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Abstract
Background 

Circulating asymmetric (ADMA) and symmetric dimethylarginine (SDMA) are 

increased in patients with kidney disease. SDMA is considered a good marker of 

glomerular filtration rate (GFR) whilst ADMA is a marker of cardiovascular risk. 

However, a link between SDMA and all-cause mortality has been reported. In the 

present study we evaluated both dimethylarginines as risk and GFR markers in a 

cohort of elderly white individuals, both with and without CKD.

Methods

GFR was measured in 394 individuals aged >74 years using an iohexol clearance 

method. Plasma ADMA, SDMA and iohexol were measured simultaneously using 

isotope dilution tandem mass spectrometry.

Results

Plasma ADMA concentrations were increased (P<0.01) in people with GFR <60 

mL/min/1.73 m² compared to those with GFR >60 mL/min/1.73 m², but did not differ 

(P>0.05) between those with GFR 30-59 mL/min/1.73 m² and <30 mL/min/1.73 m². 

Plasma SDMA increased consistently across declining GFR categories (P<0.0001). 

GFR had an independent effect on plasma ADMA concentration whilst GFR, gender, 

body mass index and haemoglobin had independent effects on plasma SDMA 

concentration. Participants were followed for a median of 33 months. There were 65 

deaths. High plasma ADMA (P=0.0412) and SDMA (P<0.0001) concentrations were 

independently associated with reduced survival.

Conclusions

Amongst elderly white individuals with a range of kidney function, SDMA was a better 

marker of GFR and a stronger predictor of outcome than ADMA. Future studies 

should further evaluate the role of SDMA as a marker of outcome and assess its 

potential value as a marker of GFR.

Key words: ADMA, dimethylarginines, kidney disease, older people, SDMA 
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Introduction

Dimethylarginines are produced in all nucleated cells as a result of methylation of 

arginine residues in proteins and subsequent release of free methylarginines 

following proteolysis.1 It is known that both asymmetric dimethylarginine (ADMA) and 

symmetric dimethylarginine (SDMA) are increased in the blood of patients with 

kidney failure.2, 3 ADMA has structural similarity to the amino acid L-arginine and acts 

as an endogenous inhibitor of nitric oxide synthesis: SDMA does not have this 

property.2 Consequently increased concentrations of ADMA have been associated 

with oxidative stress, inflammation, fibrogenesis and endothelial dysfunction and may 

contribute to both cardiovascular risk4, 5 and chronic kidney disease (CKD) 

progression.6-10 Given the strong association between cardiovascular disease and 

CKD11-13 there is interest in the use of ADMA as both a risk marker and promoter of 

cardiovascular disease progression in this setting. It is generally held that SDMA, 

which is mainly eliminated from the body by renal excretion,14 is a good marker of 

glomerular filtration rate (GFR) whilst ADMA is a good marker of cardiovascular risk. 

However, studies have also shown a strong and independent link between SDMA, 

all-cause mortality, and cardiovascular events.15 In the present study we have 

evaluated both dimethylarginines as risk and GFR markers in a large cohort of 

elderly white individuals, both with and without CKD, and in whom GFR has been 

characterised using a reference technique.

Materials and Methods

The study included a cohort of 394 white people aged 74 years and above as 

previously described.16 All subjects gave informed consent. The study took place in 

East Kent, a semirural area of Southern England.

GFR was measured using an iohexol clearance method as previously described.16 

Briefly, following intravenous injection of a 5 mL bolus of Omnipaque 240 (518 g/L 

iohexol corresponding to 240 g/L of iodine, GE Healthcare www.gelifesciences.com) 

lithium heparin blood samples were taken before and at 5, 120, 180 and 240 minutes 

after injection. 

Iohexol GFR was calculated using a single compartment model: 

GFR (mL/min) = 0.693 x iohexol volume of distribution (L) x 1000/half-life of iohexol 

(min)
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The GFR (mL/min) was corrected for body surface area and the Brochner-Mortensen 

correction applied.17

Plasma ADMA, SDMA, creatinine and iohexol were measured simultaneously in 

lithium heparin plasma using a modified stable isotope dilution electrospray tandem 

mass spectrometric method reported for creatinine18 with minor modification.16 ADMA 

and SDMA concentrations reported here were measured in blood obtained 

immediately prior to iohexol injection. Samples were thawed and mixed well, 50 µL of 

plasma was mixed with 50 μL of deionized water containing 50 pmol of [2H6] ADMA 

and 50 pmol of [2H6] SDMA and precipitated with 200 μL of acetonitrile. The stable 

isotopes for [2H6] ADMA and [2H6] SDMA, were synthesized by Department of 

Chemistry, King's College London, London, U.K. Following mixing and centrifugation 

for 3 min at 21800 g, the supernatants were transferred to a 96-deep-well plate. 

Supernatant (5 µL) was pipetted using an HTSPAL autosampler into a 250 μL/min 

mobile-phase stream of acetonitrile/water (50:50; v/v) with 0.025% (v/v) formic acid. 

Chromatography was done on a Chirobiotic T 100 mm × 2.1 mm column with a 2 cm 

× 4 mm guard column (Advanced Separation Technologies) and precursor/product 

ion pairs (m/z 203.1/46.2 and 209.1/52.2 for ADMA and m/z 203.1/172.2 and 

209.1/175.1 for SDMA) were obtained in positive-ion multiple reaction monitoring 

method using a Sciex API4000 (Applied Biosystems). Assay standardization was 

based on aqueous standards at 0.25, 1.0 and 5.0 μmol/L ADMA/SDMA stored at 

−80°C. For the internal quality control, pooled and spiked plasma samples were 

used. Intra-assay coefficients of variation were 2.1% at a concentration of 370 nmol/L 

for plasma ADMA and 3.5% at a concentration of 440 nmol/ L for plasma SDMA. 

Results were calculated using Analyst version 1.4.1.19 

Statistical analysis was performed using Analyse-it™ (Analyse-it™ Software, Ltd, 

Leeds, U.K.), InStat® (GraphPad® Software Inc, San Diego, USA) and StatsDirect 

(StatsDirect Ltd, Cheshire, UK). A P value of <0.05 was considered statistically 

significant. Most data, except haemoglobin, were not normally distributed (P<0.001, 

Shapiro-Wilk test) and all concentrations were expressed as median and interquartile 

range. Data were studied across GFR groups defined as >60, 30-59 and <30 

mL/min/1.73 m2. The Mann-Whitney U-test was used to compare data between two 

groups and the Kruskal-Wallis test (non-parametric analysis of variance (ANOVA)) to 

detect trends across more than two groups. Dunn's multiple comparison test was 

used to undertake pairwise comparisons if a significant effect was observed. 

Categorical variables were analysed using chi-squared test for trend. 
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Spearman rank analysis was used to test for univariate relationships between plasma 

ADMA and SDMA concentrations and other clinical variables including age, body 

mass index (BMI), mean arterial blood pressure (MABP), haemoglobin, GFR and 

plasma creatinine. Multiple linear regression analysis was used to assess the 

independent effect of clinical variables (age, gender, BMI, MABP, GFR, number of 

medications, haemoglobin, presence of vascular disease, hypertension and smoking 

status) on plasma ADMA and SDMA concentrations. Manual backward elimination 

was performed; clinical variables that were not significant (P>0.05) were eliminated 

from the analysis. Multicollinearity was not detected in any models used. 

Survival analysis (all-cause mortality) was studied using the Kaplan-Meier method. 

Significance between risk stratification groups (plasma ADMA and SDMA 

concentration above and below the median value) was determined using the 

Wilcoxon log-rank statistical test. Cox proportional hazard ratio was used to 

determine the association of variables with the risk of all cause death. Unadjusted 

hazard ratios (HRs) and the 95% confidence interval were calculated for plasma 

ADMA and SDMA concentration, age, gender, BMI, MABP, GFR, number of 

medications, haemoglobin concentration, diabetes mellitus, smoking status and 

hypertension. HRs and 95% confidence intervals were expressed per 1–SD higher 

value of each variable for continuous variables. Cox regression analysis was 

performed with adjustment for the significant variables. Manual backward elimination 

was performed; clinical variables that were not significant (P>0.05) were excluded 

from the analysis. Multicollinearity was not detected in any models used.

Results

The East Kent cohort has been described previously.16 Briefly, subjects ranged in 

age from 74 to 97 years and were exclusively white. Approximately equal numbers of 

men and women were included. Characteristics overall and by GFR category are 

summarised in Table 1. Age and number of medications increased and haemoglobin 

concentration decreased with declining GFR. The prevalence of vascular disease, 

diabetes mellitus and hypertension increased with declining GFR. 

Plasma ADMA concentrations were increased (P<0.01) in people with GFR <60 

mL/min/1.73 m² compared to those with GFR >60 mL/min/1.73 m², but did not differ 

(P>0.05) between GFR category 30-59 mL/min/1.73 m² and <30 mL/min/1.73 m². 
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Conversely plasma SDMA increased consistently across declining GFR categories 

(P<0.0001)(Table 1). In univariate analyses both plasma ADMA and SDMA 

concentrations increased with declining GFR (Table 2, Figure 1). Plasma SDMA but 

not ADMA concentration was positively correlated (P<0.0001) with age (Table 2). 

Plasma SDMA concentration (median, interquartile range) was significantly higher 

(P<0.0001) in males (762, 627 to 1033 nmol/L) than in females (617, 513 to 823 

nmol/L): plasma ADMA concentration did not differ between genders (P>0.05). 

GFR was the only variable which had an independent effect on plasma ADMA 

concentration. The fit (R²) of the model including GFR as a variable was 0.20. GFR, 

gender, BMI and haemoglobin had independent effects on plasma SDMA 

concentration. The overall fit (R²) of the model including these three variables was 

0.69 (P<0.0001)(Table 3).

All participants were followed up for a median (interquartile range) period of 33 (26-

43) months. During the follow up period, 65 people died. Seventy-two percent of the 

individuals that died had plasma ADMA concentrations greater than or equal to the 

median plasma ADMA concentration (≥543 nmol/L). When the end point of the follow 

up period was considered as 48 months the survival chances for people with plasma 

ADMA concentrations ≥543 nmol/L compared to <543 nmol/L were 68% and 89% 

respectively (P=0.0009) (Figure 2). The median plasma SDMA concentration was 

680 nmol/L: 83% of the individuals that died had plasma SDMA concentrations ≥680 

nmol/L. When the end point of the follow up period was considered as 48 months the 

survival chances for people with plasma SDMA concentrations ≥680 nmol/L 

compared to <680 nmol/L were 65% and 93% respectively (P<0.0001)(Figure 2).

Cox proportional hazard ratios were calculated to determine the significance of 

variables as predictors of all cause death. In unadjusted analyses ADMA, SDMA, 

age, GFR, number of medications, haemoglobin, presence of vascular disease and 

smoking status were significant predictors (Table 4). Manual backward elimination 

with stepwise elimination of insignificant variables was undertaken in two separate 

models including ADMA or SDMA. In the final ADMA model age, GFR, presence of 

vascular disease and smoking status in addition to plasma ADMA concentration 

remained significant independent predictors of all cause death. In the final SDMA 

model age and smoking status in addition to plasma SDMA concentration remained 

significant (Table 4).  
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Discussion

To our knowledge this is the first study to evaluate ADMA and SDMA as markers of 

both GFR and outcome in an exclusively elderly cohort across a range of kidney 

function in conjunction with a reference GFR measurement. In this study both ADMA 

and SDMA were inversely related to GFR. This relationship was stronger for SDMA 

than ADMA. Whilst ADMA concentration was influenced by GFR only, SDMA 

concentration was also affected by gender, BMI and haemoglobin concentration. 

ADMA predicted mortality risk, but this effect only just achieved significance with age, 

GFR, presence of vascular disease and smoking history all contributing strongly and 

independently to risk. Conversely, SDMA was a highly significant predictor of death 

in this cohort, with age and smoking history but not GFR contributing to risk in this 

model.

The strength of the relationship we observed between GFR and ADMA (rs -0.42) is 

broadly similar to that observed in other cohorts (r -0.24,9 r -0.29,5 r -0.2620), and not 

of sufficient strength to suggest that ADMA could be a useful marker on its own of 

GFR. Whilst SDMA is mainly eliminated through the kidneys,14 ADMA is mainly 

metabolised through enzymatic degradation in both the liver and kidney involving 

dimethylarginine dimethylaminohydrolase (DDAH). Consequently the relationship 

between ADMA and GFR may be confounded by hepatic function.21-23 In a 

retrospective analysis of participants in the Modification of Diet in Renal Disease 

Study, Young et al also found GFR to be the only variable tested to be significantly 

associated with ADMA concentration, but their model only explained 5% of the 

variability in ADMA concentration.24

There has been extensive study of the relationship between SDMA and GFR.25 

SDMA shows some of the properties of an ideal glomerular filtration marker, 

including being produced at a constant rate and being almost completely eliminated 

from the body by renal excretion.14 The strong relationship we have observed 

between SDMA and GFR (rs -0.87) is consistent with that from other studies,20, 25, 26 

particularly those that also used a reference GFR technique where observed 

correlation coefficients ranged from 0.78 to 0.90.25 The SDMA-GFR relationship was 

also similar to that we observed between serum creatinine and GFR (rs -0.87) and 

for the proposed GFR marker cystatin C (rs -0.90, data not shown) in this group. 

SDMA has also been shown to be an early and sensitive marker of abrupt change in 

kidney function following kidney donation.27 In addition to being related to GFR, 
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plasma SDMA concentration is also strongly affected by gender, raising the 

possibility that GFR prediction from SDMA could be improved by models that also 

take gender into account.

Given the clear pathophysiological construct linking ADMA and vascular dysfunction, 

many studies have addressed the relationship between increased circulating ADMA 

concentration and mortality risk across a variety of populations,22, 28-30 including 

amongst older people.31 In the setting of kidney disease, an early study in dialysis 

patients showed that ADMA, but not SDMA, predicted mortality.32 In several cohorts 

of CKD patients, and amongst renal transplant recipients,33 high ADMA concentration 

was an independent predictor of all-cause mortality.5, 9 Conversely, in the study of 

Young et al amongst patients with moderate to severe CKD, ADMA did not reach 

significance as an independent predictor of all-cause mortality, although it was a 

significant predictor of cardiovascular mortality.24 

Fewer studies have explored the relationship between SDMA and mortality risk but 

increasing evidence suggests a role. In a German study of individuals receiving 

coronary angiography following an ischaemic event, SDMA demonstrated a J-shaped 

relationship with all-cause and cardiovascular mortality whereas the ADMA-mortality 

relationship was more linear.26 SDMA, but not ADMA, was independently associated 

with survival after stroke,34 non-ST elevation myocardial infarction20 and amongst 

individuals admitted to an intensive care unit.35 

Part of the association between SDMA and risk of mortality may reflect the strong 

relationship between GFR itself and risk. Indeed, the strong relationship between 

SDMA and GFR probably explains why only one of these factors remained significant 

in our adjusted model. A relationship between SDMA and mortality independent of 

GFR has also been reported in renal transplant recipients.36 Recent evidence 

suggests potential direct pathophysiological links between SDMA and cardiovascular 

disease through indirect inhibition of nitric oxide synthesis.15 The proposed 

mechanism is through competition with L-arginine for transport, hence limiting the 

availability of L-arginine to nitric oxide synthase.37 In turn, reactive oxygen species 

may further promote intracellular ADMA formation.38  Dose-dependent inhibition of 

nitric oxide synthesis by SDMA has been observed in cultured endothelial cells, 

coupled with increased production of reactive oxygen species.15 In vitro SDMA, but 

not ADMA, was shown to cause release of proinflammatory cytokines (interleukin-6, 

IL-6; tumour necrosis factor-a, TNF-a) from monocytes: release of cytokines was 
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linked to activation of nuclear factor-Kappa B.39 In vivo, plasma SDMA concentration 

was correlated to IL-6 and TNF-a concentrations amongst patients with CKD, with 

much weaker relationships observed for ADMA and cytokine concentrations.39 

SDMA, but not ADMA, concentrations have previously been observed to be 

independently increased in patients with coronary vascular disease and related to 

extent of such disease.15 There is therefore increasing evidence suggesting that 

SDMA could contribute to endothelial dysfunction and the chronic inflammatory state 

characteristic of CKD, with attendant increase in cardiovascular risk.

The strengths of this study include the simultaneous measurement of ADMA and 

SDMA across a well-characterised, large number of subjects covering a spectrum of 

kidney disease assessed using a reference GFR technique. The study has some 

limitations. Only single baseline measures of the dimethylarginines were available. 

Only all-cause mortality data was collected: pathophysiologically one would 

anticipate the role of dimethylarginines to be more closely linked to cardiovascular 

mortality. However, although cardiovascular disease is the major cause of mortality 

amongst people with CKD,12 other pathology including malignancy and infection40 

could be contributing to the relationship between mortality and SDMA due to 

increased SDMA production as a result of increased cell turnover. The study was 

exclusively white and findings may therefore not hold in other ethnic groups.41 In 

common with most studies in this field, plasma concentrations of dimethylarginines 

were measured. Any effects in vivo are likely to be related to intracellular 

dimethylarginine concentrations. Plasma concentrations of dimethylarginines may not 

reflect their intracellular concentration, potentially obscuring their true relationship 

with mortality.42

In conclusion we have shown that amongst elderly white individuals and across a 

range of kidney function, SDMA appears to be both a better marker of GFR and a 

stronger predictor of outcome than ADMA. The prognostic power of SDMA may be 

related to its more recently described roles in stimulating the pro-inflammatory state. 

Future studies should further evaluate the role of SDMA as a marker of outcome and 

assess its potential value as a marker of GFR.
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Figure 1A. Scatter plot of 1/plasma ADMA in association with measured 
glomerular filtration rate (mGFR). rs = 0.42, p <0.0001
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Figure 1B. Scatter plot of 1/plasma SDMA in association with measured 
glomerular filtration rate (mGFR). rs = 0.87, p <0.0001
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Figure 2a. Kaplan-Meier survival curve by median ADMA concentration (543 nmol/L); P=0.0009.

 ADMA ≥ 543 nmol/L

0 20 40 60 80
0.00

0.25

0.50

0.75

1.00

ADMA< 543 nmol/L
 <54r

Times (months)

R
el

at
iv

e 
su

rv
iv

al
 (%

)

Page 17 of 47

Annals of Clinical Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

Figure 2b. Kaplan-Meier survival curve by median SDMA concentration (680 nmol/L); P<0.0001.
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Table 1. Subject characteristics by GFR category. Values for continuous variables are expressed as median (interquartile range) unless 

stated otherwise. P<0.05 was considered significant. 

Total cohort ≥60 mL/min/1.73 m² 30–59 mL/min/1.73 m² <30 mL/min/1.73 m² P for trend

n  394 163 171 60 -
Male:female, n (% male) 189:205 67:96 (41) 90:81 (53) 33:28 (55) 0.0617
Age, y 80 (77-83) 79 (76-81)a, b 80 (77-84) 81 (77-86) <0.0001
BMI, weight(kg)/height(m)² 26.1 (23.6-29.3) 25.8 (23.1-28.6) 26.2 (24.1-29.7) 27.3 (23.9-30.0) 0.0998
MABP, mm Hg* 96.0 (89.3-103.6) 94.3 (87.3-104.4) 96.6 (91.4-104.8) 96.3 (87.1-100.9) 0.4100
Number of medications, n 5 (3-8) 4 (1-6)a, b 6 (4-8) 7 (5-10) <0.0001
Vascular disease, n (%) 172 (44) 49 (31)a 90 (53) 33 (54) <0.0001
Diabetes, n (%) 77 (20) 21 (13)b 36 (21) 20 (33) 0.0032
Hypertension, n (%) 251 (55) 71 (44)a, b 104 (61) 40 (66) 0.0014
Smoker, n (%) 86 (22) 26 (16)a 51 (30)c 9 (15) 0.0034
Haemoglobin, g/L 130 (120-139) 136 (129-142)a, b 126 (117-136)c 118 (118-129) <0.0001
Serum creatinine, µmol/L 95 (73-144) 71 (61-84) 111 (88-145) 191 (157-247) -
GFR, mL/min/1.73 m² 53 (35-68) 69 (64-78) 45 (36-52) 25 (22-27) -
ADMA, nmol/L 543 (498- 608) 521 (472-559) a, b 565 (513-624) 595 (526-673) <0.0001
SDMA, nmol/L 680 (542-927) 530 (480-610) a, b 775 (663-934)c 1220 (1067-1390) <0.0001

*MABP data was obtained for 374 patients in total and 154, 163 and 57 patients in the >60, 30-59 and <30 mL/min/1.73 m2 groups respectively.

Abbreviations: ADMA, asymmetric dimethylarginine; BMI, Body mass index; GFR, measured glomerular filtration rate (using iohexol); MABP, mean arterial 

blood pressure; SDMA, symmetric dimethylarginine;.

Dunn's multiple comparison test for pairwise comparisons of the effect of GFR category on plasma ADMA, SDMA and serum cystatin C concentration are 

denoted as shown below.
a P<0.05 for ≥60 mL/min/1.73 m² vs. 30-59 mL/min/1.73 m²
b P<0.05 for ≥60 mL/min/1.73 m² vs. <30 mL/min/1.73 m²
c P<0.05 for 30-59 mL/min/1.73 m² vs. <30 mL/min/1.73 m²
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Table 2. Correlation (rs) between plasma ADMA and SDMA concentrations and clinical variables.

Variable ADMA SDMA

Age 0.10 0.25†

BMI 0.14 0.08

MABP* 0.07 0.01

Haemoglobin -0.20† -0.41†

GFR -0.42† -0.87†

Serum creatinine 0.34† 0.87†

Note. Values expressed as correlation coefficients obtained using Spearman’s rank statistic. Statistical significance is shown as † (P<0.0001 in each case); 

the remaining correlations were not statistically significant.

Abbreviations: ADMA, asymmetric dimethylarginine; BMI, body mass index; GFR, measured glomerular filtration rate (using iohexol); MABP, mean arterial 

blood pressure; SDMA, symmetric dimethylarginine; 
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Table 3. Effect of clinical variables on plasma ADMA and SDMA concentrations. Values shown are the beta coefficients (95% confidence 

intervals) for the variables that remained significant in the multiple regression model.

ADMA SDMA

Constant 664.1 (641.5 to 686.6), P<0.0001 1828.1 (1654.1 to 2002.0), P<0.0001

Glomerular filtration rate -2.032 (-2.436 to -1.628), P<0.0001 -11.779 (-12.791 to -10.768), P<0.0001

Haemoglobin - -2.723   (-3.968 to -1.478), P<0.0001

Gender - 98.416 (63.281 to 133.55), P<0.0001

Body mass index - -4.907 (-8.699 to -1.116), P=0.0116
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Table 4. Unadjusted and adjusted hazard ratios for death. For continuous variables, the hazard ratios are expressed as the increased risk 
associated with a one standard deviation increase (ADMA, age, BMI, MABP, medication no.) or decrease (GFR, haemoglobin). For categorical 
variables, the hazard ratios are expressed as risk if conditions present (vascular disease, hypertension, smoker and diabetes mellitus) or if 
female rather than male, compared to risk in the absence of condition.

Variable Unadjusted hazard 
ratio (95% CI) per 
standard deviation

P ADMA model:
adjusted hazard 
ratio (95% CI) per 
standard deviation

P SDMA model:
adjusted hazard 
ratio (95% CI) per 
standard deviation

P 

ADMA, nmol/ L 1.67 (1.32 - 2.10) <0.0001 1.30 (1.01-1.68) 0.0412 - -
SDMA, nmol/L 2.01 (1.66 - 2.44) <0.0001 - - 2.43 (1.80 – 3.28)  <0.0001
Age, years 1.65 (1.36 – 2.00) <0.0001 1.43 (1.17 – 1.75) 0.0005 1.47 (1.20 - 1.81) 0.0003
Gender (f/m) 1.42 (0.87 - 2.32) 0.1651a - -
BMI, weight(kg)/height(m)² 0.95 (0.74 - 1.21) 0.6593 - -
MABP, mmHg 0.99 (0.77 - 1.27) 0.9265 - -
GFR, mL/min/1.73 m² 0.44 (0.33 - 0.59) <0.0001 0.54 (0.39 – 0.76) 0.0003
Number of medications, n 1.39 (1.11 - 1.75) 0.0045 - -
Haemoglobin, g/L 0.63 (0.46 - 0.85) 0.0032 - -
Vascular Disease (y/n) 2.61 (1.56  - 4.37) 0.0162a 1.91 (1.14 – 3.21)a 0.0145
Diabetes (y/n) 1.42 (0.82 - 2.48) 0.2143a - -
Smoker (y/n) 2.14 (1.30 - 3.53) 0.0029a 1.87 (1.13 – 3.10)a 0.0155 1.99 (1.20 - 3.29)a 0.0074
Hypertension (y/n) 1.38 (0.84 - 2.29) 0.2061a - -

Abbreviations: ADMA, asymmetric dimethylarginine; BMI, Body mass index;  CI, confidence interval; GFR, glomerular filtration rate (using iohexol); MABP, 
mean arterial blood pressure; SDMA, symmetric dimethylarginine

a adjusted hazard ratio (95% CI) for presence compared to absence or female versus male
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Pathology Department,
Kent and Canterbury Hospital,

Ethelbert Road,
Canterbury, Kent,

CT1 3NG.
 Tel: 01227 864112

Email: elamb@nhs.net
31st October 2018

Prof Maurice O’Kane,
Deputy Editor
Annals of Clinical Biochemistry

Dear Maurice,

Re: Manuscript ID ACB-18-185 entitled "Symmetric dimethylarginine (SDMA) is a stronger predictor of mortality risk than 
asymmetric dimethylarginine (ADMA) amongst older people with kidney disease"

Thank you for returning our manuscript. We were pleased with the generally encouraging responses 
from the referees.

Specifically in response to their points (our responses in bold):

Referee: 1

1.  The data in table 1 are stated in to be presented as median (interquartile range), but the range in 
brackets in fact appears to be the absolute range, which is consistent with what is stated in the 
methods (page 4, final paragraph).  Presentation as median (IQR) would be preferable.  Similarly the 
data presented textually for sex differences in SDMA (page 6, first paragraph) could be presented in 
this way.

We apologise for this. Interquartile range data has now been included.

2. In the discussion (page 7, 2nd paragraph), the final r value presented in brackets should 
presumably read "r-0.26" rather than "r=0.26".

Thank you for spotting this error. It has been amended to -0.26.

3.  I would like to clarify whether the SDMA model which reports an adjusted HR of 2.43 per SD is 
adjusted for GFR, i.e. whether it could be said that SDMA adds anything over GFR for risk prediction, 
or whether SDMA is merely a marker of GFR, given the strong correlation between GFR and SDMA. 
This possibility is indeed acknowledged by the authors in the discussion (page 8); the cited study by 
Pihlstrøm (36) shows an independent effect of SDMA on all-cause mortality only in quartile 4 vs 
quartile 1, and the SDMA concentrations in the present study are lower than those in Pihlstrøm's.

GFR was excluded from the adjusted SDMA model and we feel we have made this clear in the 
manuscript. In the results section we state that “In the final SDMA model age and smoking 
status in addition to plasma SDMA concentration remained significant (Table 4). In the 
Discussion we expand on this further: “Part of the association between SDMA and risk of 
mortality may reflect the strong relationship between GFR itself and risk. Indeed, the strong 
relationship between SDMA and GFR probably explains why only one of these factors 
remained significant in our adjusted model.” What is interesting is that SDMA pushes GFR out 
of the model, suggesting that it is indeed closely related to GFR but is also contributing 
something else in terms of risk assessment.
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We do not fully understand the comment regarding the Pihlstrom et al study. Reported SDMA 
concentrations will be affected by the method used: we used IDMS, Pihlstrom et al used HPLC. 
Nevertheless, the results are broadly comparable e.g. Pihlstrom’s Q4 (mean eGFR 35 mL/min) 
had SDMA concentrations ranging from 1380 to 4410 nmol/L, compared to the group with 
GFR<30 in the present study (median mGFR 25 mL/min) where SDMA concentrations ranged 
from 708 to 2240 nmol/L.

4.  Data are presented for all-cause mortality.  Is it possible to refine this by cause of death to see 
whether CV death is specifically associated with SDMA/ADMA in this population?  Given the 
hypothesised effects of dimethylarginines CV death in particular would be of interest.

We agree with the reviewer on this point but unfortunately we did not collect cause of death 
data. We acknowledge this as a limitation of the study in the Discussion, whilst also discussing 
that increased dimethylarginine concentrations may reflect other non-cardiac pathology that 
contributes to mortality in CKD.

Referee: 2

Comments to the Author
I was impressed with this paper. It uses clear methodology to establish a link between the molecules 
studied and clinical outcomes. The statistics used seem appropriate. It adds to the evidence base with 
regard to the increased risk of adverse outcomes associated with Chronic Kidney Disease. As well as 
a marker for outcomes this may lead to potential therapeutic targets. I would have liked to have seen if 
there was a correlation with a measure of proteinuria as a clinical variable, particularly as this is an 
established risk factor for cardiovascular disease. Similarly I would have liked to have seen whether 
there is a correlation between the primary renal diagnosis and ADMA and SDMA concentrations. It 
might be worthwhile for the authors to consider adding these variables to future research but  overall I 
don't think these omissions detract from the paper.

We are grateful to reviewer 2 for his encouraging comments. Unfortunately we are unable to 
undertake the analyses he has suggested in this cohort.

I hope that we have sufficiently addressed the points raised. I look forward to hearing from you further 
regarding our paper.

With kind regards

Yours sincerely

Dr Edmund Lamb PhD FRCPath
Clinical Director of Pathology and Consultant Clinical Scientist (Biochemistry)
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Abstract
Background 

Circulating asymmetric (ADMA) and symmetric dimethylarginine (SDMA) are 

increased in patients with kidney disease. SDMA is considered a good marker of 

glomerular filtration rate (GFR) whilst ADMA is a marker of cardiovascular risk. 

However, a link between SDMA and all-cause mortality has been reported. In the 

present study we evaluated both dimethylarginines as risk and GFR markers in a 

cohort of elderly white individuals, both with and without CKD.

Methods

GFR was measured in 394 individuals aged >74 years using an iohexol clearance 

method. Plasma ADMA, SDMA and iohexol were measured simultaneously using 

isotope dilution tandem mass spectrometry.

Results

Plasma ADMA concentrations were increased (P<0.01) in people with GFR <60 

mL/min/1.73 m² compared to those with GFR >60 mL/min/1.73 m², but did not differ 

(P>0.05) between those with GFR 30-59 mL/min/1.73 m² and <30 mL/min/1.73 m². 

Plasma SDMA increased consistently across declining GFR categories (P<0.0001). 

GFR had an independent effect on plasma ADMA concentration whilst GFR, gender, 

body mass index and haemoglobin had independent effects on plasma SDMA 

concentration. Participants were followed for a median of 33 months. There were 65 

deaths. High plasma ADMA (P=0.0412) and SDMA (P<0.0001) concentrations were 

independently associated with reduced survival.

Conclusions

Amongst elderly white individuals with a range of kidney function, SDMA was a better 

marker of GFR and a stronger predictor of outcome than ADMA. Future studies 

should further evaluate the role of SDMA as a marker of outcome and assess its 

potential value as a marker of GFR.

Key words: ADMA, dimethylarginines, kidney disease, older people, SDMA 
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3

Introduction

Dimethylarginines are produced in all nucleated cells as a result of methylation of 

arginine residues in proteins and subsequent release of free methylarginines 

following proteolysis.1 It is known that both asymmetric dimethylarginine (ADMA) and 

symmetric dimethylarginine (SDMA) are increased in the blood of patients with 

kidney failure.2, 3 ADMA has structural similarity to the amino acid L-arginine and acts 

as an endogenous inhibitor of nitric oxide synthesis: SDMA does not have this 

property.2 Consequently increased concentrations of ADMA have been associated 

with oxidative stress, inflammation, fibrogenesis and endothelial dysfunction and may 

contribute to both cardiovascular risk4, 5 and chronic kidney disease (CKD) 

progression.6-10 Given the strong association between cardiovascular disease and 

CKD11-13 there is interest in the use of ADMA as both a risk marker and promoter of 

cardiovascular disease progression in this setting. It is generally held that SDMA, 

which is mainly eliminated from the body by renal excretion,14 is a good marker of 

glomerular filtration rate (GFR) whilst ADMA is a good marker of cardiovascular risk. 

However, studies have also shown a strong and independent link between SDMA, 

all-cause mortality, and cardiovascular events.15 In the present study we have 

evaluated both dimethylarginines as risk and GFR markers in a large cohort of 

elderly white individuals, both with and without CKD, and in whom GFR has been 

characterised using a reference technique.

Materials and Methods

The study included a cohort of 394 white people aged 74 years and above as 

previously described.16 All subjects gave informed consent. The study took place in 

East Kent, a semirural area of Southern England.

GFR was measured using an iohexol clearance method as previously described.16 

Briefly, following intravenous injection of a 5 mL bolus of Omnipaque 240 (518 g/L 

iohexol corresponding to 240 g/L of iodine, GE Healthcare www.gelifesciences.com) 

lithium heparin blood samples were taken before and at 5, 120, 180 and 240 minutes 

after injection. 

Iohexol GFR was calculated using a single compartment model: 

GFR (mL/min) = 0.693 x iohexol volume of distribution (L) x 1000/half-life of iohexol 

(min)
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4

The GFR (mL/min) was corrected for body surface area and the Brochner-Mortensen 

correction applied.17

Plasma ADMA, SDMA, creatinine and iohexol were measured simultaneously in 

lithium heparin plasma using a modified stable isotope dilution electrospray tandem 

mass spectrometric method reported for creatinine18 with minor modification.16 ADMA 

and SDMA concentrations reported here were measured in blood obtained 

immediately prior to iohexol injection. Samples were thawed and mixed well, 50 µL of 

plasma was mixed with 50 μL of deionized water containing 50 pmol of [2H6] ADMA 

and 50 pmol of [2H6] SDMA and precipitated with 200 μL of acetonitrile. The stable 

isotopes for [2H6] ADMA and [2H6] SDMA, were synthesized by Department of 

Chemistry, King's College London, London, U.K. Following mixing and centrifugation 

for 3 min at 21800 g, the supernatants were transferred to a 96-deep-well plate. 

Supernatant (5 µL) was pipetted using an HTSPAL autosampler into a 250 μL/min 

mobile-phase stream of acetonitrile/water (50:50; v/v) with 0.025% (v/v) formic acid. 

Chromatography was done on a Chirobiotic T 100 mm × 2.1 mm column with a 2 cm 

× 4 mm guard column (Advanced Separation Technologies) and precursor/product 

ion pairs (m/z 203.1/46.2 and 209.1/52.2 for ADMA and m/z 203.1/172.2 and 

209.1/175.1 for SDMA) were obtained in positive-ion multiple reaction monitoring 

method using a Sciex API4000 (Applied Biosystems). Assay standardization was 

based on aqueous standards at 0.25, 1.0 and 5.0 μmol/L ADMA/SDMA stored at 

−80°C. For the internal quality control, pooled and spiked plasma samples were 

used. Intra-assay coefficients of variation were 2.1% at a concentration of 370 nmol/L 

for plasma ADMA and 3.5% at a concentration of 440 nmol/ L for plasma SDMA. 

Results were calculated using Analyst version 1.4.1.19 

Statistical analysis was performed using Analyse-it™ (Analyse-it™ Software, Ltd, 

Leeds, U.K.), InStat® (GraphPad® Software Inc, San Diego, USA) and StatsDirect 

(StatsDirect Ltd, Cheshire, UK). A P value of <0.05 was considered statistically 

significant. Most data, except haemoglobin, were not normally distributed (P<0.001, 

Shapiro-Wilk test) and all concentrations were expressed as median and interquartile 

range. Data were studied across GFR groups defined as >60, 30-59 and <30 

mL/min/1.73 m2. The Mann-Whitney U-test was used to compare data between two 

groups and the Kruskal-Wallis test (non-parametric analysis of variance (ANOVA)) to 

detect trends across more than two groups. Dunn's multiple comparison test was 

used to undertake pairwise comparisons if a significant effect was observed. 

Categorical variables were analysed using chi-squared test for trend. 
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Spearman rank analysis was used to test for univariate relationships between plasma 

ADMA and SDMA concentrations and other clinical variables including age, body 

mass index (BMI), mean arterial blood pressure (MABP), haemoglobin, GFR and 

plasma creatinine. Multiple linear regression analysis was used to assess the 

independent effect of clinical variables (age, gender, BMI, MABP, GFR, number of 

medications, haemoglobin, presence of vascular disease, hypertension and smoking 

status) on plasma ADMA and SDMA concentrations. Manual backward elimination 

was performed; clinical variables that were not significant (P>0.05) were eliminated 

from the analysis. Multicollinearity was not detected in any models used. 

Survival analysis (all-cause mortality) was studied using the Kaplan-Meier method. 

Significance between risk stratification groups (plasma ADMA and SDMA 

concentration above and below the median value) was determined using the 

Wilcoxon log-rank statistical test. Cox proportional hazard ratio was used to 

determine the association of variables with the risk of all cause death. Unadjusted 

hazard ratios (HRs) and the 95% confidence interval were calculated for plasma 

ADMA and SDMA concentration, age, gender, BMI, MABP, GFR, number of 

medications, haemoglobin concentration, diabetes mellitus, smoking status and 

hypertension. HRs and 95% confidence intervals were expressed per 1–SD higher 

value of each variable for continuous variables. Cox regression analysis was 

performed with adjustment for the significant variables. Manual backward elimination 

was performed; clinical variables that were not significant (P>0.05) were excluded 

from the analysis. Multicollinearity was not detected in any models used.

Results

The East Kent cohort has been described previously.16 Briefly, subjects ranged in 

age from 74 to 97 years and were exclusively white. Approximately equal numbers of 

men and women were included. Characteristics overall and by GFR category are 

summarised in Table 1. Age and number of medications increased and haemoglobin 

concentration decreased with declining GFR. The prevalence of vascular disease, 

diabetes mellitus and hypertension increased with declining GFR. 

Plasma ADMA concentrations were increased (P<0.01) in people with GFR <60 

mL/min/1.73 m² compared to those with GFR >60 mL/min/1.73 m², but did not differ 

(P>0.05) between GFR category 30-59 mL/min/1.73 m² and <30 mL/min/1.73 m². 
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Conversely plasma SDMA increased consistently across declining GFR categories 

(P<0.0001)(Table 1). In univariate analyses both plasma ADMA and SDMA 

concentrations increased with declining GFR (Table 2, Figure 1). Plasma SDMA but 

not ADMA concentration was positively correlated (P<0.0001) with age (Table 2). 

Plasma SDMA concentration (median, interquartile range) was significantly higher 

(P<0.0001) in males (median 762, range 379 627 to 2240 1033 nmol/L) than in 

females (median 617, range 104 513 to 1870 823 nmol/L): plasma ADMA 

concentration did not differ between genders (P>0.05). 

GFR was the only variable which had an independent effect on plasma ADMA 

concentration. The fit (R²) of the model including GFR as a variable was 0.20. GFR, 

gender, BMI and haemoglobin had independent effects on plasma SDMA 

concentration. The overall fit (R²) of the model including these three variables was 

0.69 (P<0.0001)(Table 3).

All participants were followed up for a median (interquartile range) period of 33 (26-

43) months (IQR =26-43 months). During the follow up period, 65 people died. 

Seventy-two percent of the individuals that died had plasma ADMA concentrations 

greater than or equal to the median plasma ADMA concentration (≥543 nmol/L). 

When the end point of the follow up period was considered as 48 months the survival 

chances for people with plasma ADMA concentrations ≥543 nmol/L compared to 

<543 nmol/L were 68% and 89% respectively (P=0.0009) (Figure 2). The median 

plasma SDMA concentration was 680 nmol/L: 83% of the individuals that died had 

plasma SDMA concentrations ≥680 nmol/L. When the end point of the follow up 

period was considered as 48 months the survival chances for people with plasma 

SDMA concentrations ≥680 nmol/L compared to <680 nmol/L were 65% and 93% 

respectively (P<0.0001)(Figure 2).

Cox proportional hazard ratios were calculated to determine the significance of 

variables as predictors of all cause death. In unadjusted analyses ADMA, SDMA, 

age, GFR, number of medications, haemoglobin, presence of vascular disease and 

smoking status were significant predictors (Table 4). Manual backward elimination 

with stepwise elimination of insignificant variables was undertaken in two separate 

models including ADMA or SDMA. In the final ADMA model age, GFR, presence of 

vascular disease and smoking status in addition to plasma ADMA concentration 

remained significant independent predictors of all cause death. In the final SDMA 

Page 30 of 47

Annals of Clinical Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

model age and smoking status in addition to plasma SDMA concentration remained 

significant (Table 4).  

Discussion

To our knowledge this is the first study to evaluate ADMA and SDMA as markers of 

both GFR and outcome in an exclusively elderly cohort across a range of kidney 

function in conjunction with a reference GFR measurement. In this study both ADMA 

and SDMA were inversely related to GFR. This relationship was stronger for SDMA 

than ADMA. Whilst ADMA concentration was influenced by GFR only, SDMA 

concentration was also affected by gender, BMI and haemoglobin concentration. 

ADMA predicted mortality risk, but this effect only just achieved significance with age, 

GFR, presence of vascular disease and smoking history all contributing strongly and 

independently to risk. Conversely, SDMA was a highly significant predictor of death 

in this cohort, with age and smoking history but not GFR contributing to risk in this 

model.

The strength of the relationship we observed between GFR and ADMA (rs=-0.42) is 

broadly similar to that observed in other cohorts (r-0.24,9 r-0.29,5 r=-0.2620), and not 

of sufficient strength to suggest that ADMA could be a useful marker on its own of 

GFR. Whilst SDMA is mainly eliminated through the kidneys,14 ADMA is mainly 

metabolised through enzymatic degradation in both the liver and kidney involving 

dimethylarginine dimethylaminohydrolase (DDAH). Consequently the relationship 

between ADMA and GFR may be confounded by hepatic function.21-23 In a 

retrospective analysis of participants in the Modification of Diet in Renal Disease 

Study, Young et al also found GFR to be the only variable tested to be significantly 

associated with ADMA concentration, but their model only explained 5% of the 

variability in ADMA concentration.24

There has been extensive study of the relationship between SDMA and GFR.25 

SDMA shows some of the properties of an ideal glomerular filtration marker, 

including being produced at a constant rate and being almost completely eliminated 

from the body by renal excretion.14 The strong relationship we have observed 

between SDMA and GFR (rs=-0.87) is consistent with that from other studies,20, 25, 26 

particularly those that also used a reference GFR technique where observed 

correlation coefficients ranged from 0.78 to 0.90.25 The SDMA-GFR relationship was 

also similar to that we observed between serum creatinine and GFR (rs=-0.87) and 
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for the proposed GFR marker cystatin C (rs=-0.90, data not shown) in this group. 

SDMA has also been shown to be an early and sensitive marker of abrupt change in 

kidney function following kidney donation.27 In addition to being related to GFR, 

plasma SDMA concentration is also strongly affected by gender, raising the 

possibility that GFR prediction from SDMA could be improved by models that also 

take gender into account.

Given the clear pathophysiological construct linking ADMA and vascular dysfunction, 

many studies have addressed the relationship between increased circulating ADMA 

concentration and mortality risk across a variety of populations,22, 28-30 including 

amongst older people.31 In the setting of kidney disease, an early study in dialysis 

patients showed that ADMA, but not SDMA, predicted mortality.32 In several cohorts 

of CKD patients, and amongst renal transplant recipients,33 high ADMA concentration 

was an independent predictor of all-cause mortality.5, 9 Conversely, in the study of 

Young et al amongst patients with moderate to severe CKD, ADMA did not reach 

significance as an independent predictor of all-cause mortality, although it was a 

significant predictor of cardiovascular mortality.24 

Fewer studies have explored the relationship between SDMA and mortality risk but 

increasing evidence suggests a role. In a German study of individuals receiving 

coronary angiography following an ischaemic event, SDMA demonstrated a J-shaped 

relationship with all-cause and cardiovascular mortality whereas the ADMA-mortality 

relationship was more linear.26 SDMA, but not ADMA, was independently associated 

with survival after stroke,34 non-ST elevation myocardial infarction20 and amongst 

individuals admitted to an intensive care unit.35 

Part of the association between SDMA and risk of mortality may reflect the strong 

relationship between GFR itself and risk. Indeed, the strong relationship between 

SDMA and GFR probably explains why only one of these factors remained significant 

in our adjusted model. A relationship between SDMA and mortality independent of 

GFR has also been reported in renal transplant recipients.36 Recent evidence 

suggests potential direct pathophysiological links between SDMA and cardiovascular 

disease through indirect inhibition of nitric oxide synthesis.15 The proposed 

mechanism is through competition with L-arginine for transport, hence limiting the 

availability of L-arginine to nitric oxide synthase.37 In turn, reactive oxygen species 

may further promote intracellular ADMA formation.38  Dose-dependent inhibition of 

nitric oxide synthesis by SDMA has been observed in cultured endothelial cells, 
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coupled with increased production of reactive oxygen species.15 In vitro SDMA, but 

not ADMA, was shown to cause release of proinflammatory cytokines (interleukin-6, 

IL-6; tumour necrosis factor-a, TNF-a) from monocytes: release of cytokines was 

linked to activation of nuclear factor-Kappa B.39 In vivo, plasma SDMA concentration 

was correlated to IL-6 and TNF-a concentrations amongst patients with CKD, with 

much weaker relationships observed for ADMA and cytokine concentrations.39 

SDMA, but not ADMA, concentrations have previously been observed to be 

independently increased in patients with coronary vascular disease and related to 

extent of such disease.15 There is therefore increasing evidence suggesting that 

SDMA could contribute to endothelial dysfunction and the chronic inflammatory state 

characteristic of CKD, with attendant increase in cardiovascular risk.

The strengths of this study include the simultaneous measurement of ADMA and 

SDMA across a well-characterised, large number of subjects covering a spectrum of 

kidney disease assessed using a reference GFR technique. The study has some 

limitations. Only single baseline measures of the dimethylarginines were available. 

Only all-cause mortality data was collected: pathophysiologically one would 

anticipate the role of dimethylarginines to be more closely linked to cardiovascular 

mortality. However, although cardiovascular disease is the major cause of mortality 

amongst people with CKD,12 other pathology including malignancy and infection40 

could be contributing to the relationship between mortality and SDMA due to 

increased SDMA production as a result of increased cell turnover. The study was 

exclusively white and findings may therefore not hold in other ethnic groups.41 In 

common with most studies in this field, plasma concentrations of dimethylarginines 

were measured. Any effects in vivo are likely to be related to intracellular 

dimethylarginine concentrations. Plasma concentrations of dimethylarginines may not 

reflect their intracellular concentration, potentially obscuring their true relationship 

with mortality.42

In conclusion we have shown that amongst elderly white individuals and across a 

range of kidney function, SDMA appears to be both a better marker of GFR and a 

stronger predictor of outcome than ADMA. The prognostic power of SDMA may be 

related to its more recently described roles in stimulating the pro-inflammatory state. 

Future studies should further evaluate the role of SDMA as a marker of outcome and 

assess its potential value as a marker of GFR.
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Figure 1A. Scatter plot of 1/plasma ADMA in association with measured 
glomerular filtration rate (mGFR). rs = 0.42, p <0.0001
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Figure 1B. Scatter plot of 1/plasma SDMA in association with measured 
glomerular filtration rate (mGFR). rs = 0.87, p <0.0001
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Figure 2a. Kaplan-Meier survival curve by median ADMA concentration (543 nmol/L); P=0.0009.
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Figure 2b. Kaplan-Meier survival curve by median SDMA concentration (680 nmol/L); P<0.0001.
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Table 1. Subject characteristics by GFR category. Values for continuous variables are expressed as median (interquartile interquartile 

range) unless stated otherwise. P<0.05 was considered significant. 

Total cohort ≥60 mL/min/1.73 m² 30–59 mL/min/1.73 m² <30 mL/min/1.73 m² P for trend

n  394 163 171 60 -
Male:female, n (% male) 189:205 67:96 (41) 90:81 (53) 33:28 (55) 0.0617
Age, y 80 (774 - 8397) 79 (764 - 819)a, b 80 (774 - 8497) 81 (775 - 8697) <0.0001
BMI, weight(kg)/height(m)² 26.1 (13.723.6 - 

47.629.3)
25.8 (13.723.1- 
42.228.6)

26.2 (16.424.1 - 47.629.7) 27.3 (17.323.9 - 
39.330.0)

0.0998

MABP, mm Hg* 96.05.7 (89.360.0 - 
144.3103.6)

94.3 (6087.3 - 
144.3104.4)

96.6 (74.391.4 - 
133.3104.8)

96.3 (72.087.1 - 
128.6100.9)

0.4100

Number of medications, n 5 (30 - 18) 4 (0 1 - 176)a, b 6 (0 4 - 18) 7 (50 - 105) <0.0001
Vascular disease, n (%) 172 (44) 49 (31)a 90 (53) 33 (54) <0.0001
Diabetes, n (%) 77 (20) 21 (13)b 36 (21) 20 (33) 0.0032
Hypertension, n (%) 251 (55) 71 (44)a, b 104 (61) 40 (66) 0.0014
Smoker, n (%) 86 (22) 26 (16)a 51 (30)c 9 (15) 0.0034
Haemoglobin, g/L 130 (12077-139168) 136 (93129-14268)a, b 126 (11777-164136)c 118 (90118-54129) <0.0001
Serum creatinine, µmol/L 94.5 (34.873 - 

382.0144)
71.4 (34.861 - 306.884) 1110.5 (53.788 - 

282.1145)
191.0 (91.1157 - 
382247.0)

-

GFR, mL/min/1.73 m² 53 (357-68101) 69 (6064-10178) 45 (360-529) 25 (227-279) -
ADMA, nmol/L 543 (49893- 874608) 521 (364472-723559) a, 

b
565 (51393-624841) 595 (443526-874673) <0.0001

SDMA, nmol/L 680 (104542-2240927) 530 (379480-1170610) 

a, b 
775 (104663-1650934)c 1220 (7081067-

22401390)
<0.0001

*MABP data was obtained for 374 patients in total and 154, 163 and 57 patients in the >60, 30-59 and <30 mL/min/1.73 m2 groups respectively.

Abbreviations: ADMA, asymmetric dimethylarginine; BMI, Body mass index; GFR, measured glomerular filtration rate (using iohexol); MABP, mean arterial 

blood pressure; SDMA, symmetric dimethylarginine;.

Dunn's multiple comparison test for pairwise comparisons of the effect of GFR category on plasma ADMA, SDMA and serum cystatin C concentration are 

denoted as shown below.
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a P<0.05 for ≥60 mL/min/1.73 m² vs. 30-59 mL/min/1.73 m²
b P<0.05 for ≥60 mL/min/1.73 m² vs. <30 mL/min/1.73 m²
c P<0.05 for 30-59 mL/min/1.73 m² vs. <30 mL/min/1.73 m²

Table 2. Correlation (rs) between plasma ADMA and SDMA concentrations and clinical variables.

Variable ADMA SDMA

Age 0.10 0.25†

BMI 0.14 0.08

MABP* 0.07 0.01

Haemoglobin -0.20† -0.41†

GFR -0.42† -0.87†

Serum creatinine 0.34† 0.87†

Note. Values expressed as correlation coefficients obtained using Spearman’s rank statistic. Statistical significance is shown as † (P<0.0001 in each case); 

the remaining correlations were not statistically significant.
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Abbreviations: ADMA, asymmetric dimethylarginine; BMI, body mass index; GFR, measured glomerular filtration rate (using iohexol); MABP, mean arterial 

blood pressure; SDMA, symmetric dimethylarginine; 
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Table 3. Effect of clinical variables on plasma ADMA and SDMA concentrations. Values shown are the beta coefficients (95% confidence 

intervals) for the variables that remained significant in the multiple regression model.

ADMA SDMA

Constant 664.1 (641.5 to 686.6), P<0.0001 1828.1 (1654.1 to 2002.0), P<0.0001

Glomerular filtration rate -2.032 (-2.436 to -1.628), P<0.0001 -11.779 (-12.791 to -10.768), P<0.0001

Haemoglobin - -2.723   (-3.968 to -1.478), P<0.0001

Gender - 98.416 (63.281 to 133.55), P<0.0001

Body mass index - -4.907 (-8.699 to -1.116), P=0.0116

Page 46 of 47

Annals of Clinical Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23

Table 4. Unadjusted and adjusted hazard ratios for death. For continuous variables, the hazard ratios are expressed as the increased risk 
associated with a one standard deviation increase (ADMA, age, BMI, MABP, medication no.) or decrease (GFR, haemoglobin). For categorical 
variables, the hazard ratios are expressed as risk if conditions present (vascular disease, hypertension, smoker and diabetes mellitus) or if 
female rather than male, compared to risk in the absence of condition.

Variable Unadjusted hazard 
ratio (95% CI) per 
standard deviation

P ADMA model:
adjusted hazard 
ratio (95% CI) per 
standard deviation

P SDMA model:
adjusted hazard 
ratio (95% CI) per 
standard deviation

P 

ADMA, nmol/ L 1.67 (1.32 - 2.10) <0.0001 1.30 (1.01-1.68) 0.0412 - -
SDMA, nmol/L 2.01 (1.66 - 2.44) <0.0001 - - 2.43 (1.80 – 3.28)  <0.0001
Age, years 1.65 (1.36 – 2.00) <0.0001 1.43 (1.17 – 1.75) 0.0005 1.47 (1.20 - 1.81) 0.0003
Gender (f/m) 1.42 (0.87 - 2.32) 0.1651a - -
BMI, weight(kg)/height(m)² 0.95 (0.74 - 1.21) 0.6593 - -
MABP, mmHg 0.99 (0.77 - 1.27) 0.9265 - -
GFR, mL/min/1.73 m² 0.44 (0.33 - 0.59) <0.0001 0.54 (0.39 – 0.76) 0.0003
Number of medications, n 1.39 (1.11 - 1.75) 0.0045 - -
Haemoglobin, g/L 0.63 (0.46 - 0.85) 0.0032 - -
Vascular Disease (y/n) 2.61 (1.56  - 4.37) 0.0162a 1.91 (1.14 – 3.21)a 0.0145
Diabetes (y/n) 1.42 (0.82 - 2.48) 0.2143a - -
Smoker (y/n) 2.14 (1.30 - 3.53) 0.0029a 1.87 (1.13 – 3.10)a 0.0155 1.99 (1.20 - 3.29)a 0.0074
Hypertension (y/n) 1.38 (0.84 - 2.29) 0.2061a - -

Abbreviations: ADMA, asymmetric dimethylarginine; BMI, Body mass index;  CI, confidence interval; GFR, glomerular filtration rate (using iohexol); MABP, 
mean arterial blood pressure; SDMA, symmetric dimethylarginine

a adjusted hazard ratio (95% CI) for presence compared to absence or female versus male
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