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A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD FOR ELLIPTIC DIRICHLET
BOUNDARY CONTROL PROBLEMS

WEI GONG *, WENBIN LIU , ZHIYU TAN °, AND NINGNING YAN ©

Abstract:  This paper concerns the adaptive finite element method for elliptic Dirichlet boundary
control problems in energy space. The contribution of this paper is twofold. Firstly, we rigorously derive
efficient and reliable a posteriori error estimates for finite element approximations of the Dirichlet boundary
control problems. As a byproduct, a priori error estimates can be derived in a simple way by introducing
appropriate auxiliary problems and establishing certain norm equivalence. Secondly, for the coupled elliptic
partial differential system involving the control, the state and the adjoint state which resulted from the first
order optimality system, we prove that the sequence of adaptively generated discrete solutions, guided by
our newly derived a posteriori error indicators, converge to the true solutions along with the convergence of
the error estimators. We give some numerical results to confirm our theoretical findings.
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1. INTRODUCTION

In this paper we consider the following elliptic Dirichlet boundary control problem:

. 1 1%
(1.1) gg@)f@w)=§w—yﬂaywywmﬁg
subject to
-Ay=f inQ,
(1.2) { y=u onl :=0Q,

where a > 0 is the penalty parameter.
There are different types of objective functionals for Dirichlet boundary control problems, depending on
the choice of the control space. The most popular one is looking for the optimal control in L*(I") as follows:

1 a
(1.3) ug&JWW=?WﬂW%+?M&-
In this case the governing state equation (I.2) has to be understood in the very weak sense, since the
inhomogeneous Dirichlet boundary condition for elliptic equation is only in L*(I). This formulation is easy
to implement numerically and usually results in optimal controls with low regularity. There are extensive
numerical studies for elliptic Dirichlet boundary control problems based on this formulation, we refer to
[1,4L9L128] for the a priori error estimates. In [12] this formulation is extended to study parabolic Dirichlet
boundary control problems. With the choice of L*(T') as control space, we should also mention [[13]] for the
numerical scheme based on mixed variational scheme and [5] for the Robin penalization which transforms
the Dirichlet control problem into a Robin control problem.
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The second approach is to find optimal controls in the energy space, i.e., H %(F), that is

1 ol
1.4 min  Jo,u) = =|ly = VP o + =|ul?

(1.4) n (v, u) 2IIy Yoo 2I 'y%@

We refer to [31]] for this approach where pointwise control constraints of box type are also imposed. With
this choice of control space one can define the standard weak solution for the state equation (I.2). However,
we have to resort to the Steklov-Poincare operator to derive the optimality condition on the boundary, which
may cause some difficulties in numerical implementation.

Note that we have an equivalent form of the norm in H : @):

| 1 = min 1.O-
el gy = _ymin ol

This motivates us to define the semi-norm in H %(F) as follows:

|ul min  ||Vylloq.

1 =
H2@  yeH (Q)ylr=u
It is well-known that there exists the harmonic extension y, € H'(Q) for anyu € H %(F) satisfying

{ ~Ay,=0 inQ,

(1.5 y.=u onl.

Therefore, we are led to an equivalent definition of the H > (') semi-norm

(16) 3y = 190l
This leads to the penalization of the control in H'(Q) as . This modified scheme for elliptic Dirichlet
boundary control problem was first studied in [6]]. The advantage of the Dirichlet boundary control problem
in energy space lies in that we do not need to impose convexity assumption on the domain when we study
the well-posedness of the problem and intend to derive a priori and a posteriori error estimates.

It is well-known that the solution of Dirichlet boundary control problems usually exhibits low regularity
(see, e.g., [4]). Thus, the well-developed adaptive finite element method provides the possibility to enhance
the approximation accuracy by less computational cost. But so far we do not aware of any work on adaptive
finite element method to solve Dirichlet boundary control problems, except the attempt in [6], possibly due
to the specifically chosen variational formulations. For instance, if we use the first approach to study
Dirichlet boundary control problem, the mismatch between the H'-norm and the Z?>-norm on the boundary
for discrete finite element functions introduces the inverse estimate which may cause difficulty when we
intend to derive a posteriori error estimate. In [6] the authors attempted to derive a posteriori error estimate,
however, the proof contains some flaws. In this paper we intend to give a rigorous proof.

The contribution of this paper is twofold. Firstly, we rigorously derive efficient and reliable a posteriori
error estimates for finite element approximations of the Dirichlet boundary control problems. As a byprod-
uct, a priori error estimates can be derived in a simple way by introducing appropriate auxiliary problems
and establishing certain norm equivalence. Secondly, for the coupled elliptic partial differential system in-
volving the control, the state and the adjoint state which resulted from the first order optimality system, we
prove that the sequence of adaptively generated discrete solutions, guided by our newly derived a posteriori
error indicators, converge to the true solutions along with the convergence of the error estimators.

We note that with the new error analysis the results can be generalized to three dimensional case and
more general governing state equations trivially. We also note that the first order optimality system of the
Dirichlet boundary control problem in energy space can be viewed as a strongly coupled partial differential
system. Thus, the techniques developed in current paper can be generalized to prove the convergence of
AFEM for such kind of coupled partial differential equations. However, at this moment we can not prove
the error reduction property and optimality of the adaptive algorithm, as done in [10,29] for elliptic bound-
ary value problems and [[14-16]] for elliptic optimal control problems with distributed control, due to the
lack of (quasi-)orthogonality of the strongly coupled elliptic system. For the similar plain convergence of
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adaptive algorithm for elliptic distributed control problem we refer to [20], and to [34] and [35]] for param-
eter identification problems which share some similarities with PDE-constrained optimal control problems.
The proof of plain convergence of adaptive algorithm is based on the techniques developed in [30] and [33].

The remaining of this paper is organized as follows: In Section 2 we recall the formulation of the
Dirichlet boundary control problems in energy space, and give some important observations which will play
crucial role in following error analysis. A priori error estimate is derived with newly developed techniques
compared to [6]. In Section 3 we derive efficient and reliable a posteriori error estimates for finite element
approximations of the Dirichlet boundary control problems by introducing appropriate auxiliary problems.
Section 4 is devoted to convergence analysis of the adaptive algorithm. At last, In Section 5 we carry out
some numerical experiments to confirm our theoretical findings.

Let Q c R? be a bounded polygonal domain which is not necessarily convex. We denote by W"4(Q)
the usual Sobolev space of order m > 0, 1 < g < co with norm || - ||,5,4.0 and seminorm | - |,y 4. For g = 2
we denote W4(Q) by H™(Q) and || - llma = || - ln2., Which is a Hilbert space. Note that H(Q) = L*(Q)
and Hé(Q) ={ve H'(Q) : v=0o0n0Q}. We denote C a generic positive constant which may stand for
different values at its different occurrences but does not depend on mesh size. We use the symbol A < B to
denote A < CB for some constant C that is independent of mesh size. We write A ~ Bif A < Band B < A.

2. OPTIMAL CONTROL PROBLEM AND ITS FINITE ELEMENT APPROXIMATION
The weak formulation of 1i can be stated as: Given u € H'(Q), find y € H'(Q) such that y|so = u and
2.1) a(y,w) = (f,w) VYw € Hy(Q).

By invoking the harmonic extension of u we can define an alternative weak formulation: Let y = y/ + u
such that y/ Hé () and

(2.2) ay',w) = (f,w) —a(u,w) Vw € Hy(Q).

We may introduce the solution operator G : Q) x H'(Q) — Hé(Q) associated with 1) such that
y = G( f,u). Therefore, we can introduce the solution operator for the state equation 1! as S : L2(Q) x
H'(Q) —» H'(Q) with y := S(f, u) = G(f,u) + u. Then we are led to a reduced optimization problem

(2.3) min J(u) = J(S(f,u), u).
ueH' (Q)

Note that %”VMH?)Q is not necessarily coercive and strictly convex in H'(Q) since |[Vulloq is not a norm.

However, due to the dependence on  of y through the state equation we can conclude that J(x) is coercive
in H'(Q) and also strictly convex. By using standard arguments (see for instance [22]) we can prove that
the above reduced optimization problem admits a unique solution.

Similar to [[6] we can derive the first order optimality condition for the optimal control problem (I.T)-
as follows: there exists (u,y/, p) € H'(Q) X H}(Q) X H}(Q) such that

a(y’,w) = (f.w) —a(u,w) VYw € Hj(Q);
2.4 aw,p) = (y—y4,w) VYwe Hé(Q);
aau,v) = av,p)+ ¢ —y,v) VYve H(Q),

where y = y/ + u € H'(Q). The adjoint state equation and the control equation can be written as

-Ap=y-y¢ inQ,
2.5) { p=0 onI’
and

-Au=0 in Q
2. ’
26) { % = ‘;—Z onI’

in the sense of distribution. It follows from the second and the third equations in (2.4) that u is harmonic in
the sense that

2.7) a(u,v)=0 Vv e Hy(Q).
3



Therefore, u = S (0, #) and the first equation in @I) can be written as
ay’,w) = (f,w) VYw € Hy(Q).

It is clear that y/ can be decoupled and independent on u. Moreover, we can conclude from (2.4)) and (2.5
that fr %ds = 0, which ensures the well posedness of the control equation as a pure Neumann problem.
Note that the third equation in (2.4) can be written as

(2.8) aa(u,v) + (u,v) = av, p) + 0 =y,v) Vv e H(Q),

so the well-posedness of the control equation for given p and y/ can be proved by Lax-Milgram theorem.
This observation is very important in our following error analysis.

Remark 2.1. We remark that the above formulation can be easily extended to a general second order
elliptic equation

2
- Z an(ai_jax,»y) +apy=f inQ; y=u onl.
ij=1

Here 0 < ag < o, a;; € Whe Q) (i, j = 1,2) and (aij)axa is symmetric and positive definite. Let

2
ay ov
,V) = E — dx.
a(y,v) L(iFlal] ox; 6xj + agyv)dx

The corresponding Dirichlet boundary control problem in energy space can be formulated as

1 a
min  J(y,u) = =|ly = /I3 o + =lul’
weli () o, u) 2||y y ”(),Q 2| |a’Q

where | - |0 = Va(,-).

Next, let us consider the finite element approximation of (I.I). Let 7 be a regular triangulation of Q
such that Q = U7, 7. In this paper, we use 82 to denote the set of interior edges of 7 and denote 82 the set
of boundary edges. On 7, we construct the piecewise linear and continuous finite element space V, such
that V, ¢ C(Q) and set V}? =VyN HO1 Q).

Now we consider the finite element approximation of the control problem (T.1)-(T.2):
ocP_h| (2.9) min IO = 510k -0 + 21Vl

up€Vi 2 ? 2 ’

subject to

o staten] (2.10) { a(yn, wp) = (frwp) Ywe V),

Yrlao = up.
Similarly, we can define the discrete solution operator G, : L*(Q) x H'(€) — V) such that for any u, € Vj,
y£ := Gu(f, up) € V) satisfies

state_weak_h1| (2.11) a(yl, wi) = (f,wn) — alup, wp)  Vwy, € V2.

We also define S, : L2(Q)xH"'(Q) — V" so that we can write i = Su(f, un) = Gp(f, up)+uy. The first order
optimality system for the discrete optimal control problem lHi is as follows: Find (uy, y£ ,Pn) €
Vi, X V) x V) such that

a(yl, wi) = (fywi) — aCup, wy) - Ywy, € VO
OCP_OPT_h| (2.12) awp, pr) = O =y wp)  Ywy, € VY,
aa(up, va) = a(p, pr) + 0 = yp.vi) v € Vi,

where y;, = )/ht +uy, € Vj,. Since the state equation is self-adjoint we may write p;, = G, (y, — y2,0). Similarly,
we can derive that

a(up,wp) =0 Ywy, € V).
4



Therefore, u, = S,(0, uy,) and the first equation in (@]) can be written as
aly, wa) = (fywi)  Ywy € Vy.
Similar to 2.8) we have
control_dis| (2.13) aa(uy, vi) + (up, vp) = a(vy, pp) + (yd — )/, vy Yy, €V
The following norm equivalence property plays very important role in our error analysis.
Lm:norm_equi | Lemma 2.2. We have the following norm equivalence property: For any v € H'(Q) and v, € V), there hold

norm_equi_con| (2.14) IS0, g + VWi o ~ IV g

. . 2 2 2
norm_equi_dis| (2.15) 1S40 vl + alIVvalR g ~ IVl

Proof. Foranyve H 1(Q) we have

Mg = IS0,v) =GO, o < 2SO0,V o + 2IGO, VI g

< 2SO0 q + 2IVS 0,05 o + 2IGO, VT o

< 2015050 + 4IVGO, V)5 o + 4IVVig o + 2IGO. VI o

< CUSO.Wgq +11VVig )
(2.16) < CUISO0,W)llgq + Vg o)
and

ISO.Mlgq+VVige < 20GO,IGq + 25 q + allVViGq
< C(Migq + allVVilG o)

(2.17) < C g

where S (0,v) = G(0,v) + v. Therefore, ||S (0, v)||§Q + 0/||Vv||(2)Q ] ||v||%Q.
Similarly, for any v, € Vj, it follows that

il o = 1S40, v) = Gu(0, v} o < 2018 w0, vi)II; ¢ + 2G(0, vl o
< 201840, vi)lig o + 201VS 10, vi)lIg o + 21GAO0, va)II;
< 201840, vilig o + HIVGO, vi)llg. + HIVVAIIG o + 21IGA(O, vi)II; o
< CUS KO,V o + I1Vvallg o)
(2.18) < CUS KO0, v o + @llVvallg o)
and
IS 10, v)ll50 + allVvallga = 21Gh0, vi)lig o + 20valli o + @llVvallgq
< C(illgq + lVvillg o)
(2.19) < Clvillf o
where 8 4(0,v4) = G4(0,v4) + vy. Therefore, [IS 40, vi)ll§ o + @lIVVallg o ~ IVallf - O

In [[6] the authors derived a priori error estimate in the energy norm and L?-norm. Here we intend to give
a convergence analysis in a simpler way. For compactness we postpone the proof in Appendix A.

Thm:0 | Theorem 2.3. Let (u,y, p) € H'(Q) x H'(Q) x Hé(Q) be the solution of the optimal control problem
and (up, yn, pn) € Vi X Vi X V;? be the solution of the discrete control problems . Assume that Q is
convex. Then we have

(2.20) llu = unllia + 1y = yallia + 1P = pallia < Chlfllog + Iy llog)-
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3. A POSTERIORI ERROR ESTIMATE

Now we are in the position to derive a posteriori error estimates. To begin with, we introduce some
auxiliary problems: Find (/' (uy), p(y), 1) € Hy () x Hy(Q) x H'(Q) such that

a(y! (up), w) = (f,w) — aup, w)  Yw € H)(€);
a(w, pyn)) = (yn =y, w)  Yw € H}(Q);
aa(fi,v) + (@,v) = a(v, pp) + 0 =y, v) ¥y e H(Q).

3.1)

It is clear that )/h and p;, are the finite element approximations of y/(u;) and p(y,) in V. respectively.
Moreover, uy, is the finite element approximation of i in V}, in the sense of (2.13)). Furthermore, we define
¥/ (@) € H}(Q) such that

(3.2) ay! (@), w) = (f,w) —a(@i,w) VYw € Hy(Q).
We set y(u) := S(f,u) = y/ (u) + u and y(&2) := S(f, &) = ¥/ (@) + i1

Theorem 3.1. Let (u,y, p) € H'(Q) x H'(Q) x H(l)(Q) be the solution of the optimal control problem
and (up, yn, pn) € VaX Vi X Vg be the solution of the discrete control problems . Let (yf(uh), pOm), ) €
H(')(Q) X H(l)(Q) x H'(Q) be the solutions of the auxiliary problems . Then we have

llu — upllio + 11y = yullia + llp = pallia

(3.3) ~ i = upllia + Iy n) = Yillia + pGw) — pallia.
Proof. At first, we prove the upper bound. From 2.4), and we have

(3.4) a(y’ —y/ (@), w) = a(it — u,w) VYw € Hy(Q);
(3.5) a(w, p = pyn) = = yn.w)  Yw € Hy(Q);
(3.6) aa(u—i,v) + u—,v) = av,p— pp) + v, =y, v») Vve H'(Q).
Setting w = p — p(yy,) in and w = y/ —y/ (@) in we are led to

3.7) a(@ —u, p = poyn) = ¢ =y Y =y (@)).

From the triangle inequality it suffices to prove ||lu — iil|; o. We can derive by setting v = u — & in that
V-3 = alw—ip—py)+G) -y u—)— - iu-i
= a(u— i, p— pOw) +a(u— i, p(yy) — pu) + (v =y ,u— )
—(u = fyu — ) + a(@ — u, p — pyw) + (n = y,y" = ¥/ (@)
= a(u—i, plyy) — pu) + (o =y .u— )
(3.8) = i, 0= u) + (= v,y =Y (@).
Note that
Of =y =)+ (=i —u) + = v,y =y @)
= O =y u=)+ =i —u)+ v = yy = @) + Oy = .t — )
= (= upu— 1)+ (= 00— ) + (v — y(@),y = Y(@) + (@) = y,y — y(@)
3.9) =y = Y@ o + (e = i, 7t = up) + (o — Y@,y = y(@1)).
Therefore, we are led to

V=Dl o + Iy = Y@ o
(3.10) = a(u—it, plyn) — pa) + (u — i, it = wp) + (yp — y(@0), y — y(@)).

Moreover, we can derive

e = y@Dlloao = NGu(fsun) +up — G(f, ) — oo
< C(la = upllog + IGr(f, un) = G(f, unlloa + IG(f, up) — G(f, Dllo.a)
< C(la - upllog + Iy (un) — fhﬂm + IV, = Dllo.0)-
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It follows from Lemmathat lly — y(ﬁ)||% ot allV(u— ﬁ)||% o~ llu— ﬁ||% o Cauchy-Schwarz and Young’s
inequalities yield

AV =)o + Iy = y@i§ o
3.11) < V@ = unll g + 1pOw) = pall} o + 1y ) = y1IR o + 1l — usllR .
We thus arrive at
(3.12) Nl = all} ¢ < 1le = unll} g + IpGw) = palld g + 1y (en) = Y12 -

Note that y(&t) — y, = @t — uy, + G(f, 1) — Gp(f,up) and y — y(@t) = u — it + G(f, u) — G(f, it). Therefore, it
follows that

ly—willie <y —y@lha + 1Y@ = yilho
< u—dllie +IG(f, uw) = G(f, Dlla + 1 — uplli o + IGf, @) — Gr(f, upllio
< u=dllia + it — uplli + IG(f, ) — G(f, u)lli.a + IG(f, un) — Gu(f, up)llio
(3.13) S lu = dlli g + i — ulli o + ||yf(uh)_)’£”1,§2
and
(3.14) lp = pOwllie <y = yilloo.

We thus complete the proof of the upper bound.
Now we turn to the proof of the lower bound. It follows from the triangle inequality that

lpr — pOWllie < lpn—pllia +lpGn) — pllia
(3.15) S Mpw—pllia + 1y = yallio
and
Iy @) = yilha < IV = yilha + I @) - Y lhe
< Iy =yillig + lu = willig + Iy () = Y ha
(3.16) < Ay = yulha + llu = upll .

Moreover, we can conclude from that

N

IV - pl g + Iv) =12 g
3.17) < VP = pllgg + llu = unll; o + 1ly = yall; o

ANI12 A2
IV = D ¢ + llu = 22

this together with the triangle inequality yields
i —ullie < lli—ullio + llu—upllhi o
(3.18) S = wupllia +llp = pallia + 1y = yallLo-
Combining the above estimates we prove the lower bound. O
Remark 3.2. In [6, Lemma 5.1] the authors derived a posteriori error estimates for the above Dirichlet

boundary control problems in energy space. The authors introduced the following auxiliary problem: Find
it € H'(Q) such that

aa(it,v) = a, pp) + 0 —yn,v) Vv e H(Q).

However, it is obvious that the above equation does not admit a unique solution since a(-, ) is not coercive
in H'(Q). Moreover, the fact that ||V(u — lo.q is not a norm in H'(Q) also causes some problems to prove
Lemma 5.1 in [6|]. In current paper we are able to rigorously derive a posteriori error estimate with the aid

of [2.8) and the correct auxiliary problem (3.1)).
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To derive a posteriori error estimates for the optimal control problem we introduce some notations. For
each element T' € 77, we define the local error indicators 1, 4, (n, Yi, Prs T), 1y n, T) and 17, (¥, pr, T) by

M (ttns Y P T) (B! = yullsr + > hellVeu, = pi) - nelll ¢

E€&),ECOT
1
(3.19) + > hellVeaw — pa) - nelll )
Ee&),EcOT
(3.20) maOnT) = (IR + > hellVyn-nellf )’
EeE| [ECOT
1
(3.21) Dos O o T) 1= (Wl =7+ D helllVpn-nelll )’
Ee& ,ECOT

where [Vv,-ng] denotes the jump of the outward normal of v;, across the edge E with outward normal vector
ng. Then on a subset w C 7, we define the error estimators 1, ,(up, ph, W), My 5 (Un, Y, w) and 1, (Y, pr, W)
by

1
(3.22) Rt i oo @) 1= (> 1wy, i 1))
TeTy,Tcw
1
(3.23) maOm o) = >0 w,0m 1)),
TeT,,TCw
1
(3.24) MO oo @) = (Y 1,0 o 1)’
TeTy,TCcw

Thus, 7,.,(un, Yi, P> T1)» My O T) and 17, (1, P T1) constitute the error estimators for the control equa-
tion, the state equation and the adjoint state equation on 7. For ease of exposition we also define the
following quantities:

oWt Y s T) + 135 ,Oms T) + 173 1,0 2> T,
osc*(f, T) + osc® (v = %, T),

(s Yo p1)s T)
0Sc((uns i pi)s T)

and the straightforward modifications for ni((uh, Yn, Pn), T1) and osc((up, Yis Pi)s Th)-
Now we can derive the following a posteriori upper bound.

Lemma 3.3. Let (uh,y£ ,Pn) € Vi X V,? X V,? be the solution of the optimal control problem and
O (up), pOyn), 1) € H(l) Q) x Hé(Q) x H'(Q) be the solution of the auxiliary problems . Then we have

(3.25) 2 = unlli@ < Mun(n, Yo, Phs Th)s
(3.26) ! ) = )1l S 1ynetn, Ti),
(3.27) lpOw) = prllie < Mpans Prs Th).

Proof. From (2.12)) and (3.1) we have

aalit — up, v) + (@t — up, v) = a(v, pp) + 0% = v/, v) — aalup, v) — (up,v) Vv € H(Q).
8



Thm: 2

lower

By setting v = &t — uj, — my(ft — up,) where 7y, : H'(Q) — Vj, is the Clément-type quasi-interpolation operator
(see [8]]), we can derive from the orthogonality and the interpolation error estimates that

N 0 ou
it —ulliq = Z(f(y = Yn = Apy + @Aup)vdx + (%_ _h) ds)
ar on
TeTh
0 0 0 0
= Zf(y—yh)vdx+2f[ph uh]d+Zf(ﬂ— ﬂ)ds
TeTh EeE),
6u
S O P Y K AT
TeT) EES’
0 au,
(3.28) + 0 hell S = @t )l - il
Ec&}

‘We also have
(3.29) ay’ up) = yl,w) = (f, w) = aCup, w) = a(y], w).

By setting w = O (up) = yiv) — 1 () - y‘,fl.) with 7, : Hé Q) — V;(,) the Scott-Zhang type interpolation
operator (see [32]) we have

5uh Y[,.
Z(f(f+Auh+Ay ywdx — f( — " ywds)

Iy (ur) = y)1}

TeTy
0
(3.30) SO BNF+ Ayl + D hell S ) I ) = vl
TeT), Ee&),
Similarly, we can derive
(3.31) lpOw) = pall} o < ) Hllyn =" + Apallgz + > Bl p"]nOE
TeTh EES‘
This completes the proof. o

Then we have the following a posteriori lower bound.

Lemma 3.4. Let (uh,yf, pr) € Vi X V;? X V}? be the solution of the optimal control problem and
(yf(uh), pOm), it) € H(l) (Q) x Hé(Q) x H'(Q) be the solution of the auxiliary problems . Then we have

(3.32) Tus(ttns Y P Th) S Nt = unlli + 1pOm) = pallia + osc(vn = ¥, T,

(3.33) T T) S 1l = wnllv o + Iy un) = Yl la + 0se(f, Th),

(3.34) psOn> P> Ti) S IpGn) = pallia + 0scOn =y, Th).

Proof. By using the bubble function techniques of [[36]] we can prove the lower bound. For simplicity we
omit the proof. O

Then we can derive reliable and efficient a posteriori error estimators for the finite element approxima-
tions of the Dirichlet boundary control problems by collecting the results of Theorem 3.1} Lemmas[3.3]and
B4

Theorem 3.5. Let (u,y,p) € Hl(Q) X HI(Q) X Hé(Q) be the solution of the optimal control problem
and (up, Yn, pr) € Vi X Vi X V,? be the solution of the discrete control problems . Then we have
(3.35) ot = upllio + 11y = yulla + lp = prllia < Coma((uns Yo, pr)s Th)

and

Mu(Qn, i, pn)s Tn) < Colllu — wpllig + Iy — yullia + 1l — prllig)

(3.36) +C308¢((Uns Yn> P)s Th)-
9
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4. ADAPTIVE ALGORITHM FOR THE OPTIMAL CONTROL PROBLEMS AND ITS CONVERGENCE

In this section we present the adaptive finite element algorithm to solve the Dirichlet boundary control
problems. By establishing some properties for the energy norm errors of the control, the state and adjoint
state we prove the convergence of the adaptive algorithm.

4.1. Adaptive algorithm. The adaptive finite element procedure consists of the following loops
SOLVE — ESTIMATE — MARK — REFINE.

The ESTIMATE step is based on the a posteriori error indicators presented in Section 3, while the step
REFINE can be done by using iterative or recursive bisection of elements with the minimal refinement con-
dition (see [36]]). There are several alternatives for MARK procedure like Max strategy or Dorfler’s strategy
([10]). Note that there are three error estimators 1, (Un, Y, Pr> T)s 1y, sVn> T) and 7, (1, pu, T) contributed
to the control approximation, the state approximation and adjoint state approximation, respectively. We use
the sum of them as our error indicators.

To begin with, let 7y be a conforming and quasi-uniform partition of Q into disjoint triangles. Each
element in 7 is assumed to be shape regular in the usual sense (see [7[]). We denote the set of all conforming
descendants 7~ of 7 by T, which can be generated through uniform or local refinements by newest vertex
bisection algorithm. Given a fixed number b > 1, for any 7, € T and M,, C 7}, of marked elements,

Th., = REFINE(T3,, My,)

outputs a conforming triangulation 77,,, € T, where at least all elements of M, are bisected b times. We
denote wr the patch of elements sharing a vertex or a facet with 7.

In the following, we frequently use the notations Vj and 7% to denote Vj, and 73,. We also denote
(Une> Yies Pre) BY (Ui, Yies pi). Now we describe the adaptive finite element algorithm for the optimal control

problem (2.12) as follows:

Algorithm 4.1. Adaptive finite element algorithm for OCPs:

(1) Given an initial mesh T with mesh size hy and the associated finite element spaces Vi and Vg.

(2) Set k = 0 and solve the optimal control problem to obtain (ug, Yk, pr) € Vi X Vi X V,?.

(3) Compute the local error indicator ni.((uy, Y, pr), T).

(4) Construct My C Ty by some appropriate marking algorithms.

(5) Refine M, to get a new conforming mesh T by procedure REFINE using bisection algorithm.

(6) Construct the finite element spaces Vi, and V1?+1’ solve the optimal control problem to
obtain (U1, Yie1> Pie) € Vier X Vier X V2, 1.

(7) Setk =k + 1 and go to Step (3).

For the marking algorithm we require the following property holds
4.1) max (g, i, pi), T) < max me((ug, yi, pi), T).
TeTy TeM;

This property allows many marking algorithms, for example, the well-known bulk criteria selects a minimal
subset M, C 7 such that

Z 1 (e, i pi), T) = O (s Yies ) T
TeM;

and the Max strategy chooses elements satisfying

YT € M mi((ug, i, pi), T) 2 QTTHefger (Ui, Yio Pi)> T),
k

where 6 € (0, 1) is referred to marking parameter.
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4.2. Convergence to the limiting problem. In this subsection we prove the convergence of the sequence
{(uk, yx, pr)} generated by Algorithm .| to the solution of a limit optimal control problem. To begin with,
we define two limiting spaces

Voo = U Vi (in H'(Q) —norm) and V2 := U V? (in Hy(€) — norm),
k=0 k=0
which are well-defined due to the space nesting V; C V4. It is clear that V,, and VO are closed subspaces
of H'(Q) and H,(Q), respectively. Then we are able to define a limiting control problem

. 1 i a 5
(4.2) min J(y, u) = zlly =Yoo+ EIIVuIIO,Q
subject to
4.3) yeVe, Vr=u: aly,v)=(f,v) YveVl.

Similar to the control problem (I.1)-(1.2) we can prove the above limiting control problem admits a unique
SOIUtiON (Uoo, Yoo) € Veo X Vio. Let Yoo = ¥l + oo such that y, € V0 and

4.4) a(yl, w) = (£, w) — a(ue, w) Yw e V0.
We may introduce the solution operator G, : L*(Q) x H'(Q) — VO associated with 1| such that y{; =
Go(f, so). Therefore, we can introduce the solution operator for the state equation (4.3) as S : L*(Q) x

H'(Q) = Voo With ye 1= So(f: tteo) = Geo(f o) + Ueo.
Now we can derive the first order optimality system of problem lHi There exists (#eo, y;i,, Do) €
Vo X VO x V2 such that

al,w) = (f,w) = aluc, w)  Yw € VO;
4.5) aw, Peo) = (Voo — YL, W) Ywe VY;
@a(Ueo, V) = AV, Poo) + 7 = Yoo, V) YV € Vi,

where y., = y{o + Us € Vo. As the state equation is self-adjoint we use the notation pe, = Geo(Veo — ¥%,0).
From (@.5) we conclude that u is harmonic in the sense that
(4.6) a(Ueo, V) =0 Vv e VO,
Therefore, u. = S (0, ) and the first equation in @ can be written as
ayl,w) = (f,w) VYwe V.
Moreover, the third equation in (4.3]) can be written as
“@.7 @a(Ueo, V) + (U, V) = aA(V, Do) + (yd - y{;, V) VYveVe..

Firstly, we recall the following results concerning the convergence of solution operators G, and S o,
whose proof is very similar to that of [30, Lemma 4.2].

Lemma 4.2. For any f € L*(Q), y — y¢ € L*(Q) and u € H' (Q) we have Gy(f,u) = Go(f,u), Gi(y —
yd,O) — Go(y —yd,O) and S (f,u) = S o(f,u) in H'(Q) as k — oo.

Secondly, we prove the convergence of the discrete solutions (uy, yx, px) to the solutions of limiting
control problem #.2)-#.3).

Lemma 4.3. Assume that (uy, yi, pr) € Vi X Vi X V,? is the solution sequence generated by adaptive Algo-
rithm{.1} Then we have the strong convergence result

(4.8) llug — usolli + lyx = Yoollt.@ + 1Pk = Poollia = 0 ask — oo.

Proof. The proof is very similar to the proof of Theorem[2.3] First, we introduce some auxiliary problems:
Find (] (teo), pi (o), ) € VO x VO x V. such that

a(y] (ueo). wi) = (f, we) = altteo, wi) - Y € V03
(4.9) awi, pr(¥w)) = oo =Y, W) Yy € VY,
aaliiz, vi)) + (i, vi) = a(Vi, peo) + O = oo v) Vv € Vi
11
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It is clear that y{(ucx,) = Gi(f, o) and pr(Veo) = Gi(¥oo — ¥4, 0). Moreover, we define yi(ﬁk) € V,? such that
(4.10) alyy () wi) = (fs wi) = alli, wi) - Ywy € VY.

We set yi(iteo) := Si(fy thoo) = Y] (too) + tteo and yi(ity) := Si(f, i) = y] (@) + fig. It is clear that y/ (o) and
Pr(Ve) are the finite element approximations of y{; and p., in V?, respectively. Moreover, i is the finite
element approximation of s in Vj in the sense of (#.7). Lemma[4.2]and [30, Lemma 4.2] imply that

@1 lim fli — uellie =0, lim Iy (o) = Yol = 0, lim [pe(yeo) = Peslli = 0.

Note that y(iix) — yk = fix — g + Gi(f, i) — Ge(f, ux) and Yoo — Y (lix) = oo — T + Goo(f, Uoo) — Gi(f, ilr).
It is not difficult to prove

Vo =yillia < llyeo = k@@l + llyk(e) — yillio
< e — il o + G (fs o) = Gr(fs il + ik — uello
HIG(f, ) — Ge(fs ull o
S e = iigllrq + ik — urllio + |G (f; teo) — Gi(f, Ueo)ll1.02
HIGr(fs uoo) = Gr(f, i)l
(4.12) S oo — ell 0 + Nl — ulli @ + vk — ¥/ (el 0
and
P = Pillie < P = kel + 1Pk(Veo) = Pill102
(4.13) S P = PkOlLa + Ve — Yillo.-

From the triangle inequality we also have

(4.14) oo — telli < lltteo — ell1,0 + it — tell1,2-

So it suffices to estimate |[i; — ul|1.o. From 2.12)), @.9) and @.10) we have

4.15) a(y] =y} ), we) = aliy, — ug, wi)  Vwy € Vs
(4.16) aWe, PkOe) = Pi) = Oeo = Ve Wi) - Yy € Vs
(4.17) aa(uy — fig, vio) + (U = T, Vi) = a(Vi, P — Peo) + O = Y1 v0) - Vv € Vi
Setting wy = pr(¥e) — pi in (4.15) and wy, = y£ - )/,;(ﬁk) in l) we are led to

(4.18) aliiy = e, pe(yoo) = i) = o = Vi ¥, = Y1 ().

We can derive by setting v = uy — it in that

a||V(uy — ﬁk)llé,g alug — B, pr — peo) + OV — ){, uy — ) — (g — G, g — Giy)

= au = fig, px — Peyeo)) + Altts = fig, Pr(yoo) = Poo) + (vl = L 1k = i)
(g = fig g = fig) + Aty = fig, pr(eo) = i) + Voo = VoL, = Y1 (Gig)
= alu — fig, pr(yeo) = Peo) + OV — ¥l g — i)
(4.19) (k= figs g = 1) + (Voo = Yoo ¥}, = ¥y (00)-
Note that
ok - y;f up — ) + (g — T, iy — ) + (Yoo — )’k,yyf - y‘;f(ﬁk))
= L =y u = ) + (= fig, i = ug) + Qoo = Vi Vi = V(@) + (Voo = Vi ik = )
= (e = oo, uge — 1) + (g — T, e = Uie) + Voo = V(i) Yie = V(i) + Vi) = Yies Yk — yiiix))

= =l = @G o + (i = thoo e = 1) + (oo — Vi), Ve = Yic(iig))-
12



Therefore, we are led to

IV = w)lIG o + vk = ye(@0llg o
(4.20) = a(ug — g, pr(Yoo) = Poo) + {1k — Uoo, Uy — i) + (Yoo — Yr(itr), Yi — Y (iix)).
Furthermore, we can derive
IGoo(fs Uoo) + oo — Gi(f, i) — fixllo.2
iEx — Uoollog + IGoo(f, teo) — Gi(f, Ueo)llo,2 + IGr(f, Uoo) — G (f, Tii)ll0,02
Cllitx — usllog + IlyL - yi(um)llm + IV — uoo)llo,)-

We can conclude from Lemma that |y — yk(itk)ll(z)Q + ||V(uy, — 12k)||%Q ~ ||lug — ﬁklﬁﬂ. Therefore,
Cauchy-Schwarz and Young’s inequalities give

Voo = Yi(@)llo,0

IA

IA

Ve = wlI§ o + llyk = ye(@OlG o
4.21) S IVt = @Q)IR o + 1Pe = PrOlF g + V5 = 3] (o) g + lliteo = 13 -
Thus, we arrive at

(4.22) Nl = g3 o, < Ntteo = Tkl ¢ + 1Peo = PROIE g + IV = V] (1)1 -
Combining @.T1)-@.14) and @.22)) we finish the proof of the theorem. i

4.3. Convergence of the error and estimator. In this subsection we intend to prove that the discrete
solutions (ux, yx, px) generated by Algorithm [{.1] converge to the solutions of continuous optimal control
problem (I.1)-(I.2) and the error estimator 7 ((ux, yk, px), Tx) converges to zero.

Firstly, we introduce a classification of the elements generated by the adaptive algorithm. For each
triangulation 7 we define following the line of [33]]:

rrk+;=ﬂfr,={Tefrk:Te'r, Vi>k} and T :=T\T}.
1>k

It is clear that the set 7" consists of all elements that are not refined after k-th iteration and the nesting
property 7, € 7,7 (k > 1) holds for the sequence {7,"}. On the contrary, the set 7',? contains all elements
that are refined at least one time after iteration k, i.e., for any 7 € ‘T? there exists [ > k such that T € 7; and
T ¢ T1+1. We split the domain Q into two parts as follows: Q= QZ U 92 = Q(Tk*) U Q(Tk‘)). We can define

the piecewise constant mesh-size function & : Q — R* so that /|y := |T|%. The following convergence of
the mesh-size function 4 is presented in [30, Lemma 4.3] (see also [33} Corollary 3.3]).

Lemma 4.4. Let )(2 be the characteristic function of Qg. Then the mesh-size function hy convergence to
zero in Qg in the sense that

Jim i fllec) = Jim [l g, = 0.

With the help of the convergence of the mesh-size function /; in Qg we can prove the convergence of
the maximal error indicator in 7.

Lemma 4.5. Let ni((ug, yi, pi), T), T € T be the local error indicator defined in Section 3. Then the

following convergence holds:

(4.23) lim max 1 ((ug, yi, pi)s T) = 0.

k—oo TeTy

Proof. Recall the assumption on the marking algorithm in (@.I))
9 9 b T S 9 9 b T 9
max (e, i, Pi), T) max (g, i, Pi), T)
where M is the set of marked elements generated in Algorithm [@.1] Therefore, it suffices to prove

4.24) max 1 ((ug, i, pr), T) > 0 ask — oo.
TeM;
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Let Ty be the element with maximal error indicator among M. It is clear that T, € M; C 7",(0. Using the
trace theorem, the inverse inequality and the triangle inequality we can derive

Mkt Yoo o Ti) - < Clhrly’ = yilloz, + IVkllo.wr, + IV Prllowr,)

< Clhr Y = yeolloz, + hrllye = yoolli@ + IVtteollowr,
(4.25) Hiitx = tteoll. @ + IV Pesllowr, + 125 = Poolli0);
Mk, T) < Clhr |l fllor, + IVykllo.wr,)
(4.26) < Chrliflor, + IVyeollows, + vk = yeollic)
and
MpaOk P Te) - < Clhrlly’ = yilloz, + IV pillo.wr,)
(4.27) < Clhlly’ = yeollor, + hrllyi = yoollia + IV pecllows, + 1Pk = peslli ).

It follows from the local quasi-uniformity of 7 and Lemma[4.4] that
(4.28) lwr,| < CITi| < C||h2Tk||Lw(ka)) —0 ask — oo

Thus, the terms involving the integrals on T or wy, vanish as k — oo by the continuity of || -|o o with respect
to the Lebesgue measure. The terms involving the difference of (ux, Yk, pr) and (e, Yoo, Poo) converge due
to Lemma@ We thus prove that n;((ux, Yk, px) Tx) — 0 as k — oo. The assertion of the lemma follows
immediately. O

For the following purpose we introduce the residuals with respect to the control equation, the state
equation and the adjoint state equation:

(4.29) (Ru(u, Yo, P)s V) = a(v, p) + O =y v) — @a(u,v) Vv € H'(Q),
(4.30) (R (e, Y], v) = (f,v) — alug,v) — a(yl,v) Vv € Hy(Q),
(4.31) Ry P)s VY = e =y, v) —av, pr) - Vv € Hy(Q).

We note that R,, R, and R,, define three sequences of uniformly bounded linear functionals in H'(Q) and
H(') (Q), respectively. Moreover, the orthogonality properties hold

(4.32) Ru(ur, Yk, pi)>viy =0 Vv € Vg,
(4.33) Ry y)vi) = 0, Ry po).vi) =0, Yy € V.

Now we can show that the residuals of the control, the state and adjoint state equations in the limiting first
order optimality system vanish. The proof follows from the techniques of [33| Proposition 3.1], we also
refer to [20] for the related results for optimal control problems.

Lemma 4.6. Let R,, R, and R, be defined above and (Us, Yoo, Peo) be the solution of the limiting control
problem (#.2)-(#-3). Then there holds

(4.34) (Ru(thoo, Yoos Poo), V) =0 Vv € HI(Q),
(4.35) (Ry(tteo, Y1), ) = 0, (Ry(Yoor P ) =0, Y € HY(Q).

Proof. We only prove the vanishing property for the residuals of the control equation, the others can be
proved along the same lines. We prove the result by using a density argument, so it suffices to show that
(Ru(thoos Yoo» Poo)s V) = 0 for any v € H*(Q).

For k > [ it is easy to see that 7,* C 7,7 C 7}. Therefore, we can define Q? = Q(7%\7,") and any
refinement of 7 does not affect any element in 7,". Let Il be the Lagrange interpolation operator which is
well-defined for the function in H>(Q). For any v € H*(Q) with [v|,o = 1, it follows from the orthogonality
property (#.32), integration by parts and interpolation error estimate that

KRu (i, yi» Pi)> v — Tiv)|

c Z hrnux g, yi, pr, T) + C Z hrnux (g, Yis i, T).
TeT} TeT\T,
14

KR (s> Yie» i), V)
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We see that ||A]| L(Q0) < k| L@ By using the trace inequality, the inverse estimate we have

D ey o T) < Clldlye kGt Yo i TAT)
TeT\T,

IA

d
Cllrl= (b = yellog + IVuellog + 1V pillo)
< Cllll=con,

A

where we used the uniform boundedness of |[yllo.q, |luklli.q and ||plliq. In view of Lemma @, for any
given € > 0 we may choose some sufficiently large / such that

€
(4.37) el ) < 5

On the other hand, we see that ||/|| @) S 1. Proceeding as above we have

A

Zhrﬂu,k(uk,)’k,Pk,T) < il @ ks Yoo P> T7)
TeT}

(4.38)

IA

Cuge (e, Yies P> ).
In addition, the marking strategy (@.1I)) and Lemma4.4]imply

lim max Vi Pe), T) < lim max Ve P, T) =0,
jm max (e, > pi)> T) Jim max (e, i pr)> T)

which, recalling ] / M =0, implies
li 5 Vs s =V
1m maji (ks i pk) r)y=0

Thus, we can choose K > [ for some fixed [ such that when k > K there holds

€ 1
4.39 Ve P T) < Ve p, T) < —I|7772.
(4.39) ??rf NukUics Vi Pr> T) ?3?‘ (e, i Pi)> T) 2 7771

Combining the above results we see that (R, (ux, Yk, pr), v) is controlled by € forany k > K and v € H*(Q),
that is to say,

(4.40) (Rulttoo, Yoo, peo), v) = im (Rt yis pr),v) = 0 Vv € HY(Q),

where we used the continuity of R, with respect to its arguments and the convergence result in Lemma4.3]
Since v is arbitrary we have (R, (ioo, Yoo, Do), V) = 0 for any v € H'(Q). Similarly, we can prove

(Ry(Uoor YL)s V) = 0, (R (Veor o) V) = 0, ¥v € HY(Q).

This finishes the proof. O

Furthermore, we define the following auxiliary problems: Find (yf (Ueo), P(Veo), i) € Hé Q) x Hé Q) %
H'(Q) such that

aw, p(yeo)) = (Yoo =y, W) Yw € H)();
aa(it,v) + (it,v) = a(v, pe) + ¢ = yf;, v) VYve HY(Q).

a(y! (ue), w) = (f, w) — altteo, W) ¥w € HY(Q);
(4.41) {

It is clear that ¥/ (ite) = G(f, tteo) a0d P(Veo) = G(Veo — Y%, 0). We set y(Uoo) := S (f, theo) = ¥ (Uoo) + Uhco.

Lemma 4.7. Let (oo, Yoos Poo) € H'(Q) x H'(Q) x Hé (Q) be the solution of the limiting control problem

- and (i, y(Ue), P(Veo)) € H'(Q) x H(Q) x H(l)(Q) be the solution of the auxiliary problem (M)
Then there holds

(4.42) oo = 0, YL =Y (Ue)y Yoo = W)y Poo = P(Veo)-
15
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Proof. Firstly, we can conclude from Lemma[4.5]and the third equation in (#.41) that

IA

Cllu — il 0 sup aa(it — Uoo, V) + (it — Ueo, V)

veH! (Q),vl.o=1

sup <Ru(uooay00’poo)7 v) =0,
veH! (Q),IVlh o=1

(4.43)

which implies the first assertion that us = @i. Secondly, it follows from Lemma[.6and the first equation in

(@A47) that

Clyl, =y we)lha < sup a(y (o) = yoo v)
veHé(Q),HVIh,g:l

(4.44) = sup (Ry(tteo, y1),v) = 0,
veH Q). Ml .0=1

this proves the second claim that y{:O = /(o). Then yo, = y(uts) is a direct consequence of the first two
claims. Lastly, Lemma[4.6and the last equation in (#.41)) imply

Clipeo = plllie < sup  a(p(Yoo) = Poos V)
veH} (Q), IV o=1
(4.45) = sup  (Rp(Yeos Peo), V) = 0,
veH) (@), Il 0=1
this gives pe = p(¥o). We thus completes the proof. O

Now we are in the position to prove the main result of this section.

Theorem 4.8. Let (u,y, p) € H'(Q) x H'(Q) x H(l) (Q) be the solution of optimal control problem and
(U, Vi, pr) € Vi x Vi X Vg be the solution of the discrete problem generated by the adaptive Algorithm
Then there hold

(4.46) ,}I_f?o llux — ullio + lye = Yllio +lpe = plhia =0
and
(4.47) Tim ¢t s P, T3 = 0.

Proof. 1t follows from Theorem [3.1] that

lim [lux — ulli.0 + llye = Ylle + 11pc = plhia
k—o0

Q

lim [l =l + ) = @olha +lIpx = pOwlha

(4.48) oo = iillr0 + e = 3/ (eo)ll1e2 + Peo = POl = 0,

which gives the convergence of the error.
To prove the convergence of the error estimator we follow the same lines as in the proof of Lemma [4.6]
to give the splitting for k > [ that

(4.49) 1 (e, i P)s T) = et Yoo P> T77) + et Yoo P> TiANT ).

For the second term of the above splitting we can conclude from the lower bound in Theorem [3.5] and the
local quasi-uniformity of 77 that

M Qi Yo O TNTT) < Cllluge = ull} o + vk = VI o + 112k = PliT o)
+C Y oscf (e i i), T)
TeT\T;
< Cllug = ullf o + llye = Yl o + ok = Pl )

(4.50) W g (VI 0 + Il 0 + 101 )
16
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Since |If11§ o + IVell§ o + IV/II5 o < 1, we are led to

MG Y PO T S 10k Vi - T77) + Cllall g,

4.51) +C(llue = ull} o + llye = Y. + 12k = PIF 0)-

We recall by Lemma that ||/y]| L@ 0 as [ — oo. Thus, the second term of above inequality can
be made small enough by choosing / large enough. For fixed / we may choose sufficiently large £ > [ so
that ni((uk, Vi» Pk)s 7'1’“) is small, similar to the proof of Lemma The last term can also be small if we
increase k further in viewing of (#.46). Therefore, for any € > 0 we can find k large enough such that
(Ui, Y, Pr)» Trx) < €, which implies the convergence to zero of the error estimator. This completes the
proof. O

5. NUMERICAL EXPERIMENTS

In this part, we will give some numerical examples to validate our theoretical results. In the first example
we consider the case  is convex. We test the convergence behavior of the finite element approximations
to the Dirichlet boundary control problem with quasi-uniform meshes. In the second example we consider
a nonconvex domain . We test the efficiency and reliability of our a posteriori estimators and show the
convergence of the error and estimators. All these numerical results are accordance with the theoretical
predictions.

For the convenience of constructing numerical examples with exact solution, we add a priori control u“
in the objective functional. We consider the following problem

. 1 a .
(5.1) min J(y,u) = §||y —yllgq + §||V(u —u)o subject to ||
The first order optimality system is as follows: there exists (u,y”, p) € H'(Q) X Hj(Q) x H/(Q) such that
ay,w) = (f,w) —a(u,w) Ywe Hé(Q);
(5.2) aw,p) = (y—y\,w) Yw e H}();
aa(u,v) = av, p) + ea@®,v) + 0% —y,v) Vv e H(Q),
where y = y/ + u e H'(Q).
Suppose that Au? € L?(Q) and we define

MunCtn i i T) 1= (R =y + @b+ > hellV(atu = u®) = pu) - ngll o
Ee&h EcOT
1
(5.3) DL hellV(awy = u®y = pi) - nell )
E€E},EcOT

Then all the results in previous sections hold with the similar analysis.
We denote the L2-norm error, the H'-norm error and the values of the estimators by egn = |lu — upllo +
Iy = yullo + 1l = pallo, €1 = llu = wzlly + 11y = yalli + llp — palli and n7n, respectively.

Example 5.1. Let Q = (0, 1)>. We choose the data
ya = sin(kyxy) sin(kyrx) + 2k§7r2 [cos(2kpmx1) sinz(kzﬂxz) + sinz(kzn'xl) cos(2komx))]1,
f= 2]{%71'2 sin(kytxy) sin(k x),  u? = sin(kyzxy) sin(ky xs),
where ki, ky are positive integers. Then for any a > 0, the exact solutions are
u = sin(k;7x)) sin(k;mx,),  y = sin(kizxy) sinkixs),  p = sin®(koxy) sin®(kamxs).

In our numerical test we take @ = 1, k; = k, = 1. The mesh is refined uniformly to test a priori error
estimate. The L?-norm error, H'-norm error and the orders of convergence with respect to the mesh size
are listed in Table[I] Figure[I]shows the convergence rate with slope. According to these results, we know
that the orders of convergence of L?>-norm and H'-norm errors are 2 and 1, respectively, which agrees with

the theoretical analysis in (6] and current paper.
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TaBLe 1. L*-norm and H'-norm errors versus mesh size & and orders of convergence for

Example[5.1]

h eon order e order

1/4 | 77012 e-2 - 1.6266 -
1/8 | 2.0971e-2 | 1.8767 | 8.4052e-1 | 0.9525
1/16 | 5.4192e-3 | 1.9523 | 4.2558e-1 | 0.9819
1/32 | 1.3701e-3 | 1.9838 | 2.1367e-1 | 0.9941
1/64 | 3.4374e-4 | 1.9949 | 1.0697e-1 | 0.9982
1/128 | 8.6030e-5 | 1.9984 | 5.3503e-2 | 0.9995
1/256 | 2.1515e-5 | 1.9995 | 2.6755e-2 | 0.9998

— ___ Convergence Rate

107 10°
Mesh size

Ficure 1. The convergence rate on uniformly refined meshes for Example [5.1]

Example 5.2. Let Q = (—=1,1)?\ ([0, 1] x [~1,0]) be a L-shaped domain which will be shown in Figure
Set yg = ri sin(%@) + 2k2 72 [cos(2kmx) sinz(knxz) + Sinz(kﬂ)ﬂ)COS(Zkﬂ'Xz)], f=0u;= ri sin(%@), where k
is a positive integer and (r, 8) corresponds to the polar coordinates. Then for any a > 0, the exact solution
isu=rs sin(%H), y= r3 sin(%@) and p = sin?(kmx; ) sin®(kmx,).

In this numerical test we choose @ = 1 and k = 1. We adopt Dorfler’s strategy for the MARK procedure
and the newest vertex bisection algorithm for the mesh refinements. The H I_norm error, the values of the
estimators and the reduction rates of the H'-norm error and the estimator with respect to degrees of freedom
(denoted by N) of the finite element space are listed in Table E} The reduction rate is shown in Figure E]
and Figure |3| gives the adaptively refined mesh. As shown in these results, the reduction rate of the H'-
norm error and the estimator is approximately N='/2, which is the optimal rate we can expect with linear
finite elements. We can observe from the refined mesh shown in Figure 3] that the estimator can capture the
singularity of the solutions. These results validate the efficiency and reliability of our a posteriori estimator
and indicate, to some extent, the convergence of the estimator to 0 and the solution to the exact solution as
the adaptive loops increase, just as we expected from the theoretical analysis.

Acknowledgements: The first author was supported by the National Natural Science Foundation of
China under grants 11671391 and 91530204. The third author acknowledged the support of the National
Natural Science Foundation of China under grants 11571356 and 91530204.
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TaBLe 2. The H!'-norm error and the values of estimators versus DOFs N and orders of

convergence for Example[5.2]

N ern order N order

65 2.3129 - 11.0076 -

85 1.9416 | -0.6524 | 9.4324 | -0.5757
126 1.6631 -0.3933 | 7.8971 | -0.4513
181 1.2766 | -0.7302 | 6.6603 | -0.4703
252 1.1040 | -0.4388 | 5.7615 | -0.4380
353 | 9.4964e-1 | -0.4533 | 4.9560 | -0.4468
517 | 7.5554e-1 | -0.5937 | 4.0198 | -0.5487
764 | 6.3204e-1 | -0.4570 | 3.3759 | -0.4470
1072 | 5.5274e-1 | -0.3958 | 2.9323 | -0.4160
1573 | 4.3215e-1 | -0.6418 | 2.3350 | -0.5940
2418 | 3.5046e-1 | -0.4873 | 1.9085 | -0.4691
3582 | 2.9539¢-1 | -0.4351 | 1.5964 | -0.4544
5481 | 2.3451e-1 | -0.5425 | 1.2826 | -0.5145

2 Error

H
- = Estimators
slope=-1/2

1 1

102

10 10° 10

Degrees of freedom N

Fiure 2. The reduction rate of the H'-norm errors and error estimators on adaptively

refined meshes for Example[5.2]

APPENDIX A. PRrOOF OF THEOREM 2.3

We intend to derive a priori error estimates by following the standard approach of introducing some
auxiliary approximations. To begin with, we introduce the following problems: Find (yfh(u), pr(y), i) €
VY x V) X Vj, such that

awp, pr(y)) = (v —yd, wp)  Ywy, € VY, .
aaliiy, vi) + (i, vi) = a(vp, p) + 04 =y, v Vv, € V.
19
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{ a(yl ), wa) = (f,wy) — alu,wy)  Ywy € VO



aux_11

Lm:0

1_est_1

1_est_2
1_est_3

1_est_4

1_est_5

NREN

7
S
7
S
2l
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2l
55

RPN

FiGure 3. Adaptively refined mesh after 13 iteratios for Example[5.2]

Moreover, we define y£ (itp) € Vg such that
(A2) a(y} ), wa) = (f. wi) = aGiip, wy)  Vwy, € Vp.

We set y(u) = Su(fou) =yl (u) + u and y, (@) := S(f, i) = y] (@) + @y Itis clear that y/ (u) and py(y)
are the finite element approximations of y/ and p in Vg, respectively. Moreover, #i, is the finite element
approximation of u in Vj, in the sense of (2.8).

Lemma A.1. Let (v, p,u) € H(Q) x H(l)(Q) x H'(Q) be the solution of the optimal control problem
and (yf(uh), pOn), t) € Hé(Q) X Hé(Q) x H'(Q) be the solution of the auxiliary problems . Then we
have

llee — upllio + 11y = yullia + llp — pullia
(A3) < lu =gl + 1y - y{,lh,g +1p = PrMlh.a-

Proof. From 2.12), (A.1)) and (A.2) we have

(A4) ay! =yl ), wn) = aty, — wp, wy)  Vwy, € Vs
(A.5) awn, pu(y) = p) = v = Y wi) - Ywy € Vs
(A.6) aauy, — i, vi) + (W — iy, vi)) = a(p, pp — p) + ¢ — yi, vp) vy € V.

Setting wy, = pp(y) — pp in @) and wy, = y{l - yfh'(ﬁh) in we are led to

(A7) alii, — un, pr(y) = pi) = O = iyl = ¥ @)
20



From the triangle inequality it suffices to prove |lu;, — iy|l;.o. We can derive by setting v = u;, — fij, in @)
that

aCuy = iip py — p) + OF =yl — i) — (uy — it w, — iy
= au, — @, i = prO)) + alu, — i, pr) = p) + 67 = ), = i)
—(up, = iy wy = ) + altty — g, pr(y) = pa) + (v = i ¥ = Y1 (@in))
= a(uy — i, () = p) + O = yh up = y)
(A8) (g, — s Ty = up) + (v = Y, ¥, = ¥ @)-
Note that

~ 2
IV (up — iin)lly o

O = 3 wn = ) + (= i, o, = ) + (9 = Y, = Y4 1))
= O =yl un = i) + = Gy iy~ wn) + O = Vo Vi = Vu () + O = v i — )
= (wp = u,up — 8p) + (up — Gp, = up) + 0 = yu(itn), yo — ya(in)) + Gn(in) =y, yo = ya(itn))
= =llyn = yu(@li§ o + (@in — w,up — i) + & = yu(n), yu — yniin)).
Therefore, we are led to
IV = in)lig o + llyn = ya(@nllg o
(A9) = alup — i, pp(y) — p) + (i — w, up — itp) + (v = Ya(@tn), yn — yn(in))-

Furthermore, we can derive

IG(f, w) + u — Gp(f, %) — @inlloq
C(llity = ullog + IG(f, w) = Gr(f, Wllo.a + IGL(f, ) — Gi(f, iin)llo)
Clliy, — ulloo + Iy - )’Z(”)”LQ + IV (i, — wllo)-

Iy = yr(@n)lloo

IA

IA

We can conclude from Lemma n that ||y, — yh(ﬂh)ll(z)Q + a||V(uy, — fth)||%9 x ||luy, — ﬁh||%g. Therefore,
Cauchy-Schwarz and Young’s inequalities give

IV = @lIG o + lyn = yu(n)llg o
(A.10) S V@ =@l g + 1P = prOIR o + 1y =yl IR g + I = @4ll3 -
Since u is harmonic, we see y{ = yf: (u). Thus, we arrive at
(A.11) letn = iall} g <l = @nllf ¢ + 1P = PO g + I = ¥ 11 -

Note that y,(ii,) — yn = ity — up + Gp(f, iin) — Gp(f, wp) and y — yp (i) = u — ity + G(f, u) — Gy(f, iip). It is
not difficult to prove

ly =yullia < Ny = ya@wlla + lya(in) = yallio
S Mu—idnlho + G w) = Gu(fs wn)lla + llin — unlh . + IGr(f, @n) — Gr(f, unlho
< =il + iy — upllig + IG(f, w) = Gu(f, Wl o + IGa(f, u) = Ga(f, @n)lh o
(A.12) < M= inlha + i = willi + Iy = yplha
and
(A.13) Ipn () = pallia < lly = yallog-
We thus complete the proof of by collecting the above results. O

Proof of Theorem ' Since y£ (1) and py,(y) are the finite element approximations of y/ and p in V}?, iy,
is the finite element approximation of u in V}, in the sense of (2.8). From (AZ3) and standard a priori error
estimate for elliptic equation we have

(A.14) llu = unllio +1ly = yallia + llp = pallia < Ch(llull.q + yll2o + 1Pll2.0)-
21



Moreover, it follows from [6, Lemma 2.5] that

(A.15) lullz.c + IVll2.e + lIpll2a < CUlflloa + 1y llog)-

We thus complete the proof of (2.20).
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