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TOPOLOGICAL FUKAYA CATEGORY AND MIRROR SYMMETRY FOR
PUNCTURED SURFACES

JAMES PASCALEFF AND NICOLÒ SIBILLA

Abstract. In this paper we establish a version of homological mirror symmetry for punc-
tured Riemann surfaces. Following a proposal of Kontsevich we model A-branes on a punc-
tured surface Σ via the topological Fukaya category. We prove that the topological Fukaya
category of Σ is equivalent to the category of matrix factorizations of a certain mirror LG
model (X,W ). Along the way we establish new gluing results for the topological Fukaya
category of punctured surfaces which are of independent interest.
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1. Introduction

The Fukaya category is an intricate invariant of symplectic manifolds. One of the many
subtleties of the theory is that pseudo-holomorphic discs, which control compositions of
morphisms in the Fukaya category, are global in nature. As a consequence, there is no way
to calculate the Fukaya category of a general symplectic manifold by breaking it down into
local pieces.1 In the case of exact symplectic manifolds, however, the Fukaya category is
expected to have good local-to-global properties. For instance, if S = T ∗M is the cotangent
bundle of an analytic variety, this follows from work of Nadler and Zaslow. They prove
in [NZ, N] that the (infinitesimal) Fukaya category of S is equivalent to the category of
constructible sheaves on the base manifold M . This implies in particular that the Fukaya
category of S localizes as a sheaf of categories over M .

Recently Kontsevich [K] has proposed that the Fukaya category of a Stein manifold S can
be described in terms of a (co)sheaf of categories on a skeleton of S. A skeleton is, roughly,
a half-dimensional CW complex X embedded in S as a Lagrangian deformation retract.
According to Kontsevich, X should carry a cosheaf of categories, which we will denote F top,
that encodes in a universal way the local geometry of the singularities of X. He conjectures
that the global sections of F top on X should be equivalent to the wrapped Fukaya category
of S.

Giving a rigorous definition of the cosheaf F top is subtle. Work of several authors has
clarified the case of punctured Riemann surfaces [DK, N1, STZ], while generalizations to
higher dimensions have been pursued in [N4, N5]. The theory is considerably easier in
complex dimension one because skeleta of punctured Riemann surfaces, also known as ribbon
graphs or spines, have a simple and well studied combinatorics and geometry, while the higher
dimensional picture is only beginning to emerge [RSTZ, N2]. Implementing Kontsevich’s
ideas, the formalism developed in [DK, N1, STZ] defines a covariant functor F top(−) from a
category of ribbon graphs and open inclusions to triangulated dg categories.

An important feature of the theory is that, if X and X ′ are two distinct compact skeleta
of a punctured surface Σ, there is an equivalence

F top(X) ' F top(X ′).

We will refer to F top(X) as the topological Fukaya category of Σ, and we denote it Fuktop(Σ).
In this paper we take Fuktop(Σ) as a model for the category of A-branes on Σ. We prove
homological mirror symmetry for punctured Riemann surfaces by showing that Fuktop(Σ) is
equivalent to the category of B-branes on a mirror geometry LG model.

1.1. Hori-Vafa homological mirror symmetry. Let us review the setting of Hori-Vafa
mirror symmetry for LG models [HV, GKR]. Let X be a toric threefold with trivial canonical
bundle. The fan of X can be realized as a smooth subdivision of the cone over a two-
dimensional lattice polytope, see Section 3.1.1 for more details. The height function on the
fan of X gives rise to a regular map

W : X → A1,

1See however recent proposals of Tamarkin [Ta] and Tsygan [Ts].
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which is called the superpotential. The category of B-branes for the LG model (X,W ) is
the Z2-graded category of matrix factorizations MF (X,W ). The mirror of the LG-model
(X,W ) is a smooth algebraic curve ΣW in C∗ ×C∗, called the mirror curve (see Section 3).
The following is our main result.

Theorem 1.1 (Hori-Vafa homological mirror symmetry). There is an equivalence

Fuktop(ΣW ) 'MF (X,W ).

Theorem 1.1 provides a proof of homological mirror symmetry for punctured surfaces,
provided that we model the category of A-branes via the topological Fukaya category. This
extends to all genera earlier results for curves of genus zero and one which were obtained in
[STZ] and [DK]. We also mention work of Nadler, who studies both directions of Hori-Vafa
mirror symmetry for higher dimensional pairs of pants [N3, N4, N5].

We learnt the statement of Hori-Vafa homological mirror symmetry for punctured surfaces
from the inspiring paper [AAEKO]. In [AAEKO] the authors prove homological mirror
symmetry for punctured spheres. Their main theorem is parallel to our own (in genus zero)
with the important difference that they work with the wrapped Fukaya category, rather than
with its topological model. See also related work of Bocklandt [B]. Mirror symmetry for
higher-dimensional pairs of pants was studied by Sheridan in [Sh].

Denote Fukwr(Σ) the wrapped Fukaya category of a punctured surface Σ. Our main result
combined with the main result of [AAEKO] gives equivalences

Fuktop(ΣW ) 'MF (X,W ) ' Fukwr(ΣW ),

for all Riemann surfaces ΣW which can be realized as unramified cyclic covers of punctured
spheres. Thus, for this class of examples, the topological Fukaya category captures the
wrapped Fukaya category, corroborating Kontsevich’s proposal. We also remark that a
proof of the equivalence between topological and wrapped Fukaya category, with different
methods, appeared in the recent [HKK].

Remark 1.2. When we were close to completing the project we learnt that Lee, in her
thesis [Le], extends the results of [AAEKO] to all genera. Although our techniques are very
different, conceptually the approach pursued in this work and in Lee’s are closely related. The
results of this paper are logically independent of those of [Le], since we use the topological
version of the Fukaya category instead of the version defined in terms of pseudo-holomorphic
curves.

Remark 1.3. Theorem 1.1 gives a homological mirror symmetry picture for the wrapped
Fukaya category of punctured Riemann surfaces. Our techniques can also be used to obtain
more general mirror symmetry statements for partially wrapped Fukaya categories: this cor-
responds to considering non-compact skeleta having semi-infinite edges that approach the
punctures of the Riemann surface. In the parlance of partially wrapped Fukaya categories,
the non-compact ends of the skeleton are called stops : they encode the directions along
which wrapping is not allowed.

For brevity, we limit ourselves to a sketch of the theory in this more general setting. Let
S ⊂ ΣW be such a skeleton with non-compact edges. Then S determines a stacky partial

compactification X̃ of X, which is no longer Calabi–Yau. The punctures of ΣW are in
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bijection with the non-proper irreducible components of the singular locus of W . These are
all isomorphic to A1: considering a skeleton S with n non-compact edges approaching a given
puncture corresponds to compactifying that copy of A1 to a stacky rational curve P1(1, n).

The superpotential W : X → C extends to X̃, but not as a regular function: it is given

instead by the section W̃ of an appropriate line bundle. However we can still make sense of

the category of matrix factorizations MF (X̃, W̃ ). The claim is that there is an equivalence
of categories

(1) F(S) 'MF (X̃, W̃ )

We remark that our techniques would allow us to compute the left hand side of (1) and
prove the homological mirror symmetry equivalence exactly in the same way as we prove
Theorem 1.1. We refer the reader to Remark 8.6 in the main text for additional details. Let
us also mention recent work of Lekili–Polishchuck who give a different picture of homological
mirror symmetry for partially wrapped Fukaya categories of punctured surfaces in terms of
Auslander orders [LeP].

1.2. The topological Fukaya category and pants decompositions. The technical core
of the paper is a study of the way in which the topological Fukaya category interacts with
pants decompositions. By construction F top(−) is a cosheaf of categories on the spine of a
punctured surface. So locality is built into the definition of the topological Fukaya category.
From a geometric perspective, this locality corresponds to cutting up the surface into flat
polygons having their vertices at the punctures.

In this paper we prove that the topological Fukaya category of a punctured surface satisfies
also a different kind of local-to-global behavior: it can be glued together from the Fukaya
categories of the pairs of pants making up a pants decomposition of it. We believe that this
result is of independent interest. We expect this to be a feature of the topological Fukaya
category in all dimensions, and we will return to this in future work. Based on recent parallel
advances in the theory of the wrapped Fukaya category [Le], this seems to be a promising
avenue to compare the wrapped and the topological pictures of the category of A-branes on
Stein manifolds. In order to explain the gluing formula for pants decompositions we need to
sketch first a construction that attaches to a tropical curve G a category B(G), full details
can be found in Section 3.1.3.

Let κ be the ground field. We denote by MF (X, f) the category of matrix factorizations
of the function f : X → A1

κ and by Fuktop(Σ) the topological Fukaya category of Σ. We
denote by MF∞(X, f) and Fuktop∞ (Σ) the Ind completions of these categories. We attach to
a vertex v of G the category

B(v) := MF∞(A3
κ, xyz),

and to an edge e of G the category

B(e) := MF∞(Gm × A2
κ, yz),

where y and z are coordinates on A2
κ. If a vertex v is incident to an edge e there is a restriction

functor B(v)→ B(e). We define B(G) as the (homotopy) limit of these restriction functors.
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Theorem 1.4. Let Σ be an algebraic curve in C∗×C∗ and let G be its tropicalization. Then
there is an equivalence

(2) Fuktop∞ (Σ) ' B(G).

As proved in [P], MF∞(X, f) is a sheaf of categories for the étale topology on X. This
gives rise to an expression for MF∞(X, f) which is exactly parallel to (2). Our main theorem
follows easily from here.

1.3. The topological Fukaya category and closed covers. The proof of Theorem 1.4
hinges on the key observation that the cosheaf F top(−) behaves like a sheaf with respect
to a certain type of closed covers. This somewhat surprising property of F top(−) is very
natural from the viewpoint of mirror symmetry, because it is mirror to Zariski descent of
quasi-coherent sheaves and matrix factorizations.

We formulate our gluing result in terms of the Ind-completion F top∞ (−) of F top(−). In order
to simplify the exposition, in the statement below we do not specify all our assumptions on
the closed cover. We refer the reader to the main text for the precise statement of our main
gluing result, Theorem 6.6.

Theorem 1.5. Let X be a ribbon graph.

• If Z is a closed subgraph of X there are restriction functors

R : F top(X)→ F top(Z), R∞ : F top∞ (X)→ F top∞ (Z).

• Let Z1 and Z2 be closed subgraphs of X, such that Z1 ∪ Z2 = Z. Assume that the
underlying topological space of the intersection Z12 = Z1 ∩ Z2 is a disjoint union of
copies of S1. Then, under suitable assumptions on Z1 and Z2, the diagram

F top∞ (X) //

��

F top∞ (Z1)

��
F top∞ (Z2) // F top∞ (Z12)

is a homotopy fiber product of dg categories.

Restrictions to closed subgraphs for the topological Fukaya category have also been been
considered by Dyckerhoff in [D]. From the perspective of the wrapped Fukaya category, they
are closely related to the stop removal functors appearing in recent work of Sylvan [Sy]. The
technique of gluing the topological Fukaya category across a decomposition of skeleta into
closed pieces also plays a central in [Ku]. Theorem 1.5 is a key ingredient in the proof of
Theorem 1.4, which also depends on a careful study of the geometry of skeleta under pants
attachments. Indeed our proof of Theorem 1.4 hinges on a recursion where, at each step,
we are simultaneously gluing in a pair of pants and deforming the skeleton on the surface to
make it compatible with this gluing. The topological analysis required for the argument is
carried out in Section 7.
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1.4. The structure of the paper. In section 2 we fix notations on dg categories and
ribbon graphs. In Section 3 we explain the set-up of Hori-Vafa mirror symmetry and prove
a key decomposition of the category of matrix factorizations, which is a simple consequence
of its sheaf properties. Section 4 contains a summary of the theory of the topological Fukaya
category based mostly on [DK], while in Section 5 we study restrictions functors to open
and closed subgraphs, and their compatibilities. In Section 6 we prove that the topological
Fukaya category can be glued from a special kind of covers by closed sub-graphs. Section
7 is devoted to a careful examination of the interactions between ribbon graphs and pants
decompositions. This play a key role in the proof of the main theorem, which is contained
in Section 8.

Acknowledgements. We thank David Ben-Zvi, Dario Beraldo, Gaëtan Borot, Tobias Dy-
ckerhoff, Mikhail Kapranov, Gabriel Kerr, Charles Rezk, Sarah Scherotzke, Paul Seidel, and
Eric Zaslow for useful discussions and for their interest in this project. We also thank the
anonymous referee for comments that significantly improved the exposition. This project
started when both authors were visiting the Max Planck Institute for Mathematics in Bonn
in the Summer of 2014, and they thank the institute for its hospitality and support. JP was
partially supported by NSF Grant DMS-1522670. NS thanks the University of Oxford and
Wadham College, where part of this work was carried out, for excellent working conditions.

2. Notations and conventions

• We fix throughout a ground field κ of characteristic 0.
• Throughout the paper we will work with small and large categories, and the categories

that they form. We will ignore set-theoretic issues, and limit ourselves to mention
that they can be formally obviated by placing oneself in appropriate Grothendieck
universes, see for instance Section 2 of [To1].

2.1. Categories. In this paper we will work in the setting of dg categories. The theory of
ordinary triangulated categories suffer from limitations which make it unsuitable to many
applications in modern geometry. These limitations are essentially of two kinds. First, there
are issues arising when working within a given triangulated category, and that originate
from the lack of functorial universal constructions, such as cones. Additionally, triangulated
categories do not themselves form a well-behaved category. Among other things, this implies
that we have no workable notion of limits and colimits of triangulated categories, which are
essential to perform gluing of categories.

The theory of dg categories gives us means to overcome both kinds of limitations. As
opposed to ordinary triangulated categories, dg categories fit inside homotopically enriched
categories and this allows us to perform operations such as taking limits and colimits. There
are two main ways to define dg categories and to understand the structure of the category
that they form:

(1) Dg categories can be defined as ordinary categories strictly enriched over chain com-
plexes. Dg categories then form an ordinary category equipped with a model struc-
ture. In fact, there are several meaningful options for the model structure: the one
that is most relevant for us is the Morita model structure considered in [T] and [To1].
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(2) Dg categories can also be defined as κ-linear ∞-categories: that is, as ∞-categories
that carry an action of the symmetric monoidal ∞-category of chain complexes.
Following this definition, dg categories form naturally an∞-category. This approach
is taken up for instance in the important recent reference [GR].

Approaches (1) and (2) each have several distinct advantages. It is often useful to have
recourse to both viewpoints simultaneously, and this is what we shall do in the present paper.
Categories strictly enriched over chain complexes are much more concrete objects, and their
homotopy limits in the model category of dg categories can be calculated explicitly. On
the other hand, perspective (2) gives rise to more natural definitions and constructions and
puts at our disposal the comprehensive foundations on ∞-categories provided by the work
of Lurie [Lu] and Gaitsgory–Rozenblyum [GR].

In fact, there is a well-understood dictionary between these two viewpoints. Inverting
weak equivalences in the model structure of dg categories (1) yields an ∞-category which is
equivalent to the ∞-category of dg categories (2). As a consequence homotopy limits and
colimits match, via this correspondence, their ∞-categorical counterparts. A proof of this
equivalence was given by Cohn [Co] and then in a more general context by Haugseng [H] (see
Section 2.1.1 below). Throughout the paper we adopt the flexible ∞-categorical formalism
coming from view-point (2) while performing all actual calculations (e.g. of limits) in the
model category of dg categories made available by view-point (1). We shall give more precise
pointers to the literature below.

Before proceeding, however, we remark that we will be mostly interested in Z2-graded,
rather than Z-graded, dg categories. Some of the results which we will recall in the following
have not been stated explicitly in the literature in the Z2-graded setting. However, they can
all be transported to the Z2-graded setting without variations. We refer to Section 1 of [DK]
and Section 2 of [D] for a detailed summary of the Morita homotopy theory of Z2-graded dg
categories, which is closely patterned on the Z-graded theory developed in [To1].

The standard reference for∞-categories is [Lu]. We will follow closely the treatment of dg
categories given in [DG] and [GR, I.1.10.3], to which we refer the reader for additional details.
In particular, the notations and basic facts below are all taken from these two references.
The only difference is that we will systematically place ourselves in the Z2-graded setting.

We denote Vect(2) the presentable, stable and symmetric monoidal ∞-category of Z2-
periodic chain complexes of κ-vector spaces. We denote Vect(2),fd its full subcategory of
compact objects. For the rest of this section we will call:

• ∞-categories tensored over Vect(2),fd, κ-linear ∞-categories
• cocomplete ∞-categories tensored over Vect(2), cocomplete κ-linear ∞-categories.

These are dg categories in the sense of view point (2). We introduce the following notations:

• We denote DGCat(2),non−cocmpl the ∞-category of (not necessarily small) κ-linear ∞-
categories

• We denote DGCat
(2)
cont the ∞-category of cocomplete κ-linear graded dg categories,

and continuous functors between them. DGCat
(2)
cont carries a symmetric monoidal

structure, and we denote its internal Hom by Funcont(−,−).
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• We denote DGCat
(2)
small the ∞-category of small κ-linear ∞-categories. DGCat

(2)
small

also carries a natural symmetric monoidal structure and we denote its internal Hom
by Fun(−,−).

• If C is an object in DGCat
(2)
cont, we denote Cω its subcategory of compact objects,

Cω ∈ DGCat
(2)
small.

We have the forgetful and the Ind-completion functors

U : DGCat(2),non−cocmpl −→ DGCat
(2)
cont Ind : DGCat(2),non−cocmpl −→ DGCat

(2)
cont.

The Ind-completion functor can be defined, on objects, via the formula (see [GR, I.1], Lemma
10.5.6)

C ∈ DGCat(2),non−cocmpl 7→ Ind(C) = Funκ(C
op,Vect(2)) ∈ DGCat

(2)
cont

where Funk(−,−) denotes the ∞-category of Vect(2),fd-linear functors.

Remark 2.1. In the main text we will apply the Ind-completion functor only to small
κ-linear ∞-categories: that is, to objects in the full subcategory

DGCat
(2)
small ⊂ DGCat(2),non−cocmpl.

Lemma 2.2. The functor Ind preserves small colimits of small categories.

Proof. In the general setting of ∞-categories, this is proved as [GR, I.7], Corollary 7.2.7.
The proof carries over to the κ-linear setting without variations. �

2.1.1. Rigid models. As we have already mentioned, the two viewpoints (1) and (2) on foun-
dations of dg categories which we discussed in Section 2.1 can be fully mapped onto each
other. This will allow us to leverage the computational power of model structures, while
retaining at the same time the flexibility of the ∞-categorical formalism. A precise formu-
lation of the equivalence between perspectives (1) and (2) was given in work of Cohn [Co].
We recall this below with the usual proviso that we will state it in the Z2-graded setting.

We will sometimes refer to categories strictly enriched over chain complexes as (ordinary)

dg categories in order to differentiate them from κ-linear ∞-categories. Let dgCat
(2)
κ be the

model category of small categories strictly enriched over chain complexes equipped with the
Morita model structure [To1]. Let W be the set of weak equivalences for the Morita model
structure: these are dg functors which induce quasi-equivalences at the level of (Z2-graded)
module categories.

Proposition 2.3 ([Co], Corollary 5.5). There is an equivalence of ∞-categories

N(dgCat(2)
κ )[W−1] ' DGCat

(2)
small

where N(−) is the nerve.

We will also need an analogue of Cohn’s result in the setting of large categories, that is for

DGCat
(2)
cont. Let us denote dgCat

(2)
κ,cont the strictly enriched analogue of DGCat

(2)
cont. This is the

Morita model category of cocomplete categories strictly enriched over κ−mod(2). Then the
analogue of Proposition 2.3 is discussed as Example 5.11 of [H]. In many situations having
recourse to the model category of dg categories has great computational advantages. In
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particular, we will be able to compute∞-categorical (co)limits in DGCat
(2)
cont and DGCat

(2)
small

by calculating the respective homotopy (co)limits of the strict models in dgCat
(2)
κ,cont.

Working with rigid models is often also helpful when considering commutative diagrams,
as it allows us to sidestep issues of homotopy coherence in ∞-categories. Recall that a
diagram of ordinary dg categories

A
F //

G
��

B

H
��

C
K // D

commutes if there is a natural transformation α : H ◦ F ⇒ K ◦G, which becomes a natural
equivalence when passing to homotopy categories. All commutative diagrams of dg categories
in this paper will be understood as coming from commutative diagrams of ordinary dg
categories as above.

2.1.2. Limits of dg categories. Homotopy limits of dg categories can be calculated explicitly.
Colimits of dg categories are, on the other hand, quite subtle. It is therefore an important
observation that, under suitable assumptions, colimits can actually be turned into limits.
This key fact can be formulated in various settings. For instance, in the context of colimits
of presentable ∞-categories such a result follows from Proposition 5.5.3.13 and 5.5.3.18 of
[Lu]. We will recall a formulation of this fact in the setting of dg-categories due to Drinfeld
and Gaitsgory. We follow closely Section 1.7.2 of [DG], with the usual difference that we
adapt every statement to the Z2-graded setting.

Let I be a small ∞-category, and let Ψ : I → DGCat
(2)
cont be a functor. For every pair of

objects i, j ∈ I and morphism i→ j, we set

Ci := Ψ(i) Cj := Ψ(j) ψi,j := Ψ(i→ j) : Ci → Cj.

Assume that each functor ψi,j admits a continuous right adjoint φj,i. Then there is a functor

Φ : Iop → DGCat
(2)
cont such that

Φ(i) = Ci, and Φ(i→ j) = φj,i.

Proposition 2.4 (Proposition 1.7.5 [DG]). The colimit

lim−→
i∈I

Ci := lim−→
I

Ψ ∈ DGCat
(2)
cont

is canonically equivalent to the limit

lim←−
i∈Iop

Ci := lim←−
I

Φ ∈ DGCat
(2)
cont.

2.1.3. Sheaves of dg categories. We will make frequent recourse to the concept of sheaf of
dg categories either on graphs, or on schemes equipped with the Zariski topology. For our
purposes it will be enough to use a rather weak notion of sheaf, which does not take into
consideration hypercovers. Let F be a presheaf of dg categories over a topological space X.
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We say that F satisfies Čech descent if, for all open subset U ⊂ X and cover U = {Ui}i∈I of
U, the restriction functor

(3) F(U) //
(
F(U) //// F(U ×U U) ////// . . .

)
realizes F(U) as the limit of the semi-cosimplicial object obtained by evaluating F on the
Čech nerve of U . If F satisfies Čech descent, we say that F is a sheaf of dg categories. The
dual notion of cosheaf of dg categories is defined by reversing all the arrows in (3).

There are two conditions under which (3) can be simplified, and that will occur in the
examples we will be considering in the rest of the paper:

(a) when triple and higher intersections of the cover U are empty,
(b) when F evaluated on the triple and higher intersection of the cover U is equivalent

to the zero category.

We remark that condition (a) is in fact of special case of condition (b), but it is useful to keep
them distinct. In this paper we will consider (co)sheaves of categories on graphs, which have
covering dimension one and where therefore condition (a) is automatically satisfied. Also, we
will consider sheaves of matrix factorizations on three-dimensional toric varieties equipped
with the Zariski topology: there, although triple overlaps will not be empty, condition (b)
will apply.

Let U = {U1, . . . , Un} be an open cover of U and assume that either condition (a) or (b)
are satisfied. Then the sheaf axiom (3) is equivalent to requiring that F(U) is the limit of
the following much smaller diagram, which coincides with the truncation of the Čech nerve
encoding the sheaf axiom in the classical setting of sheaves of sets

(4) F(U) //
( ∏
i=1,...,n

F(Ui) ////
∏
i<j

F(Ui ∩ Uj)
)

The same reasoning applies to cosheaves of categories, with the only difference that the
arrows in (4) have to be reversed.

We will always work in settings where either (a) (in the case of the topological Fukaya
category) or (b) (in the case of matrix factorizations) are satisfied, and therefore we always
implicitly reduce to (4).

2.1.4. Schemes and stacks. If X is a scheme or stack we denote

Perf(2)(X) ∈ DGCat
(2)
small, QCoh(2)(X) ∈ DGCat

(2)
cont

the Z2-periodization of the dg categories of perfect complexes and of quasi-coherent sheaves
on X. We refer the reader to Section 1.2 of [DK] for the definition of Z2-periodization. All
schemes appearing in this paper will be quasi-compact and with affine diagonal. All DM
stacks will be global quotients of such schemes by affine groups. Using the terminology
introduced in [BFN], these are all examples perfect stacks. This implies in particular that,
if X is such a scheme or stack, the category of quasi-coherent sheaves over X is equivalent
to the Ind-completion of its category of perfect complexes

QCoh(2)(X) ' Ind(Perf(2)(X)).
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2.2. Ribbon graphs. For a survey of the theory ribbon graphs see [MP], and Section 3.3
of [DK]. We will just review some standard terminology. A graph X is a pair (V,H) of finite
sets equipped with the following extra data:

• An involution σ : H → H
• A map I : H → V

We call V the set of vertices, and H the set of half-edges. Let v be a vertex. We say that
the half-edges in I−1(v) are incident to v. The cardinality of I−1(v) is called the valency of
the vertex v. The edges of X are the equivalence classes of half-edges under the action of
σ. We denote E the set of edges of σ. The set of external edges of X is the subset Eo ⊂ E
of equivalence classes of cardinality one, which correspond to the fixed points of σ. The
internal edges of X are the elements of E − Eo. Subdividing an edge e of X means adding
to X a two-valent vertex lying on e. More formally, let e be equal to {h1, h2} ⊂ H. We add
a new vertex ve to V , and two new half-edges h′1 and h′2 to H. We modify the maps σ and
I by setting

σ(h1) = h′1, σ(h2) = h′2, I(h′1) = I(h′2) = ve.

It is often useful to view a graph as a topological space. This is done by modeling the
external and the internal edges of G, respectively, as semiclosed and closed intervals, and
gluing them according to the incidence relations. We refer to this topological model as the
underlying topological space of X. When talking about the embedding of a graph X into a
topological space, we always mean the embedding of its underlying topological space.

Definition 2.5. A ribbon graph is a graph X = (V,H) together with the datum of a cyclic
ordering of the set I−1(v), for all vertices v of X.

If a graph X is embedded in an oriented surface it acquires a canonical ribbon graph struc-
ture by ordering the edges at each vertex counter-clockwise with respect to the orientation.
Conversely, it is possible to attach to any ribbon graph X a non-compact oriented surface
inside which X is embedded as a strong deformation retract. See [MP] for additional details
on these constructions. If Σ is a Riemann surface, a skeleton or spine of Σ is a ribbon graph
X together with an embedding X → Σ as a strong deformation retract.

3. Hori-Vafa mirror symmetry

In this section we review the setting of mirror symmetry for toric Calabi-Yau LG models
in dimension three. Mirror symmetry for LG models was first proposed by Hori and Vafa
[HV], and is the subject of a vast literature in string theory and mathematics, see [GKR] and
references therein. In this paper we compare the category of B-branes on toric Calabi-Yau
LG models and the category of A-branes on the mirror.

3.1. B-branes.
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3.1.1. Toric Calabi-Yau threefolds. Let Ñ be a n− 1-dimensional lattice, and let P a lattice

polytope in ÑR = Ñ ⊗R. Set N := Ñ ⊕Z, and NR := N ⊗R. Denote C(P ) ⊂ NR the cone
over the polytope P placed at height one in NR. More formally, consider

{1} × P ⊂ NR ∼= R⊕ ÑR,

and let C(P ) be the cone generated by {1} × P inside NR. Let F (P ) be the fan consisting
of C(P ) and all its faces. The affine toric variety XP corresponding to F (P ) has an isolated
Gorenstein singularity. The toric resolutions of XP are in bijection with smooth subdivisions
of the cone C(P ). We will be interested in toric crepant resolutions, that is, resolutions with
trivial canonical bundle.

Toric crepant resolutions of XP are given by unimodular triangulations of P , i.e. trian-
gulations of P by elementary lattice simplices. Any such triangulation T gives rise to a
smooth subdivision of the cone C(P ). We denote C(T ) the set of cones on the simplices
T ∈ T placed at height one in NR. Let F (T ) be the corresponding fan, and let XT be the
toric variety with fan F (T ). The variety XT is smooth and Calabi-Yau. All toric crepant
resolutions of XP are isomorphic to XT for some unimodular triangulation T of P .

The following definition will be useful later on, see for instance [BJMS] for additional
details on this construction.

Definition 3.1. Assume that n = 3. We denote GT the tropical curve dual to the triangu-
lation T of P .

Let M̃ = Hom(Ñ ,Z) and M = Hom(N,Z). The height function on N is by definition
the projection

N = Z× Ñ → Z.
The height function corresponds to the lattice point (1, 0) ∈M ∼= Z× M̃, which determines
a monomial function

WT : XT → A1
κ.

The category of B-branes on the Landau-Ginzburg model (XT ,WT ) is the category of matrix
factorizations for WT , MF (WT ). We review the theory of matrix factorizations next.

3.1.2. Matrix factorizations. Let X be a scheme or a smooth DM-stack and let f : X → A1
κ

be a regular function. The category of matrix factorizations for the pair (X, f) was defined
in [LP] and [O2], extending the theory of matrix factorizations for algebras that goes back
to classical work of Eisenbud [E]. These references make various assumptions on f and X,
which are always satisfied in the cases we are interested in. In the following X will always be
smooth of finite type, and f will be flat. We will work with a dg enhancement of the category
of matrix factorizations, which has been studied for instance in [LS] and [P]. We refer to
these papers for additional details. We denote MF (X, f) the Z2-periodic dg-category of
matrix factorizations of the pair (X, f). It will often be useful to work with Ind-completed
categories of matrix factorization.

Definition 3.2. We denote MF∞(X, f) the Ind-completion of MF (X, f),

MF∞(X, f) = Ind(MF (X, f)) ∈ DGCat
(2)
cont.

The category MF∞(X, f) has the following important descent property.
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Proposition 3.3 ([P] Proposition A.3.1). Let f : X → A1 be a morphism. Then the
assignment

U 7→MF∞(U, f |U)

determines a sheaf for the étale topology.

Using Proposition 3.3 we can give give a very concrete description of MF∞(XT ,WT ),
where XT and WT are as in section 3.1.1. In order to do so, we need to explain how to
attach a matrix factorizations-type category to a certain class of planar graphs. This will
require setting up some notations and preliminaries.

Let I be a set of cardinality three, say I = {a, b, c}. Denote

XI = Spec(κ[ti, i ∈ I]) = Spec(κ[ta, tb, tc]),

and let f be the regular function

f = ×i∈Iti = tatbtc : X −→ A1
κ.

For all j ∈ I, let Ij be the subset I − {j} ⊂ I. Let Uj be the open subscheme X − {tj = 0},
and let ιj be the inclusion Uj ⊂ X. Denote

ι∗j : MF∞(XI , f) −→MF∞(Uj, f |Uj)
the restriction functor. Let fj be the regular function

fj = ×i∈Ij ti : Uj −→ A1
κ.

Note that f |Uj is given by tjfj.

Proposition 3.4. There are equivalences of dg categories

MF∞(Uj, f |Uj) 'MF∞(Uj, fj) ' QCoh(2)(Gm).

Proof. Recall that objects of MF (Uj, fj) are pairs of free finite rank vector bundles on Uj,
and maps between them (

V1

d1 **
V2

)
,d2ii

having the property that

d1 ◦ d2 = fj · IdV2 , and d2 ◦ d1 = fj · IdV1 .

Thus the assignment

(
V1

d1
))
V2

)
d2ii ∈MF (Uj, fj) 7→

(
V1

tj ·d1
))
V2

)
d2ii ∈MF (Uj, f |Uj)

determines an equivalence
MF (Uj, f |Uj) 'MF (Uj, fj).

The first equivalence is obtained by Ind-completion.
The second equivalence follows from Knörrer periodicity. For a very general formulation

of Knörrer periodicity see Theorem 9.1.7 (ii) of [P]. Let us assume for convenience that
I = {1, 2, 3}, and that j = 1. Then Uj = Gm × A2

κ, and fj = t2 · t3, where t2 and t3 are
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coordinate on the factor A2
κ. By Knörrer periodicity MF (Uj, fj) is equivalent to the Z2-

periodic category of perfect complexes on the first factor, Gm. This concludes the proof. �

Remark 3.5. The equivalences constructed in Proposition 3.4 are given by explicit functors,
and do not rely on further choices. For the second equivalence, this follows from the proof of
Knörrer periodicity in [P]. Abusing notation we sometimes denote ι∗j also the composition
of the pull-back with the equivalences from Proposition 3.4. Thus we may write

ι∗j : MF∞(XI , f)→MF∞(Uj, fj), ι∗j : MF∞(XI , f)→ QCoh(2)(Gm).

We can abstract from Remark 3.5 a formalism of restriction functors which will be useful
in the next section. If L is a set of cardinality two, denote

XL = Spec(κ[tl, l ∈ L][u, u−1]) ∼= Gm × A2
κ,

and let f be the morphism
f = ×l∈Ltl : XL −→ A1

κ.

Definition 3.6. Let I and L be sets of cardinality three and two respectively, and assume
that we are given an embedding L ⊂ I. We denote RMF

∞ the composite:

RMF
∞ : MF∞(XI , f)

22

ι∗j // MF∞(Uj, fj)
' // MF∞(XL, f),

where

(1) {j} = I − L, and ι∗j is defined as in Remark 3.5.
(2) The equivalence MF∞(Uj, fj) ' MF∞(XL, f) is determined by the isomorphism of

κ-algebras

κ[ti, i ∈ I][t−1
j ] = κ[tl, l ∈ L][tj, t

−1
j ]

∼=−→ κ[tl, l ∈ L][u, u−1]

that sends tl to tl, and tj to tu.

3.1.3. Planar graphs and matrix factorizations. Let G be a trivalent, planar graph. Assume
for simplicity that G does not contain any loop. We will explain how to attach to G a matrix
factorization-type category. We denote VG the set of vertices of G, and EG the set of edges.

• Let v ∈ VG, and take a sufficiently small ball Bv in R2 centered at v. Then the set of
connected components of Bv −G has cardinality three, and we denote it Iv.
• Let e ∈ VG, and take a sufficiently small ball Be centered at any point in the relative

interior of e. The set of connected components of Bv − G has cardinality two, and
we denote it Le.

Remark 3.7. Note that the sets Iv and Le do not depend (up to canonical identifications)
on Be and Bv. Further, if a vertex v is incident to an edge e, there is a canonical embedding:
Le ⊂ Iv.

We attach to each vertex and edge of G a category of matrix factorizations in the following
way:

• We assign to v ∈ VG the category

B(v) := MF∞(XIv , f)
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• We assign to e ∈ EG the category

B(e) := MF∞(XLe , f)

By Remark 3.7, and Definition 3.6, if a vertex v is incident to an edge e we have a
restriction functor

(5) RB : B(v) −→ B(e).

If two vertices v1 and v2 are incident to an edge e, we obtain a diagram of restriction functors

B(v1)× B(v2) //// B(e).

Running over the vertices and edges of G, we obtain a Čech-type diagram in DGCat
(2)
cont

(6)
∏

v∈VG B(v) ////
∏

e∈EG B(e).

Definition 3.8. We denote B(G) the equalizer of diagram (6) in DGCat
(2)
cont.

We say that a subset T ⊂ G is a subgraph of G if

• T is a trivalent graph
• If e is an edge of G such that T ∩ e is non-empty, then e is contained in T

Note that if T is a subgraph of G we have inclusions VT ⊂ VG and ET ⊂ EG. We can define
a restriction functor

B(G) −→ B(T ).

This is obtained by considering the natural map between Čech-type diagrams given by the
obvious projections ∏

v∈VG B(v) // //

��

∏
e∈EG B(e)

��∏
v∈VT B(v) ////

∏
e∈ET B(e)

It is useful to extend to a general pair of graphs T ⊂ G the notation for restriction functors
that we introduced in (5) in the case of a vertex and a neighboring edge:

Definition 3.9. If T is a subgraph of G, we denote the restriction functor

RB : B(G) −→ B(T ).

The definition of B(G) allows us to encode the category of matrix factorizations of a toric
Calabi-Yau LG model in a simple combinatorial package. We use the notations of section
3.1.1.

Theorem 3.10. Let P be a planar lattice polytope, equipped with a unimodular triangulation
T . Let GT be the dual graph of T . Then there is an equivalence of dg categories

MF∞(XT ,WT ) ' B(GT ).
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Proof. Let C be the set of maximal cones in the fan of XT . Consider the standard open
cover of XT by toric affine patches: {Uσ}σ∈C , Uσ ∼= A3

κ. By Proposition 3.3 the category
MF∞(XT , fT ) can be expressed as the limit of the Čech diagram for the open cover {Uσ}σ∈C :
the vertices of this diagram are products of the categories

MF∞(Uσ, fT |Uσ), and MF∞(Uσ ∩ Uσ′ , fT |Uσ∩Uσ′ ), σ, σ′ ∈ C,

and the arrows are products of pullback functors.
Note that there is a natural bijection φ between the set VT of vertices of GT and C.

Moreover the definition of Iv gives an identification XIv
∼= Uφ(σ), and thus a canonical

equivalence

B(v) 'MF∞(Uφ(v), fT |φ(v)).

Similarly, by Remark 3.5, if v and v′ are two vertices of GT and e is the edge connecting
them, we obtain a commutative diagram

B(v)
' //

RB

��

MF∞(Uφ(v), fT |φ(v))

ι∗

��
B(e)

' // MF∞(Uφ(v) ∩ Uφ(v′), fT |Uφ(v)∩Uφ(v′)
)

where the horizontal arrows are canonical equivalences, and ι∗ is the restriction of matrix
factorizations along the embedding

ι : Uφ(v) ∩ Uφ(v′) → Uφ(v).

Thus the diagrams computing B(GT ) and MF∞(XT , fT ) are equivalent, and this concludes
the proof. �

3.2. A-branes.

As explained in [HV], the mirror of a toric Calabi-Yau LG model (XT ,WT ) is a punctured
Riemann surface ΣT embedded as an algebraic curve in C∗ × C∗. The graph GT is the
tropicalization of ΣT . Since we are interested in studying the A-model on ΣT we can disregard
its complex structure and focus on its topology, which is captured by the genus and the
number of punctures (see for instance [BS] for an explicit algebraic equation of ΣT ). These
can be read off from GT . The genus of ΣT is equal to the number of relatively compact
connected components in R2 −GT . The number of punctures of ΣT is equal to the number
of unbounded edges of GT .

When ΣT has genus 0, the authors of [AAEKO] consider the wrapped Fukaya category of
ΣT , and prove that it is equivalent to the category of matrix factorizations of the mirror toric
LG model. In this paper we will consider an alternative model for the category of A-branes
on a punctured Riemann surface, called the topological Fukaya category. The construction
of the topological Fukaya category was first suggested by Kontsevich [K] and was studied
in [DK, N1, STZ] and elsewhere in the case of punctured Riemann surfaces. We summarize
the theory of the topological Fukaya category in Section 4 below.
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Figure 1. The picture shows an example of the relationship between the
triangulation T , the tropical curve GT , and the mirror curve ΣT .

4. The topological Fukaya category

In this Section we recall the definition of the topological Fukaya for punctured Riemann
surfaces. We will mostly follow the approach of [DK], see also [N1, STZ, HKK] for related
alternative formulations of this theory. It will be important to consider the Ind-completion
of the topological Fukaya category. We discuss this in Section 4.2.

4.1. The cyclic category and the topological Fukaya category. We briefly review the
setting of [DK]. We refer for more details to the original paper and to [D].

Definition 4.1 ([C]). Let Λ be the category defined as follows:

• The set of objects of Λ is in bijection with the set of natural numbers. For all n ∈ N ,
〈n〉 ∈ Λ is a copy of S1 with n + 1 marked points given by the (n + 1)-th roots of
unity.
• A morphism 〈m〉 → 〈n〉 is represented by a monotone degree one continuous map
S1 → S1 taking the m+1 marked points in the domain to the n+1 marked points in
the range; such maps are considered up to homotopy relative to the marked points.

Proposition 4.2. There is a natural equivalence of categories (−)∗ : Λ→ Λop.

Proof. This equivalence is called interstice duality. See [DK] Section 2.5. �

Definition 4.3. Let C be an ∞-category.

• A cyclic object in C is a functor N(Λop) → C. We denote CΛ the ∞-category of
cyclic objects in C. If C = S is the ∞-category of spaces we denote

L : N(Λ)→ SΛ

the Yoneda functor.
• A cocyclic object in C is a functor N(Λ) → C. We denote CΛ the ∞-category of

cocyclic objects in C.

Consider the map A1
κ

zn−→ A1
κ. We denote En the (Zn+1-graded category) of matrix factor-

izations MF (A1
κ, z

n+1) ∈ DGCat
(2)
small, see Section 2.3.5 of [DK] for additional details. The

categories En assemble to a cyclic object in DGCat
(2)
small. We state the precise result below.
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Proposition 4.4 ([DK] Proposition 2.4.1, [D] Theorem 3.2). There is a cocyclic object

E• : N(Λ)→ DGCat
(2)
small

that is defined on objects by the assignment

〈n〉 ∈ Λ 7→ En ∈ DGCat
(2)
small.

Lemma 4.5. The structure maps of the cocyclic object E• admit a left and a right adjoint.

Proof. For all n ∈ N the category En is the Z2-periodization of a smooth and proper dg
category, namely the dg category of representations of the An−1-quiver (see [DK], Theorem
2.3.6). Now, functors between smooth and proper dg categories always admit both a right
and a left adjoint. In the Z-graded setting a convenient recent reference for this fact is
Theorem 7.4 [Ge], and the proof carries over to the Z2-graded setting. �

Let
(−)op : DGCat

(2)
small → DGCat

(2)
small

be the auto-equivalence of DGCat
(2)
small sending a category to its opposite category.

Definition 4.6. Denote E• : Λop → DGCat
(2)
small the cyclic object defined as the composite

N(Λop)
N(−)∗−→ N(Λ)

E•−→ DGCat
(2)
small

(−)op−→ DGCat
(2)
small.

Remark 4.7. There are several equivalent ways to define E•. We list them below.

(1) Denote (−)∨ : (DGCat
(2)
small)

op → DGCat
(2)
small the functor mapping a category D in

DGCat
(2)
small to Fun(D,Vect(2),fd). Then E• is equivalent to the cyclic object given by

the composition:

N(Λop)
(E•)op

// (DGCat
(2)
small)

op
(−)∨

// DGCat
(2)
small.

See [DK] Section 3.2 for a discussion of this fact.
(2) By Lemma 4.5 all the structure maps of E• admit right adjoints. Passing to right

adjoints yields a contravariant functor out of N(Λ), which we denote (E•)R,

N(Λop)
(E•)R

// DGCat
(2)
small

and which is also equivalent to the cyclic object E•.
To any ribbon graph X, we may associate a cyclic set L(X) ∈ SetΛ (called the cyclic

membrane in [DK]) as follows: Given a vertex v of X, denote by E(v) the set of edges at v,
and set B(v) = E(v)∗. Let ΛB(v) be the cylic simplex corresponding to the cyclically ordered
set B(v). For an edge e of X, we have a two element set B(e) = V (e)∗, where V (e) is the
set of vertices that e joins. Let ΛB(e) be corresponding cyclic 1-simplex. Next, define the
incidence category X[0,1] of X: the set of objects of X[0,1] is the disjoint union of the set of
vertices and the set of edges of X, and there is a unique morphism v → e for each flag (v, e)
in X (consisting of a pair of a vertex v and an edge e incident to v). The cyclic simplices
ΛB(v) and ΛB(e) assemble into a functor UX : Xop

[0,1] → SetΛ, and we define

(7) L(X) = lim−→UX ∈ SetΛ
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Proposition 4.8 (Proposition 3.4.4 [DK]). The cyclic membrane construction

L : Rib→ SetΛ, X ∈ Rib 7→ L(X).

extends to a functor from the category Rib of ribbon graphs and contractions between them
to the category of cyclic sets.

If X and X ′ are ribbon graphs, a contraction X → X ′ is a map between the underlying
topological spaces having the property that the preimage of each point in X ′ is either a
point, or a sub-tree of X. We refer the reader to [DK] for additional details on the definition
of Rib and a proof of the proposition.

As explained in [D] the functor constructed in Proposition 4.8 can be enhanced to a functor
of ∞-categories

L : N(Rib)→ SΛ

where S is the ∞-category of spaces.

Definition 4.9. • Denote FE : SΛ → DGCat
(2)
small the∞-categorical left Kan extension

of

N(Λ)
E•−→ DGCat

(2)
small

along N(Λ)
L−→ SΛ.

• Denote FE : (SΛ)op → DGCat
(2)
small the ∞-categorical right Kan extension of

N(Λop)
E•−→ DGCat

(2)
small

along N(Λ)op
(L)op−−−→ (SΛ)op.

Let Σ be a Riemann surface with boundary and let X ⊂ Σ be a spanning ribbon graph.
The implementation of Kontsevich’s ideas due to Dyckerhoff and Kapranov [DK] (see also
[N1] and [STZ]) gives ways to compute a model for the Fukaya category of Σ from the
combinatorics of X. We will refer to it as the topological (compact) Fukaya category of X
or sometimes as the topological (compact) Fukaya category of the pair (Σ, X). The next
definition gives the construction of the topological (compact) Fukaya category, see Definition
4.1.1 of [DK].

Definition 4.10. Let (Σ, X) be a punctured Riemann surface.

• The topological Fukaya category of X is given by

F top(X) := FE(L(X)).

• The topological compact Fukaya category of X is given by

Ftop(X) := FE(L(X))

Remark 4.11. The terminology we use in this paper differs slightly from the one introduced
in [DK]. Namely

• F top(X) in [DK] is called the topological coFukaya category,
• Ftop(X) in [DK] is called the topological Fukaya category.
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Proposition 4.12. There is a natural equivalence

Ftop(X) ' Fun(F top(X),Vect(2),fd).

Proof. See the discussion after Definition 4.1.1 of [DK]. �

4.2. The Ind-completion of the topological Fukaya category. In this Section we in-
troduce the Ind-completed version of the topological (compact) Fukaya category. This plays
an important role in proving that F top(−) exhibits an interesting sheaf-like behavior with
respect to closed coverings of ribbon graphs that we study in Section 5.2. We remark that
Definitions 4.13 and 4.15 mirror exactly Proposition 4.4 and Definition 4.6 and 4.9 from
the previous Section, the only difference being that we are now working with cocomplete dg
categories.

Definition 4.13. • Denote IE• : N(Λ)→ DGCat
(2)
cont the cocylic object defined by the

composition:

N(Λ)
E•−→ DGCat

(2)
small

Ind−→ DGCat
(2)
cont.

• Denote IE• : N(Λop)→ DGCat
(2)
cont the cyclic object defined by the composition:

N(Λop)
E•−→ DGCat

(2)
small

Ind−→ DGCat
(2)
cont.

Remark 4.14. The same consideration of Remark 4.7 apply to the Ind-completed setting.
In particular, the structure maps of IE• admit right and left adjoints, which are the Ind-
completions of the right and left adjoints given by Lemma 4.5. Then the cyclic object IE•
is equivalent to (IE•)R, which is defined exactly in the same way as in Remark 4.7.

Definition 4.15. • Denote IFE : SΛ → DGCat
(2)
cont the ∞-categorical left Kan exten-

sion of

N(Λ)
IE•−→ DGCat

(2)
cont

along N(Λ)
L−→ SΛ.

• Denote IFE : (SΛ)op → DGCat
(2)
cont the ∞-categorical right Kan extension of

N(Λop)
IE•−→ DGCat

(2)
cont.

along N(Λop)
(L)op−−−→ (SΛ)op.

Proposition 4.16. For all X ∈ SΛ there is an equivalence

IFE(X) ' IFE(X).

Proof. This is a formal consequence of Proposition 2.4. By Remark 4.14, IE• can be realized
by taking right adjoints of the structure morphisms of IE•. If L is in SΛ, by the general
formula for pointwise Kan extensions we have

IFE(L) = lim−→
{L(〈n〉)→L}

IEn ' lim←−
{L(〈n〉)→L}

IEn = IFE(L) in DGCat
(2)
cont.

�
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Definition 4.17. If X is a ribbon graph, we set

F top∞ (X) := IFE(L(X)) ' IFE(L(X)).

We call F top∞ (X) the Ind-completed topological Fukaya category of X.

By Lemma 2.2 Ind-completion preserves colimits, and this immediately implies the fol-
lowing statement.

Proposition 4.18. If X is a ribbon graph there is an equivalence

F top∞ (X) ' Ind(F top(X)).

Proposition 4.16 and Definition 4.17 indicate a key difference with the setting of small
categories considered in Section 4.1: if we work with the Ind-completed (co)cyclic objects
IE• and IE•, there is no difference between Fukaya and compact Fukaya category. However,
it is important to remark that F top∞ (X) is not equivalent in general to the Ind-completion of
Ftop(X). Instead Ind(Ftop(X)) is a full subcategory of F top∞ (X). We clarify the relationship
between these two categories in Example 4.19 below.

Example 4.19. Consider the ribbon graph X given by a loop with no vertices. We can
tabulate the value of the topological (compact) Fukaya category ofX and of its Ind-completed
version as follows:

• The category F top(X) is equivalent to Perf(2)(Gm).

• The category Ftop(X) is equivalent to the full subcategory of Perf(2)(Gm) given by

complexes with compact support, Perf(2)
cs (Gm).

• By Proposition 4.18 the category F top∞ (X) is equivalent to QCoh(2)(Gm).

Note that Ind(Ftop(X)) ' Ind(Perf(2)
cs (Gm)) is a strict sub-category of F top∞ (X) ' QCoh(2)(Gm).

5. The topological Fukaya category and restrictions

In this Section we explore various naturality properties of F top∞ with respect to open and
closed embeddings of ribbon graphs. As first suggested by Kontsevich [K], the topological
Fukaya category behaves like a (co)sheaf with respect to open covers. This aspect was
investigated for instance in [STZ, D]. In Section 6 we will prove that, additionally, the
topological Fukaya category behaves like a sheaf also with respect to certain closed covers.

5.1. Restriction to open subgraphs. Let X be a ribbon graph. With small abuse of
notation we denote X also its underlying topological space. We say that Y ⊂ X is a
subgraph if it is a subspace having the property that, if the intersection of Y with an edge
e of X is not empty or a vertex, then e is contained in Y . If Y is a subgraph of X, then it
is canonically the underlying topological space of a ribbon graph, which we also denote Y .
Note that if U and V are open subgraphs of X, then their intersection U ∩V is also an open
subgraph of X.

Proposition 5.1. Let X be a ribbon graph and let U ⊂ X be an open subgraph. Then there
are corestriction functors

• CU : F top(U)→ F top(X)
• C∞,U : F top∞ (U)→ F top∞ (X)
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When the target of the corestriction functors is not clear from the context we will use the
notations CX

U and CX
∞,U .

Proof. The construction of the functor CU is a formal consequence of the definition of F top(X)
as a colimit. The definition F top(X) = FE(L(X)) expresses F top(X) as a colimit of dg
categories indexed by the vertices and edges of X. In the same way, F top(U) is defined as
a colimit of dg categories indexed by the vertices and edges of U , which are a subset of
those of X. Thus the colimit diagram defining F top(U) is a subdiagram of the one defining
F top(X), and CU is the resulting map between the colimits. The functor C∞,U is obtained
by Ind-completion. See also [D] Section 4 for a treatment of these corestriction functors. �

Remark 5.2. By Proposition 4.18 F top∞ (U) and F top∞ (X) are equivalent to the Ind-completions
of F top(U) and F top(X). There is a natural equivalence

C∞,U ' Ind(CU) : F top∞ (U)→ F top∞ (X).

In particular the corestriction C∞,U is a morphism in DGCat
(2)
cont.

Definition 5.3. Let X be a ribbon graph and let U ⊂ X be an open subgraph. Then we
define restriction functors :

• By Proposition 4.12 there is a natural equivalence between Ftop(−) and the dual of
F top(−). The restriction RU : Ftop(X)→ Ftop(U) is obtained by dualizing CU .
• RU

∞ : F top∞ (X)→ F top∞ (U) is the right adjoint of the corestriction C∞,U .

When the target of the restriction functors is not clear from the context we will use the
notations RU

X and RU
∞,X .

Remark 5.4. Note that the functor RU
∞ cannot be realized as Ind(RU). In fact, as showed

by Example 4.19, in general the functors RU
∞ and Ind(RU) are going to have different source

and target.

Remark 5.5. Let X be a ribbon graph. Let V ⊂ U ⊂ X be open subgraphs. Then the
following diagram commutes

F top∞ (U)
RV∞

&&
F top∞ (X)

RV∞ //

RU∞
99

F top∞ (V ).

Proposition 5.6. Let X be a ribbon graph and let U and V be open subgraphs such that
X = U ∪ V .

• The following is a push-out in DGCat
(2)
small

F top(U ∩ V )
CU∩V //

CU∩V
��

F top(U)

CU
��

F top(V )
CV // F top(X).
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• The following is a push-out in DGCat
(2)
cont

F top∞ (U ∩ V )
C∞,U∩V//

C∞,U∩V
��

F top∞ (U)

C∞,U
��

F top∞ (V )
C∞,V // F top∞ (X).

Proof. The first part of the claim can be proved in the same way as Proposition 4.2 of
[D]. The second part follows because, by Lemma 2.2, the Ind-completion commutes with
colimits. �

Proposition 5.7. Let X be a ribbon graph and let U and V be open subgraphs such that
X = U ∪ V .

• The following is a fiber product in DGCat
(2)
small

Ftop(X)
RU //

RV

��

Ftop(U)

RU∩V

��
Ftop(V )

RU∩V // Ftop(U ∩ V ).

• The following is a fiber product in DGCat
(2)
cont

F top∞ (X)
RU∞ //

RV∞
��

F top∞ (U)

RU∩V∞
��

F top∞ (V )
RU∩V∞ // F top∞ (U ∩ V ).

Proof. The claim follows by dualizing the push-outs in Proposition 5.6. �

Remark 5.8. The second diagram of Proposition 5.7 has very different formal properties
from the second diagram of Proposition 5.6. If U ⊂ X is an open subgraph the corestriction
C∞,X preserves compact objects , but in general this is not the case for the restriction RU

∞ (see
Remark 5.4). Thus (in general) we cannot apply (−)ω to the second diagram of Proposition
5.7 and obtain a diagram of small categories.

Proposition 5.6 and Proposition 5.7 can be extended in the usual way to account for
arbitrary open covers of X: given any open cover of X, the (Ind-completed) (compact)
Fukaya category can be realized as the homotopy (co)limit of the appropriate Čech diagram
of local sections. This clarifies that this formalism is indeed an implementation of the idea
that the Fukaya category of a punctured surface should define either a sheaf or a cosheaf of
categories on its spine.

5.2. Restriction to closed subgraphs. In this Section we turn our attention to closed
subgraphs and closed covers of ribbon graphs. In the context of the topological Fukaya
category, restrictions to closed subgraphs have also been investigated by Dyckerhoff [D]. To
avoid producing here parallel arguments we will refer to the lucid treatment contained in
Section 4 of [D].
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Definition 5.9. Let X be a ribbon graph.

• An open subgraph U of X is good if its complement X −U does not have vertices of
valency one.
• A closed subgraph Z of X is good if it is the complement in X of a good open

subgraph.

We introduce next restriction functors of F top and F top∞ to good closed subgraphs: we will
sometimes refer to these as exceptional restrictions, in order to mark their difference from
the (co)restrictions to open subgraphs that were discussed in the previous Section.

Proposition 5.10. Let X be a ribbon graph and let Z ⊂ X be a good closed subgraph. Then
there are exceptional restriction functors

• SZ : F top(X)→ F top(Z)
• SZ∞ : F top∞ (X)→ F top∞ (Z).

When the source of the exceptional restriction functors is not clear from the context we will
use the notations SZX and SZ∞,X .

Proof. Our definition of SZ follows Section 4 of [D]. Let Z be a closed subgraph, U = X−Z,
and consider the open subgraph V consisting of Z together with all half-edges of X that
touch Z. Then X = U ∪ V is an open covering, and by Proposition 5.6 we have a push-out
square

F top(U ∩ V )
CU∩V //

CU∩V
��

F top(U)

CU
��

F top(V )
CV // F top(X).

Next, we may consider another graph V that is obtained from V by adding a 1-valent
vertex to each edge of V that does not belong to Z. There is a covering V = V ∪Ψ, where Ψ
is the disjoint union of several copies of the graph with one vertex and one half-open edge.
Another application of Proposition 5.6 yields a push-out square

F top(Ψ ∩ V )
CΨ∩V //

CΨ∩V
��

F top(Ψ)

CΨ
��

F top(V )
CV // F top(V ).

Next, we make two observations: one is that Ψ∩V naturally contains U ∩V , the second is
that F top(Ψ) ' 0. This implies that the first push-out diagram maps to the second, and so
there is a map F top(X)→ F top(V ). Lastly we use the fact that F top(V ) ' F top(Z), since Z
is obtained from V by contracting edges. The resulting functor is SZ : F top(X)→ F top(Z).
The functor SZ∞ is the Ind-completion of SZ . �

Remark 5.11. The property that the closed subgraph Z is good is not strictly necessary
to define exceptional restrictions. However this assumption allows for a somewhat simpler
exposition, and it is essential in Theorem 6.6 in the next section. We refer the reader to [D]
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for a treatment of exceptional restrictions which does not impose additional requirements on
the closed subgraphs.

Proposition 5.12. Let X be a ribbon graph, let U ⊂ X be a good open subset and let

Z = X−U . The following are cofiber sequences in DGCat
(2)
small and in DGCat

(2)
cont, respectively

F top(U)
CX→ F top(X)

SZ→ F top(Z), F top∞ (U)
C∞,X→ F top∞ (X)

SZ∞→ F top∞ (Z)

Proof. This is Proposition 4.9 of [D]. �

Definition 5.13. Let X be a ribbon graph and let Z ⊂ X be a good closed subgraph. Then
we denote

TX∞ : F top∞ (Z)→ F top∞ (X)

the right adjoint of the exceptional restriction functor. We will call it the exceptional core-
striction functor. When the source of the exceptional corestriction functor is not clear from
the context we will use the notation TX∞,Z .

Proposition 5.14 is a compatibility statement that relates the various restrictions that we
have introduced so far, and it will be useful in the next section.

Proposition 5.14. Let X be a ribbon graph. Let U ⊂ X be an open subgraph and let Z ⊂ X
be a good closed subgraph. If Z is contained in U then the following diagram commutes

F top∞ (U)
SZ∞,U

%%
F top∞ (X)

SZ∞,X //

RU∞
99

F top∞ (Z).

Before proving Proposition 5.14 we introduce some preliminary notations and results.

Definition 5.15. Let x be a vertex of X. We denote:

• Ux, the smallest open subgraph of X containing the vertex x
• Kx, the open subgraph of X given by X − x
• Up

x , the intersection Ux ∩Kx (the superscript p stands for punctured neighborhood)

Definition 5.16. Let F : A→ F top∞ (Kx) be a functor. We say that A is not supported on x
if the composite

A
F−→ F top∞ (Kx)

R
U
p
x∞−→ F top∞ (Up

x)

is equivalent to the zero functor.

Lemma 5.17. Let x be a vertex of X, and let F : A → F top∞ (Kx) be a functor. If A is not
supported on x, then there is a natural equivalence

RKx
∞,X ◦ C

X
∞,Kx ◦ F ' F.

Proof. We fix first some notations. If Γ is a ribbon graph, and W is a subset of the vertices
of Γ we set

(8) Γ(W ) :=
∐
w∈W

Uw, Γ2(W ) :=
∐

w,w′∈W

Uw ∩ Uw′ .
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Also if L and L′ are objects in F top∞ (Γ), we denote their Hom-complex HomΓ(L,L′).
Let us now return to the statement of the lemma. Let V be the set of vertices of X. By

Proposition 5.7 the Ind-complete topological Fukaya category F top∞ (X) is naturally equivalent
to the equalizer2

(9) F top∞ (X)
∏
RXv∞ //

(∏
v∈V F top∞ (Uv)

r2
//

r1 // ∏F top∞ (Uv1 ∩ Uv2)
)

in DGCat
(2)
cont, where r1 and r2 are products of restriction functors. Using the notations

introduced in (8), we can rewrite this equalizer as

F top∞ (X)
∏
RXv∞ //

(
F top∞ (X(V ))

r2
//

r1 // F top∞ (X2(V ))
)
.

Similarly if W = V − {x} is the set of vertices of Kx, we obtain an equalizer diagram.

(10) F top∞ (Kx)
∏
RXv∞ //

(
F top∞ (X(W ))

r′1

//
r′2 // F top∞ (X2(W ))

)
.

The inclusion W ⊂ V gives projections P and Q that fit in a morphism of diagrams

(11)

(
F top∞ (X(V ))

P
��

r2
//

r1 // F top∞ (X2(V ))
)

Q

��(
F top∞ (X(W ))

r′2

//
r′1 // F top∞ (X2(W ))

)
.

Further, the restriction RKx
∞,X coincides with the morphism between the equalizers F top∞ (X)

and F top∞ (Kx) induced by (1). Denote (P )L and (Q)L the left adjoints of P and Q. The
functor (P )L is given by the obvious quasi-fully faithful embedding

F top∞ (X(W ))
⊂−→ F top∞ (X(V )) ' F top∞ (X(W ))×F top∞ (Ux),

and similarly for (Q)L.
We will prove the lemma in two steps. First, we show that the diagram

(12)

(
F top∞ (X(V ))

r2
//

r1 // F top∞ (X2(V ))
)

A
F //
(
F top∞ (X(W ))

(P )L

OO

r′2

//
r′1 // F top∞ (X2(W ))

)(Q)L

OO

is commutative, that is, there are natural equivalences

r1 ◦ (P )L ◦ F ' (Q)L ◦ r′1 ◦ F, and r2 ◦ (P )L ◦ F ' (Q)L ◦ r′2 ◦ F.
2This holds only if X(V ) is an open cover of X. Note that we can always achieve this by subdividing

the edges of X. Here and in the sequel we will assume without loss of generality that the edges of X are
sufficiently subdivided.
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We remark that the commutativity does not hold if we do not precompose with F . It is
sufficient to prove that, for all v and v′ in V , the diagram commutes after composing on the
left with the restriction

RUv∩Uv′
∞ : F top∞ (X2(V ))→ F top∞ (Uv ∩ Uv′).

If both v and v′ are different from x, then

RUv∩Uv′
∞ ◦ ri ◦ (P )L ' RUv∩Uv′

∞ ◦ (Q)L ◦ r′i,

and so commutativity holds also when precomposing with F . Assume on the other hand
that v = x. Then

RUx∩Uv′
∞ ◦ ri ◦ (P )L ◦ F ' 0 ' RUx∩Uv′

∞ ◦ (Q)L ◦ r′i ◦ F.

The first equivalence follows from the support assumption on A, and the second one is a

consequence of the fact that R
Ux∩Uv′∞ ◦ (Q)L = 0. Thus diagram (12) commutes as claimed.

The commutativity of (12), and the universal property of the equalizer, give us a functor

F̃ : A −→ F top∞ (X).

Note that both P ◦ (P )L and Q ◦ (Q)L are naturally equivalent to the identity functor, and
thus

RKx
∞,X ◦ F̃ ' F.

The second and final step in the proof consists in noticing that F̃ is equivalent to CX
∞,Kx ◦F .

That is, for all LA in the image of F , and LX in F top∞ (X), there is a natural equivalence

HomX(F̃ (LA), LX) ' HomKx(LA, R
Kx
∞,X(LX)),

where HomX(−,−) and HomKx(−,−) denote respectively the hom spaces in F top∞ (X) and
in F top∞ (Kx). This can be checked by computing explicitly the Hom-complexes on both sides
in terms of the equalizers (9) and (10), see Proposition 2.2 of [STZ] for a similar calculation.
As a consequence there is a chain of equivalences

RKx
∞,X ◦ C

X
∞,Kx ◦ F ' RKx

∞,X ◦ F̃ ' F

and this concludes the proof. �

Let Z be a good closed subgraph of X. Recall that

TX∞,Z : F top∞ (Z) −→ F top∞ (X)

is the right adjoint of SX∞,Z .

Proposition 5.18. Let x be a vertex of X which does not belong to Z. Then

(1) The functor

F top∞ (Z)
TKx∞,Z−→ F top∞ (Kx).

is not supported on x.
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(2) The diagram

F top∞ (Kx)
CX∞,Kx

xx
F top∞ (X) F top∞ (Z)

TX∞,Z

oo

TKx∞,Z
ff

is commutative.

Proof. It follows from Proposition 5.12 that

F top∞ (Z)
TKx∞,Z−→ F top∞ (Kx)

RKx−Z∞,Kx−→ F top∞ (Kx − Z)

is a fiber sequence, and thus the composite is the zero functor. Since Up
x is contained in

Kx − Z, the restriction RUpx
∞,Kx factors through RKx−Z

∞,Kx . This implies the first claim. As for
the second claim, let us show first that there is a natural equivalence

(13) TKx∞,Z ' RKx
∞,X ◦ T

X
∞,Z .

Consider the commutative square on the right hand side of the following diagram

F top∞ (Z)
TX∞,Z //

��

F top∞ (X)
RX−Z∞,X //

RKx∞,X
��

F top(X − Z)

RKx−Z∞,X
��

F top∞ (Z)
TKx∞,Z // F top∞ (Kx)

RKx−Z∞,Kx // F top∞ (Kx − Z).

The functor induced between the fibers, which is denoted by the dashed arrow, is equivalent
to the identity. This gives equivalence (13). As a consequence we obtain

CX
∞,Kx ◦ T

Kx
∞,Z ' CX

∞,Kx ◦R
Kx
∞,X ◦ T

X
∞,Z ' TX∞,Z .

Indeed, the first equivalence follows from (13) and the second one from Lemma 5.17. This
concludes the proof. �

The proof of Proposition 5.14. Let W be the set of vertices of X that do not belong to U .
Note that U is a connected component of the open subgraph (X −W ) ⊂ X. By induction
it is sufficient to prove the claim in the following two cases:

(1) when U is equal to Kx for some vertex x of X, and
(2) when U is a connected component of X.

Proposition 5.18 gives a proof in the first case. Indeed, it is sufficient to take right adjoints
in Claim (2) of Proposition 5.18 to recover the commutativity statement from Proposition
5.14 for this class of open subgraphs. The second case is easier. The complement X − U is
open and we have a splitting

F top∞ (X) ' F top∞ (U)×F top∞ (X − U),

and the claim follows immediately from here. �
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6. The topological Fukaya category and closed covers

In this section we prove a key gluing statement which is one of the main inputs in our
proof of mirror symmetry for three dimensional LG models.

Let X be a connected ribbon graph whose underlying topological space is homeomorphic
to a copy of S1 together a finite number of open edges attached to it. We call such a ribbon
graph a wheel. Any choice of orientation on S1 partitions the sets of open edges of X into two
subsets, which we call upward and downward edges respectively. An upward or downward
edge is also called a spoke. For our purposes it will not be important to label either of these
two sets as the set of upward or downward edges, but only to distinguish between the two.
Thus we do not need to impose on X any additional structure beyond the ribbon structure
(such as a choice of orientation).

Definition 6.1. Let n1 and n2 be in Z≥0. We denote Λ(n1, n2) a wheel with n1 upward and
n2 downward edges. With small abuse of notations, we sometimes denote Λ(0, 0) simply S1.

We denote E(+) and E(−) the open subgraphs of Λ(n1, n2) given by the collection of the
n1 upward edges, and of the n2 downward edges respectively.

Remark 6.2. The notation Λ(n1, n2) does not pick out a single ribbon graph, but rather a
class of ribbon graphs. Indeed specifying the number of upward and downward edges does
not suffice to pin down a homeomorphism type, or even the number of vertices. However all
graphs of type Λ(n1, n2) deform into one another in a way that does not affect the sections of
F top and F top∞ (see [DK]). We use Λ(n1, n2) to refer to any ribbon graph having the properties
listed in the definition.

The category F top∞ (Λ(n1, n2)) can be described explicitly in terms of quiver representations.
Consider the closed subgraph

S ⊂ Λ(n1, n2)

where S is the central circle of the wheel. The graph S has n1 + n2 bivalent vertices, which
are in canonical bijection with the spokes of Λ(n1, n2), and its underlying topological space
is S1. Label the vertices of S with + or − depending on whether the corresponding spoke
is upward or downward. We choose an orientation on S. An orientation determines a cyclic
order on the edges of S. If e is edge we denote τ(e) the edge that follows it in the cyclic
order. There is a (unique) vertex of S incident to both e and τ(e): we say that the pair
e, τ(e) is right-handed if this vertex is labeled by a +, and left-handed if it is labeled by a −.

Let Q(n1, n2) be the quiver defined as follows

• The set of vertices of Q(n1, n2) is the set the edges of S. If e is an edge of S, we
denote ve the corresponding vertex of Q(n1, n2).
• There is an arrow joining ve and vτ(e). It is oriented from ve to vτ(e) if the pair e, τ(e)

is right-handed, and from vτ(e) to ve otherwise.

Recall that we can attach to a Z-graded dg category a Z2-graded category by Z2-periodization,
see Section 1.2 of [DK] for more details. Denote Rep∞(Q(n1, n2)) the Z2-periodization of the
triangulated dg category of (non-necessarily finite dimensional) representations of Q(n1, n2),

Rep∞(Q(n1, n2)) ∈ DGCat
(2)
cont.
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Lemma 6.3. There is an equivalence

F top∞ (Λ(n1, n2)) ' Rep∞(Q(n1, n2)).

Proof. This can be seen by appealing to the description of the Fukaya category of a surface
provided by [HKK], which involves giving explicit presentations of the category as represen-
tations of quivers associated to certain collections of arcs on the surface. In [HKK, Section
3.6], it is shown that this definition of the category coincides with the cosheaf-of-categories
approach used in this paper. The desired quiver description corresponds to choosing a cer-
tain collection of arcs as follows. The graph Λ(n1, n2) embeds in to a cylinder [0, 1]× S1, in
such a way that the upward edges end on {1}×S1 and the downward edges end on {0}×S1.
The dual family of arcs is obtained by choosing one arc connecting the two boundary compo-
nents {0}×S1 to {1}×S1 passing between each consecutive pair of edges. A representative
example is depicted in Figure 2. The dashed lines are the ribbon graph, while the dotted
lines are the dual collection of arcs. Each arc corresponds to a vertex of the quiver, and the
arrows in the quiver correspond to the arrows shown in the figure. The quiver corresponding
to this collection of arcs is then nothing but Q(n1, n2). �

Figure 2. A ribbon graph of class Λ(3, 3) (solid), and the dual collection
of arcs (dashed). The corresponding quiver has one vertex for each arc, and
arrows that correspond to those shown.

Remark 6.4. In the preceding proof, we have used an equivalence between the model of the
Fukaya category used in [HKK] and the one used in the present paper. One may ask how this
comparison is justified technically, since [HKK] is written in terms of the model category
of A∞ categories and the present paper uses an ∞-category dg categories (a dg category
being the special case of an A∞ category with vanishing higher products). Fortunately, the
statement of [HKK, Theorem 3.1] asserts that the Fukaya category as defined in [HKK],
which is an A∞ category, is Morita equivalent to a homotopy colimit of a diagram of dg
categories (not A∞ categories). Further, homotopy colimits in the model category of dg
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categories compute∞-categorical colimits in the∞-category obtained by localizing at weak
equivalences; see [Lu, Section 4.2.4] where such a comparison is made.

Lemma 6.5. The following is a fiber product in DGCat
(2)
cont

F top∞ (Λ(n1, n2))
S

Λ(n1,0)
∞ //

S
Λ(0,n2)
∞

��

F top∞ (Λ(n1, 0))

S
Λ(0,0)
∞
��

F top∞ (Λ(0, n2))
S

Λ(0,0)
∞ // F top∞ (Λ(0, 0)).

Proof. The claim could be proved directly, but it is instructive to give a proof based on mirror
symmetry. Indeed, this clarifies the connection between gluing along closed subskeleta and
Zariski descent. Let P1(n1, n2) be the projective line with two stacky points at 0 and ∞
having isotropy isomorphic to the groups of roots of unity µn1 and µn2 . More formally,
P1(n1, n2) is the push-out of the following diagram in the category of DM stacks,

Gm

zz $$
[A1/µn1 ] [A1/µn2 ],

where [A1/µn1 ] and [A2/µn2 ] are the quotient stacks of A1 under the canonical action of µn1

and µn2 . Zariski descent implies that the diagram

(14)

QCoh(2)(P1(n1, n2)) //

��

QCoh(2)([A1/µn1 ])

��

QCoh(2)([A1/µn2 ]) // QCoh(2)(Gm),

where all the arrows are pullbacks, is a fiber product. It follows from [STZ] and [DK] that
diagram (14) is in fact equivalent to the diagram in the statement of the lemma. More
precisely, there are commutative diagrams

F top∞ (Λ(n1, n2))

'
��

S
Λ(n1,0)
∞ // F top∞ (Λ(n1, 0))

'
��

QCoh(2)(P1(n1, n2)) // QCoh(2)([A1/µn1 ]),

F top∞ (Λ(n1, n2))

'
��

S
Λ(n2,0)
∞ // F top∞ (Λ(0, n2))

'
��

QCoh(2)(P1(n1, n2)) // QCoh(2)([A1/µn2 ]),

and

F top∞ (Λ(n1, 0))

'
��

S
Λ(0,0)
∞ // F top∞ (Λ(0, 0))

'
��

QCoh(2)([A1/µn1 ]) // QCoh(2)(Gm),

F top∞ (Λ(0, n2))

'
��

S
Λ(0,0)
∞ // F top∞ (Λ(0, 0))

'
��

QCoh(2)([A1/µn2 ]) // QCoh(2)(Gm).

such that all vertical arrows are equivalences. Since diagram (14) is a fiber product we
conclude that also the diagram in the statement of the lemma is a fiber product.
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�

The following is the main result of this section. In order to avoid cluttering the diagrams,
we denote restrictions and exotic restrictions simply R∞ and S∞.

Let X be a ribbon graph, and let Z be a closed subgraph. It is useful to consider a
combinatorial analogue of a tubular neighborhood of Z inside X, which we denote NZX:
the graph NZX is given by Z plus additional open edges for each edge in X that does not lie
in Z, but is incident to a vertex in Z. Here is a formal definition. We subdivide all the edges
of X which do not lie in Z, but whose endpoints lie in Z. We denote the resulting graph again
X: from now on, every time we will consider the object NZX, we will assume implicitly that
the edges of X are sufficiently subdivided. Let Z

c
be the maximal (non-necessarily good)

closed subgraph of X such that

Z ∩ Zc
= ∅.

We denote NZX the open subgraph

X − Zc ⊂ X

Theorem 6.6. Let X be a ribbon graph. Let Z1 and Z2 be good closed subgraphs such that:

• Z1 ∪ Z2 = X
• The underlying topological space of Z1,2 := Z1 ∩ Z2 is a disjoint union of circles
• For every connected component C of Z1,2 the triple of ribbon graphs

NCX ∩ Z1 ⊂ NCX ⊃ NCX ∩ Z2

is isomorphic to

Λ(n1, 0) ⊂ Λ(n1, n2) ⊃ Λ(0, n2)

for some n1, n2 ∈ N.
Then the commutative diagram

F top∞ (X)
S∞ //

S∞
��

F top∞ (Z1)

S∞
��

F top∞ (Z2)
S∞ // F top∞ (Z1,2).

is a fiber product in DGCat
(2)
cont.

We will assume for simplicity that Z1,2 has only one connected component: the general
case is proved in the same way.

Proving Theorem 6.6 will require some preparation. Let X, Z1 and Z2 be as in Theorem
6.6, and assume that Z1,2 has only one connected component. By assumptionNZ1,2X, NZ1,2Z1

and NZ1,2Z2 are all wheel-type graphs. We make the following notations:

• U1 = Z1 ∪NZ1,2X. The graph U1 is an open subgraph of X and Z1 is a good closed
subgraph of U1

• U2 = Z2 ∪NZ1,2X. The graph U2 is an open subgraph of X and Z2 is a good closed
subgraph of U2

• U1,2 = U1 ∩ U2
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• U o
1 = Z1 − Z1,2, and U o

2 = Z2 − Z1,2, where the superscript o stands for open. The
graphs U o

1 and U o
2 are open subgraphs of X

• U e
1 = U1,2 ∩ U o

1 and U e
2 = U1,2 ∩ U o

2 , where the superscript e stands for edges

Note that U1,2 is equal to NZ1,2X
∼= Λ(n1, n2), and that the embeddings

U e
1 ⊂ U1,2, U e

2 ⊂ U1,2

are isomorphic to the embeddings of the spokes

E(+) ⊂ Λ(n1, n2), E(−) ⊂ Λ(n1, n2).

Also, we have identifications NZ1,2Z1 = Z1 ∩ U12, and NZ1,2Z2 = Z2 ∩ U12.
The key ingredient in the proof of Theorem 6.6 is the following lemma.

Lemma 6.7. All the interior squares in the commutative diagram

F top∞ (X)
R∞ //

R∞
��

F top∞ (U1)
S∞ //

R∞
��

F top∞ (Z1)

R∞
��

F top∞ (U2)
R∞ //

S∞
��

F top∞ (U1,2)
S∞ //

S∞
��

F top∞ (Z1 ∩ U1,2)

S∞
��

F top∞ (Z2)
R∞ // F top∞ (Z2 ∩ U1,2)

S∞ // F top∞ (Z1,2)

are fiber products.

Proof. Number clockwise the interior squares from one to four, starting with the top left
one. Square 1 is a fiber product by Proposition 5.7. Square 3 is a fiber product by Lemma
6.5. Up to swapping U1 with U2, squares 2 and 4 are identical. So it is enough to prove that
square 2 is a fiber product. The proof consists of three steps.

Step one: We express all the vertices of square 2 as fiber products. We start with the
top vertices. Each of the following two diagrams

(15)

F top∞ (U1)
R∞ //

R∞
��

F top∞ (U1,2)

R∞
��

F top∞ (U o
1 )

R∞ // F top∞ (U e
1 )

F top∞ (Z1)
R∞ //

R∞
��

F top∞ (Z1 ∩ U1,2)

R∞
��

F top∞ (U o
1 )

R∞ // F top∞ (U e
1 ).

is a fiber product in DGCat
(2)
cont by Proposition 5.7. Let us consider the bottom vertices next.

The diagrams

(16)

F top∞ (U1,2)
R∞ //

R∞
��

F top∞ (U1,2)

R∞
��

F top∞ (U e
1 )

R∞ // F top∞ (U e
1 )

F top∞ (Z1 ∩ U1,2)
R∞ //

R∞
��

F top∞ (Z1 ∩ U1,2)

R∞
��

F top∞ (U e
1 )

R∞ // F top∞ (U e
1 ).

are trivially fiber products in DGCat
(2)
cont since the horizontal arrows are identities, and any

two parallel arrows are equal to each other.
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Step two: The arrows in square 2 can be written in terms of morphisms between the
fiber product diagrams constructed in step one. Let us focus, for instance, on the bottom
horizontal map in square 2

F top∞ (U1,2)
S∞→ F top∞ (Z1 ∩ U1,2).

This map, which is indicated in the diagram below by a dashed arrow, is induced by the

map of diagrams in DGCat
(2)
cont given by the three arrows in the middle: S∞, Id and Id,

F top∞ (U1,2)

��

S∞ // F top∞ (Z1 ∩ U1,2)

��
F top∞ (U1,2)

++

88

&&

F top∞ (U e
1 )

Id // F top∞ (U e
1 ) F top∞ (Z1 ∩ U1,2)

ii

uu
F top∞ (U e

1 )

OO

Id // F top∞ (U e
1 )

OO

A similar reasoning holds also for the other arrows in square 2.
Step three: We complete the proof by using the fact that limits commute with limits.

We have to show that square 2, which we reproduce as diagram (17), is a fiber product.

(17)

F top∞ (U1)
R∞ //

S∞
��

F top∞ (Z1)

R∞
��

F top∞ (U1,2)
R∞ // F top∞ (Z1 ∩ U1,2)

We can commute (17) and the fiber products constructed in step one past each other: thus,
in order to show that (17) is a fiber product, we can prove instead that the following are
fiber products

(18)

F top∞ (U1,2)
S∞ //

Id
��

F top∞ (Z1 ∩ U1,2)

Id
��

F top∞ (U1,2)
S∞ // F top∞ (Z1 ∩ U1,2)

F top∞ (U o
1 )

Id //

R∞
��

F top∞ (U o
1 )

R∞
��

F top∞ (U e
1 )

Id // F top∞ (U e
1 )

F top∞ (U e
1 )

Id //

Id
��

F top∞ (U e
1 )

Id
��

F top∞ (U e
1 )

Id // F top∞ (U e
1 )

These diagrams have the property that the horizontal arrows are identities, and any two
parallel arrows are equal to each other: so they are fiber products. This concludes the
proof. �

The proof of Proposition 6.6. Note first that the diagram from the statement of Proposition
6.6 is the exterior square of the diagram from Lemma 6.7. Indeed by Proposition 5.14

S∞ ' S∞ ◦R∞.

By general properties of fiber products, since all the interior squares are fiber products, the
exterior one is a fiber product as well. This concludes the proof. �
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Remark 6.8. Although Theorem 6.6 is sufficient for our purposes, we expect that gluing
formulas under closed covers hold more generally. The importance of this kind of gluing
formulas lies in the fact that they are powerful computational tools, and that they often
correspond via mirror symmetry to Zariski descent statement for quasi-coherent sheaves and
matrix factorizations (see, for instance, the proof of Lemma 6.5). We will return to the
problem of developing a comprehensive formalism of gluing formulas along closed subskeleta
for F top, in dimension two and higher, in future work.

7. Tropical and Surface topology

7.1. Surface topology. This section contains some remarks on surface topology that will
be useful in later constructions.

Denote by Σg,n an oriented surface of genus g with n punctures. Since the topology of these
surfaces enters our discussion in a relatively coarse way, we will often draw the punctures
as if they were boundaries, but strictly speaking Σg,n is a noncompact (if n > 0) manifold
without boundary. The surface Σg,n has n ends corresponding to the punctures.3

If Σ1 and Σ2 are two oriented punctured surfaces, we may form a new surface by the
well-known end connect sum operation.

Definition 7.1. Choose a puncture p1 on Σ1 and a puncture p2 on Σ2. Identify a neighbor-
hood of p1 with S1 × (−1,−1/2) and a neighborhood of p2 with S1 × (1/2, 1), and replace
the union of these neighborhoods by a single punctured cylinder S1 × (−1, 1) \ (1, 0). The
result Σ1#p1,p2Σ2 is called the end connect sum of Σ1 and Σ2 at the punctures p1 and p2.

The end connect sum can also be described as attaching a one-handle to Σ1

∐
Σ2. If

alternatively we think in terms of bordered surfaces, the operation consists of adding a strip
connecting two boundary components. If Σi has genus gi and ni punctures (i = 1, 2), then
Σ#p1,p2Σ2 has genus g1 + g2 and n1 + n2 − 1 punctures.

The effect of end connect sum on skeleta is straightforward.

Lemma 7.2. Let Xi be a skeleton for Σi (i = 1, 2). Produce from Xi a ribbon graph with
a noncompact edge connecting Xi to the puncture pi; call the result X ′i. Then a skeleton for
Σ1#p1,p2Σ2 is obtained by connecting the noncompact edges of X ′1 and X ′2 inside the attaching
region.

Example 7.3. We can decompose Σg,n (n > 0) into an iterated end connect sum of Σ1,1

and Σ0,2. Indeed, taking end connect sum of g copies of Σ1,1 (always summing at the unique
punctures) yields a surface of type Σg,1. Taking end connect sum of n − 1 copies of Σ0,2

(summing at a single puncture of each) yields a surface of type Σ0,n. Then end connect
summing Σg,1 and Σ0,n yields Σg,n. By choosing skeleta for Σ1,1 (consisting, say, of two loops
on the torus) and for Σ0,2 (say a single circle), we thus obtain a skeleton for Σg,n. This is
pictured in Figure 3.

In this paper, we are interested in skeleta with a certain shape near the punctures.

3An end of a topological space X is a function ε from the set of compact subsets of K ⊂ X to subsets
of X, such that ε(K) is a connected component of X \K, and such that if K1 ⊂ K2, then ε(K2) ⊂ ε(K1).
Thus ends are intrinsic to the space X, and make sense without reference to a compactification.
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Figure 3. Decomposition of Σg,n into end connect sum of g copies of Σ1,1

and n− 1 copies of Σ0,2

Definition 7.4. Let Σ be a punctured surface, p a puncture of Σ, and X ⊂ Σ a skeleton
for Σ. The component of Σ \X containing the puncture p is topologically a punctured disk,
and its boundary is a subgraph of X. We say that X has a cycle at the puncture p if this
subgraph is a cycle.

If p1 and p2 are distinct punctures, we say that X has disjoint cycles at p1 and p2 if it has
cycles at p1 and p2, and these cycles are disjoint in X.

Model the pair of pants as C − {−2, 2}. If x and y are in C, and ε is a positive real
number, we denote S(x, ε) ⊂ C the circle of center x and radius ε, and I(x, y) ⊂ C the
straight segment joining x and y. We call Θ graph the skeleton of the pair of pants given by

S(0, 3) ∪ I(−3i, 3i).

We call dumbell graph the skeleton given by

S(−2, 1) ∪ I(−1, 1) ∪ S(2, 1).

The Θ graph has a cycle at each of the three punctures, whereas the dumbbell graph has
a cycle at only two: for the third puncture, the boundary of the corresponding component
of Σ \ X consists of the entire skeleton. On the other hand, in the Θ graph the cycles for
any two punctures are not disjoint, whereas in the dumbbell graph they are disjoint. These
graphs are shown in Figure 4.

Lemma 7.5. Σg,n admits a skeleton that has a cycle at every puncture but one.

Proof. This is furnished by Example 7.3. �

In fact, whenever X is a skeleton with a cycle at a particular puncture, Σ and X can be
decomposed into an end connect sum in a manner similar to that of Example 7.3.

Lemma 7.6. Let X be a ribbon graph for Σ that has a cycle at the puncture p. Suppose that
r other edges are incident to the cycle at p. Then Σ can be decomposed into an end connect
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(a) (b)

Figure 4. Two skeleta for the pair of pants. (a) Θ graph. (b) Dumbbell graph.

sum of Σ′ and Σ′′, where Σ′′ ∼= Σ0,2, and Σ′ has one fewer puncture than Σ, and X can be
decomposed into the sum of X ′ and X ′′, where X ′ and X ′′ are ribbon graphs embedded in
Σ′ and Σ′′ respectively, each with r noncompact edges approaching the punctures where the
connect sum is taken, and X is obtained by connecting the noncompact edges of X ′ to those
of X ′′. See Figure 5.

Figure 5. Decomposition of Σ into an end connect sum, depending on a
choice of path γ between two punctures. The dotted line is for visual reference.

Proof. The idea is to deform our picture of Σ so that the cycle at p is pulled out at another
puncture q of Σ. To do this, what is needed is a path γ in Σ from p to q that does not cross
any other points of the skeleton X. But this is always possible, since every component of
Σ \X is homeomorphic to a punctured disk. �

We remark that the proof shows that if r edges are incident to the cycle at p, then there
are essentially r choices for how to decompose Σ and X as in the lemma.

Lemma 7.7. (1) Let X1 and X2 be two ribbon graphs for Σ that both have cycles at the
puncture p. Then it is possible to connect X1 to X2 by a sequence of contractions and
expansions so that every intermediate graph also has a cycle at p.
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(2) Let Σ be a surface with at least three punctures. Let p be a puncture of Σ, and let
X be a skeleton for Σ that has a cycle at p. Let p′ be another puncture of X. It is
possible to modify X to X ′ so that X ′ also has cycles at p and p′, and so that every
intermediate graph also has a cycle at p.

Proof. (1) First, if there is more than one edge incident to the cycle at p in X1 or X2,
we can apply contractions to gather together all of these edges into a single vertex
of valence r + 2, and then apply a single expansion to ensure that in both X1 and
X2 only a single edge is incident to the cycle at p. None of these moves destroy the
cycle at p in X1 or X2.

Let p′ 6= p be another puncture. Choose a path γ from p to p′. As in Lemma 7.6,
we may assume that γ only crosses X1 at the cycle at p. Once this choice is made,
we cannot assume the same holds true for X2, so γ will cross X2 at some number of
edges not contained in the cycle at p; let k be this number. Now we apply the idea
of stretching the surface from 7.6, using the chosen path γ. This decomposes Σ into
an end connect sum of Σ′ and Σ′′, where Σ′′ is has genus 0 and 2 punctures in such
a way that the cycle at p ends up in the Σ′′ factor. See Figure 6(a).

Now we consider how X1 and X2 look with respect to this decomposition. Since
the path γ only intersects X1 at the cycle at p, X1 decomposes just as in Lemma 7.6.
On the other hand, X2 is as shown in Figure 6(a). The part of X2 that ends up in
Σ′′ consists of a cycle at p together with k parallel arcs. This is connected to the rest
of X2 via 2k + 1 noncompact edges.

The next step is to apply moves to X2 that move the k arcs out of Σ′′ and into Σ′.
Observe that the space between two neighboring arcs corresponds, in the summed
surface Σ, to a component of Σ \ X2, which is a punctured disk. Start with the
outermost arc, call it a. Let D denote the punctured disk corresponding to the
region just inside a, so D is a punctured disk. The arc a ends at two vertices in Σ′.
By a sequence of contractions and expansions, we may move one of the ends along
the boundary of D, through Σ′′, and back into Σ′. We can also follow the disk D
throughout this process. (Depending on how it is done, the puncture of D may also
move through Σ′′.) This is depicted in Figure 6(b). Since none of these moves destroy
the cycle at p, this reduces us to the situation where k = 0.

In the case k = 0, we have decompositions of X1 and X2 into end connect sums of
X ′1 and X ′2 in Σ′, each having a single noncompact edge, and X ′′ in Σ′′ consisting of
a single cycle with a single noncomapact edge. Now we apply the fact that any two
ribbon graphs for Σ′ with a single noncompact edge asymptotic to a puncture can
be connected by a sequence of moves, by a result of Harer [DK, Proposition 3.3.9].
Evidently, such moves do not destroy the cycle at the puncture in Σ′′, so we are done.

(2) Since the surface Σ has at least three punctures, there is a ribbon graph X ′ that has
cycles at both p and p′. Now apply the first part of the lemma.

�

7.2. Tropical topology. Since our strategy is to prove HMS inductively by gluing together
pairs of pants, and the gluings are controlled by a balanced tropical graph GT associated
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(a)

(b)

Figure 6. (a) Decomposition of surface into end connect sum, and corre-
sponding decomposition of ribbon graph. (b) Moving an arc through Σ′′. The
point marked a is the end of the arc that is being moved.

to the given toric Calabi-Yau Landau-Ginzburg model (XT ,WT ), we collect here some ele-
mentary remarks about the topology of such graphs that will be useful. The main point is
to keep track of the non-compact edges of G, since these are edges where we never need to
glue in our induction; we also point out that G can be built up in such a way that we never
need to glue along all the edges incident to a single vertex.

Let G be trivalent graph with both finite and infinite edges. For each edge e, we have an
orientation line det(e) that is the Z-module generated by the two orientations of e modulo
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the relation that their sum is zero. A (planar integral) momentum vector pe on the edge e
is a linear map pe : det(e)→ Z2.

Definition 7.8. A pair (G, {pe}e∈Edge(G)) consiting of a graph and a set of momenta is a
balanced tropical graph if momentum is conserved at each vertex. Namely, for each vertex v
of G,

(19)
∑
e

pe(inward orientation) = 0

where the sum is over all edges e incident to v, and the inward orientation is the one pointing
toward v.

Such a graph is additionally called nondegenerate if the values of the momenta at each
vertex span Z2, or equivalently if not all momenta at a given vertex are proportional.

Definition 7.9. A planar immersion of (G, {pe}e∈Edge(G)) is a continuous map i : G→ R2,
such that derivative of i along an edge e in the direction o is positively proportional to the
momentum pe(o). Note that we do not require i to be proper on infinite edges.

From now on we will consider nondegenerate balanced tropical graphs (G, {pe}e∈Edge(G))
with planar immersion i. Planar immersions of balanced tropical graphs are in some sense
“harmonic,” so it is not surprising that they satisfy a version of the maximum principle:

Lemma 7.10. G has at least two infinite edges.

Proof. Let i : G → R2 be a planar immersion, and let π : R2 → R be the orthgonal
projection onto any given line of irrational slope. Then consider the function π ◦ i : G→ R.
Nondegeneracy implies that pe 6= 0 for any e, so π ◦ i is not constant on any edge.

We claim that π ◦ i does not achieve its supremum. For if it did, this would necessarily
occur at a vertex, as π ◦ i is linear and nonconstant on all edges. At the vertex, the images
under i of all incident edges lie in the same half-plane determined by the linear function
π. This is not compatible with the balancing condition, since three non-zero vectors in the
same half-plane cannot sum to zero.

The same reasoning applied to −π◦ i shows that π◦ i does not achieve its infimum. There-
fore there must be two infinite edges on which the supremum and infinimum are approached
but not obtained. �

Now let e0 be an infinite edge of G; it is incident to a vertex v0, and there are three
possibilities for the local structure of G at v0:

(1) v0 is incident to one infinite edge, namely e0.
(2) v0 is incident to two infinite edges, namely e0 and one other e1.
(3) v0 is incident to three infinite edges. Then v0 and these three edges comprise a

connected component of G.

See Figure 7.

Lemma 7.11. In case 1, let G′ be the graph obtained from G by deleting e0 and v0. In case
2, let G′ be the graph obtained from G by deleting e0, e1 and v0. Then G′ has an infinite edge
not originally incident to v0 (in G).
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Figure 7. Cases at a vertex.

Proof. In case 2, this follows from Lemma 7.10, as G′ must have two infinite edges, and only
one is incident to v0.

In case 1, let e1 and e2 be the other edges incident to v0; these become infinite edges in
G′. Let π : R2 → R be orthgonal projection onto an irrational line chosen so that both i(e1)
and i(e2) lie in the half-plane defined by the inequality π(x) ≥ π(i(v0)). The argument from
the proof of Lemma 7.10 shows that π ◦ i approaches its supremum along some infinite edge.
This edge cannot be e1 or e2, as π ◦ i is decreasing in the noncompact direction on these
edges. �

Lemma 7.12. Given i : G→ R2 a planar immersion, there exists a sequence ij : Gj → R2,
j = 1, . . . , N with the following properties.

(1) ij : Gj → R2 is a planar immersion of the tropical graph Gj,
(2) iN : GN → R2 equals i : G→ R2.
(3) There is a continuous embedding Gj → Gj+1 such that ij = ij+1|Gj, and such that

Gj+1 is obtained from Gj by gluing a single trivalent vertex to Gj along either one or
two of the noncompact edges of Gj, and also extending some other noncompact edges
of Gj.

Proof. Begin with i : G→ R2, and once again choose a projection π : R2 → R. If π is chosen
generically, each fiber of π ◦ i will contain at most one vertex of G. Let the values of π ◦ i on
the vertices be λ1, λ2, . . . , λn ∈ R. Then take Gi = (π ◦ i)−1(−∞, λi). �

8. The induction

This section contains the main induction that proves HMS.
For any oriented punctured surface Σ equipped with a skeleton X, we associate the topo-

logical Fukaya category F top∞ (X). Recall that we denote S1 a ribbon graph consisting of type
Λ(0, 0). For each puncture p of Σ, we can define a restriction functor

F top∞ (X)→ F top∞ (S1)

as follows. If the graph X contains a cycle corresponding to the puncture p, then R is
defined directly as an exceptional restriction functor. If not, then R is defined by first
choosing another skeleton X ′ that does have a cycle corresponding to the puncture p, and
that is obtained from X by a sequence of contractions and expansions. By Proposition 4.8,
there is an equivalence

Φ : F top∞ (X)→ F top∞ (X ′)
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which is canonically associated with such a sequence of contractions and expansions. Com-
posing Φ with the closed restriction functor SS

1

∞ : F top∞ (X ′) → F top∞ (S1) gives the desired
restriction functor. We first show that this functor does not depend on the choice of skeleton
used to define it.

Lemma 8.1. Let X1 and X2 be two skeleta for Σ that both have cycles corresponding to
the puncture p, and that are obtained from each other via a sequence of contractions and
expansions. Then there is a commutative diagram

(20) F top∞ (X1)
Φ //

SS
1
∞ &&

F top∞ (X2)

SS
1
∞
��

F top∞ (S1)

where Φ denotes the canonical equivalence, and R denotes closed restriction maps.

Proof. This is an application of Lemma 7.7. Since we an arrange that the contractions
and expansions that implement Φ do not destroy the cycle at p, at every step the desired
commutative diagram both makes sense and holds true. �

Definition 8.2. Let p be a puncture of Σ. We denote

Rp : F top∞ (X)→ F top∞ (S1)

the corresponding restriction functor.

By Definition 3.8, for any nondegenerate balanced graph with planar immersion G, we have
a matrix-factorization-type category B(G). For each external edge of G, there is a restriction
functor B(G) → B(E), where E is the graph consisting of a single bi-infinite edge. We can
associate to the graph G a punctured Riemann surface Σ(G) in a way that generalizes the
familiar correspondence between an algebraic curve and its tropicalization. Namely, each
vertex of G corresponds to a pair of pants, while the edges correspond to cylinders: the
graph G encodes the way in which the pairs of pants are glued along cylinders. Then the
genus of Σ(G) is equal to the number of relatively compact connected components in R2−G,
and the number of punctures is given by the number of infinite edges of G.

Now we come to the main result, that category F top∞ (X) is equivalent to the category
B(G) (see Definition 3.8), where X is a skeleton for Σ(G). Since our method involves
successively gluing pairs of pants inductively, we must include in the induction a statement
on the restriction maps at the punctures.

Theorem 8.3. If X is a skeleton for Σ(G), then there is an equivalence of categories Ψ :
F top∞ (X) → B(G) with the property that for each infinite edge e of G, and corresponding
puncture p(e), there is a commutative diagram

(21) F top∞ (X)
Ψ //

Rp(e)
��

B(G)

RB

��
F top∞ (S1)

Ψ // B(e)

where the vertical arrows are restriction functors.
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Proof. We may regard the graph G as being constructed from a collection of trivalent vertices
by gluing infinite edges to each other. By Lemma 7.12, there is a collection of graphs Gi,
i = 1, . . . , N such that GN = G, and Gi+1 is obtained from Gi by gluing a single trivalent
vertex to either one or two infinite edges of Gi (but not at all three edges simultaneously).

We shall prove the assertions in the theorem by induction on i. In the base case i = 1,
we are simply considering the pair of pants, for which the result is known. See for instance
Theorem 1.13 of [N5].

For the induction step, the induction hypothesis is the statement of the theorem for Gi.
In passing from Gi to Gi+1, we attach a trivalent vertex T ; correspondingly, Σ(Gi+1) is
obtained from Σ(Gi) by attaching a pair of pants Σ(T ). Now there are two cases, depending
on whether the gluing involves one edge or two.

Case of one edge: Denote e the edge along which Gi is glued to T . Then both Σ(Gi)
and Σ(T ) have a puncture corresponding to e: we denote in the same way, namely p(e), the
corresponding puncture on Σ(Gi) and the puncture on Σ(T ). We may choose skeleta X for
Σ(Gi) and Y for Σ(T ) such that both X and Y have a cycle, respectively, at the puncture
p(e) of Σ(Gi) and at the puncture p(e) of Σ(T ). We then have a diagram

(22) F top∞ (X)
Rp(e) //

Ψ
��

F top∞ (S1)

Ψ
��

F top∞ (Y )
Rp(e)oo

Ψ
��

B(Gi)
RB // B(e) B(T )

RBoo

where the horizontal arrows are restriction functors, and the vertical arrows are the equiva-
lences given by the induction hypothesis. The fact that both squares commute is also part
of the induction hypothesis. This equivalence of diagrams implies the equivalence of fiber
products:

(23) F top∞ (X
∐

S1 Y ) //

Ψ

++

��

F top∞ (Y )

Rp(e)
��

Ψ

))
B(Gi

∐
E T ) //

��

B(T )

��
F top∞ (X)

Rp(e) //

Ψ

33F top∞ (S1)

Ψ

44B(Gi) // B(e)

In the diagram above, the squares are fiber products, and the curved arrows are equivalences
of categories. In particular, since Gi+1

∐
E T = Gi, and X

∐
S1
Y is a skeleton for Σ(Gi+1),

we have an equivalence

(24) Ψ : F top∞ (Σ(Gi+1))→ B(Gi+1)

To complete the proof of the induction step, we must also consider the restriction functors to
the punctures of Σ(Gi+1). On the B-side, the infinite edges Gi+1 correspond to infinite edges
of Gi and T , minus the edge e that we glue along. For each infinite edge e′ of Gi+1, we have
a restriction functor RB∞ : B(Gi+1) → B(e′). This functor factors through either B(Gi) or
B(T ), according to whether e′ comes from Gi or T . On the F -side, we have a corresponding
restriction functor Rp(e′) : F top∞ (X

∐
S1 Y ) → F top∞ (S1). Strictly speaking, the definition of
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this functor requires choosing a skeleton for Σ(Gi+1) that has a cycle at the puncture p(e′),
and X

∐
S1 Y may not have this property (and furthermore it is impossible for it to have

this property with respect to every puncture simultaneously). The solution is Lemma 7.7,
which says that we can modify either X or Y only in order to achieve that X

∐
S1 Y also has

a cycle at p(e′). Since this modification can be implemented on X
∐

S1 Y simultaneously, we
find that the restriction to p(e′) factors through the the closed restriction to either X or Y .
If the puncture p(e′) comes from Σ(Gi), there is therefore a commutative diagram of closed
restriction functors

(25) F top∞ (X
∐

S1 Y )
SX∞ //

Rp(e′) ''

F top∞ (X)

Rp(e′)
��

F top∞ (S1)

In the case that p(e′) comes from T , the same diagram holds with Y in place of X in the
upper-right node. Comparing the two sides, we have a diagram

(26) F top∞ (X
∐

S1 Y ) //

Rp(e′) ''

Ψ

++
F top∞ (X)

Rp(e′)
�� ��

Ψ

))
B(Gi

∐
E T ) //

&&

B(Gi)

��
F top∞ (S1)

Ψ

))
B(e′)

In this diagram, the curved Ψ arrows (which are equivalences) commute form commutative
squares with the horizontal and vertical arrows, and therefore they also form a commuta-
tive square with the diagonal arrows. This establishes the desired compatibility between
restriction functors to infinite edges of Gi+1 with restrictions to punctures of Σ(Gi+1).

Case of two edges : Let e1 and e2 be the two edges along which Gi and T are glued. As
before, we denote p(e1) and p(e2) both the two punctures on Σ(Gi), and the two punctures
on Σ(T ), that correspond to e1 and e2. Choose a skeleton X for Σ(Gi) that has disjoint
cycles at the punctures p(e1) and p(e2). Choose a skeleton Y for T that has disjoint cycles
at the punctures p(e1) and p(e2) (this Y is necessarily a dumbbell graph). The argument
proceeds as before, but we glue X to Y along S1

∐
S1, and Gi to T along e1

∐
e2. Thus we

have a diagram

(27) F top∞ (X
∐

S1
∐
S1 Y ) //

Ψ

++

��

F top∞ (Y )

��

Ψ

**
B(Gi

∐
E

∐
E T ) //

��

B(T )

��
F top∞ (X) //

Ψ

33F top∞ (S1
∐
S1)

Ψ

33
B(Gi) // B(e1

∐
e2)

where the two squares are fiber products and the curved arrows are equivalences.
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It remains to analyze the restriction functors. If e′ is an infinite edge ofGi+1 = Gi

∐
E

∐
E T ,

then the restriction to e′ factors through restriction either to Gi or T . Similarly, we claim
that the restriction from F top∞ (X

∐
S1

∐
S1 Y ) factors through restriction either to X or Y .

The only issue here is that we may not be able to choose a skeleton that has disjoint cycles at
three punctures simultaneously. This occurs when we consider the third puncture of Σ(T ),
since Y is a dumbbell graph, or if X has only three punctures. On the other hand, the
modification we need to do in order to produce a puncture at p(e′) can be localized in a
neighborhood of either X or Y inside X

∐
S1

∐
S1 Y . Since an open restriction followed by a

closed restriction is a closed restriction (see Proposition 5.14), it suffices to understand the
closed restriction functor from a neighborhood of X or Y to the puncture. After restricting
to a small enough neigborhood of X or Y , the closed restriction to X or Y consists then of
merely removing some noncompact edges of the skeleton, and it makes no difference whether
we do this before or after modifying the skeleton. Thus the restriction the puncture p(e′)
factors through restriction first to X or Y . The rest of the argument is the same as in the
previous case. �

We are now ready to prove our main theorem. We use the notations of Section 3.1.1. Let
(XT ,WT ) be a toric Calabi-Yau LG model, and let ΣT be the mirror curve.

Theorem 8.4. There is an equivalence of categories

MF (XT ,WT ) ' Fuktop(ΣT ).

Proof. Let GT be the tropical curve dual to the triangulation T . Recall that Fuktop∞ (ΣT )
denotes the Ind-completion of Fuktop(ΣT ). By Theorem 3.10 and Theorem 8.3 there are
equivalences

MF∞(XT ,WT ) ' B(GT ) ' Fuktop∞ (ΣT ).

They restrict to an equivalence between the categories of compact objects insideMF∞(X,W )
and Fuk∞top(ΣT )

MF (XT ,WT ) ' Fuktop(ΣT ),

and this concludes the proof. �

Remark 8.5. Let ΣT be an unramified cyclic cover of a punctured surface and let Fukwr(ΣT )
be the wrapped Fukaya category. By [AAEKO] there is an equivalence

Fukwr(ΣT ) 'MF (XT , fT ).

Together with Theorem 8.4, this yields an equivalence

Fukwr(ΣT ) ' Fuktop(ΣT ).

This establishes Kontsevich’s claim [K], according to which the topological Fukaya category
is equivalent the wrapped Fukaya category, for a large class of punctured Riemann surfaces.
In her thesis Lee [Le] extends the results of [AAEKO] to all genera. This, combined with
Theorem 8.4, gives a complete proof of Kontsevich’s claim for punctured surfaces. A different
proof of this result, with different methods, was given in [HKK].

Remark 8.6. Let us return to the picture of HMS for for partially wrapped Fukaya categories
delineated in Remark 1.3. As we explained there:
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• The semi-infinite edges of a non-compact skeleton S̃ of ΣT encode a stacky partial

compactification X̃T of XT . Additionally X̃T is equipped with a line bundle with a

section W̃T that extends the superpotential WT .

• The partial compactification X̃T has the following defining property: each puncture
p of ΣT corresponds to an irreducible component A1 of the singular locus of WT ; if
S has n non-compact edges approaching the puncture p, then we compactify that
copy of A1 to a stacky rational curve P1(1, n): that is, we cap the A1 with a copy of
[A1/µn].

Let us explain how to obtain the general statement HMS statement for the partially wrapped

category F(S̃),

(28) F(S̃) 'MF (X̃T , W̃T ),

from our Theorem 8.4 and exotic gluing (Theorem 6.6). Assume for simplicity that the non-

compact edges of S̃ approach a unique puncture p of ΣT : the general case is proved via an

iteration of the argument. Removing the non-compact edges from S̃ yields a compact skeleton

S of ΣT . By modifying S̃, and hence S, in the interior of ΣT , it is possible to arrange that

S has a cycle at p, and that S̃ consists of S with several non-compact edges approaching
p. Then Zariski descent for MF and Theorem 6.6 give, respectively, the following two
equivalences

MF (X̃T , W̃T ) 'MF (XT ,WT )×Perf(Gm) Perf([A1/µn])

F(S̃) ' Fuktop(ΣT )×F(Λ(0,0)) F(Λ(0, n))

By Theorem 8.4 MF (XT ,WT ) ' Fuktop(ΣT ) and additionally Perf([A1/µn]) ' F(Λ(0, n)):
thus we deduce equivalence (28) exactly as in the proof of Theorem 8.4.
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