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ABSTRACT  

 Vertical clinging is a specialized form of locomotion characteristic of the 

primate family Callitrichidae. Vertical clinging requires these pronograde primates to 

maintain a vertical posture, so the protraction of their forelimbs must resist gravity. 

Since pronograde primates usually move as horizontal quadrupeds, we hypothesized 

that the supraspinatus muscle of vertical clingers would present specific characteristics 

related to the functional requirements imposed on the shoulder area by vertical clinging. 

To test this hypothesis, we quantified by real time quantitative polymerase chain 

reaction the mRNA transcripts of myosin heavy chain isoforms in the supraspinatus 

muscle of fifteen species of pronograde primates, including vertical clingers. Our results 

indicate that the supraspinatus of vertical clingers has a specific pattern of expression of 

the myosin heavy chain isoforms, with a low expression of the transcripts of the slow 

MHC-I isoform and a high expression of the transcripts of the fast MHC-II isoforms. 

We conclude that these differences can be related to the particular functional 

characteristics of the shoulder in vertical clingers, but also to other anatomical 

adaptations of these primates, such as their small body size. 

Keywords: supraspinatus, myosin heavy chain, vertical clinging  
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INTRODUCTION 

 Vertical clinging [Napier and Walker 1967] refers to a specialized form of 

locomotion and posture that is characteristic of the primate family Callitrichidae [Gebo 

2014]. The Callitrichidae comprises the smallest of the New World primates, including 

marmosets (genus Callimico, Cebuella and Callithrix) and tamarins (genus 

Leontopithecus and Saguinus) [Rowe 1996]. The callitrichids are pronograde primates 

whose main locomotor modes are quadrupedal walking/running and leaping [Fleagle 

1999]. They are also able to cling to thick tree trunks when collecting the insects, gums 

and other tree secretions that constitute a fundamental part of their diet [Garber 1992; 

Schmitt 2003; Gebo 2014]. The anatomic adaptations that enable this particular form of 

locomotion include the development of claw-like nails on their fingers and toes, except 

the hallux, which allow them to cling to large vertical supports [Garber 1992; Porter 

2004]. 

 Vertical clinging is used to a greater or lesser extent by different species of 

callitrichids. For example, the smaller callitrichids, such as Cebuella pygmaea, use 

vertical clinging approximately 65.5-89.6% of the time [Youlatos 1999; Jackson 2011]. 

Other callitrichids, such as Callimico goeldii, also use vertical clinging as much as 45% 

of the time, mostly on thinner vertical supports while gathering insects [Porter 2004]. In 

contrast, callitrichids of the genus Saguinus use vertical clinging only 23% (Saguinus 

fuscicollis) or 3% (Saguinus labiatus) of the time [Porter 2004].  

 The vertical clinging locomotion of the callitrichids is interesting from both an 

anatomic and a functional point of view, since it requires a vertical posture in primates 

with a clear pronograde anatomy. The anatomical differences between pronograde and 
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orthograde primates [Gebo 2014] affect the muscles of the shoulder, especially the 

supraspinatus. The supraspinatus muscle arises from the supraspinatus fossa of the 

scapula and inserts in the greater tubercle of the humerus, passing between the acromion 

and the glenohumeral joint. Together with the subscapularis, infraspinatus and teres 

minor muscles, it forms the rotator cuff, which is the main stabilizing structure of the 

glenohumeral joint. In pronogrades (Figure 1), the supraspinatus is an antigravitational 

muscle that prevents the collapse of the glenohumeral joint in retraction [Larson and 

Stern 1989; Larson and Stern 1992; Anapol and Gray 2003; Preuschoft et al. 2010]. In 

the orthogrades (superfamily Hominoidea), the supraspinatus helps the deltoid during 

the elevation of the forelimb in the scapular plane [Inman et al. 1944; Tuttle and 

Basmajian 1978; Basmajian and de Luca 1985; Larson and Stern 1986; Alpert et al. 

2000]. 

 The functional characteristics of the supraspinatus, such as speed of contraction, 

power, and resistance to fatigue, are also reflected in the pattern of expression of myosin 

heavy chain (MHC) isoforms [Bottinelli and Reggiani 2000]. The skeletal muscles of 

adult mammals express three types of MHC isoforms in varying proportions: the slow 

MHC-I, the fast MHC-IIa, and the fastest MHC-IIx. The muscles of small mammals 

also express a fourth isoform, MHC-IIb [Baldwin and Haddad 2001; Toniolo et al. 

2005; Kohn et al. 2007; Resnicow et al. 2010]. The muscle fibers that express the 

MHC-IIx isoform at higher levels are faster and more powerful but less resistant to 

fatigue than those that express the MHC-IIa isoform at higher levels, while those that 

express the MHC-I isoform at high levels are less fast and powerful but more resistant 

to fatigue [Bottinelli et al. 1999; Pette and Staron 2000]. In general, postural muscles 

primarily express the slow MHC-I isoform and, at lower levels, the MHC-IIa isoform, 



5 
 

but they do not express the fastest MHC-IIx isoform, while fast and powerful muscles 

express both fast isoforms – MHC-IIa and MHC-IIx [Baldwin and Haddad 2001]. Thus, 

the supraspinatus of pronograde primates does not express the fastest MHC-IIx isoform 

but has a high expression of the slow MHC-I isoform (about 50%), while the 

supraspinatus of orthograde primates expresses more than 60% of the two fast MHC-II 

isoforms, MHC-IIa and MHC-IIx [Potau et al. 2011]. These proportions of slow and 

fast MHC isoforms mirror the postural function of the supraspinatus in the pronogrades 

and its elevator function in the orthogrades.  

 Vertical clingers have specific anatomic adaptations that could affect the 

function of the supraspinatus as well as the expression of the MHC isoforms. For 

example, their small body size could well influence the expression of MHC isoforms, 

since studies in several species of animals have found that heavier weight is associated 

with higher expression of the slow MHC-I isoform and a lower expression of the fast 

MHC-II isoforms [Pette and Staron 2000]. In addition, the vertical posture required in 

vertical clinging means that the protraction of the glenohumeral joint must be carried 

out against gravity more frequently than in quadrupedal walking. Electromyographic 

studies in vervets (Cercopithecus aethiops) have found that, as occurs in orthograde 

primates, the supraspinatus muscle protracts the forelimb against gravity during 

voluntary overhead reaching and the swing phase of climbing, while it does not 

participate in the protraction of the forelimb during quadrupedal walking [Larson and 

Stern 1989]. We can therefore speculate that the expression patterns of MHC isoforms 

in vertical clingers are closer to those of arboreal than of terrestrial primates.  

 In order to increase our understanding of the role of the supraspinatus in vertical 

clingers, we have quantified in different primate species the mRNA transcripts of MHC 
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isoforms in the supraspinatus by real time quantitative polymerase chain reaction (RT-

qPCR). We then compared our findings in vertical clingers with those in other 

pronograde primates with different types of locomotion (arboreal quadrupeds and 

semiterrestrial quadrupeds). We envisioned three possibilities: 1) that the supraspinatus 

of vertical clingers would be similar to that of pronograde primates, based on the 

pronograde body pattern of vertical clingers; 2) that it would be similar to that of 

orthograde primates, based on the vertical posture and the greater protraction of the 

forelimb against gravity; or 3) that it would be unique, adapted to the specific physical 

characteristics of vertical clingers, including their small body size.  

 

METHODS 

 Supraspinatus muscle samples  

 We included six adult vertical clingers in the study (Table 1), all of which came 

from Spanish zoological parks and had died from causes unrelated to the present study. 

The cadavers were transferred to the Anatomy Museum of the University of Valladolid 

(Valladolid, Spain) and frozen without fixation until dissection. The six vertical clingers 

studied were from members of the family Callitrichidae: one female Cebuella pygmaea; 

one female Callithrix geoffroyi; one female Callithrix jacchus; one female Saguinus 

imperator; one female Saguinus oedipus; and one male Leontopithecus chrysomelas. 

 The same investigator (JMP) systematically dissected the rotator cuff of each 

primate. He weighed the supraspinatus and obtained samples of 2 mm3 with a scalpel of 

its central region with respect to the length, width and thickness of the muscle (Figure 

2). These samples were then frozen in saline solution for molecular analysis. 
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 RNA isolation and cDNA synthesis 

 We extracted the RNA from the muscle samples using the commercial RNeasy 

mini kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol. We used a 

NanoDrop 1000 Spectrophotometer to determine the concentration, purity and amount 

of RNA and electrophoresis on 1% agarose gel to assess the integrity and quality of 

RNA. 

 We used TaqMan Reverse Transcription Reagent Kit (Applied Biosystems, 

Foster City, CA) to synthesize cDNA. We performed reverse transcription using 330 ng 

of total RNA in 10 µl of RT Buffer, 22 ml of 25 mM magnesium chloride, 20 µl dNTPs, 

5 µl Random Hexamers, 2 µl RNAse Inhibitor, 2.5 µl MultiScribe Reverse 

Transcription and RNA sample plus RNAse-free water, for a final volume of 100 µl, in 

the following thermal cycler conditions: 10 min 25ºC, 48 min 30 ºC and 5 min 95 ºC. 

Gene expression and quantification by RT-qPCR 

 Applied Biosystems supplied primers and probes. We labeled primers at the 5’ 

end with the reporter dye molecule FAM. We analyzed MYH-I (Hs00165276_m1), 

MYH-IIa (Hs00430042_m1), MYH-IIx (Hs00428600_m1) and MYH-IIb 

(Hs00757977_m1) genes. We used 18s gene probe labeled at the 5’ end with the 

reporter dye molecule FAM (Hs99999901_s1) as housekeeping gene. 

 We performed RT-qPCR in a total volume of 20 µl in the ABI Prism 7700 

Sequence Detection System (Applied Biosystems) using the following master mix 

conditions: 10 µl of the TaqMan Universal PCR Master Mix, 1 µl of the primers and 

probes, 2 µl of the cDNA and 7 µl of the RNAse-free water. We ran all samples for 

each gene in duplicate using this thermal cycler conditions: two min 50 ºC, 40x (10 min 
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95 ºC, 15s 95 ºC) and 1 min 60 ºC. We used genomic DNA as negative control in each 

run. We captured fluorescent emission data and quantified mRNA concentrations by 

using the critical threshold value and 2-∆∆Ct. In order to avoid any possible effects of 

post-mortem mRNA degradation, we normalized the mRNA values for each of the 

MHC isoforms using the endogenous gene 18S. 

 Finally, we calculated the percentage of expression of the transcripts of each 

MHC isoform relative to the total expression of the transcripts of all MHC isoforms 

(%MHC-I, %MHC-IIa, %MHC-IIx, and %MHC-IIb) and compared the expression of 

the transcripts of the three fast MHC-II isoforms taken together (%MHC-II)  to the 

expression of the transcripts of the slow MHC-I isoform (%MHC-I). 

 Comparison with other primate groups 

 We compared the findings of the present study in vertical clingers with those of 

two other primate groups: eight arboreal quadrupeds and seven semiterrestrial 

quadrupeds [Schmitt 2010] (Table 1). For this purpose, we used the results previously 

published by our team [Potau et al. 2011] and we added new results obtained from one 

male Macaca fascicularis (crab-eating macaque), one female Miopithecus talapoin 

(Angolan talapoin), one female Saimiri sciureus (common squirrel monkey) and one 

male Cercocebus atys lunulatus (white-collared mangabey). The first three of these new 

four specimens came from the Anatomy Museum of the University of Valladolid and 

the last came from the Barcelona Zoological Park (Barcelona, Spain). 

 Statistical analyses 

 We used the non-parametric Kruskall-Wallis one-way ANOVA test to compare 

the median values among the three primate groups and the Median Test within the 
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Kruskall-Wallis ANOVA for the pair-wise post-hoc comparisons; adjusted p-values 

were automatically provided by SPSS within the Kruskall-Wallis test. In addition, we 

analyzed the relation between the expression of the transcripts of the MHC isoforms and 

the species mean value of the log-transformed weight of the supraspinatus muscle (log-

SUP) with the Spearman correlation coefficient test. We also derived a phylogenetic 

independent contrast [Garland et al. 1992] of supraspinatus weight versus the 

percentage of expression of the MCH-I isoform by species. The molecular phylogeny of 

the species considered was derived from the 10kTrees website [Arnold et al. 2010]. 

Rank-transformed phylogenetic contrasts were obtained and the relationship between 

the expression of the MHC isoforms and supraspinatus weight were computed again. 

We used SPSS 22 for all statistical analyses and set statistical significance at P<0.05. 

 Ethical note 

 The research complied with protocols approved by the Institutional Animal Care 

and Use Committee of the University of Barcelona and adhered to the legal 

requirements of Spain. 

 

RESULTS 

 The mean %MHC-I was 33.4% ± 7.2 in vertical clingers, compared to 40.7% ± 

10.1 in arboreal quadrupeds and 49.5% ± 3.0 in semiterrestrial quadrupeds (Table 2). 

Overall comparisons showed significant differences among groups (K=10.475, 

P=0.005, N=21) for %MHC-I. However, pair-wise significant differences were only 

found between vertical clingers and semiterrestrial quadrupeds (χ2=9.551, P=0.002, 

adjusted P=0.006). In contrast, the differences observed in the expression of the mRNA 
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transcripts of the MHC-I isoform between arboreal quadrupeds and vertical clingers 

(χ2=1.167, P=0.280, adjusted-P=0.840) and between arboreal quadrupeds and 

semiterrestrial quadrupeds were not significant (χ2=3.233, P=0.072, adjusted-P=0.216). 

 All specimens expressed transcripts of the MHC-IIa isoform but none of them 

expressed transcripts of the MHC-IIx or MHC-IIb isoforms (Table 1). The mean 

%MHC-II was 66.6% ± 7.2 for the vertical clingers, 59.3% ± 10.1 for the arboreal 

quadrupeds, and 50.5% ± 3.0 for the semiterrestrial quadrupeds (Table 2). Overall 

comparisons showed significant differences among groups (K=10.475, P=0.005, N=21) 

for %MHC-IIa, but pair-wise significant differences were only found between vertical 

clingers and semiterrestrial quadrupeds (χ2=13.000, P=0.000, adjusted P=0.001) for 

%MHC-IIa. The differences observed in the expression of the mRNA transcripts of the 

MHC-IIa isoform between arboreal quadrupeds and vertical clingers (χ2=1.167, 

P=0.280, adjusted P=0.840) and between arboreal quadrupeds and semiterrestrial 

quadrupeds were non-significant (χ2=1.727, P=0.189, adjusted P=0.566). 

 Twenty of the 21 primates in the study had available data on the supraspinatus 

weight (SUP) (Table 1). For Saimiri sciureus, this information was not available. For 

these 20 primates, included in 14 different species, we observed a significant positive 

correlation between %MHC-I and log-SUP (Spearman correlation coefficient test: 

ρ=0.632, P=0.015, N=14) (Figure 3). Molecular data on 10kTrees for the 14 species 

considered was used to derive the phylogenetic independent contrasts analysis. In this 

case, correlation between the two variables was not significant (ρ=0.456, P=0.117, 

N=14).  
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DISCUSSION 

 We found no significant differences in the expression pattern of the MHC-I and 

the MHC-II isoform transcripts between vertical clingers and arboreal quadrupeds, but 

in the former the percentage of expression of the MHC-I isoform transcripts was lower 

and the percentage of expression of the MHC-II isoforms transcripts was higher than in 

arboreal quadrupeds. On the other hand, the pattern of expression of the MHC-I and 

MHC-II isoforms transcripts in semiterrestrial quadrupeds was different from that of 

both arboreal quadrupeds and vertical clingers (Table 2), although these differences 

were only significant in comparison with vertical clingers. In vertical clingers, the 

%MHC-I mean was a low 33.4% while the %MHC-II mean – MHC-IIa – was a high 

66.6%. These results contrast with those in arboreal quadrupeds (40.7% MHC-I and 

59.3% MHC-II) and in semiterrestrial quadrupeds (49.5% MHC-I and 50.5% MHC-II), 

but are more similar to those in orthograde primates (30-40% MHC-I and 64.6% MHC-

II) [Potau et al. 2011]. There is, however, an important difference in the MHC-II 

transcripts expression between vertical clingers and orthograde primates, since vertical 

clingers do not express the MHC-IIx transcripts. The low percentage of expression of 

the MHC-I transcripts and the high percentage of expression of the MHC-IIa transcripts 

in vertical clingers could be related to their posture, which necessitates a more frequent 

protraction of the forelimb against gravity than other pronograde primates. On the other 

hand, the high expression of the MHC-I transcripts in semiterrestrial quadrupeds 

confirms the important postural and anti-gravity function of the supraspinatus in this 

form of locomotion [Larson and Stern 1989; Larson and Stern 1992]. In comparison 

with the semiterrestrial quadrupeds, the arboreal quadrupeds had a lower %MHC-I and 

a higher %MHC-II (Table 2). These differences between arboreal and semiterrestrial 
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quadrupeds, though not statistically significant, may be due to the different functional 

demands of the supraspinatus in quadrupedal terrestrial and in arboreal climbing 

locomotion, as different electromyographic studies have shown [Larson and Stern 1989; 

Larson and Stern 1992]. These studies indicate that the supraspinatus is inactive during 

the swing phase of quadrupedal walking but is active during the swing phase of 

climbing. 

 One limitation of our study is that we were only able to analyze samples from 

the central region of the supraspinatus although the distribution of muscle fibers is 

generally heterogeneous in different regions of the same muscle. Schmidt and Schilling 

(2007) reported a heterogeneous distribution of type I fibers in the supraspinatus of 

Saguinus oedipus and Saimiri sciureus, with a larger proportion of type I fibers in the 

distal region of the muscle and near the scapular spine. However, in a previous study by 

our group using RT-qPCR, we found no significant differences in the expression 

patterns of the MHC isoforms in the different regions of the supraspinatus muscle in 

Macaca fascicularis or Gorilla gorilla [Potau et al. 2011]. 

The initial positive correlation between the weight of the supraspinatus and the 

%MHC-I (ρ=0.632, P=0.015) (Figure 3) suggests that the low %MHC-I observed in 

vertical clingers may also be related to its smaller body size. This is in line with 

previous findings showing an association between higher body weight and higher 

expression of the slow isoform and lower expression of the fast isoforms [Pette and 

Staron 2000]. Nevertheless, when correcting for phylogenetic non-independence of data 

points the association becomes not significant. This could be either due to the reduced 

sample size available or to the fact that the myosin expression-supraspinatus weight 

relationship has a strong phylogenetic signal. Although it is true that the smaller 
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supraspinatus muscles had the lowest expression of MHC-I (Figure 3), there was a great 

deal of dispersion among the species studied and not all the “small” muscles showed 

low expression levels of MHC-I transcripts, and some outliers for the weight might be 

distorting the distribution (which was corrected by the rank-transformation of data). 

Since we did not know the total body weight of our specimens, we used the weight of 

the supraspinatus muscle as an indication of body weight. Our results should therefore 

be interpreted with caution since muscle weight depends on other anatomical and 

functional factors, although it is generally related to body weight. In addition, the fact 

that our specimens were all from zoos limits the generalization of our results, since 

patterns of locomotion and behavior of captive primates may well differ from those of 

primates living in the wild.    

 In summary, the supraspinatus of vertical clingers shares characteristics with that 

of other pronograde primates using different forms of locomotion, such as the lack of 

expression of the MHC-IIx transcripts. At the same time, other characteristics of the 

supraspinatus of vertical clingers differ from that of other pronogrades, although its 

pattern of expression does not present significant differences with respect to that 

observed in arboreal quadruped primates. For example, the supraspinatus of vertical 

clingers expressed the transcripts of the slow MHC-I isoform at low percentages and the 

transcripts of the fast MHC-II isoform at high percentages. These differences can be 

related to the vertical posture of vertical clingers in general and to a smaller body size.  
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TABLE LEGENDS 

Table 1. Means of the supraspinatus weight and of the mRNA transcripts expression of 

MHC isoforms in the supraspinatus muscle (SUP=supraspinatus weight in grams; 

VC=vertical clinger; AQ=arboreal quadruped; STQ=semiterrestrial quadruped). 

* Potau et al., 2011 

NA = not available 

 

SPECIES SAMPLE LOCOMOTION SUP %MHC-I %MHC-IIa %MHC-IIx %MHC-IIb 

Cebuella 
pygmaea 

1 VC 0,2 30,3 69,7 0,0 0,0 

Callithrix 
geoffroyi 

1 VC 0,8 34,2 65,8 0,0 0,0 

Callithrix 
jacchus 

1 VC 0,4 44,3 55,7 0,0 0,0 

Saguinus 
imperator 

1 VC 1,2 27,1 72,9 0,0 0,0 

Saguinus 
oedipus 

1 VC 1,1 25,7 74,3 0,0 0,0 

Leontopithecus 
chrysomelas 

1 VC 1,3 38,9 61,1 0,0 0,0 

Macaca 
fascicularis* 

4 AQ 11,3 42,5 57,5 0,0 0,0 

Colobus 
guereza* 

1 AQ 8,5 48,5 51,5 0,0 0,0 

Miopithecus 
talapoin* 

2 AQ 2,6 34,8 65,2 0,0 0,0 

Saimiri sciureus 1 AQ NA 37,9 62,1 0,0 0,0 
Macaca 
silenus* 

2 STQ 14,2 48,2 51,9 0,0 0,0 

Cercopithecus 
aethiops* 

1 STQ 7,8 49,5 50,5 0,0 0,0 

Mandrillus 
sphinx* 

1 STQ 53,5 48,5 51,5 0,0 0,0 

Lemur catta* 2 STQ 2,6 53,5 46,5 0,0 0,0 
Cercocebus atys 

lunulatus 
1 STQ 23,7 45,6 54,4 0,0 0,0 
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Table 2. Means, standard deviations (SD) and statistical significance (pair-wise post-

hoc adjusted non-parametric P-value) of the expression of the MHC isoforms mRNA 

transcripts in the supraspinatus muscle of the three locomotor groups analyzed 

(VC=vertical clinger; AQ=arboreal quadruped; STQ=semiterrestrial quadruped). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
%MHC-I %MHC-II 

VC vs. AQ 
Mean 

SD 
P 

33,4 / 40,7 
7,2 /10,1 

0,840 

66,6 / 59,3 
7,2 / 10,1 

0,840 

VC vs. STQ 
Mean 

SD 
P 

33,4 / 49,5 
7,2 / 3,0 
0,006* 

66,6/ 50,5 
7,2 / 3,0 
0,001* 

AQ vs. STQ 
Mean 

SD 
P 

40,7 / 49,5 
10,1 / 3,0 

0,216 

59,3 / 50,5 
10,1 / 3,0 

0,566 
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FIGURE LEGENDS 

Figure 1. Patterns of locomotion of (a) pronograde and (b) orthograde primates, 

highlighting the location of the supraspinatus muscle (*).  
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Figure 2. Dissection of the muscles of the rotator cuff in a vertical clinger primate 

(Callithrix jacchus). a) Ventral view (1=subscapularis; 2=teres major; 3=latissimus 

dorsi; 4=biceps brachii; 5=triceps brachii); b) Dorsal view (1=supraspinatus; 

2=infraspinatus; 3=teres minor; 4=teres major; 5=latissimus dorsi; 6=triceps brachii 

(caput longum); 7=triceps brachii (caput laterale); 8=brachialis; 9=biceps brachii; 

10=humerus). * Location where muscle samples were obtained. 
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Figure 3. Regression plot between the log-transformed supraspinatus weight (log-SUP) 

and the percentage of expression of the MHC-I isoform mRNA transcripts (%MHC-I) 

in 14 primate species. 

 


