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Adaptive Fault-Tolerant Formation Control for Quadrotors with Actuator

Faults

Wanzhang Liu, Ke Zhang, Bin Jiang, Xinggang Yan

ABSTRACT

In this paper, we investigate the fault-tolerant formationcontrol of a
group of quadrotor aircrafts with a leader. Continuous fault-tolerant formation
control protocol is constructed by using adaptive updatingmechanism and
boundary layer theory to compensate actuator fault. Results show that the
desired formation pattern and trajectory under actuator fault can be achieved
using the proposed fault-tolerant formation control. A simulation is conducted
to illustrate the effectiveness of the method..
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I. INTRODUCTION

In recent decades, cooperative control of multi-
agent systems, including numerous mobile robot
systems [1], UAV [ 2, 3], and microsatellite attitude
synchronization control [4, 5], has received con-
siderable attention from the community given the
potential practical application of these multi-agent
systems. Formation control is an important branch
of cooperative control, the goal is to form a certain
predefined shape using a group of agents. For complex
systems composed of numerous autonomous agents, the
centralized control method is no longer applicable, and
developing a distributed intelligent control strategy that
is independent of global formation is crucial.

Many previous studies systematically investigated
the problem of the cooperative control of multi-agent
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systems. Work [6] analyzed the coordinated control
performance of the UAV formation system. In practical
engineering, the control problem of a single quadrotor
is challenging given its strong nonlinear coupling [7].
However, designing a controller for a quadrotor is
difficult, the quadrotor is open-loop instable because
of its rotary-wing and inherent nonlinearity, which
requires a fast control response and a large operation
range. The formation control problems of second-order
multi-agent systems with a time-invariant topology
were studied in [8, 9]. However, above literatures
disregarded the cooperative control problems in the case
of actuator faults, which are not negligible in formation
control problems.

A FTC system can control the system with
satisfactory performance even if one or several faults,
or critically, one or several failures occur in this
system. In general, FTC can be classified into two
types: passive and active. An active FTC depends on
the fault-diagnosis module that monitors the system
health. [10] proposed a sliding mode observer(SMO) to
recover the pitch rate information. A distributed fault
estimation observer (DFEO) design for the multi-agent
systems with switching topologies was studied in [11],
and a active fault-tolerant scheme for a hypersonic
gliding vehicle to conuteract actuator faults and model
uncertainties was studied in [12]. In the present study,
we focus on the passive FTC problem of a group of
quadrotor aircrafts.
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In practical cases, actuator faults affect the normal
operation of each agent, thereby making the actual
outputs of the actuator different from its control
inputs. A distributed control strategy of a class of
nonlinear second-order leader-following multi-agent
systems against multiple actuator faults was considered
in [13] by designing adaptive schemes, [14] develop
an auxiliary system to ensure actuators behave within
amplitude and rate limits under the influence of partial
loss of control effectiveness. A fault tolerant control
was studied in [15] for a two-dimensional airfoil
with input saturation and actuator fault, and a robust
nonlinear controller, which combines sliding-mode and
backstepping control techniques, was considered in
[16]. A novel fault tolerant control (FTC) scheme for
hybrid systems modeled by hybrid Petri nets (HPNs)
was proposed in [17]. A novel robust fault-tolerant
controller for the attitude control problem of a quadrotor
aircraft in the presence of actuator faults and wind
gusts was developed in [18], and a fault-tolerant control
of feedback linearizable systems with stuck actuators
was studied in [19]. A fault-tolerant consensus control
protocol for multi-agent system with actuator bias faults
was developed in [20]; the consensus control problems
under bias and loss of effectiveness faults for a group
of second-order agents were considered in [21]. In the
framework of a distributed cooperative control of a
group of quadrotor aircrafts, the actuator faults of the
inner-loop subsystem (attitude subsystem) in a single
quadrotor can affect the normal operation of the outer-
loop subsystem (position subsystem), which can spread
to neighboring aircrafts via the interaction topology,
thereby affecting the performance of the entire multi-
agent system. Therefore, the FTC method for the multi-
agent systems must be explored. The main contribution
of this study is to solve the fault-tolerant formation
problem for a group of quadrotor aircrafts, which can
be simplified into two subproblems: (i) for position
subsystem, a formation control strategy base on the
global error is formulated so that the quadrotor can
track the desired trajectory with a predefined shape.
(ii) for actuator faults of attitude subsystem, a adaptive
fault-tolerant controller is designed to ensure that three
angles can track the desired value. To the best of our
knowledge, the fault-tolerant formation control of a
group of quadrotor aircafts with undirected topologies
remains open.

Throughout this paper,‖ · ‖ stands for the
Euclidean norm of a vector, diag represents a diagonal
matrix, sgn(·) denote the sign function. A vector is
considered positive if all its elements are greater than
zero,R+ represents a real number field.

II. System Model and Problem Formulation

2.1. Graph Theory

This study mainly focus on the formation control
of a group of quadrotor aircrafts with a leader-
following architecture, which consists of a leader andN

followers. If the leader is a node labeled as 0, and each
follower is also a node labeled as1, 2, 3, · · · , N., then
the node indexes belong to a finite index set, . Thus,
i ∈ Γ = {1, 2, · · · , N}. Subsequently, an undirected
graphG = {V,E,A} is denoted as the communication
topology amongN quadrotors, whereV = {vi} and
E ⊆ V × V represent the set of nodes and the set
of edges, respectively.A ∈ RN×N is the weighted
adjacency matrix of the graphG. If an edge is observed
between agenti and j, that is, (vi, vj) ∈ E , then
aij = aji > 0; otherwise,aij = aji = 0. Moreover, we
assume thataii = 0 for all i ∈ Γ. The set of neighbors
of node vi is expressed byNi = {j : (vi, vj) ∈ E}.
The out-degree of nodevi is defined as degout(vi) =

di =
∑N

j=1 aij =
∑

j∈Ni
aij . The degree matrix of the

unidirected graphG is D = diag{d1, d2, · · · , dN}, and
the Laplacian matrix of the undirected graphG is
L = D −A. A path in the graphG from vi to vj is
a sequence of distinct vertices that start withvi and
end withvj for the consecutive vertices to be adjacent.
The graphG is connected if a path exists between two
vertices. The reference state is assumed to be a leader.
The connection weight between the leader and theN

quadrotors can access the information of the leader, then
bi > 0, otherwise,bi = 0. Let B = diag{bi, b2 · · · bN}.
Throughout the study, the network communication
topology satisfies the following assumption.
Assumption 1. The communication topology for theN
followers is connected , and at least one path from the
leader to the follower exists.
Remark 1. For undirected networks considered in
this study, Assumption 1 can ensure that each node
have paths from the leader node and thus can receive
information from leader node. Then the formation
control can be performed.

2.2. System Model and Problem Formulation

This study investigates the formation control of
a group of n quadrotor aircrafts.Γ ∈ (1, 2, · · · , n)
is denoted. The quadrotor typically consists of four
motor drive systems, which are fixed to a rigid cross
structure. Degree-of-freedom variable, that is, position
and attitude, is typically required to predict the motion
of a three-dimensional quadrotor. Specifically, the
coordinates of the quadrotor aircraft are expressed by:

(xi, yi, zi, φi, θi, ψi)
T ∈ R6, i ∈ Γ, (1)
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where ϑi = (xi, yi, zi)
T ∈ R3 represents the position

of the aircraft mass center relative to the inertial
coordinate system,Φi = (φi, θi, ψi)

T ∈ R3 represents
the three Euler angles used to describe the posture of
an aircraft relative to the inertial coordinate system. The
rotational Euler angles around the x-, y-, and z-axis are
represented by the roll angleφ, pitch angleθ, and yaw
angleψ.

The detailed description of the dynamic model of a
quadrotor aircraft was introduced in [22]. In this study,
to simplify the implementation of the control scheme,
we apply the simplified model. Then, the dynamic
model is expressed as:




miẍi = −Ki1ẋi + Ti(cosφi sin θi cosψi + sinφi sinψi),

miÿi = −Ki2ẏi + Ti(cosφi sin θi sinψi − sinφi cosψi),

miz̈i = −Ki3żi −mg + Ti(cosφi cos θi),

Ji1φ̈i = −Ki4liφ̇i + liτi1,

Ji2θ̈i = −Ki5liθ̇i + liτi2,

Ji3ψ̈i = −Ki5liψ̇i + liτi3,

(2)
where Kij ∈ R+ for j = 4, 5, 6 denotes the aerody-
namic damping coefficient.Jij ∈ R+ for j = 1, 2, 3
denotes the moment of inertia,li ∈ R represents the
distance between the center of the aircraft and the motor
axis,τij for j = 1, 2, 3 represents three rotational forces
generated by the four rotors,ci ∈ R+ is a constant
force-motor coefficient,Ti ∈ R represents the total
thrust generated by the four rotors.
Remark 2. Ideally, the dynamics model of the
quadrotor includes a gyroscopic effect caused by the
rotation of the space rigid body and the four propellers.
These are often overlooked in previous works.

2.3. Control Objectives

The purpose of this study is to design a distributed
control law for a set of quadrotor aircrafts (2) to achieve
fault-tolerant formation control. Specifically, the fault-
tolerant formation control requires that pattern and
desired formation trajectory can be achieved.

The desired tracking trajectory[xd, yd, zd]T is
generated by:

ẋd = vxd, ẏd = vyd, żd = vzd, (3)

in addition, the desired geometric pattern in three-
dimensional space is determined by vector

∆ij = ∆i −∆j = [∆ix,∆iy ,∆iz ]
T − [∆jx,∆jy ,∆jz ]

T ,

(4)

which indicates the desired position deviation between
quadrotor i and j. We only consider the invariant
formation mode to simplify the statement, that is,∀i ∈
Γ ,∆ij are constant vectors.

By using a mathematical statement, the control
objective of this paper is to design a distributed control
law in which, for anyi, j ∈ Γ

lim
t→∞



xi(t)− xj(t)
yi(t)− yj(t)
zi(t)− zj(t)


 = ∆ij , (5)

and

lim
t→∞

1

N

N∑

i=1

[xi(t), yi(t), zi(t)]
T = [xd, yd, zd]

T .

(6)
Remark 3. The overall control objective is to design the
control input signal for the quadrotor aircraft to track
the time-varying desired trajectory[xd(t), yd(t), zd(t)]T

and maintain the given pattern.

III. Formation Controller Design

In this section, the formation controller algorithm,
which can be divided into two steps, is proposed. The
control strategy for a group of quadrotor aircrafts is
illustrated in Fig. 1.

, , , , , ,j j j j j j ix x y y z z jÎj j j j j jx x y y z zj j j j j jj j j j j j, , , , , ,, , , , , ,, , , , , , iÎj j jz z jj j jj j j, ,, ,, , ÎN

, ,i i if q y

, , , , ,i i i i i ix x y y z zi i i i i ix x y y z zi i i i i ii i i i i i, , , , ,, , , , ,, , , , ,i i iz zi i ii i i

, ,id id idf q y

Fig. 1. The control block diagram for a group of quadrotor aircraft.

3.1. Controller Design of Position Subsystem

The position dynamics (2) is used to facilitate the
design of the position controller:




uix =
Ti

mi

(cosφi sin θi cosψi + sinφi sinψi),

uiy =
Ti

mi

(cosφi sin θi sinψi − sinφi cosψi),

uiz =
Ti

mi

cosφi cos θi − g, i ∈ Γ,
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Under these notations, the position dynamics equation
for a quadrotor aircraft is rewritten as:




ẍi = −
Ki1

mi

ẋi + uix,

ÿi = −
Ki2

mi

ẏi + uiy,

z̈i = −
Ki3

mi

żi + uiz.

(7)

Theorem 1. For position dynamic model (8), if the
virtual control inputsuiz, uiy anduiz have the same
form, anduix is designed as follows:



uix =−
∑

j∈Ni

aij [k1(xi − xj −∆ijx) + k2(vix − vjx)]

− bi[k1(xi − xd −∆ix +
1

N

N∑

i=1

∆ix) + k2(vix

− vd)] +
Ki1

mi

vxd + v̇xd,

uiy =−
∑

j∈Ni

aij [k1(yi − yj −∆ijy) + k2(viy − vjy)]

− bi[k1(yi − yd −∆iy +
1

N

N∑

i=1

∆iy) + k2(viy

− vd)] +
Ki2

mi

vyd + v̇yd,

uiz =−
∑

j∈Ni

aij [k1(zi − zj −∆ijz) + k2(viz − vjz)]

− bi[k1(zi − zd −∆iz +
1

N

N∑

i=1

∆iz) + k2(viz

− vd)] +
Ki3

mi

vzd + v̇zd,

(8)
where k1 > 0, k2 > 0 are two positive constants,
and ẋi = vix, ẏi = viy, żi = viz , then the task of the
formation control can be achieved under the controller.
Proof. Without loss of generality, we provide proof only
on the x-axis,ith quadrotor coordinate changes are as
follows:

eixp = xi − xd −∆ix +
1

N

N∑

i=1

∆ix,

eixv = vix − vxd, i ∈ Γ.
Under these notations, it follows from (8) and (9) that
the closed-loop system is:
ėixp = eixv,

ėixv = −
∑

j∈Ni

aij [k1(xixp − xjxp) + k2(eixv − ejxv)]

− bi[k1eixp + k2eixv]−
Ki1eixv

mi

.

(9)

We will show that the multi-agent system (9) is globally
stable, and is verified as follows.

A candidate Lyapunov function for system (9) is
constructed as:

V (t) = k1

N∑

i=1

(

N∑

j=1

1

2
aij(eixp − ejxp)

2 + bie
2
ixp)+

N∑

i=1

e2ixv,

(10)
where the derivative ofV along system (9) is:

V̇ (t) =k1

N∑

i=1

(

N∑

j=1

(aijeixp − ejxp)(ėixp − ėjxp))+

2bik1eixpeixv + 2

N∑

i=1

eixv ėixv,

(11)
by substituting (9) into (11), the second item to the
right of the equal sign in (10) obtains the following
expression:

N∑

i=1

eixv ėixv =

N∑

i=1

eixv(−
Ki1

mi

eixv −
∑

j∈Ni

aij [k1(eixp

− ejxp) + k2(eixv − ejxv)]− bi[k1(eixp

− ejxp) + k2(eixv − ejxv)]),

= −

N∑

i=1

Ki1

mi

e2ixv −

N∑

i=1

eixv
∑

j∈Ni

aij [k1×

(eixp − ejxp) + k2(eixv − ejxv)]

−

N∑

i=1

eixvbi(k1eixp + k2eixv),

(12)
owing to A is a symmetric matrix,aij = aji, i ∈ Γ;
thus, (12) can be rewritten as follows:

N∑

i=1

eixv
∑

j∈Ni

aij [k1(eixp − ejxp) + k2(eixv − ejxv)] =

1

2

N∑

i=1

∑

j∈Ni

aij [k1(eixv − ejxv)(eixp − ejxp) + k2(eixv

− ejxv)
2],

(13)
after taking the simplification of (13),

∑N

i=1 eixv ėixv

can be expressed as follows:
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2

N∑

i=1

eixv ėixv = −2

N∑

i=1

Ki1

mi

e2ixv −
N∑

i=1

∑

j∈Ni

aij [k1×

(eixv − ejxv)(eixp − ejxp) + k2(eixv

− ejxv)
2]− 2

N∑

i=1

bi(k1eixpeexv + k2e
2
ixv),

(14)
by using the time derivative of (10) and

substituting (14) into (11), we obtain that:

V̇ (t) = −2

N∑

i=1

Ki1

mi

e2ixv −
N∑

i=1

∑

j∈Ni

aijk2(eixv − ejxv)
2

− 2

N∑

i=1

bik2e
2
ixv,

(15)
owing toaij ≥ 0, bi ≥ 0, it can be concluded from (15)
that

V̇ (t) ≤ 0. (16)

Define setΨ = {(eixp, eixv)|V̇ ≡ 0}. Owing to the
connectivity of the communication topology graph,
V̇ ≡ 0 implies thateixv ≡ 0 and thenėixv ≡ 0, ∀i ∈ Γ.
Hence, based on LsSalle’s invariance principle, it can
be concluded that(eixp(t), eixv(t)) → 0 as t→ ∞ for
any i ∈ Γ. In particular, the closed-loop system (11) is
globally asymptotically stable. 2

Simultaneously,eiyp, eiyv, eizp, eizv can converge
to 0 under the controllersuiy, uiz, thereby realizing the
ideal formation control.
Remark 4. LaSalle invariance principle is an effective
tool in studying nonlinear time-invariant systems,
by using LaSalle invariance principle,the underlying
mechanism that attains the algorithmic convergence is
uncovered.

3.2. Attitude Controller Design

The desired attitude of the quadrotor aircraft can
be generated by the three virtual control inputsui =
[uix, uiy, uiz]

T . Specifically,





Tid = mi

√
u2ix + u2iy + (uiz + g)2,

φid = arcsin(
mi(uix sinψ

d
i − uiy cosψ

d
i )

Ti
),

θid = arctan(
uix cosψ

d
i + uiy sinψ

d
i

uiz + g
), i ∈ Γ.

(17)

The desired yaw angle can be set toψid = 0 for easy
analysis because the variableψid is a free variable, and
the subscriptd means the desired value.
Remark 5. uiz + g should constantly be positive to
avoid the discontinuity. It is feasible because proposed
controlleruiz is bounded by appropriately selecting the
gainsk1, k2 and the condition thatvzd, v̇zd is in a certain
range when we calculateθid from (17).

The dynamics of attitude subsystem can be
expressed as a second-order system:

{
χ̇(t) = χv(t),

χ̇v(t) = a1χv(t) + a2ρ(t)u(t),
(18)

where χ(t), χv(t), and u(t) represent the posi-
tion, velocity and control input vector, correspond-
ingly. ρ(t) = diag{ρ1(t), ρ2(t), . . . , ρm(t)}, where0 <
ρj(t) ≤ 1 denotes the unknown efficiency factor of
actuator channelj(j = 1, 2, . . . ,m).
Assumption 2. The unknown efficiency factorρ(t) is
bounded, and an unknown positive constantρ exists in
which0 < ρ ≤ ρ(t) ≤ 1.
Remark 6. Assumption 2 implies the following two
cases: (i)0 < ρ(t) < 1 means that controller partially
lose its effectiveness. (ii)ρ(t) = 0 indicate the outage
of source, that is, input channel can no longer
receive information from controlleru(t). (iii) ρ(t) = 1
correspond to the normal operation.

Owing to the fault-tolerant tracking control in the
case of the actuator damage, the design controlleru(t)
enables the system to implement the tracking control in
case of actuator faults.

Let 



eχ(t) = χ(t)− χd(t),

eχv
(t) = χv(t)− χvd(t),

ξ(t) = eχ(t) + eχv
(t),

(19)

where xd, vd is the desired position and velocity
of the formation, respectively. For the second-order
system, consider the following fault-tolerant time-
varying control protocol:

u(t) = −α̂(t)ξ(t) − f(ξ(t)), (20)

whereα̂(t) is an adaptive parameter updated by

˙̂α(t) = γ(−ηα̂(t) + a2‖ξ(t)‖
2 + ‖ξ(t)‖(‖χ̇vd(t)‖

+ ‖χv(t)‖ + ‖eχv
(t)‖)),

(21)
where α̂(t0) ≥ 0, γ is a positive constant, andη is a
small positive constant selected by the designer. The
nonlinear functionf(ξ(t)) is defined as

f(ξ(t)) =

{
β(t)ξ(t)
‖ξ(t)‖ , β(t)ξ(t) > k
β2(t)ξ(t)

k
, β(t)ξ(t) ≤ k

(22)
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where β(t) = α̂(t)(‖ ˙χvd(t)‖+ ‖χv(t)‖ + ‖eχv
(t)‖) ,

and k is a positive constant. According to the
boundary theory, the functionf(ξ(t)) is the continuous
approximation of the sign function, andk represents
the size of the boundary layers. Ifk → 0, f(ξ(t)) →
β(t)sgn(ξ(t)).

In practical applications, the errors can hardly
converge to zero exactly under the influences of the
actuator failures. If the errors are uniformly ultimately
bounded with sufficiently small bounds, system (18)
is assumed to achieve the tracking control with a
certain small error, which is acceptable in most practical
circumstances.
Theorem 2. If Assumption 2 holds, then the errors
ξ(t) and the adaptive control gainŝα(t) are uniformly
ultimately bounded under the FTC protocol (20) and
converge exponentially to the bounded set:

D = {ξ(t), α̂(t) : V (t) <
1

2δ
ρ(ka2 + ηα2)}, (23)

where

V (t) =
1

2
ξT (t)ξ(t) +

α̃2(t)

2γ
ρ, (24)

α̃(t) = α̂(t)− α, the positive constantδ satisfiesδ <
ηγ, and the positive constantα is sufficiently large; thus

α > max{
1

ρ
,
a1

ρ
,
δ

2ρ
}. (25)

Proof. On the basis of the definitions ofξ(t), the
second-order system can be rewritten in the following
form:

ξ̇(t) = eχv
(t) + a1χv(t) + a2ρ(t)u(t)− χ̇vd(t), (26)

The time derivative ofV (t) along the trajectory of (26)
is obtained as

V̇ (t) = ξT (t)(eχv
(t) + a1χv(t)− a2ρ(t)α̂(t)ξ(t)− a2

× ρ(t)f(ξ(t))− χ̇vd(t) +
˙̃α(t)α̃(t)

2γ
ρ ≤ ξT (t)×

eχv
(t) + a1ξ

T (t)χv(t)− a2ρα̂(t)‖ξ(t)‖
2 − a2ρ×

ξT (t)f(ξ(t)) − ξT (t)χ̇vd(t)ρ(t)f(ξ(t)) − χ̇vd(t))

+
˙̃α(t)α̃(t)

2γ
ρ+ ρα̃(t)(−ηα̂(t) + a2‖ξ(t)‖

2+

‖ξ(t)‖(‖χ̇vd(t)‖+ ‖χv(t)‖ + ‖eχv
(t)‖)).

(27)
Two cases are considered in the following proof.

(i) If β(t)‖ξ(t)‖ > k, then ξT (t)f(ξ(t)) can be
expressed as

ξT (t)f(ξ(t)) = β(t)‖ξ(t)‖, (28)

(ii) If β(t)‖ξ(t)‖ ≤ k, then ξT (t)f(ξ(t)) can be
expressed as

ξT (t)f(ξ(t)) =
α̂2(t)(β2(t)ξ(t)

k
, (29)

furthermore, (28) and (29) can be obtained as

ρβ(t)‖ξ(t)‖ − a2ρf(ξ(t))ξ(t) ≤
1

4
ρka2, (30)

where Young’s inequality can be determined using the
following form: −a2

c
+ a ≤ 1

4 c with a ≥ 0 and c > 0
has been used.

Therefore, according to the above two cases (28)
and (29), (27) can be denoted as

V̇ (t) ≤− δV (t) +
1

2
δξT (t)ξ(t) +

ρδα̃2(t)

2γ
+ ξT (t)×

eχv
(t) + a1ξ

T (t)χv(t)− a2ρα̂(t)‖ξ(t)‖
2−

a2ρξ
T (t)f(ξ(t)) − ξT (t)χ̇vd(t) + ρα̃(t)×

(−ηα̂(t) + a2‖ξ(t)‖
2 + ‖ξ(t)‖(‖χ̇vd(t)‖+

‖χv(t)‖ + ‖eχv
(t)‖)),

(31)
note that −α̃(t)(α̃(t) + α) ≤ − 1

2 α̃
2(t) + 1

2α. Then,
(31) expresses

V̇ (t) ≤− δV (t) +
1

2
δ‖ξ(t)‖2 +

ρδα̃2(t)

2γ
+ ‖ξ(t)‖×

‖eχv
(t)‖ + a1‖ξ(t)‖‖χv(t)‖ − a2ρα̃(t)‖ξ(t)‖

2

− a2ρξ
T (t)f(ξ(t)) + ‖ξT (t)‖‖χ̇vd(t)‖+

1

2
(α2 − α̃2)ρη + a2 × ρα̃(t)‖ξ(t)‖2 + ρα̃(t)×

‖ξ(t)‖(‖χ̇vd(t)‖ + ‖χv(t)‖+ ‖eχv
(t)‖),

(32)
then

V̇ (t) ≤− δV (t) + (1− ρα)(‖χ̇vd(t)‖ + ‖χv(t)‖)×

‖ξ(t)‖+ α̃2(t)(
ρδ

2γ
− ρη) + (a1 − ρα)‖χv(t)‖

× ‖ξ(t)‖+
1

4
ρka2 +

1

2
ρηα2 + ‖ξ(t)‖×

(
1

2
δ − a2ρα),

(33)
let the positive constantδ be sufficiently small; thus
δ < ηγ, and designα is sufficiently large to satisfy
α > max{ 1

ρ
, a1

ρ
, δ
ρ
}, then, (33) indicates that

V̇ (t) ≤ −δV (t) +
1

2
ρ(ka2 + ηα2), (34)
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using the comparison lemma in [31], and letκ = ka2 +
ηα2, the following equation can be obtained:

V (t) ≤ (V (0)−
1

2δ
ρκ)e−δt +

1

2δ
ρκ. (35)

(35) expresses thatV (t) converges exponentially to the
bounded set defined in (23) with a convergence rate
that is faster thane−δt, where the positive constant
δ provides a lower bound of the convergence rate of
V (t). Therefore,ξ(t) andα̂(t) are uniformly ultimately
bounded. These variables complete the proof. 2

Remark 7. The formation errors are confirmed to
uniformly converge to a bound defined in Theorem
2. From (23) and (25), the bounds of the actuator
faults, the design parametersk and η, and the
parameters of the attitude subsystem can affect the
bounded setD in (23). We can designk and
η to be relatively small to enable the formation
errors to converge to a small neighborhood of zero,
thereby satisfying the requirements of most practical
applications. The nonlinear functionf(ξ(t)) is a
continuous approximation of discontinuous function
β(t)sgn(ξ(t)) using boundary layer theory. A large
chattering in the control input is prohibited in practice
despite the convergence of the formation errors to zero
by using the sign function. The continuous control
protocol (20) can avoid the large chattering efficiently.
Remark 8. The system model mentioned in (21) is
similar to the attitude subsystem in (2), that is, the
proposed control scheme (23) can compensate for the
actuator faults. Therefore, the three attitude angles in
the inner-loop subsystem can still track the desired
attitude angles generated by the three virtual control
inputs of the outer-loop subsystem, and the formation
control can still be accomplished when the actuator
faults occur in the attitude subsystem.

IV. Simulation Results

Three network systems that follow a quadrotor
and a leader quadrotoris considered in this study.
The exchange of information between quadrotor
aircrafts is illustrated by the undirected topology
depicted in Figure 3. The weights of the undirected
edge are as follows:a12 = a21 = 1, a23 = a32 = 1,
and b1 = 1. The inertia matrices are selected as:
Ji = diag(0.0023, 0.0024, 0.0026), and the mass of the
aircraft ismi = 0.468, the distance is selected asli =
0.3, and the aerodynamic damping factor is selected as
Kij = 0.01, wherei = 1, 2, 3, j = 1, 2, 3, 4, 5, 6.

In Figure 2, the regular triangle determined in the
X-Z plane is selected as the desired formation pattern to

Fig. 2. The communication topology graph and the desired formation
pattern.

facilitate analysis. The relative position deviations are
presented as follows:

∆1 = [0, 0, 1]T , ∆2 = [cos(
5π

6
), 0, sin(

−π

6
)]T ,

∆3 = [cos(
−π

6
), 0, sin(

−π

6
)]T

The initial conditions for quadrotor1, quadrotor2 and
quadrotor3 aircraft are[0.46, 0,−3.6, 0, 0.46, 1.31]T,
[0, 0.76, 5, 0, 0.33, 0]T and [−0.54, 0.76, 0, 0, 0.51, 0]T

respectively, and the trajectory of the virtual leader is:
[xd(t), yd(t), zd(t)]

T = [5 sin(0.2t), 5 cos(0.2t), 0.5t]T

Two cases will be considered.
Case 1: Absence of adaptive mechanism
By Theorem 1 and Theorem 2, the gains of

distributed formation controller (9) and controller
without adaptive mechanism are selected as follows:




τi1 = −k3
Ji1

li
(φi − φid)− k4

Ji1

li
(φ̇i − φ̇id) +

Ji1

li
φ̈id

+Ki4φ̇id,

τi2 = −k3
Ji2

li
(θi − θid)− k4

Ji2

li
(θ̇i − θ̇id) +

Ji2

li
θ̈id

+Ki5θ̇id,

τi3 = −k3
Ji3

li
(ψi − ψid)− k4

Ji3

li
(ψ̇i − ψ̇id) +

Ji3

li
ψ̈id

+Ki6ψ̇id,

where
k1 = 3.5, k2 = 4.2, k3 = 3.0, k4 = 3.5.

In this case, under the proposed control algorithm,
the response curves of errors between position
and desired position for quadrotor1, quadrotor2 and
quadrotor3 are respectively exhibited in Fig 3, Fig 4
and Fig5, because quadrotor2 and quadrotor3 are barely
affected by the actuator fault, the response curves with
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adaptive mechanism for quadrotor2 and quadrotor3 can
be omitted. The response curves for the attitude for
quadrotor1 are displayed in Fig 6. Here, the following
fault mode is considered:

The attitude system of quadrotor 1 before 37 s
operates in the normal case. After 37s. The actuator of
quadrotor 1 loses 50% of its effectiveness, whereas the
other quadrotors are normal.
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Fig. 3. The response curves of errors between position and desired
position without adaptive mechanism.
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Fig. 4. The response curves of errors between position and desired
position without adaptive mechanism.
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Fig. 5. The response curves of errors between position and desired
position without adaptive mechanism.

Case 2: With adaptive mechanism
The fault mode is similar to Case 1. By Theorem

1 and Theorem 2, the position and the desired position
for quadrotor 1 are presented in Figure 5. The response
curves for the attitude and aircraft formation trajectory
of quadrotor 1 are illustrated in Figures 6 and 7,
correspondingly.
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Fig. 6. The response curves of attitude for quadrotor1 without adaptive
mechanism.
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Fig. 7. The response curves of errors between position and desired
position using proposed scheme.
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Fig. 8. The response curves of attitude for quadrotor1 usingproposed
scheme.
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Fig. 9. The response curves of aircraft formation trajectory using
proposed scheme.

The proposed adaptive controller can guarantee the
tracking errors that converging to the bounded set in
faulty cases.
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V. Conclusion

The main goal of this study is to solve the fault-
tolerant formation control for a group of quadrotor
aircrafts through the distributed control method. A
distributed formation control algorithm that uses the
global errors and a fault-tolerant control algorithm base
on adaptive mechanism have been proposed. A precise
theoretical analysis has indicated that the required
formation pattern and the desired formation trajectory
can be achieved through the proposed fault-tolerant
formation control algorithm.
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