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Abstract 

 

The inherent moisture content in biomass needs to be dried before it is used for energy 

production. Fluidized bed dryers (FBD) are widely applied in drying biomass and the 

moisture content should be monitored continuously to maximise the efficiency of the 

drying process. In this paper, the moisture content of biomass in a FBD is predicted 

using electrostatic sensor arrays and a random forest (RF) based ensemble learning 

method. The features of electrostatic signals in the time and frequency domains, 

correlation velocity and the outlet temperature and humidity of exhaust air are chosen 

to be the input of the RF model. Model training is accomplished using the data taken 

from a lab-scale experimental platform and the hyper-parameters of the RF model are 

tuned based on the Bayesian optimization algorithm. Finally, comparisons between the 

online predicted and sampled values of biomass moisture content are conducted. The 

maximum relative error between the online predicted and reference values is less than 

13%, indicating that the RF model provides a viable solution to the online monitoring 

of the fluidized bed drying process. 
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1. Introduction 

 

The threat of global warming requires the reduce of fossil fuel in the energy production 

due to the greenhouse gas (GHG) and pollutant emissions. Biomass, as a renewable and 

carbon-neutral energy source, has attracted the attention in the nations around the world 

[1]. Biomass fuels are mainly composed of carbon, hydrogen, oxygen, nitrogen and 

other elements. They are widely used for environment friendly energy production 

through different conversion processes such as biomass co-firing with coal [2, 3] and 

biomass gasification [4-6]. The inherent moisture content in biomass decreases its 

heating value and it needs to be dried before it is used for energy production [7]. Drying 

is an energy intensive process and a significant amount of energy is consumed for 

drying of biomass. Various dryers are used for drying of biomass. Among them, 

fluidized bed dryers (FBD) have more advantageous features than others for drying 

solid material in granular and powder form, such as handling a large amount of particles 

and uniformly dried products. In addition, the moisture content of biomass should not 

exceed the optimum value for the efficiency of the drying process. For example, the 

optimum moisture content of woody biomass is between 10 and 15 wt% for combustion 

[7]. As a result, it is necessary to predict the moisture content of biomass in an online 

continuous manner in order to control and optimize the FBD based drying process. 

 

Different types of methods are available for monitoring the operation conditions of the 

FBDs, including acoustic emission [8], electrical capacitance tomography (ECT) [9, 

10], microwave resonance [11] and triboelectric probes [12]. Aghbashlo et al. presented 

a review on the techniques to monitor and control the fluidization quality in the FBDs 

[13]. The features of each technique for moisture content and flow behavior 

measurement were explained. However, considering the industrial application, some 

limitations are present in each method. For example, the signals from acoustic emission 

sensors are prone to be polluted by the noise, ECT and microwave resonance methods 

need sophisticated instruments and triboeletric probes are intrusive to the drying 

process. As a result, new methods are required for reliable operations of the drying 

process.    

 

In addition to the direct measurement methods mentioned above, indirect measurement 

methods using soft computing are also widely applied to monitor the process industry. 

Soft computing or soft sensors build inferential models that use online available sensors 

(e.g. temperature, pressure, flow rate, etc.) to predict the variables which cannot be 

automatically measured or can only be measured at high cost or with long delays (e.g. 

laboratory analysis) [14]. Kadlec et al. reviewed soft sensor development methodology, 

soft sensor applications and data driven methods for soft computing [15]. Chavan et al. 

developed data-driven models using the coal properties and gasification process 

parameters to predict the flow rate and heating value of the product gas [16]. 

Considering the complicated heat and mass transfer in the drying process, it is difficult 

to build theoretical models, while soft computing methods, such as artificial neural 

networks (ANNs) and support vector machines (SVMs) provide solutions to the above 



problems [17]. Topuz used the ANN method to predict the drying characteristics of 

agricultural products such as hazelnut, bean and chickpea. The results showed fairly 

good agreement between the predicted results by ANN and the measured data taken 

under the same conditions [18]. Adaptive-network-based fuzzy inference system 

(ANFIS) was applied to predict the coal moisture content during the drying process. 

The ANFIS network can achieve satisfying results with acceptable deviations [19]. 

Exergy and energy analysis of fluidized bed dryer for potato cubes were carried out 

using the application of ANN. The results revealed that energy utilization, efficiency, 

and utilization ratio can be investigated by the model created by ANN [20]. However, 

some algorithms used in soft computing, such as decision tree (DT) and ANN, are 

suspected to be unreliable because of their instability issues, which result in suboptimal 

performance and lack of robustness. As a result, new learning algorithms are needed to 

develop reliable and robust soft computing models.  

 

Electrification is inevitable in the fluidization process due to the contact and frictions 

between particles and the collisions between the particles and the wall. The charging 

characteristics of solid particles depend on many factors, such as particle properties 

(size, work function and moisture content), environmental parameters (temperature and 

humidity) and flow hydrodynamics (gas velocity and solids concentration) [21]. The 

moisture content of solid particles affects the charge generation and dissipation 

processes and hence the charge-to-mass ratio. As a result, the charging characteristics 

of solid particles can be used to predict the moisture content. As a non-intrusive method, 

electrostatic sensor arrays have been widely used to monitor the charging characteristics 

and flow parameters of solid particles in fluidized beds [22-24]. Recently, the effects of 

moisture content on the mass flow measurement of pneumatically conveyed particles 

using electrostatic sensors were investigated [25]. In addition, electrostatic sensor 

arrays have been applied to measure the moisture content of solid particles in a FBD 

[26]. However, it is difficult to theoretically build a model between the charging 

characteristics and the moisture content. Apart from moisture content, the charging 

characteristics of solid particles depend significantly on particle velocity and the 

measurement accuracy of moisture content is different under different particle 

velocities. Due to the advantages of low cost, high sensitivity and robust performance, 

electrostatic sensor arrays are adopted in this study to monitor the FBD process. In 

addition, a soft computing model is selected to overcome the limitations of the 

theoretical and empirical models. Ensemble learning method can overcome the 

instability issues in the individual models and generally has better prediction 

performance. As a result, electrostatic sensor arrays are combined with a Random 

Forest (RF) based ensemble learning method to predict the moisture content of biomass. 

The steps regarding to the model training and hyper-parameter optimization are given 

in detail and the online prediction results of the RF model are compared with the 

moisture content of sampled particles in order to verify the accuracy of the prediction 

method.   

 

2. Methodology 



 

2.1. Overall strategy  

 

Fig. 1 shows the overall strategy for measuring moisture content of biomass using the 

RF method. Firstly, the electrostatic signals from the sensor arrays and the time series 

of the outlet air temperature and humidity are collected during the fluidized bed drying 

process. Secondly, the features of the electrostatic signals in the time and frequency 

domains are calculated and the signal features, correlation velocity and outlet air 

temperature and humidity are chosen to be the input of the RF model. By optimizing 

the hyper-parameters of the model, the moisture content of biomass can be predicted 

by aggregating the results from a group of decision trees.  
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Fig. 1. Overall strategy for predicting moisture content of biomass 

 

2.2. Electrostatic sensing 

 

With the fluidization of wet biomass, charges are induced on the metal electrodes of the 

sensor arrays by the particles and they are further transformed, filtered and amplified 

by a signal conditioning unit to obtain the electrostatic signals [22]. He et al. [27] 

proposed an empirical relationship between the induced electrostatic current, the 

particle charge-to-mass ratio and the bubble rise velocity: 

1.10.17ind m bI q u                          (1) 

where Iind represents the induced electrostatic current, qm the particle charge-to-mass 

ratio and ub the bubble rise velocity. The moisture content affects the particle charge-

to-mass ratio and hence the generated electrostatic signal.  

 

The electrostatic senor arrays are installed on the bed wall, as illustrated in Fig. 2. In 

order to investigate the electrostatic characteristics in different parts of the FBD, four 

sets of arc-shaped electrodes are included, which are labeled as A, B, C and D, 

respectively. Three identical electrodes are included in each set and the signals from 

each two electrodes are cross-correlated and weighted to derive the particle velocity. 

Since the inner diameter of the model FBD used in this study is 180 mm, the distance 

between two adjacent electrodes is set to 20 mm and the ratio between the distance and 

the diameter of the bed is less than 12%, which maintains good similarity between the 



signals from adjacent electrodes [22]. In addition, the electrodes in the sensor arrays 

are made of copper and tightly wrapped around the outer surface of the bed. According 

to the spatial filtering effect, the wider the electrode, the narrower the bandwidth of the 

signal [22]. In consideration of the amplitude and bandwidth of the signal, the width of 

the electrode is set to 6 mm. The central angle is set to 60 degree for localized sensitivity 

of the electrode. With the application of the sensor arrays, the electrostatic signals as 

well as the correlation velocities of the solid particles in different parts of the FBD are 

obtained [22-26].  
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Fig. 2. Electrostatic sensor arrays  

 

2.3. RF based ensemble learning model 

 

2.3.1. RF method 

 

RF is a bagging-based ensemble learning method, which was introduced in 2001 by 

Breiman [28]. It is a combination of many decision trees that are created using the 

bootstrapping technique from training samples, and a random subset of the features is 

given to the tree at each node in order to limit the choices that the decision tree can 

make. The prediction of the random forest is obtained by the majority vote for 

classification or the mean response for regression over the predictions of the individual 

trees. The structure of the RF algorithm is given in Fig. 3. The basic methodology for 

generating RF can be described as follows: for each of the N trees, firstly, a new 

bootstrap sample of the training set is created and this bootstrap sample is used to train 

a decision tree. Then at each node of the decision tree, a set of features is randomly 

selected and the information gain (or Gini impurity) is computed only on that set of 

features in order to select the optimal one. At last, the above steps are repeated until the 

tree is complete. As shown in Fig. 3, the final prediction of the model is obtained by 

averaging the response from all the trees. It is proved that the RF model has high 

prediction accuracy, features a high tolerance for outliers and noise data, and is not 

prone to overfitting [28]. Due to the above advantages, the RF model has been widely 

applied in nonlinear regression problems, such as estimation of coal properties [29, 30], 

solar radiation prediction [31] and coal spontaneous combustion prediction [32]. 



Moisture content of biomass exhibits nonlinear variations during the drying process and 

it is also affected by various operational and environmental parameters. As a result, 

random forest based ensemble learning method is adopted to develop reliable soft 

computing models.  
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Fig. 3. Structure of the RF algorithm 

 

2.3.2. Bayesian hyper-parameter optimization 

 

Every machine learning algorithm or prediction system has its own set of parameters 

that must be adjusted to obtain an optimal performance. Bayesian optimization (BO) 

has emerged as a practical tool for high-quality parameter selection in prediction 

systems. BO method provides efficient alternatives to the grid or random search of the 

parameter space [33, 34]. In addition, BO method is very useful for optimizing black-

box objective functions that lack an analytical expression, which is difficult to evaluate. 

BO method internally maintains a Gaussian process model of the objective function 

and uses objective function evaluations to train the model. One innovation in BO 

method is the use of an acquisition function, which is used to determine the next point 

to evaluate. The acquisition function can balance sampling at points that have low 

modeled objective functions and explore areas that have not yet been modeled well. 

The flowchart of the BO algorithm is given in Fig. 4. The Gaussian model is iteratively 

updated until the optimal values of the parameters are found. As suggested by the 

developer of the algorithm [35], the number of iterations is set to 30. BO is an effective 

optimization method and it is widely used in structure design [36] and hyper-parameter 

tuning in machine learning [37, 38]. Due to the above features, BO algorithm is applied 

to optimize the hyper-parameters of the RF model in this paper.  
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Fig. 4. Flowchart of BO algorithm  

 

2.3.3. Input variables 

 

A set of 12 variables is selected to be the input of the RF model, which are listed in 

Table 1. The outlet temperature and humidity are obtained by averaging the air 

temperature and relative humidity readings from the sensor. The six time-domain 

features of the electrostatic signals are the average from the 12 electrodes in the sensor 

arrays, which represent the electrostatic characteristics of biomass in the FBD. The 

equations to calculate the three frequency-domain features are given as follows [39]: 
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where fi is the j-th discrete frequency, pi is the power density of the j-th frequency 

component and J is the number of discrete frequencies, F is the average fluctuation of 

the signal, di is the probability density function, E and SF are the entropy and shape 

factor of the power spectral. In addition, the correlation velocity is obtained by 

averaging the weighted average velocities from the four sets of the electrodes in order 

to represent solids flow behaviors in the FBD.  

 

Table 1  

Input variables  

ID Abbreviation Variable name Source 

x1 T Outlet temperature Temperature and humidity sensor 

x2 RH Outlet humidity Temperature and humidity sensor 

x3 DC DC component Electrostatic sensor arrays 

x4 AC AC component Electrostatic sensor arrays 

x5 NUM Number of zero crossing points Electrostatic sensor arrays 

x6 STD Standard deviation Electrostatic sensor arrays 

x7 SKE Skewness Electrostatic sensor arrays 

x8 KUR Kurtosis Electrostatic sensor arrays 

x9 AF Average fluctuation frequency Electrostatic sensor arrays 

x10 EN Entropy of the power spectral  Electrostatic sensor arrays 

x11 SF Shape factor of the power spectral  Electrostatic sensor arrays 

x12 VC Correlation velocity Electrostatic sensor arrays 

 

2.3.4. Input variable selection 

 

In soft computing models, in cases that some of the input features are not contributing 

to the output, the performance of the model will deteriorate and the computation time 

will increase. In RF method, selection of the input variable can be accomplished by 

calculating the variable importance. It is measured using data permutation to evaluate 

the impact of each variable on the overall prediction performance of the model. The 

decrease of prediction accuracy resulting from randomly permuting the values of a 

variable is considered as the variable importance. The higher the drop in prediction 

accuracy, the more important a variable is, and vice versa. The importance of each 

variable reveals their relationship with the output. In addition, RF measures the variable 

importance of each variable by considering the impact of each variable as well as its 

multivariate interactions with other variables. Variable importance can be used to select 

the most important variables in the RF model, which helps users in targeting the most 

influential factors and understanding the relationships between input and output 

variables. 

 

3. Experimental results and discussion 

 



Experimental investigations were conducted in a lab-scale FBD, the detail of which was 

given in reference [26]. Electrostatic sensor arrays were installed on the wall of the 

FBD to collect the electrostatic signals in the bed and a temperature and humidity sensor 

(Model HMP110, Vaisala) was installed at the outlet of the bed to obtain the temperature 

and humidity of the exhaust air. The biomass properties and experimental conditions 

are listed in Table 2. A total of 9 groups of experiments was conducted in the FBD and 

the biomass used in this paper was corn particles. The corn particles were prepared to 

a desirable moisture content and nearly 8 kg of wet particles were used in the 

experiments, which formed a static bed height of 415 mm. Since the distance between 

the sensor arrays and the distributor was 200 mm, the electrostatic signals in the 

bubbling fluidized region of the FBD were thus acquired. During the experiments, the 

heated air generated by a blower and a furnace was used to dry the biomass under the 

bubbling fluidization condition and the corn particles were sampled from a sampling 

port (170 mm above the sensor arrays) every 5 minutes after the start of drying. 

Meanwhile, the signals from the temperature and humidity sensor and the electrostatic 

sensor arrays were recorded simultaneously for 60 seconds using a data acquisition 

device (Model USB-6363, National Instruments). The moisture content of the sampled 

particles was measured using a Halogen Moisture Analyzer (Model HE83, METTLER 

TOLEDO). All the signals and moisture content of corn particles during the drying 

process under different inlet air velocities and air temperatures were used as the data 

for the training and validation of the RF model.  

 

Table 2  

Biomass properties and experimental conditions  

Biomass Corn particles 

Particle size range (mm) 1 - 1.8 

True particle density (g/cm3) 1.1 

Inlet air flow rate (m3/h) 25, 30, 35 

Inlet air temperature (oC) 45, 60, 75 

Inlet air humidity  4% - 7% 

 

Typical time series of solids moisture content, relative humidity and temperature of the 

exhaust air are given in Fig. 5. With the progress of drying, the relative humidity of the 

exhaust air decreases with less evaporation of moisture on the particles and the 

temperature of the air increases with the variation of moisture content. In addition, the 

electrostatic signals from set A electrodes of the sensor arrays are shown in Fig. 6, where 

the labels of A-1, A-2 and A-3 represent the electrodes from low to high positions. At 

the beginning of drying (Fig. 6 (a)), the electrostatic signals are weak because of the 

high moisture content and the immobility of the particles due to the channeling effect 

in the FBD. The channeling effect disappeared and smooth fluidization are found with 

the progress of drying. As a result, the moisture content is lower and the electrostatic 

signals become stronger (Fig. 6 (b) and (c)). However, the amplitudes of the 

electrostatic signals show less variations after 110 min drying (Fig. 6 (d)), which shows 

that only the amplitudes of the signals cannot discriminate the change of the moisture 



content. As a result, the features of the electrostatic signals in the time and frequency 

domains are applied to extract more information from the signals, which are applied to 

predict the variations of the moisture content in the FBD. However, due to the complex 

flow dynamics in the FBD, the electrostatic characteristics of the solid particles are 

influenced not only by the moisture content but also by the solids velocity [26]. As a 

result, the correlation velocity from the sensor arrays, which represents the solids flow 

behavior in the FBD, is also selected to be the input of the soft computing model.   
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Fig. 5. Typical time series of moisture content, relative humidity and temperature of 

the exhaust air during the drying process 
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Fig. 6 Typical electrostatic signals from electrodes A-1, A-2 and A-3 

 

3.1. Calculation of variable importance  

 

The variable importance is calculated as the first step to build the RF based soft 

computing model. In the calculation, all the data from the experimental investigations 

are used and the number of trees is 250, the minimum number of observations per tree 

leaf is set to 5 and the number of variables to select at random for each decision split is 

one third of the number of variables, as suggested by the developer of the algorithm 

[40]. In addition, around one-third of the data are left out during the bootstrap sampling 

during the generation of RF, which is called “out of bag” data. The out of bag data are 

used to estimate the variable importance. As shown in Fig. 7, it is clear that all the input 

variables are contributing to the moisture content prediction with different importance. 

It is found that outlet temperature and humidity are the two most important variables to 

estimate the moisture content of biomass. These two parameters are often applied in a 

first-principle model to predict the moisture content of particles in the FBD based on 

the heat and mass balance [41]. The skewness of the electrostatic signals has the third 

importance, which represents the asymmetry of the data around the mean value. In order 

to keep the asymmetry of the data around the mean value, the signal conditioning 

circuits of the sensor arrays are powered from a bipolar power source. In addition, the 

solids velocity influences the rate of moisture evaporation and hence the electrostatic 

characteristics in the FBD. As a result, the correlation velocity from the sensor arrays 

is also an important variable to predict the moisture content of biomass. Finally, there 

is no input variables with zero importance and it means that none of the variables has 

to be removed.  
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3.2. Model training and hyper-parameter optimization 

 

During the training and hyper-parameter optimization of the RF model, 9 groups of 

experimental data are divided. 2 groups of data (23 samples) are randomly selected to 

be the validation set and the remaining 7 groups of data (94 samples) are used as the 

training set. Three hyper-parameters of the RF model have to be optimized, which are 



the number of trees (numTR), the minimum number of observations per tree leaf 

(minLS) and the number of variables to select at random for each decision split 

(numPTS). Although more trees are better based on the principle of bagging, in practice 

the error sometimes reaches a minimum before increasing the number of trees [42]. As 

a result, numTR is an important parameter to be optimized. The minLS presents the 

complexity of the trees in the forest. Deep trees tend to over-fit, but shallow trees tend 

to underfit. In addition, numPTS is another parameter to be determined in order to 

improve the prediction performance of the RF model. In the hyper-parameter 

optimization, numTR is changed from 100 to 500 and the corresponding optimized 

values of minLS and numPTS under each numTR are calculated using the BO algorithm. 

In addition, in order to evaluate the performance of the models with different parameters, 

the statistical measures of Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) are applied, 
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where Pi and Si are the predicted and sampled values of biomass moisture content, 

respectively. It is found that the predicted errors of RMSE and MAE reach the minimum 

values when numTR is 200, as given in Fig. 8. The corresponding minLS and numPTS 

obtained from the BO algorithm is 1 and 8, respectively. The prediction performance 

and relative error of the validation data set after hyper-parameter optimization are 

shown in Fig. 9. The predicted results closely follow the changes of the moisture content 

from the sampled particles and the maximum relative error between the predicted and 

sampled values is less 8%, which shows satisfying training results of the RF-BO model.  
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Fig. 8. Predicted errors under different numbers of trees 
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Fig. 9. Prediction performance and relative errors of the validation data set after 

hyper-parameter optimization 

 

3.3 Comparison with other machine learning models 

 

In order to verify the performance of the proposed RF-BO model, comparison with 

other machine learning models are conducted. The algorithms of decision tree 

regression (DTR), support vector regression (SVR) and RF with default values (RF-

DEF) are selected. DTR builds one regression tree and this model is selected to show 

the necessity of ensemble steps in the RF algorithm. SVR is widely applied in soft 

computing and it can approximate any nonlinear relationships between the input and 

output variables. In addition, RF-DEF is chosen to verify the performance of the hyper-

parameter optimization. During the calculation, the minLS value of the DTR model is 

determined by the cross-validation, which is set to 5 in the model. The SVR model is 

trained using a Gaussian kernel function with an automatic kernel scale. The numTR, 

minLS and numPTS values of the RF-DEF model are set to the default values, which 

are 250, 5 and 4, respectively. The predictions of different models are carried out on a 

personal computer (PC, Intel Core i5 2.50 GHz with 8 GB of RAM). The RMSE, MAE, 

the time taken for training and prediction of the four models are listed in Table 3. DTR 

model has the largest prediction error due to instability issues relating to the algorithm. 

SVR model predict more accurately than the DTR model, but its performance is 

significantly affected by the hyper-parameters of the model. By comparing the results 



from RF-DEF and RF-BO models, the necessity of hyper-parameter optimization in 

building RF models is proved. Considering the time consumption, DVR and SVR have 

only one model and less time are needed in the training and prediction steps. Since the 

time constant of the drying process is large, it is unnecessary for the online prediction 

model to have a very fast response. Although the prediction time of the RF-BO model 

is nearly 50 ms, it is fast enough for online monitoring of biomass moisture content in 

the FBD. Finally, it can be concluded that the prediction performance of the RF-BO 

model is superior than the other three models and the time consumption can also meet 

the requirement for the dynamic measurement of the moisture content. 

 

Table 3 

Predicted errors and calculation time of different models 

Model DVR SVR RF-DEF RF-BO 

RMSE 1.07 0.80 0.74 0.49 

MAE 0.84 0.69 0.56 0.43 

Training time (s) 5.55╳10-3 2.60╳10-2 0.39 0.44 

Prediction time (ms) 0.60 0.82 53.44 46.18 

 

4. Online prediction of biomass moisture content 

 

Online prediction of moisture content in the FBD was conducted to further verify the 

performance of the RF-BO model. The experimental setup for the online prediction is 

shown in Fig. 10. The air flow rate and temperature during the drying process were 30 

m3/h and 85 oC, respectively, which was out of the range of the training data. The 

electrostatic signals and the time series of the outlet temperature and humidity were 

sampled by a data acquisition device. With the help of the data acquisition toolbox in 

Matlab, all the signals from the data acquisition device were stored on the computer. In 

addition, online prediction of the moisture content was also implemented in Matlab. 

Firstly, the input features were calculated, then they were fed into the RF-BO model 

and the predicted moisture content of biomass was finally displayed in the graphical 

user interface of the PC. At the same time, the moisture content of the sampled particles 

was obtained by the Halogen Moisture Analyzer. The comparisons between the online 

predicted values and the sampled values of biomass moisture content are shown in Fig. 

11. Since it took nearly 5 minutes to obtain the moisture content of sampled particles, 

the online prediction was conducted every 5 minutes and only one result was calculated, 

thus it is not possible to give the repeatability of online prediction. However, the random 

forest is a type of ensemble learning method. As a result, it can overcome the instability 

issues relating to other machine learning algorithms and give stable online prediction 

results. The online prediction results follow the trend of the sampled results and the 

maximum relative error between them is less than 13%. Although the online prediction 

errors are larger than those from the validation data set, it is proved that the proposed 

model can be used for online prediction of biomass moisture content.  
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Fig. 10. Experimental setup for online prediction of moisture content 
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Fig. 11. Online prediction performance and relative errors of the RF-BO model  

 

5. Conclusions 

 

In this paper, online prediction of biomass moisture content in a FBD has been 

conducted using electrostatic sensor arrays and a RF-BO based soft computing model. 

The following points can be concluded: 



(1) The features of the electrostatic signals in the time and frequency domains, 

correlation velocity and outlet temperature and humidity are selected as the inputs 

of the model. Based on the calculated variable importance, the relationships 

between the input and output variables are investigated and the main factors for the 

prediction of biomass moisture content are found.  

(2) The hyper-parameters in the RF model have been tuned based on the BO algorithm 

and the optimal values of the parameters are obtained and the maximum relative 

error of the prediction results from the validation data set is less than 8%.  

(3) Although the proposed RF-BO model takes longer time, the prediction performance 

is much better than the models of DTR, SVR and RF-DEF and the RF-BO model 

can satisfy the time requirements for online prediction.  

(4) Online prediction performance of the moisture content is verified in a lab-scale FBD 

and the operational condition is out of the range of the training data. The maximum 

relative error between online predicted and reference values is less than 13%. 

Although it is higher than the result from validation data set (8%), the proposed 

model can still be used to online estimate the moisture content of biomass. 

(5) With the knowledge of biomass moisture content in the FBD, the drying process 

can be controlled and optimized under variable operating conditions. 
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