detectability of the proposed FD schemes is
characterized by Ω f ,Γ.

The objective of this paper is to design IFD schemes for
the motor system (6)-(8) such that the detectability is able to
be characterized by Ω f ,Γ, i.e. all incipient faults f ∈ Ω f ,Γ are
detectable, by

1) proposing an interval sliding mode diagnostic observer,
2) proposing a novel residual generator and an interval

threshold generator.

III. Incipient Fault Detection Schemes

A. Interval Sliding Mode Diagnostic Observer Design

A fault diagnostic observer will be developed for system
(6)-(8) in this section using interval estimation and sliding
mode techniques, which will provide interval estimate for z1
in fault-free scenario in the presence of uncertainty ∆A11z1 and
reconstruction for z2 with uncertainty ∆A21z1 and disturbance
d in both fault and fault-free scenarios.

1) Observer Structure Design: Firstly, denote z̄1, z̄2, z1 and
z2 as the estimates of upper bound and lower bound of z1 and
z2, respectively. Based on the structure of dynamical equations
in (6) and (7), the following observer structure is proposed:

˙̄z1 =A11z̄1 + φ1ϕ1
+ φ2ϕ̄1 + A12y + L1(z̄1 − z1) (15)

+ Ā2D[ts]col(z̄2 − z2, z2 − z2) − K̄1D[ts]ν,

ż1 =A11z1 + φ1ϕ̄1 + φ2ϕ1
+ A12y − L1(z̄1 − z1) (16)

− A2D[ts]col(z̄2 − z2, z2 − z2) + K1D[ts]ν,
˙̄z2 =A21z̄1 + φ3ϕ̄1 + φ4ϕ1

+ A22z̄2 + B34v

d + L2(z̄2 − z2) − K̄2ν, (17)

ż2 =A21z1 + φ3ϕ1
+ φ4ϕ̄1 + A22z̄2 + B34v

d̄ − L2(z̄2 − z2) + K2ν (18)

where the initial values satisfy z1(0) ≤ z1(0) ≤ z̄1(0) and
z2(0) ≤ z1(0) ≤ z̄2(0), the gain matrices Ā2 and A2, K̄1 and
K1 are particularly added here to compensate for observer
unmatched uncertainty, and the nonnegative matrix L1 is used
to ensure interval estimation. They will be specified later.
The matrices L2, K̄2 and K2 are to be designed to guarantee
the occurrence of sliding mode. The nonlinear function ν is

designed as ν = col(sign(z̄2 − z2), sign(z2 − z2)). The dead-zone
operator D[·] is defined by

D[ts] =
 1, t > ts,

0, t ≤ ts.

The time instant ts is the time when sliding mode occurs which
will be specified later.

Remark 3: The dead-zone operator D[·] is used here to
guarantee that before sliding mode occurs, the observer (15)-
(16) can provide an interval estimate for z1 by guaranteeing
that φ1ϕ1

+ φ2ϕ̄1 + Ā2 +D[ts]col(z̄2 − z2, z2 − z2) − K̄1D[ts]ν ≥
∆A11z1 ≥ φ1ϕ̄1 +φ2ϕ1

−A2D[ts]col(z̄2 − z2, z2 − z2)+K1D[ts]ν.
∇

Remark 4: It should be pointed out that the observer
unmatched uncertainty caused by ∆A11z1 is quite challenging
to compensate. Most of related works, for example, [28],
[20], [33] and [18], use robust methods such as L1 and
L2 gains to address this issue. Different from the developed
interval observer by [20] and [18] for LPV systems, a special
observer structure (15)-(18) using the sliding mode technique
is proposed where K̄1D[ts]ν and K1D[ts]ν in (15) and (16) are
particularly designed to compensate for observer unmatched
uncertainty caused by ∆A11z1, which facilitates to improve
fault detectability. ∇

2) Observer Parameters Design: Now, it is ready to de-
sign observer parameters. Firstly, throughout this paper, it
is assumed that the incipient fault occurrence time instant
t0 > ts, which is reasonable because ts is adjustable. Due to
the dead-zone operator D[·], the stability analysis and interval
estimation will be divided into two phases: t ≤ ts phase and
t > ts phase. It should be noted that the t ≤ ts phase is fault-
free. The parameter design objective is given as follows:

1) for t ≤ ts, z1 ∈ [z1, z̄1], z1 − z1 and z̄1 − z1 are ultimately
bounded and z2 and z̄2 are driven to a sliding surface.

2) for t > ts, uncertainty caused by ∆A11z1 is compensated
for, z1 − z1 and z̄1 − z1 are still ultimately bounded,
z1 ∈ [z1, z̄1] in fault-free scenario, and z2 and z̄2 remain
on the same sliding surface in both fault and fault-free
scenarios.

Define the estimate errors as follows:

ē1 := z̄1 − z1, e1 := z1 − z1,

ē2 := z̄2 − z2, e2 := z2 − z2.

By comparing (15)-(18) with (6)-(7), the estimate error dy-
namics are obtained by

˙̄e1 =A11ē1 + φ1(ϕ
1
− ϕ1) + φ2(ϕ̄1 − ϕ1) + L1(ē1 + e1)

+ Ā2D[ts]col(ē2, e2) − K̄1D[ts]ν, (19)
ė1 =A11e1 + φ1(ϕ1 − ϕ̄1) + φ2(ϕ1 − ϕ) + L1(ē1 + e1)

+ A2D[ts]col(ē2, e2) − K1D[ts]ν, (20)
˙̄e2 =A21ē1 + φ3(ϕ̄1 − ϕ1) + φ4(ϕ

1
− ϕ1) + A22ē2

+ (d − d) + L2(ē2 + e2) − K̄2ν, (21)
ė2 =A21e1 + φ3(ϕ1 − ϕ1

) + φ4(ϕ1 − ϕ̄1) + A22e2

+ (d − d̄) + L2(ē2 + e2) + K2ν. (22)
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Let e1 = col(ē1, e1) and e2 = col(ē2, e2). Then the error system
(19)-(22) can be written in a compact form

ė1 =A1e1 + A2D[ts]e2 + Φ1 + F1C f f

− K1D[ts]ν, (23)

ė2 =A3e1 + A4e2 + Φ2 + ď + F2C f f − K2ν (24)

where ď = col(d − d, d − d̄) < 0,

A1 =

 A11 + L1 L1

L1 A11 + L1

 , A2 =

 Ā2

A2

 ,
A3 = diag(A21, A21), A4 =

 A22 + L2 L2

L2 A22 + L2

 ,
Φ1 =

 φ1(ϕ
1
− ϕ1) + φ2(ϕ̄1 − ϕ1)

φ1(ϕ1 − ϕ̄1) + φ2(ϕ1 − ϕ1
)

 , K1 =

 K̄1

K1

 ,
Φ2 =

 φ4(ϕ
1
− ϕ1) + φ3(ϕ̄1 − ϕ1)

φ4(ϕ1 − ϕ̄1) + φ3(ϕ1 − ϕ1
)

 , K2 =

 K̄2

K2

 ,
F1 = diag(F12, F12), F2 = diag(F34, F34) and C f = col(−I2, I2).

Recalling φ3 = −a32φ1 and φ4 = −a32φ2, there exists a
nonsingular nonnegative matrix T0 such that Φ1 = T0Φ2 where

T0 =
1

a32

 0 I2

I2 0

 .
A new coordinate transformation (e1, e2) −→ (es, e2) where
es = e1 + Te2 with T = −T0D[ts] is introduced. Then

ės =(A1 + T A3)es + (A2D[ts] + T A4 − (A1 + T A3)T )e2

+ Tď + (F1 + T F2)C f f − (K1D[ts] + T K2)ν, (25)

ė2 =A3es + (A4 − A3T )e2 + Φ2 + ď + F2C f f − K2ν. (26)

Remark 5: Generally speaking, it is not necessary to require
T0 to be nonnegative. However, for the considered traction
motor system (6)-(8), T0 is nonnegative, which is useful to in
the following mathematical derivation. ∇
The t ≤ ts phase. For t ≤ ts, F1C f f = 0 and it follows from
(23) that ė1 = A1e1 + Φ1. Based on Lemma 2, there exist χ

1
and χ̄1 such that ωrz1−ϕ1

∈ [0, χ
1
], ϕ̄1−ωrz1 ∈ [0, χ̄1]. Then

Φ1 ≤ ∆A1e1 + Φ̂1 (27)

where ∆A1 =

 Â11 Â12

Â13 Â14

 with

Â11 = φ2
(
2∆ωr + ω̄

+
r
) − φ1ω

−
r ,

Â12 = φ2
(
2∆ωr + ω̄

−
r
) − φ1

(
2∆ωr + ω

+
r

)
,

Â13 = φ2ω
−
r − φ1

(
2∆ωr + ω̄

+
r
)
,

Â14 = φ2

(
2∆ωr + ω

+
r

)
− φ1

(
2∆ωr + ω̄

−
r
)

and

Φ̂1 =

 2 (φ2 − φ1)∆ωr

(
z+1 + z−1

)
2 (φ2 − φ1)∆ωr

(
z̄+1 + z̄−1

)  . (28)

Thus,
ė1 ≤ (A1 + ∆A1)e1 + Φ̂1. (29)

Then the following proposition is ready to be presented.
Proposition 1: If there exists a nonnegative matrix L1 such

that

1) the matrix A1 is the Metzler matrix,
2) there exist the Hurwitz and Metzler matrix Ā1 satisfying

Ā1 > A1 + ∆A1,
then

(i) for t ≤ ts, es = e1 > 0,
(ii) for t ≤ ts, ∥es∥ = ∥e1∥ < ∥w1(t)∥ where w1(t) is

ultimately bounded. ∇
Proof: Firstly, it should be noted that for t ≤ ts, T = 0

and es = e1.
From z1(0) ≤ z1(0) ≤ z̄1(0), it is straightforward to yield that

e1(0) ≥ 0. It follows from (11) that Φ1 > 0. Therefore, based
on the positive system theory [34], with the Metzler matrix
A1, e1 > 0 for 0 ≤ t ≤ ts.

Furthermore, for t ≤ ts, if Ā1 > A1 + ∆A1, then it yields
from e1 > 0 that Ā1e1 > (A1 + ∆A1)e1. Thus, it follows from
(29) that ė1 ≤ Ā1e1 + Φ̂1. By Comparison Principle provided
by [35], if 0 < e1(0) < w1(0), then 0 < e1 ≤ w1 where w1 is
the state of system ẇ1 = Ā1w1 + Φ̂1. Since Ā1 is the Hurwitz
and Metzler matrix, based on positive system theory, w1 > 0
and is ultimately bounded associated with Ā1 and Φ̂1.

Hence, the result follows.
Remark 6: Since ωr is time varying, A1 + ∆A1 is a

time-varying system matrix. The stability condition for LPV
systems with constant uncertain parameters developed in [18]
(Theorem 7) does not work any more. In Proposition 1, the
Metzler matrix Ā1 is introduced to deal with this problem. ∇

The t > ts phase. For t > ts, with the parameter selection
K1 = −T K2, A2 = −T A4 + (A1 + T A3)T , it yields from (25)
that

ės = (A1 + T A3)es + Tď + (F1 + T F2)C f f . (30)

Then the following Proposition is ready to be presented.
Proposition 2: If K1 = −T K2, A2 = T A4 + (A1 +T A3)T and

there exists a nonnegative matrix L1 such that A1 +T A3 is the
Metzler and Hurwitz matrix, then

(i) in fault-free scenario, for t > ts, es > 0, z1 ∈ [z1, z̄1]
and es is ultimately bounded,

(ii) in both fault and fault-free scenarios, for t > ts, es

is ultimately bounded and ∥es∥ < w2(t) where w2(t)
is a positive scalar function determined later. ∇

Proof: It can be seen from (30) that with the selected K1
and A2, the observer unmatched uncertainty Φ1 disappears,
which means that it is compensated for. In fault-free scenario,
based on the positive system theory [34], with the Metzler
matrix A1 + T A3, Tď > 0, (F1 + T F2)C f f = 0 and condition
es(ts) > 0, es(t) > 0 for t > ts. Since during the sliding, e2 = 0,
e1 = es > 0, that is z1 ∈ [z1, z̄1]. Furthermore, since A1 + T A3
is the Hurwitz matrix, es is ultimately bounded in both fault
and fault-free scenarios.

In addition, using Comparison Principle, the reference [36]
provides the method to obtain the positive scalar function w2(t)
via constructing Lyapunov functions. So the construction of
w2(t) is omitted here. Hence, the result follows.

Since Φ1 = T0Φ2 and T0 ≥ 0, it follows from (27) that
Φ2 ≤ ∆A3e1 + Φ̂2 where ∆A3 = T−1

0 ∆A1 and Φ̂2 = T−1
0 Φ̂1 with

T−1
0 = a32

 0 I2

I2 0


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being nonnegative matrix. Then it is obtained from (26) that

∥Φ2∥ ≤∥∆A3∥ · ∥es − Te2∥ + ∥Φ̂2∥
≤∥∆A3∥ · ∥es∥ + ∥∆A3T∥ · ∥e2∥ + ∥Φ̂2∥. (31)

For error system (25)-(26), consider the sliding surface

S = {col(es, e2)|e2 = 0}. (32)

Next, it is focused on the design of parameters L2 and K2
to guarantee the reachability condition with respect to sliding
surface S for both t ≤ ts phase and t > ts phase in both fault
and fault-free scenarios. The following proposition is ready to
be presented.

Proposition 3: The error system (26) is driven to sliding
surface S in (32) before ts and maintains on it thereafter if
there exists a matrix L2 such that

1) there exists the Hurwitz and Metzler matrix Ā4 such
that (Ā4)ii ≥ (A4−A3T + ∥∆A3T∥E4)ii and (Ā4)i j ≥ |(A4−
A3T + ∥∆A3T∥E4)i j| for i, j = 1, · · · , 4, i , j where (·)i j

represent the element of ith row and jth column of the
matrix.

2) The gain matrix K2 = λmax(P2)P−1
2 c where P2 satisfies

ĀT
4 P2 + P2Ā4 < 0 (33)

and c satisfies

c ≥(∥A3∥ + ∥∆A3∥) max{∥w1(t)∥,w2(t)}

+ 4∥T−1
0 ∥ · ∥φ2 − φ1∥∆ωr

√
z2

1 + z̄2
1

+ 4 max{∥d̄∥, ∥d∥} + ∥F2C f ∥ f̄ + η (34)

with η being any positive constant. ∇
Proof: It follows from Propositions 1 and 2 that ∥es∥ ≤

∥w1(t)∥ for t ≤ ts and ∥es∥ ≤ w2(t) for t > ts. Then
∥es∥ ≤ max{∥w1(t)∥,wt(t)} for t ≥ 0. Since Φ̂2 = T−1

0 Φ̂1,

∥Φ̂2∥ ≤ 4∥T−1
0 ∥ · ∥φ2 − φ1∥∆ωr

√
z2

1 + z̄2
1. In addition, from

Assumption 1, ď ≤ 4 max{∥d̄∥, ∥d∥}. Let V(e2) = 1
2 eT

2 P2e2. It
is worth mentioning that based on positive system theory in
[34], P2 is a diagonal positive matrix. The time derivate of V
along (26) is

V̇ =
1
2

eT
2 ((A4 − A3T )T P2 + P2(A4 − A3T ))e2

+ eT
2 P2A3es + eT

2 P2Φ2 + eT
2 P2ď + eT

2 P2F2C f f

− eT
2 P2K2ν

≤1
2

eT
2 ((A4 − A3T + ∥∆A3T∥E4)T P2

+ P2(A4 − A3T + ∥∆A3T∥E4))e2 + λmax(P2) ∥e2∥
·
(
(∥A3∥ + ∥∆A3∥)∥es∥ + ∥Φ̂2∥ + ∥ď∥ + ∥F2C f ∥ f̄ − c

)
≤1

2
|eT

2 |(ĀT
4 P2 + P2Ā4)|e2| − λmax(P2) ∥e2∥ η

≤ −
√

2η
λmax(P2)
λmin(P2)

V
1
2 .

where the first inequality is obtained based on (31) and
the second inequality is obtained based on eT

2 ((A4 − A3T +
∥∆A3T∥E4)T P2 + P2(A4 − A3T + ∥∆A3T∥E4))e2 ≤ |eT

2 |(ĀT
4 P2 +

P2Ā4)|e2|.

Therefore, the reachability condition is satisfied. Further-
more, from [37], e2 is driven to the sliding surface S in (32)
before ts and maintains on it thereafter where

ts =
∥e2(0)∥λmin(P2)
ηλmax(P2)

. (35)

Hence, the result follows.
Remark 7: It can be seen from (35) that the sliding mode

occurrence time ts can be reduced by decreasing e2(0) and
increasing η. The value e2(0) can be adjusted by choosing
appropriate initial value for the observer dynamics. The value
η is the reachability which can be chosen freely. This confirms
that it is reasonable to assume fault occurrence time t0 > ts. ∇

B. Residual and Interval Threshold Generation

For t > ts, the sliding mode has occurred, and thus ė2 =

e2 = 0, e1 = es. Then it follows from (30) that

ė1 = (A1 + T A3)e1 + (F1 + T F2)C f f + Tď. (36)

Remark 8: The equation (23) for e1 can not be computed
by ordinary differential equation (ODE) theory because of the
existence of the discontinuous ν. It is necessary to introduce
(36) such that traditional fault diagnosis methods for continu-
ous systems can be applied. ∇
To generate residuals, an estimator ˙̂z2 for z2 should be firstly
constructed. Referring the structures of ˙̄z2 and ż2 in (17) and
(18) respectively, the estimator ˙̂z2 is constructed as

˙̂z2 =
1
2

(A21(z̄1 + z1) + (φ3 + φ4)(ϕ̄1 + ϕ1
)) (37)

+ A22ẑ2 + B34v.

Define r := z2− ẑ2. Then in fault scenario, the residual gen-
erator is obtained, which, according to (26), can be expressed
as

ṙ = CrA3e1 + A22r +Cr(Φ2 + ď) + F34 f . (38)

where Cr = [− 1
2 I2,

1
2 I2]. To simplify the symbols, system (36)

and (38) are written in a compact form

Ḣ =AH H + DHdH + FH f , (39)
r =CH H (40)

where H = col(e1, r), dH = col(Φ2, ď) and

AH =

 A1 + T A3 0
CrA3 A22

 , DH =

 0 T

Cr Cr

 ,
FH =

 (F1 + T F2)C f

F34

 , CH =
[

0 I2

]
.

It can be seen from (39) and (40) that the gain matrix L1 affects
both the robustness from dH to r and sensitiveness from f to
r. Reference [8] has provided a number of approaches such as
H2 to H2 trade-off approach and H∞ to H− trade-off approach
etc. to optimize L1. In this paper, the optimization for L1 is
omitted and it is supposed that L1 has been determined to
satisfy the requirements in Propositions 1 and 2.

The determination of a threshold is to find out the tolerant
limit for disturbances and model uncertainties under fault-
free scenario [8]. Accordingly, the interval threshold should
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be generated to include residual r in fault-free scenario. Two
estimators ˙̄Z and Ż are firstly constructed as

˙̄Z =A21z̄1 + φ3ϕ̄1 + φ4ϕ1
+ A22Z̄ + B34v

d + Lr(Z̄ − Z), (41)
Ż =A21z1 + φ3ϕ1

+ φ4ϕ̄1 + A22Z̄ + B34v

d̄ − Lr(Z̄ − Z) (42)

where Lr is the design gain matrix to determine later. Let

AZ :=
 A22 + Lr Lr

Lr A22 + Lr

 . (43)

Then it is easy to obtain that if AZ is the Metzler matrix, then
z2 ∈ [Z, Z̄] in fault-free scenario.

Define r̄ := Z̄− ẑ2 and r := Z− ẑ2. Then r ∈ [r, r̄] in fault-free
scenario. Furthermore, the threshold generator is obtained by

˙̄r = Cr̄A3e1 +Cr̄(Φ2 + ď) + (A22 + 2Lr)r̄, (44)

ṙ = CrA3e1 +Cr(Φ2 + ď) + (A22 + 2Lr)r (45)

where e1 is determined by (36) in fault-free scenario, Cr̄ =

[ 1
2 I2,

1
2 I2] and Cr = −Cr̄. Similar with (39)-(40), the equations

(36), (44) and (45) can be written in a compact form

Ṙ =ARR + DRdR, (46)
col(r̄, r) =CRR (47)

where R = col(e1, r̄, r), dR = col(Φ2, ď) and

AR =


A1 + T A3 0 0

Cr̄A3 A22 + 2Lr 0
CrA3 0 −A22 − 2Lr

 ,
DR =


0 T

Cr̄ Cr̄

Cr Cr

 , CR =

 0 I2 0
0 0 I2

 .
C. Incipient Fault Detectability Analysis

The objective detecting incipient faults f ∈ Ω f ,Γ pro-
vides the detectability requirements for these developed IFD
schemes. The work in this subsection is to propose a set of suf-
ficient conditions under which the detectability requirements
are satisfied.

Denote J and Jth as the evaluated values of r and col(r̄, r)
respectively. In this study, as in [38],

J = ∥r∥, Jth = ∥col(r̄, r)∥. (48)

Recalling r ∈ [r, r̄] in fault-free scenario, J < Jth in fault-
free scenario. On the other hand, to detect the incipient faults
f ∈ Ω f ,Γ, gain matrix Lr in AR should be optimized such that
J exceeds the threshold Jth in finite time after incipient faults
occur, i.e. there is a time instant Td with Td ≥ t0 such that
J ≥ Jth for t ≥ Td.

The calculation approach of Lr is introduced as follows:
Firstly, split the r in system (39)-(40) into two components r f

and rd caused by f and dH respectively, i.e.,

r(s) =r f (s) + rd(s),
r f (s) =Gr f (s) f (s), rd(s) = Grd(s)dH(s)

where r(s), r f (s), rd(s) f (s) and dH(s) are the Laplace trans-
forms for r(t), r f (t), rd(t), f (t) and dH(t), respectively, Gr f (s)
and Grd(s) being transfer functions from f to r f and from
dH to rd respectively. Then ∥r(s)∥ ≥

∣∣∣∥r f (s)∥ − ∥rd(s)∥
∣∣∣ =

∥r f (s)∥ − ∥rd(s)∥ as long as ∥r f (s)∥ > ∥rd(s)∥. Suppose that
∥r f (s)∥ > ∥rd(s)∥. Then

inf
dH , f
∥r(s)∥ > inf

f
∥r f (s)∥ − sup

dH

∥rd(s)∥. (49)

As stated in [38], to detect the incipient faults f ∈ Ω f ,Γ, it
requires that

inf
dH , f

J > sup
dR

Jth. (50)

According to (49), a conservative condition for (50) is obtained
by

sup
dR

Jth ≤ inf
f
∥r f (s)∥ − sup

dH

∥rd(s)∥. (51)

It can be seen from (39) and (41) that dR = dH . Dividing dR

(or dH) and squaring both sides of (51), it yields

sup
dR,0

J2
th

∥dR∥2
≤

(
∥ f ∥
∥dH∥

inf
f,0

∥r f (s)∥
∥ f ∥ − sup

dH,0

∥rd(s)∥
∥dH∥

)2

.

Let ϵ := ∥d∥
∥dH∥ . Then ∥ f ∥

∥dH∥ =
ϵΓ
α

where Γ and α are given in (13).
In addition,

inf
f,0

∥r f (s)∥
∥ f ∥ = inf

f,0

∥Gr f (s) f (s)∥
∥ f (s)∥ = inf

ω
ϱ(Gr f ( jω)),

sup
dH,0

∥rd(s)∥
∥dH∥

= sup
dR,0

∥Grd(s)dR∥
∥dR∥

= sup
ω
ϱ̄(Grd( jω)).

Therefore, (51) is equivalent to

sup
dR,0

∥col(r̄, r)∥2
∥dR∥2

≤ γ2(ϵ, Γ) (52)

where γ(ϵ,Γ) = ϵΓ
α

infω ϱ(Gr f ( jω)) − supω ϱ̄(Grd( jω)).
It should be pointed out that since z1 is inherent bounded, Φ̂1

in (28) is also bounded, which results in that Φ̂2 is bounded
due to Φ̂2 = T−1

0 Φ̂1. From Propositions 1, 2 and 3, both es

and e2 are both bounded. Thus, Φ2 in dH is bounded, and
then there exists a constant d̄H > 0 such that ∥dH∥ ≤ d̄H . Also,
from Assumption 1, ∥d∥ ∈ [min{∥d̄∥, ∥d∥},max{∥d̄∥, ∥d∥}]. Thus,
there exists a constant ϵ such that ϵ ≥ ϵ where ϵ = min{∥d̄∥,∥d∥}

d̄H
.

Therefore, based on the well-known bounded real lemma,
the calculation approach for Lr is obtained as follows: the
inequality (52) holds if and only if there exists a symmetric
positive definite (SPD) matrix PR, gain matrix Lr such that AT

R PR + PRAR +CT
RCR PRDR

∗ −γ2(ϵ, Γ)

 < 0 (53)

holds for any Γ ∈ [Γ, Γ̄] and ϵ ≥ ϵ. Hence, the following
proposition is ready to be presented.

Proposition 4: All the incipient faults f ∈ Ω f ,Γ are detected
if there exist a nonnegative matrix Lr and a SPD. matrix PR

such that AZ defined in (43) is the Metzler matrix and (53)
holds for any Γ ∈ [Γ, Γ̄] and ϵ ≥ ϵ. ∇
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D. Incipient Fault Detection Decision

As traditional FD in [12] and [6], the following logical
relationship is used to determine the occurrence of incipient
shorted-turn faults

(1) J ≤ Jth, ρ = 0,
(2) J > Jth, ρ = 1.

Therefore, the decision on occurrence for incipient shorted-
turn faults is made if J(Td) > Jth(Td) for t > Td where the
detection time instant Td satisfies Td > t0 > ts. To simplify the
expression, let ρ = 0 represent the case (1) and ρ = 1 case (2).

Then, the following algorithm is ready to be presented.
Algorithm 1: The procedure to detect incipient shorted-

turn faults for traction motors based on interval sliding mode
diagnostic observer (15)-(18)

Step 1: Determine d̄, d and f̄ in Assumption 1, and Γ̄ and
Γ to describe incipient shorted-turn faults

Step 2: Select L1 and L2 to satisfy the conditions of
Propositions 1, 2 and 3

Step 3: Select K̄1, K1, K̄2, K2 and A2 to satisfy the
conditions in Propositions 2 and 3

Step 4: Select Lr to satisfy the conditions of Proposition 4
Step 5: Construct residual generator (38) and interval

threshold generator (41)-(42), and then determine J
and Jth by (48).

Remark 9: Built on the authors’ previous work [22], the
incipient fault detection schemes with detailed analysis and
solid results are developed for the traction motors used in CRH
in this paper. Comparing with [22], the differences are shown
as follows. The considered systems are different. A class of
linear time-invariant systems is considered in [22], while in
this paper, a specific traction motor system with uncertainties
is considered, which is more practical. The designed fault
diagnostic observers are different. Due to the uncertainties
∆A11z1 and ∆A21z1, in the paper, Lemma 2 is introduced
to obtain interval bounds for ∆A11z1 and ∆A21z1, and an
interval sliding mode observer structure (15)-(18) with dead-
zone operator D[·] and corresponding observer parameters L1,
L2, K̄1, K1, K̄2, K2 and A2 are particularly proposed and
designed. ∇

IV. Verification
Following the procedure given in Algorithm 1, the incip-

ient shorted-turn fault detection schemes are constructed as
follows:

Step 1: The reference stator currents are set as iqs = 100A
and ids = 0A. For the traction induction motor used in CRH,
electromagnetic interferences in amplitude are approximate
10% of the reference stator currents. Therefore, d1 and d2 in
this simulation are set as

d1= 10sin (250t) A, d2 = 10 cos (250t) A

and then d̄ and d in Assumption 1 are selected as d̄ =
col(10, 10) and d = col(−10,−10).

To determine Γ and Γ̄, the gains of ϱ̄(Gd( jω)) and ϱ(G f ( jω))
used by (13) should be given firstly through the amplitude-
frequency bode diagrams of Gd( jω) and G f ( jω). The nominal
physical parameters of the traction induction motor used in

TABLE I
Nominal parameters of the traction motor.

Symbol Quantity Value
P Rated power 300Kw
V Rated voltage 2500v
I Rated current 106A
RPM Rated rotating speed 3000rpm
Ls stator inductance 0.0343H
Lr rotor inductance 0.0343H
Lm mutual inductance 0.0328H
σ leakage factor 10.0856
Rs stator resistance 0.114Ω
Rr rotor resistance 0.146Ω
np number of pole pairs 4
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Fig. 2. Amplitude-frequency bode diagrams of G f ( jω) and Gd( jω).

CRH are given in Table I obtained from the traction and
driving control system-fault injection benchmark (TDCS-FIB)
(see [39] and [11]). In this simulation, the fraction of shorted
turns is set as µ = 5%. Then the transfer functions Gd(s) and
G f (s) which rely on the time-varying motor speed ωr can be
obtained. However, since ωr varies with respect to time be-
tween zero and the maximum speed 3000rpm, it is impossible
to plot the amplitude-frequency bode diagrams of Gd( jω) and
G f ( jω) for every ωr ∈ [0, 3000rpm]. So amplitude-frequency
bode diagrams for only ωr = 200rpm, 1500rpm and 3000rpm
are plotted in Fig. 2, which can describe the rough ranges
for ϱ̄(Gd( jω)) and ϱ(G f ( jω)). In addition, disturbances with
low frequencies affect incipient fault detection significantly
because the fault-related signals caused by shorted turns are
low-frequency. Therefore, we mainly focus on the frequencies
belongs to [0, 103Hz]. It can be seen from Fig. 2 that

sup
ω∈[1,103],ωr∈[0,3000]

ϱ̄(Gd( jω)) = 12.4100,

inf
ω∈[1,103],ωr∈[0,3000]

ϱ(G f ( jω)) = 0.0059.

Thus, based on (13), α = 4.7542 × 10−4.
For an induction motor without any asymmetry such as turn

faults, the zero-sequence component of stator voltage vos is
zero. After incipient shorted-turn faults occur, it is assumed
that vos varies from 10% to 20% of the rated voltage V
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given in Table I. In addition, from [31], there is a differential
relationship between vos and i f that

i̇ f = −
Rs

Ls
i f −

3vos

µLs
.

Then the steady-state value of i f is induced and a rough
range for the incipient fault f can also be obtained by
∥ f ∥ ∈

[
1.31 × 105, 2.63 × 105

]
. Thus, based on the definition

of Γ given in (13), Γ = 4.4045 and Γ̄ = 8.8427. There-
fore, Ω f ,Γ for this induction motor is specified by Ω f ,Γ =

{ f |Γ ∈ [2.2023, 4.5558] }.
Step 2: Considering the measuring accuracy of the speed

sensors and the electromagnetic interferences imposing on the
speed sensors, the measuring error in CRH is assumed to be
approximate ±3.5% of the rated speed RPM. So the radius ∆ωr

is chosen as ∆ωr = 105 rpm. A closed-loop tracking control
structure for the traction motor is constructed using the PID
control technique to regulate the stator currents, which ensures
the existences of L1, L2 and Lr through regulate eigenvalues
of the system matrices A11 and A22. Based on Propositions 1,
2 and 3, it can be calculated that

L1 =

 1.2940 2.9364
3.3982 1.2870

 ,
L2 =

 11.8978 11.3190
11.3190 11.8978

 .
Step 3: Based on Propositions 2 and 3, K̄1, K1, K̄2 and K2 are
selected where η = 10 and P2 = 0.0081I4. Also, the matrix A2
is obtained by

A2 =


−1.0684 −1.6439 84.7134 −1.6562
−1.7420 −1.0681 −1.7298 84.7136
84.7303 −1.2917 −1.0514 −1.2794
−1.2447 84.7263 −1.2570 −1.0555

 .
Then the interval sliding mode diagnostic observer (15)-(18) is
constructed. For simulation purpose, the zero-sequence com-
ponent of stator voltage is set as vos = −250v for t > 2s, which
is about 10% of the rated voltage V . Thus, f ∈ Ω f ,Γ. To verify
both acceleration and uniform motions in this simulation, ωr

is set as

ωr =


1000 rpm, t < 3,
1000 + 250(t − 3) rpm, 3 < t < 5,
1500 rpm, t ≥ 5.

Time responses of the interval sliding mode diagnostic ob-
server are presented in Figs. 3 - 6. It is shown in Figs. 3 and
4 that before incipient faults occur, i.e., for t < 2s, z̄1 − z1 ≥ 0,
z1 − z1 ≥ 0 and z̄1 ≤ z1 ≤ z1. From Figs. 5 and 6, it can
be seen that z2 is driven to zero and the sliding mode occurs
before 0.5s. Thus, ts = 0.5s. Furthermore, after sliding mode
occurs, i.e., t > ts, the estimate intervals become obviously
tighter in Fig. 3 than the ones for t ≤ ts, which verifies
the effectiveness of our proposed technique to compensate
for observer unmatched uncertainties ∆A11z1 for the traction
motors.

Step 4: With the determined gain matrix L1, the transfer
functions of Gr f ( jω) and Grd( jω) can be obtained and their
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Fig. 3. Time responses of z̄1, z1 and z1.
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amplitude-frequency bode diagrams are shown in Fig. 7. Then
it can obtain that

sup
ω∈[0,103]

ϱ̄(Grd( jω)) =1.117 × 10−2,

inf
ω∈[0,103]

ϱ(Gr f ( jω)) =2.709 × 10−5.

From Fig. 3, the steady value of e1 approximates zero, which
implies that Φ2 in dH approximates zero for small sufficiently
z1. Therefore, the parameter ϵ ≈ 1. Hence, based on (13),

min
Γ=Γ, ϵ=1

γ2 (Γ) = 0.575.

By solving LMI formed by (53), a feasible solution can be
obtained by

Lr =

 1.2256 3.1989
3.1975 1.2229

 .
Step 5: The residual generator based on (37) and interval
threshold generator based on (41)-(42) are constructed using
above calculated design parameters, and then J and Jth given
by (48) are determined.

Time responses of r, r̄, r, J, Jth and ρ are presented in
Figs. 8 and 9. It can be seen from Fig. 8 that r escapes from

the interval [r, r̄] after 2.0s due to the fault occurrence. The
residual J in Fig. 9 exceeds Jth at about 2.6s, and the incipient
fault indicate variable ρ becomes 1 and maintains it for t >
2.65s. Therefore, based on the decision principle, this incipient
turn fault is detected at time instant Td = 2.65s.
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Fig. 8. Time responses of r, r̄ and r.
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V. Conclusion

This paper has presented a stator-winding incipient shorted-
turn fault detection method for traction motors. The mathemat-
ical description of incipient shorted-turn faults has been given
from the quantitative point of view. A novel interval sliding
mode observer has been particularly designed as diagnostic
observer to compensate for observer uncertainties caused by
measuring errors from the motor speed sensors. Then, an
active robust residual generator and a passive robust threshold
generator have been proposed and the design parameters have
also been optimized such that the considered incipient shorted-
turn faults can be detected. Simulations based on a traction
motor used in CRH have been presented in the paper to
demonstrate the effectiveness and practicability.
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Appendix A
Proof of Lemma 2

Proof: Note that ωx satisfies the following inequalities

ωx − ωx − x
(
ω − ω

)
− ω

(
x − x

)
= ω

(
x − x

)
− ω

(
x − x

)
=

(
ω − ω

) (
x − x

)
≥ 0,

ω̄x̄ − ωx − x̄ (ω̄ − ω) − ω̄ (x̄ − x) + (ω̄ − ω)(x̄ − x)
= ω (x̄ − x) + ω̄ (x − x̄) + (ω̄ − ω)(x̄ − x)
= − (x̄ − x) (ω̄ − ω) + (ω̄ − ω)(x̄ − x) ≥ 0.

Then −ωx+ xω+ωx ≤ ωx ≤ −ω̄x̄+ x̄ω+ ω̄x+ (ω̄−ω)(x̄− x).
Using Lemma 1 for xω, ωx, x̄ω and ω̄x, ωx ∈ [ϕ, ϕ̄] follows.
Furthermore,

ωx − ϕ

=
(
ω − ω

)
e + x+

(
ω − ω

)
+ x− (ω̄ − ω) + ω+e + ω−ē

≤
(
2∆ω + ω+

)
e + ω−ē + 2∆ω

(
x+ + x−

)
and

ϕ̄ − ωx

= − (ω̄ − ω) ē + (ω̄ − ω)(x̄ − x) + x̄+ (ω̄ − ω)

+x̄−
(
ω − ω

)
+ ω̄+ē + ω̄−e

≤ (
2∆ω + ω̄+

)
ē +

(
2∆ω + ω̄−

)
e + 2∆ω

(
x̄+ + x̄−

)
.

Hence, the result follows.

Acknowledgment

This work is supported in part by the National Natural
Science Foundation of China (Grant 61490703 and 61573180),
the Project Funded by the Priority Academic Program De-
velopment of Jiangsu Higher Education Institutions, Funda-
mental Research Funds for the Central Universities (NO.
NE2014202).

References

[1] Y. J. Wang, Y. D. Song, H. Gao and L. Frank, Distributed fault-
tolerant control of virtually and physically interconnected systems with
application to high-speed trains under traction/braking failures, IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp.
535–545, 2016.

[2] Y. D. Song, Q. Song and W. C. Cai, Fault-tolerant adaptive control
of high-speed trains under traction/braking failures: a virtual parameter-
based approach, IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 2, pp. 737–748, 2014.

[3] S. G Gao, H. R. Dong, Y. Chen and B. Ning, Approximation-based robust
adaptive automatic train control: an approach for actuator saturation, IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no.42, pp.
1733–1742, 2013.

[4] Z. H. Mao, G. Tao, B. Jiang and X. G. Yan, Adaptive compensation of
traction system actuator failures for high-speed trains, IEEE Transactions
on Intelligent Transportation Systems, vol. 18, no.11, pp. 2950–2963,
2017.

[5] A. H. Bonnett and G.C. Soukup, Cause and analysis of stator and rotor
failures in three-phase squirrel-cage induction motors, IEEE Transactions
on Industry applications, vol. 28, no. 4, pp. 921–937, 1992.

[6] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic
systems, Springer Science & Business Media, New York, 1997.

[7] R. Isermann, Fault-diagnosis systems: an introduction from fault detection
to fault tolerance, Springer Science & Business Media, Berlin, 2006.

[8] S. X. Ding, Model-based fault diagnosis techniques: design schemes,
algorithms, and tools, Springer Science & Business Media, Berlin Hei-
delberg, 2008.

[9] K. K. Zhang, B. Jiang, X. G. Yan and Z. H. Mao, Sliding mode observer
based incipient sensor fault detection with application to high-speed
railway traction device, ISA Transactions, vol. 63, pp. 49–59, 2016.

[10] X. D. Zhang, T. Parisini and M. M. Polycarpou, Adaptive fault-tolerant
control of nonlinear uncertain systems: an information-based diagnostic
approach, IEEE Transactions on Automatic Control, vol. 49, no. 8, pp.
1259–1274, 2004.

[11] K. K. Zhang, B. Jiang, X. G. Yan and Z. H. Mao, Incipient voltage
sensor fault isolation for rectifier in railway electrical traction systems,
IEEE Transactions on Industrial Electronics, vol. 64, no. 8, 6763–6774,
2017.

[12] P. M. Frank, Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy: A survey and some new results, Automat-
ica, vol. 26, no. 3, pp. 459–474, 1990.

[13] M. Y. Zhong, S. X. Ding, J. Lam and H. B. Wang, An LMI approach to
design robust fault detection filter for uncertain LTI systems, Automatica,
vol. 39, no.3, pp. 543–550, 2003.

[14] de Oca S, Montes, V. Puig and B. Joaquim, Robust fault detection
based on adaptive threshold generation using interval LPV observers,
International Journal of Adaptive Control and Signal Processing, vol.
26, no. 3, pp. 258–283, 2012.

[15] J. L. Gouzé, R. Alain and M. Z. Hadj-Sadok, Interval observers for
uncertain biological systems, Ecological modeling, vol. 133, no. 1, pp.
45–56, 2000.

[16] T. Raïssi, G. Videau and A. Zolghadri, Interval observer design for
consistency checks of nonlinear continuous-time systems, Automatica,
vol. 46. no. 3, pp. 518–527, 2010.

[17] F. Mazenc and O. Bernard, Asymptotically stable interval observers for
planar systems with complex poles. IEEE Transactions on Automatic
Control, vol. 55, no. 2, pp. 523–527, 2010

[18] S. Chebotarev, D. Efimov, T. Raïssi and A. Zolghadri, Interval observers
for continuous-time LPV systems with L1/L2 performance, Automatica,
vol. 58, pp. 82-89, 2015.

[19] G. Zheng, D. Efimov and W. Perruquetti, Design of interval observer
for a class of uncertain unobservable nonlinear systems. Automatica, vol.
63, pp. 167–174, 2016.

[20] T. Raïssi and D. Efimov, Some recent results on the design and
implementation of interval observers for uncertain systems, Automa-
tisierungstechnik, vol. 66, no. 3, pp. 213–224, 2018.

[21] J. Meseguer, V. Puig, T. Escobet and J. Saludes, Observer gain effect in
linear interval observer-based fault detection, Journal of Process Control,
vol. 20, no. 8, pp. 944–956, 2010.

[22] K. K. Zhang, B. Jiang, X. G. Yan and Z. H. Mao, Incipient Fault
Detection Based on Robust Threshold Generators: A Sliding Mode
Interval Estimation Approach, IFAC-PapersOnLine, vol. 50, no. 1, pp.
5067–5072, 2017.

[23] H. Y. Li, P. Shi and D. Y. Yao, Adaptive sliding mode control of
Markov jump nonlinear systems with actuator faults, IEEE Transactions
on Automatic Control, vol. 62, no. 4, pp. 1933–1939, 2017.

[24] H. Y. Li, P. Shi, D. Y. Yao and L. G. Wu, Observer-based adaptive sliding
mode control for nonlinear Markovian jump systems, Automatica, vol. 64,
pp. 133–142, 2016.

[25] P. Shi, Y. Q. Xia, G. P. Liu and D. Rees, On designing of sliding mode
control for stochastic jump systems, IEEE Transactions on Automatic
Control, vol. 51, no. 1, pp. 97–103, 2006.

[26] C. Edwards, S. Spurgeon and R. J. Patton, Sliding mode observers for
fault detection and isolation, Automatica, vol. 36 36, no. 4, pp. 541–553,
2000.

[27] X. G. Yan and C. Edwards, Nonlinear robust fault reconstruction and
estimation using a sliding mode observer, Automatica, vol. 43, no. 9, pp.
1605–1614, 2007.

[28] H. Alwi, C. Edwards and C. P. Tan, Sliding mode estimation schemes
for incipient sensor faults, Automatica, vol. 45, no. 7, pp. 1679–1685,
2009.

[29] H. Oubabas, S. Djennoune, Said and M. Bettayeb, Interval sliding mode
observer design for linear and nonlinear systems, Journal of Process
Control, vol. 61, pp. 12–22, 2018.

[30] D. Efimov, L. Fridman, T. RaïSsi, A. Zolghadri and R. Seydou, Interval
estimation for LPV systems applying high order sliding mode techniques.
Automatica, vol. 48, no. 9, pp. 2365–2371, 2012.

[31] R. M. Tallam, G. H. Thomas and G. H. Ronald, Transient model for
induction machines with stator winding turn faults, IEEE Transactions
on Industry Applications, vol. 38, no. 3, pp. 632–637, 2002.



JOURNAL OF LATEX CLASS FILES, 12

[32] P. Krause, O. Wasynczuk, S. D. Sudhoff and S. Pekarek, Analysis of
electric machinery and drive systems, John Wiley & Sons, 2013.

[33] C. P. Tan and C. Edwards, Sliding mode observers for robust detection
and reconstruction of actuator and sensor faults, International Journal of
Robust and Nonlinear Control, vol. 13, no. 5, pp. 443–463, 2003.

[34] L. Farina and R. Sergio, Positive linear systems: theory and applications,
John Wiley & Sons, New York, 2011.

[35] H. K. Khalil, Nonlinear systems, Prentice Hall, New Jewsey, 2002.
[36] X. G. Yan and C. Edwards, Robust sliding mode observer-based actuator

fault detection and isolation for a class of nonlinear systems, International
Journal of Systems Science, vol. 39, no. 4, pp. 349–359, 2008.

[37] C. Edwards and S. Spurgeon, Sliding mode control: theory and appli-
cations, CRC Press, London, 1998.

[38] E. M. Abbas, M. M. Akhter and S. M. Rock, Effect of model uncer-
tainty on failure detection: the threshold selector, IEEE Transactions on
Automatic Control, vol. 33, no. 12, pp. 1106–1115, 1988.

[39] C. H. Yang, C. Yang, P. Tao, X. Y. Yang and W. H. Gui, A fault-
injection strategy for traction drive control systems, IEEE Transactions
on Industrial Electronics, vol. 64, no. 7, pp. 5719–5727, 2017.

Kangkang Zhang received the B.Sc. degree in auto-
matic control from Henan University of Technology,
Henan, China in 2008, M.Sc. degree in control
theory and control engineering from Northeastern
University, Shenyang, China in 2014. He is now a
Ph.D. student at the College of Automation Engi-
neering, Nanjing University of Aeronautics and As-
tronautics, Nanjing, China, and also a visiting Ph.D.
student at School of Engineering and Digital Arts,
University of Kent, Canterbury, United Kingdom.
His research interests cover fault diagnosis and fault-

tolerant control, sliding mode observer and control, interval observer and
adaptive estimation and their applications in high-speed trains.

Bin Jiang received the Ph.D. degree in automatic
control from Northeastern University, Shenyang,
China, in 1995. He had been a Post-Doctoral Fel-
low, a Research Fellow and a Visiting Professor in
Singapore, France, USA, and Canada, respectively.
He is currently a Chair Professor of the Cheung
Kong Scholar Program, Ministry of Education, and
the Dean of College of Automation Engineering,
Nanjing University of Aeronautics and Astronautics,
China. His research interests include fault diagnosis
and fault-tolerant control and their applications in

aircraft, satellite and high-speed trains. He is an Associate Editor or Editorial
Board Member for a number of journals, such as IEEE TRANSACTION
ON CONTROL SYSTEMS TECHNOLOGY, International Journal of Control,
Automation and Systems, Nonlinear Analysis, Hybrid Systems, Acta Auto-
matica Sinica, Journal of Astronautics; Control and Decision, and Systems
Engineering and Electronics Technologies.

Xing-Gang Yan received the B.Sc. degree from
Shaanxi Normal University in 1985, the M.Sc. de-
gree from Qufu Normal University in 1991, and
the Ph.D. degree in engineering from Northeastern
University, China, in 1997. He was a Lecturer with
Qingdao University, China, from 1991 to 1994. He
was a Research Fellow/Associate with the University
of Hong Kong, China, with Nanyang Technological
University, Singapore, and with University of Le-
icester, U.K. He is currently a Senior Lecturer with
University of Kent, U.K. He is the Editor-in-Chief

of International Journal of Engineering Research and Science & Technology.
His research interests include sliding mode control, decentralised control, fault
detection and isolation, and control and observation of nonlinear systems and
time delay systems with applications.

Zehui Mao received the Ph.D. degree in control
theory and control engineering from Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing,
China, in 2009. She is currently an Associate Pro-
fessor with the College of Automation Engineering,
Nanjing University of Aeronautics and Astronautics.
She is also a Visiting Scholar with the University
of Virginia. She was involved in the area of fault
diagnosis, with particular interests in nonlinear con-
trol systems, sampled-data systems and networked
control systems. Her research interests include fault

diagnosis and fault-tolerant control of systems with disturbance and incipient
faults, and high speed train and spacecraft flight control applications.


