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Abstract 

 

Aim: The aim of this thesis was to investigate the use of salivary Epstein-Barr virus (EBV) 

DNA as a marker of in vivo immunity in response to training and nutritional intervention. 

Methods: Initially, an assay for the detection of EBV DNA in saliva was developed which 

was subsequently used to detect the concentration of EBV DNA in samples collected in 

subsequent studies.  The potential role of EBV as a predictor of URTI in response to 

endurance exercise are presented, along with the outcome of nutritional interventions, with 

chapters investigating the effects of supplementation with carbohydrate, and Chlorella 

pyrenoidosa.   Finally, data from all four of these chapters were consolidated, and the role 

of salivary EBV DNA as a marker of in vivo immunity investigated.  Outcome:  The main 

finding from this thesis is that salivary EBV DNA does not appear to be a useful marker of 

in vivo immunity based on the present data.  EBV concentration was not a predictor of 

URTI, nor was there a relationship between EBV concentration and SIgA concentration or 

secretion rate, or the absolute change or percentage change in EBV from pre-post exercise 

and the absolute and percentage change in SIgA concentration or secretion rate.  
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Introduction and Literature Review 
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For many centuries, a relationship between exercise and health has been observed.  

Research has demonstrated that exercise forms an important component of a healthy 

lifestyle, including being beneficial to the prevention and/or management of more than 

twenty chronic diseases or disorders such as heart disease, diabetes and certain types of 

cancers (Booth et al., 2002) .  Observations made in the 1920s on the relationship between 

exercise and illness reported, that in patients suffering from poliomyelitis, exercise could in 

fact be detrimental to patients' recovery.   Those consigned to bed rest, compared to those 

who continued to exercise following the onset of symptoms, generally recovered quicker, 

with the resulting disablement being less severe (Agre et al., 1991).  These observations 

prompted physicians and researchers to explore the relationship between exercise and 

immune function.  The antibiotics and vaccines developed throughout the Second World 

War, however, halted the need for research in this area as a lot of the common illnesses 

could be controlled through the use of medications.  It was not until the emergence, 

development and accessibility of new technologies in the early eighties that research 

looking at the relationship between exercise and disease started to be researched and 

reported with some regularity.  This re-emergence has resulted in exercise immunology 

becoming a recognised research area in its own right. 

 

The cellular responses to exercise have been well researched over the past decades, but it's 

these cellular interactions that, cumulatively, result in an in vivo immune response.  

However, the in vivo immune responses to exercise have been researched less often and are 

therefore less well understood.  The aim of this thesis is to build upon the existing body of 

research into the role of training and nutrition on immune function, with a specific focus on 

the in vivo immune outcomes.  Within this chapter, the reader will find a review of 

contemporary literature providing an overview of sport and exercise immunology today, 

including a variety of studies that have used in vivo immune techniques.   

 

1.1 Respiratory Infections in Athletes 

 

1.1.1 Introduction to Respiratory Infections 

 

Respiratory infections caused by the common cold or influenza are the most common 

illnesses to afflict man (Monto, 2002).  They are the leading cause of visits to general 

practitioners (Graham, 1990), and are one of the main reasons for restricted activity within 

the adult population (Monto, 2002).  The last report published by the U.S. Department of 
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Health and Human Services which detailed the incidence rate of acute respiratory 

conditions (including the common cold, other acute upper respiratory infections and 

influenza) estimated that there were nearly eighty reported cases of acute respiratory 

conditions per one hundred persons per year in the United States (Adams et al., 1999).  Of 

these, nearly fifty percent could be attributed to common colds and other acute upper 

respiratory infections.  Indeed, on average, an adult living in the developed world can 

expect to suffer two to five respiratory infections every year (Gwaltney et al., 1966 cited 

by Heath et al., 1992).  In 1996, it was estimated that these symptoms lead to 87.1 days of 

restricted activity (a day in which symptoms affect normal daily activities) per one hundred 

persons (Adams et al., 1999).  The impact on the average adult can be disruptive, resulting 

in socioeconomic issues such as missed work days.  The impact respiratory infections can 

have on an athlete, however, may not only be disruptive to work and/or training but can 

also negatively affect performance (Pyne, et al., 2000) with the potential to limit athletic 

careers. Understanding the etiology of these infections in athletes, and how best to prevent 

and manage them, therefore, has resulted in the research field of sport and exercise 

immunology as we know it today. 

 

1.1.2 The Influence of Exercise Intensity and Training Load on Respiratory Illness 

 

There is a well-established link between exercise and respiratory illness which is based 

upon anecdotal reports, athlete surveys, epidemiologic data, cross-sectional studies, and 

studies which have researched the role the immune system plays in response to both acute, 

and chronic exercise, and the subsequent risk of infection (Nieman, 2000).  Populations 

who take part in regular, moderate activity generally report fewer symptoms associated 

with upper respiratory tract infections (URTIs) (Matthews et al., 2002; Nieman et al., 

2011; Nieman et al., 2005; Nieman et al., 1993), and consider themselves at less risk of 

developing infections compared with their sedentary counterparts (Shephard et al., 1995).  

Coaches and athletes have, for many years, however, noticed that during periods of 

intensified training, athletes are more susceptible to the development of minor infections.  

Indeed, research has supported these observations and, compared to the general population, 

athletes training at a high intensity and/or athletes whose training volume is high, are more 

likely to complain of upper respiratory symptoms (URS) and infections compared to both 

sedentary and moderately active populations (Bishop, 2006b).  In addition, increases in 

training load have been shown to result in an increase in URS (Dias et al., 2011; Klentrou 

et al., 2002; Schwellnus et al., 2016).  The relationship between the incidence of upper 
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Figure 1.1 The J-Curve which represents the relationship between the risk of 

developing an URTI and the intensity/volume of training.  Adapted from Nieman, 

1994a. 

respiratory tract infections (URTIs) and the amount of exercise has been described as a J-

Curve (Nieman, 1994a & 1994b) (Figure 1.1). 

 

 

 

Many papers have supported the J-Curve relationship between intensified periods of 

training and the incidence of URTIs (Cox et al., 2008; Dias et al., 2011; Fahlman, & 

Engels, 2005; Heath et al., 1991; Klentrou et al., 2002; Matthews et al., 2002; Nieman, et 

al., 1990; Peters & Bateman, 1983; Spence et al., 2007).  Fahlman and Engels (2005) 

r   r            r’s              s       v s               c    c     URTI     secretory 

immunoglobulin A (SIgA) responses in an American university football team compared 

with physically active, non-varsity controls.  Symptoms of URTI were recorded 

retrospectively on a weekly basis for a year, encompassing all seasons and every level of 

training that occurs throughout the season.  They found that there was a significant 

increase in the number of URTIs reported by football players during intensified periods of 

training and the competitive season compared to controls.  A later study by Spence et al. 

(2007) compared the incidence of upper respiratory illness in elite triathletes and cyclists, 

recreational triathletes and cyclists and sedentary populations through both retrospective 

health questionnaires, and the use of laboratory techniques which identified infection.  

They reported that, out of all three groups, elite athletes were most likely to suffer upper 

respiratory illness, with recreational athletes least likely to suffer upper respiratory illness.  

Most of the illnesses reported by the elite athletes occurred when these athletes were 

engaged in their heaviest, most intense training periods. 

 



5 

 

Despite this, a small number of studies have failed to observe Nieman's J-Curve 

relationship (Ekblom et al., 2006; Neville et al., 2008).  This lead to an updated model 

being proposed in 2006 by Malm (2006) based on an S-shaped relationship whereby the J-

shaped relationship remained, but with the proposal that elite athletes can better withstand 

infection in response to the physical, and psychological demands of elite sport.  The 

authors argued that it is the athlete's ability to withstand infections that allows them to 

continually maintain their status as an elite athlete by maintaining their training volume 

and quality. 

 

1.1.3 The Influence of Exercise on Immune Responses  

 

Studies from both human and animals have lead us to the conclusion that physical activity 

and the immune system are intricately linked.  Despite the obvious differences that exist 

between athletes and non-athletes, what may be arguably more interesting, is the 

magnitude of change that happens to the immune system following a bout of prolonged 

exercise. Following intensive or prolonged exercise, researchers have reported decreased 

levels of immunoglobulins (particularly SIgA);  high blood neutrophil counts and low 

lymphocyte counts caused by an increase in circulating catecholamines, growth hormone 

and cortisol; decreased delayed type hypersensitivity (DTH) responses; an increase in pro- 

(e.g. IL-8) and anti-inflammatory cytokines (e.g. IL-6 and IL-10); increases in blood 

granulocyte and monocyte phagocytosis; decreased oxidative burst by granulocytes; 

decreased natural killer (NK) cell cytoxic activity; and down regulation of T-cells 

(Bruunsgaard et al., 1997; Nieman 1997; Nieman 2000;  Ostrowski et al., 1999;  Pedersen 

& Bruunsgaard,  1995).   All  of  these responses combined, or in isolation, are believed to 

lead to an increased risk of succumbing to infections.  These alterations in immune 

function are not permanent, however, but occur only for a few hours or days after each 

exercise bout (typically 3-72 hours) (Kakanis et al., 2010; Nieman, 2000).  These transient 

alterations in immune function allow viruses and bacteria to gain a foothold, resulting in 

subclinical, and clinical infection.  The period of time in which an athlete is vulnerable. is 

referred to as the open window (Kakanis et al., 2010; Nieman, 2000).   

 

One of the first studies to provide evidence that URTI risk is associated with reduced SIgA 

levels, tracked a large group of American collegiate football players over a competitive 

season.  Fahlman & Engels (2005) suggested that if the secretion rate of SIgA dropped 

below 40 µg.min
-1

, athletes were at an increased risk of infection.  They further reported 
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that the risk of illness was not associated with the time of year, and therefore any seasonal 

variation could be ruled out.  Gleeson et al. (1999b) also reported an association between 

SIgA levels and URTI risk in both moderately exercising controls, and elite swimmers.  

Athletes with an SIgA concentration below 40 mg.L
-1

 were identified as being more at risk 

of URTI.  Further studies have gone on to  demonstrate an association between reduced 

SIgA levels and URTI risk (e.g. Gleeson et al., 1999a), but not all studies have established 

an association. When a group of young, nationally ranked tennis players reported URTIs 

daily, and provided fortnightly saliva samples for SIgA analysis, the incidence of URTI 

increased during periods of heavy training, which was not associated with a decrease in 

SIgA (Novas et al., 2003).  The authors attributed the lack of SIgA suppression  to the fact 

that the training sessions monitored in the study were shorter in duration than those in 

similar studies, and that the data collection period was relatively short.  The general 

consensus is that the monitoring of SIgA is one of the most effective methods of predicting 

URTI risk within athletes and it continues to be used as a reliable research method and 

monitoring tool today. 

 

Within a laboratory setting, the severity, intensity, and type of exercise have been shown to 

be linked to the magnitude and characteristics of the subsequent immune response 

(Blannin, 2006).  A more in depth analysis of these responses can be found below (Section 

1.2.5) 

      

1.1.4 The Impact of Respiratory Illness on Competitive Athletes 

 

I    s        r   s     r      , s c   s     s’  r -season preparations, can increase the 

likelihood of athletes developing URTIs (Fahlman & Engels, 2005).  A decrease in 

immunocompetence early on in the season may also lead to the development of URTIs 

later on in the season (Gleeson et al.1999a).  Partial humoral immune deficiency may 

cause athletes to suffer from an increased incidence of URTIs, cause persistent fatigue, and 

lead to decreases in performance (Reid et al., 2004). The monitoring of immune markers 

(such as SIgA within athlete populations throughout the season may, therefore, enable the 

prediction of illness within the same population. 

 

Studies have also shown that the likelihood of an athlete suffering from upper respiratory 

tract (URT) symptoms or infection post-race are significantly increased if the athlete has 

suffered with URT symptoms or an infection within the 3 weeks leading up to the race 
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(Ekblom et al., 2006).  The majority of studies have also shown that training mileage can 

act as a predictor of athletes developing URTI (Heath et al., 1991).  Heath et al. (1991) 

reported an association between running an annual mileage of 486 miles or more and the 

development of URTIs. 

 

It is generally accepted that if symptoms are above the neck (i.e. confined to the nose, 

throat, sinuses and ears) and not accompanied by aches, lower respiratory symptoms and/or 

fever, it is safe for athletes to continue with their training at a moderate intensity without 

delaying their recovery, exacerbating their symptoms (Weidner & Schurr, 2003; Weidner 

et al., 1998), or risking the development of any serious health complications associated 

with viral infections such as myocarditis (Friman & Wesslen, 2000).  Despite this, upper 

respiratory symptoms continue to be one of the main causes of missed, or adjusted training 

sessions (Engebretsen et al., 2010; Neville et al., 2006) and, although findings have not 

been significant, differences in race times between athletes suffering from URS in the lead 

up to competition, and those who don't, have been reported  (Pyne et al., 2000).  As a 

r s   ,         r s                s s   ’s r s   s        rc s ,   d limiting the number of 

URS suffered by athletes has grown exponentially over the past twenty to thirty years 

(Shephard, 2010).   

 

Approximately 7% of elite athletes experience illness of some description during 

competition (Engebretsen et al., 2010; Mountjoy et al., 2010; Schwellnus et al., 2016).   

During the Winter Olympics 2010, 185 illnesses were reported among 2,567 athletes with 

54% of these illnesses affecting the upper respiratory system, making URTIs the most 

frequently diagnosed condition among competitors (Engebretsen et al., 2010).  Even during 

the 1996 Olympic Games which took place in Atlanta during the months of July and 

August (which generally see a low incidence of URTIs in a normal population sample in 

the northern hemisphere (Gleeson, 2006b), 42.8% (773 out of 1,804) of  visits to a 

physician related to illness (excluding heat-related illnesses), with URTIs being the most 

common illness requiring attention (9% of physician visits) (Wetterhall et al., 1998).  

Similar findings have also been reported from international aquatic competitions 

(Mountjoy et al., 2010), cross-country skiing (Tomasi et al., 1982), endurance yachting 

events (Neville et al., 2008), and endurance running events (Nieman et al., 1990; Peters & 

Bateman, 1983). 
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Not all research is in agreement however, with some authors finding no relationships 

between workload and the incidence of URTIs (Ekblom et al., 2006; Neville et al., 2008).  

Some of these differences may be due to varying differences in the definition of a URTI, 

others may be attributed to study designs, such as the relative exercise intensity.  A study 

by Ekblom et al. (2006) reported non-significant differences in infection rates in marathon 

runners pre- and post-race, but did find significant findings in the incidence of infections 

post-race if an infection had been experienced in the three weeks leading up to the race.  It 

is worth noting that this study used the three weeks leading up to the race as its control, 

and treated this period as "a normal 3 week training period”.  T     urth week (i.e. 21-28 

days) preceding a marathon will generally see the greatest weekly mileage in an athlete's 

marathon training plan before tapering in preparation for the race begins (Noakes, 2002).  

An increased weekly mileage has, in itself, been shown to be a risk factor in the 

development of URTIs (Fricker et al., 2005) and the non-significant findings of this study 

may, therefore, have been influenced by this.   

 

1.2 Immunology 

 

1.2.1 Overview of the Immune System 

 

The immune system is multifactoral with both the innate (natural and nonspecific) and 

adaptive (acquired and specific) systems working synergistically to defend the host against 

infection and disease through the detection, isolation, attack, and destruction of invading 

viruses, bacteria or protozoa (Gleeson, 2006b & 2006c).  The immune system not only 

protects against infection, but is also constantly monitoring the integrity of host tissues 

(Delves et al., 2011).  Essentially, through elaborate functions, the immune system is 

designed to recognise and remove foreign substances and organisms from the infected 

host.  The immune system comprises of a variety of cells, tissues, and molecules; each has 

  s  w ,    q      c    , b     ’s w         w rk        r      an effective immune 

response can be mounted.  The immune system has three basic levels of defence: physical 

barriers; the innate immune system; and the adaptive immune system (Delves et al., 2011).  

These are discussed below. 
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1.2.2 Physical barriers 

 

The body is covered with largely impenetrable physical barriers which provide protection 

against infectious agents trying to gain entry to the host (Delves et al., 2011).  Skin 

provides the most obvious of these barriers, but it is the mucosal secretions which inhabit 

the respiratory, digestive, and reproductive tracts which trap and work to expel (via 

coughing and sneezing, and the washing action of tears, saliva, and urine) any infectious 

agents that enter via these passageways (Delves et al., 2011).  More specifically, this 

response is referred to as mucosal immunity.  

 

The mucosal immune system defends against pathogens which enter the host via the gut, 

mouth, eyes, respiratory system and reproductive tract.  Like physical barriers, the mucosal 

immune system provides the first line of defence against infection, but it combines 

functions of both the innate and adaptive immune systems to eradicate invading pathogens 

(Gleeson, 2006b).  For the mucosal immune system to function effectively, it is reliant 

upon the production and presence of antibodies which perform immune exclusion; and of 

immunosuppressive mechanisms involved in the dampening of immune responses to avoid 

hypersensitivity to exogenous proteins, such as those from food (Delves et al., 2011).  The 

immune system of the gut is arguably the most complex and extensive, with the intestinal 

  c s  c             r          8          b   ’s  c  v     B c   s.  T  s r s   s      

large production of antibodies, specifically IgA (Gleeson, 2006b).  B-cells in the upper 

respiratory tract also secrete IgA into the surrounding saliva, and it is this secretory 

specific protein which is of particular interest to sport and exercise immunologists. 

 

In addition to SIgA, saliva also contains two additional enzymes, and one additional 

protein which are of interest to sport and exercise immunologists: amylase, lysozyme, and 

lactoferrin.  Amylase is an enzyme which helps to digest carbohydrates and simple starches 

but its role within the URT is to help prevent the attachment of bacteria to the epithelial 

wall (Gleeson, 2006b).  Lysozyme is a powerful enzyme with the capacity to break down 

the cell walls of bacteria (Gleeson, 2006b).  Lactoferrin is a protein also involved in the 

lysing of bacterial cell walls but, in addition, also has an ability to bind to lipoproteins of 

cell membranes likely to be targeted by virus particles, thus prohibiting the virus from 

binding.  It also has the capacity to bind to viral particles directly, preventing their 

    c             c   ’s      r     s (Delves et al., 2011). 
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1.2.3 Innate Immunity 

 

The innate immune system provides the first line of defence against pathogens entering the 

body.  It responds quickly, but lacks specificity (Davison & Simpson, 2011).  It is, 

however, very similar between individuals.  Physical barriers, such as the skin and mucous 

      s                r s  r   r  s s      r      b   ’s primary defence mechanisms, 

restricting the entry of pathogens into the body (Delves et al., 2011).  If a pathogen 

manages to successfully breach a physical barrier and penetrate the body, the innate 

immune system relies upon soluble factors (which are bactericidal, e.g. the complement 

system); the mechanism of phagocytosis, undertaken by macrophages and neutrophils; and 

the lysing of infected host cells by NK cells (Murphy, 2012). 

 

The complement system comprises over 30 plasma proteins which normally circulate in a 

dormant state (Murphy, 2012).  These proteins have a binding capacity, which are almost 

exclusively designed to target microbial polysaccharides typically found on bacterial 

membranes (Delves et al., 2011).  The by-products produced as a result of complement 

activation can also act as chemokines (signalling molecules) for phagocytic cells (Gleeson, 

2006b).  This binding action, and the resulting chemotactic factors, greatly increase the 

chances of invading bacteria being ingested by phagocytes (Delves et al., 2011).   

 

Phagocytes (macrophages, monocytes, dendritic cells, and neutrophils) engulf and ingest 

invading pathogens (Gleeson, 2006b).  Once pathogens are ingested by the phagocyte, 

granules w               c      sc  r       r c      s           r              .  I ’s     

combination of this microbicidal mechanism, and the oxidative burst, which occurs 

s          s        s r       c   ’s   r    (Murphy, 2012).  

 

Neutrophils are the most numerous granulocyte in the immune system and are also one of 

the most dominant leucocytes in the bloodstream (Gleeson, 2006b).  They are the first cells 

recruited, and involved in the fight against infection by the innate immune system 

(Murphy, 2012). Neutrophils are full of granules that contain digestive enzymes (including 

elastase).  The neutrophil ingests the pathogen, and the granules fuse to, and release their 

enzymes onto their target.  The result of this is called degranulation (Gleeson, 2006b) and 

bacterially stimulated neutrophil elastase can be analysed as a measure of neutrophil 

function. 
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If an invading pathogen is not intercepted and eliminated by the innate immune system, 

then the adaptive immune system steps up its fight against infection. 

 

1.2.4 Adaptive Immunity 

 

Adaptive immunity has two distinctive arms: cell-mediated, and humoral immunity.  Cell-

mediated responses (type 1) are triggered by intracellular pathogens (such as viruses), and 

rely upon the differentiation of T-lymphocytes (specifically CD4+ and CD8+ T-

lymphocytes) into either T-helper cells, or T-suppressor/cytoxic cells type 1 lymphocytes 

(Th1/Tc1), characterised by the production of interferon (IFN)-γ         r   k    IL)-2; 

whereas humoral responses (type 2) are triggered by extracellular pathogens and rely upon 

the differentiation of T-lymphocytes (specifically CD4+ and CD8+ T-lymphocytes) into 

either T-helper cells, or T-suppressor/cytoxic cells type 2 lymphocytes (Th2/Tc2), 

characterised by the production of IL-4, IL-5, IL-10, and IL-13 (Davison et al., 2014). 

 

T and B cells both start out as circulating immature lymphocytes in the blood stream.  

These immature lymphocytes then mature in either the thymus, where they become T-

lymphocytes, or the bone marrow, where they become B-lymphocytes (Delves et al., 

2011).  Once matured, naïve T and B cells re-enter the blood stream where they 

disseminate and circulate throughout the blood, spleen, lymph nodes, and mucosal 

lymphoid tissue, waiting for adaptive immune responses to be initiated. 

 

When antigen presenting cells (APCs) reach the spleen, lymph nodes or mucosal lymphatic 

tissue, cytokines are released from the APC which stimulate the naïve T cells.  This results 

in the proliferation and differentiation of these T-cells into their final, functional form – the 

specific cytokine released from the antigen presenting cells will dictate the final 

differentiation of the T-cell into either Th1, Th2, Th17, or Treg cells (Delves et al., 2011; 

Murphy, 2012).  The activation of these naïve T-cells is a critical, first stage of an adaptive 

immune response. 

 

Antigens can enter the spleen, lymph nodes and mucosal lymphatic tissue without the need 

of an APC.  These free antigens can stimulate the antigen-receptor B-cells but typically 

help is required from activated T-cells to initiate an optimal antibody response (Gleeson, 

2006b).  Antibodies are proteins which recognise specific antigens and are an essential 

component of the adaptive immune system (Murphy, 2012).  Through the maturation 



12 

 

process of T and B cells, the antibodies they produce become specific against only one 

antigen which differs between clones of lymphocytes.  After primary exposure to a novel 

antigen, the immune system starts to develop an immunological memory and specific 

antibodies against this antigen start to be produced by B-cells.  Upon secondary exposure 

to the antigen, the number of circulating antibodies drastically increases, along with the 

helper and cytoxic effector capacity of the T-cells.  This is how immunological memory is 

formed.  Every time the host encounters this antigen again in the future, it will be 

recognised and an appropriate immune response mounted rapidly (Gleeson, 2006b). 

 

1.2.5 The Acute Effects of Sport and Exercise on the Immune System 

 

When a bout of physical activity is undertaken, the immune system mounts a response.  

The nature of this response, however, varies depending upon the duration and intensity of 

the exercise undertaken.  Exercise results in an increase in oxidative stress, an increase in 

the release of heat shock proteins; an increase in the release of catecholamines and cortisol; 

an increase in IGF-1; and an increased metabolism (Walsh et al., 2011a).  It is thought that 

these responses to exercise influence cell trafficking, pathogen recognition and effector 

functions (such as microbial killing, cytokine expression, and antigen processing), 

although there is very little evidence for these (Walsh et al., 2011a).   

 

What has been repeatedly observed in response to an acute bout of exercise, however, is 

exercise-induced leucocytosis (Blannin, 2006).  In the late eighties and early nineties, 

researchers started reporting changes in circulating leucocyte numbers in response to 

exercise.  One of the earlier studies was undertaken by Gabriel et al. (1992) who 

investigated leucocyte responses to a 60 second all out maximal sprint on a cycle 

ergometer.  Total leucocytes increased immediately post-exercise, decreased between 15 

and 30 minutes post-exercise, increased again, 1-2 hours post-exercise, and had returned to 

normal within 24 hours.  However, not all leucocyte sub populations responded in the same 

way.  They reported increases in NK cell; cytotoxic, not MHC-restricted T-cells; and 

monocyte numbers circulating in the peripheral blood immediately following exercise.  

This was followed by the other cells in the subpopulations increasing 15 minutes following 

exercise.  Circulating granulocyte numbers peaked both 15 minutes and 2 hours post-

exercise, with the exception of eosinophils which increased 15 minutes post exercise and 

dropped below baseline 2 hours post-exercise.   Most circulating cell numbers had returned 

to near baseline 24 hours post exercise, with NK cells exhibiting the greatest decrease, not 
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returning to baseline until 24 hours after exercise.  Allsop et al. (1992) presented similar 

results, reporting increases in peripheral lymphocyte, monocyte and granulocyte numbers 

within 5 and 10 minutes post-exercise following a 4 minute supramaximal sprint on a cycle 

ergometer.  Indeed, in response to exhaustive submaximal high intensity exercise (80% 

maximum workload on a cycle ergometer, Field et al., 1991; and a stepwise treadmill 

protocol to exhaustion, Bieger et al., 1980) a doubling of circulating leucocytes is not an 

uncommon observation      w       rc s .  I  F          .’s (1991) study, they observed 

that, by 1 hour-post exercise, monocytes and neutrophils had returned to baseline levels.  

Within the same time period however, circulating lymphocyte numbers had actually 

dropped below baseline levels.  A large number of studies observe the biphasic 

lymphocytosis associated with high intensity exercise which normally occurs immediately, 

and 2 hours post an intensive exercise bout. 

 

The studies mentioned above outline some of the typical leucocyte responses to short-term, 

high intensity exercise.  But the responses observed when the exercise stimulus is more 

endurance based are often more pronounced (Chinda et al., 2003; Nieman et al., 1998; 

Robson et al., 1999; Suzuki et al., 2003).  Chinda et al. (2003) investigated the effects of a 

competitive marathon race on neutrophil function.  They reported a threefold increase in 

total blood leucocytes and neutrophils pre to post race.  Interestingly, the increase in 

neutrophils was not accompanied by an increase in function.  The oxidative burst and 

phagocytic activity of the neutrophils decreased immediately after the marathon, 

suggesting that the increase in the number of circulating neutrophils may actually be to 

compensate for the reduced functional capacity.  The same year, Suzuki et al. (2003) 

reported a significant increase in total leucocytes, neutrophils and monocytes in response 

to a competitive marathon, along with significant decreases in NK cells, and eosinophils 

within 10 minutes of finishing the race.  Robson et al. (1999) compared leucocyte 

responses to cycling at both 55%    2max for 3 hours (or exhaustion) and 80% of    2max 

until the work-rate could no longer be maintained.  In the 80%    2max condition, subjects 

fatigued at around 37 minutes.  The duration and intensity of this exercise bout was enough 

to provoke leucocytosis, and bring about a biphasic response. Leucocytosis was much 

more pronounced in the condition where subjects cycled at 55%    2max, with more than 

a 3 fold increase in the number of circulating WBCs.  In both conditions, leucocyte 

numbers had returned to baseline within 24 hours.  Within sport and exercise, a reduction 

in monocytes' capability to express TLR-4 has been noted (Oliveira & Gleeson, 2010), 

alongside a decrease in their antigen presenting ability following acute bouts of exercise.  
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In addition, chronic periods of intensified training have also resulted in decreases in 

monocyte numbers, alongside decreases in TNF-α, IL-6, and IL- β.  Nieman et al. (1998) 

reported that the phagocytic function of monocytes and granulocytes increased in response 

to 2.5 hours cycling at 75%    2max. Despite these findings, any depression in monocyte 

function following acute bouts of exercise generally recover to baseline levels after 24 

hours, thus attributing to the open-window theory (Shantsila & Lip, 2011). 

 

The abovementioned studies have very much focused on the innate immune system's 

response to exercise, but acute exercise also impacts on how the adaptive immune system 

functions, and responds to challenge.  Typically, the number of lymphocytes observed in 

circulation are much higher immediately post exercise, compared to baseline levels.  As 

the immune system starts to recover, the number of circulating lymphocytes drops below 

baseline, before returning to normal resting levels (Bishop, 2006a).  The magnitude of 

change is dependent upon the exercise intensity, and duration.  Nielsen et al. (1998) 

reported a two- to three-fold increase in circulating lymphocytes immediately following 6 

minutes of maximal ergometer rowing.  A 40% drop in the number of circulating 

lymphocytes was observed during recovery, before a return to baseline values.  Similar 

responses have been observed following 45 minutes of treadmill running at 80%    2max 

(Nieman et al., 1994), repeated 1 min treadmill sprints to exhaustion (Gray et al., 1993), 75 

minutes cycling at 75%    2max followed by an identical session 3 hours later (Ronsen et 

al., 2001), and following heavy resistance exercise in women (Miles et al., 2003).  

However, lymphocytosis has not been observed following 45 minutes of treadmill running 

at 50%    2max (Nieman et al., 1994); or intermittent exercise of a moderate intensity 

(Bishop, 2006a).  The lymphocytosis is very similar to the responses observed in studies 

above focused on the innate immune system, however these responses influence how the 

adaptive immune system responds as well.  T and B cells are subpopulations of 

lymphocytes and therefore any decrease in lymphocytes from resting levels (as observed in 

the recovery phase of studies above) may affect the host's ability to respond in a 

spontaneous manner to invading pathogens. 

 

T cells respond to acute exercise with a biphasic response similar to that described above 

(Nielsen et al., 1998; Nieman et al., 1994; Shek et al., 1995; ). Shek et al. (1995) reported a 

58% increase in circulating T cells following a 2 hour treadmill run at 65%    2max.  This 

was followed by a 42% drop below baseline just 2 hours post-exercise.  B cells do not 

demonstrate such a strong response to prolonged aerobic exercise.  Significant changes in 
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the number of circulating B cells were not noted following 45 minutes of treadmill running 

at 85%, or 50%    2max (although the magnitude of change was greater following 

exercise at 85%    2max) (Nieman et al., 1994), or 30 minut s     r        r          6   

   2max (Shek et al., 1995).  However, greater magnitudes of change in the proliferation 

of circulating B cells have been reported immediately following high intensity exercise 

such as 6 minutes maximal rowing (Nielsen et al, 1998) and strenuous resistance exercise 

(Miles et al., 2003). 

 

Acute exercise typically results in an increase in circulating cytokines, most markedly IL-

6.  Nehlsen-Cannarella et al. (1997) reported a 753% increase in circulating plasma IL-6 

following a 2.5 hour run at ~75-80%    2max.  Chan et al. (2004) and Nieman et al. 

(2003) however, set out to establish what, if any, other cytokines presented a similar 

response to exercise as IL-6.  In skeletal muscle, they reported that IL- β, IL-6, IL-8, IL-

15, TNF-α, IL-12p35 and IFN-γ  RN   r      c  b      r s  w  r  s IL- α, IL-2, IL-4, 

IL-5, IL-10, and IL-12p40 mRNA remain undetectable.  Following exercise, both studies 

reported that IL-6 and IL-8 increased (Chan et al, 2004; Nieman et al., 2003).  Nieman et 

al. (2003) also reported a post-exercise increase in IL- β,             s  s   s    k    

attributable to the differing protocols (1 hour cycling (Chan et al., 2004) vs. 3 hours 

running (Nieman et al., 2003).    Studies have gone on to demonstrate that the systemic 

release of IL-6 from the muscle during exercise is mostly responsible for the increase in 

plasma IL-6, and that the exercise duration is closely intertwined in this relationship 

(Steensberg et al., 2000).   

 

It is not only haematological markers that are influenced by acute exercise.  High intensity 

exercise typically elicits a decrease in saliva SIgA immediately following exercise, with 

levels returning to, or near baseline within an hour (Gleeson & Pyne, 2000) although it is 

not uncommon for studies to report no change, or even increases in SIgA.  There is a lot of 

variation in how SIgA is reported.  Secretion rate is generally considered as the most 

accurate way to express SIgA, as it takes into account both SIgA concentration, and saliva 

flow rate.  Studies that report SIgA using alternative expressions (i.e. concentration only; 

SIgA in relation to total protein ratio; SIgA in relation to albumin, etc) should, therefore, 

be interpreted with caution (Blannin et al., 1998).  Acute decreases in SIgA have been 

observed following acute bouts of prolonged exercise.  Nieman et al. (2002) reported a 

25% decrease in SIgA 1.5 hours following a competitive marathon.  Nehlsen-Cannarella et 
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al. (2000) reported a 20% decrease in SIgA following a 2 hour training session completed 

by elite female rowers. 

 

There are also problems associated with defining exercise intensity by a percentage of 

   2max which should be considered when discussing acute exercise responses. The 

limitations of this methodology should, therefore, be taken into consideration when 

r v  w    s  r         rc s             r s  rc .   cc r        N     ’s   994a) “J” 

Curve (figure 1.1) it is athletes whose training is at a high intensity or above who are more 

susceptible to developing URTIs.  But what counts as high intensity exercise?  Katch et al. 

(1978) highlighted the fact that, although a correlation exists between percent max heart 

rate (HR) values and percent    2max, ther  w s          v r  b       s    w  r         s’ 

anaerobic thresholds (AT) fell at each intensity.  For example, when thirty-one athletes 

exercised at 80% max HR (62%    2max) seventeen athletes were working at or above 

their AT (Katch et al., 1978).  Coyle et al., (1988) later went on and reported that in a 

group of well-trained cyclists, the percent    2max at which AT occurred ranged from 

59.1% to 86.0% thus confirming the findings previously reported by Katch et al. (1978) 

that there is a great degree of variability in where the AT occurs even in athletes whose 

   2max values are the same. Indeed, in terms of endurance performance, Coyle et al. 

(1988) reported that at 88%    2max, the group with a higher lactate threshold (LT) were 

exercising 8% above their LT while those with a lower LT were exercising 34% above 

their LT.  At 88%    2max, time to exhaustion (TTE) ranged from 29.1 ± 5.0 min in 

subjects with a low LT Vs. 60.8 ± 3.1 min in subjects with a high LT.  Indeed, the 

researchers also observed, in some instances, a twofold difference in blood lactate 

concentrations, glycogen utilisation, and time to fatigue between subjects sharing a similar 

   2max but different LT.   The physiological stress of athletes working above their AT 

would be very different from those working below their AT and this brings into question 

the validity of using percent HR or percent    2max values to set intensity.  Lansley et al. 

(2011) reported a method for standardising exercise intensity which took into account both 

  O2max and the gas exchange or first ventilatory threshold (VT1), synonymous with AT, 

      v s              Δ) c  c   .  Δ  s          s     r     b  w              ’s VT1 and 

   2max and, by prescribing work rate as a % Δ  s     s           2max, helping to 

ensure that there is consistency in the prescribed work rate between participants when 

exercise at a heavy intensity or above is required. 
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To standardise the work rate further, critical power (CP), which falls above the VT1 but 

below    2max could also be considered.  Moderate exercise is classified as an intensity 

which falls below the VT1 (Wasserman et al., 1973); heavy  exercise is exercise at an 

intensity above the VT1 but below CP (Poole et al., 1990; Poole et al., 1988); severe 

exercise is an intensity above CP at which    2max is attained, quickly followed by fatigue 

(Hill et al., 2002; Poole et al., 1990; and Poole et al., 1988); and extreme exercise is at an 

intensity greater than severe during which individuals fails to attain    2max before 

exhaustion (Hill et al., 2002).  Thus, in order to ensure athletes are exercising at the same 

relative intensity, the VT1,    2max and CP should be considered when aiming for work in 

the heavy domain and, when severe and extreme domains are required, the ability to attain 

steady state VO2 should be considered in addition to the aforementioned markers.  The 

majority of laboratory based studies which have investigated the effects of endurance 

exercise on immune function to date, however, have not adopted this method when setting 

relative exercise intensity.  There may, therefore, be inter-subjects variability with regards 

   r     v     rc s       s    w      s     s                w  r  s bj c s’ VT1 and/or 

their CP occur and this may be reflected in their findings.  Despite this, percent    2max 

continues to be widely used by researchers, and therefore the immune observations made 

in response to acute exercise, continue to be expressed in relation to it. 

 

In summary, as a result of an acute bout of exercise, leucocytosis is observed but the 

severity of the response will depend upon the exercise stimulus undertaken, albeit the 

intensity, duration, and type of exercise, and the subset of leucocyte under investigation.  

Typically, strenuous exercise in excess of 1 hour will result in an immediate increase of 

leucocytes (predominately neutrophils and lymphocytes).  The leucocytosis tends to start 

recovery straight away, with neutrophilia peaking 2-3 hours post exercise.  However, in 

cases where the exercise intensity has been sustained for a longer period, the responses 

may be more pronounced, and the recovery may take longer.  The increased shear stress 

and release of catecholamines in response to acute exercise contributes to the leucocytosis 

that is observed in the majority of studies.  Neutrophil numbers increase, but their 

functional capacity tends to decrease.  It has been hypothesised that the increase in 

neutrophils are in response to their decreased capacity.  The ability of neutrophils to 

effectively phagocyse bacteria is very much dependent on the intensity of the exercise 

session.  Respiratory burst rate is increased following moderate intensity exercise, but the 

respiratory burst rate decreases when the exercise intensity is severe.  The acute effects of 

exercise on T cell function is very much dependent upon the intensity and duration of the 
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exercise session undertaken, but B cell function is less affected.  The functional changes 

affecting the innate immune system arise as a result of activation of the complement 

system, and an increase in circulating catecholamines, cortisol, and IL-6.  SIgA is the 

predominate measure of mucosal immune function with a decrease in SIgA typically 

observed following an intensive bout of exercise. 

 

1.2.6 The Chronic Effects of Sport and Exercise on the Immune System 

 

As discussed above, one off, acute bouts of exercise can cause immune perturbations that 

are (relatively) short lived.  The effects of chronic exercise (discussed below in the context 

of periods of intensified training and/or overtraining) can influence infection rates and 

bring about changes in how the immune system functions that are more pronounced than 

those observed following acute exercise. As part of their training, athletes regularly go 

through peaks in their training volume, and/or intensity, at various times over the course of 

their season.  These peaks temporarily result in a performance dip which, when following a 

tapering period, results in a supercompensation and an increase in performance.  The effect 

these peaks in training have on the immune system are also marked, with effects on both 

innate, and adaptive immunity reported (Gleeson & Robson-Ansley, 2006; Verde et al., 

1992). 

 

Decreased levels of SIgA are the only marker directly linked to an increased risk and/or 

incidence of URTIs within both athletic, and non-athletic populations (Gleeson et al., 

1999a & 1999b).  Gleeson et al. (1999b) reported that the lower the concentration of saliva 

SIgA, the higher the risk of infection.  Through regression modelling, they also suggested 

that pre-season IgA concentrations in swimmers could be used to predict the number of 

infections reported throughout the season, with a concentration threshold of 40 mg.L
-1

 

identified as a useful cut-off point to identify athletes at an increased risk early on in the 

season.     Neville et al., (2008) also collected longitudinal SIgA data from a cohort of elite 

athletes, this time competit rs           r c ’s C     c   r c rs.  N v          .  2  8), 

like Gleeson et al. (1999b) reported that a drop in SIgA concentration preceded the 

development of upper respiratory infections (URIs).  However, they did not find that a 

threshold of 40 mg.L
-1

 was a useful predictor, owing to the variability of SIgA 

concentrations within their population (it should be noted that this within-subject variation 

is not specific to yacht racers, but elite athletes in general (Francis et al., 2005).  Instead, 

they reported that a drop in SIgA c  c   r       r             ’s b s       s     r  
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appropriate and accurate predictor of URI risk.  The group reported that a SIgA value less 

than 40% of their healthy baseline leaves the athlete with a forty-eight percent chance of 

developing an URI within 3 weeks, and a SIgA value less than 70% of their healthy 

baseline leaves them with a 28% chance of developing an URI within 3 weeks.  It is worth 

noting, however, that thirty-eight percent of URIs that occurred in the cohort of athletes in 

the above study were not preceded by a drop in SIgA concentration below baseline, thus 

highlighting the multifactoral nature of the innate immune system. 

 

Leucocyte counts do not appear to be altered in response to exercising on a regular basis 

(Gleeson & Bishop, 2005).  However, heavy, intense training results in reduced neutrophil 

function (Hack et al., 1994; Pyne, et al., 1995).  Hack et al. (1994) monitored 7 male long-

distance runners over the course of a training year.  Blood samples were collected in 

October or November when subjects were engaged in moderate training, and once again in 

July or August when subjects were engaged in intensified training ahead of competition.  

The researchers reported no differences in neutrophil phagocytosis at rest during moderate 

training compared to controls, but there was a significant decrease in ingestion capacity 

during intensified training (ingestion capacity at rest in controls: 0.21 ± 0.03 particles/cell; 

moderate training; 0.19 ± 0.07 particles/cell; and intensified training: 0.11 ± 0.02 

particles/cell). 

 

T and B cells are sensitive to training load and their functionality may decrease in well-

trained athletes when their training load is intensified.  It has been observed that an 

increase in training load results in a decrease in the number of circulating Type 1 T-cells, a 

reduction in the proliferative responses of T cells, and a reduction in the synthesis of Ig by 

stimulated B cells (Lancaster, et al., 2004; Verde et al., 1992), however Verde et al. (1992) 

concluded that these minor, and sometimes transient changes were of limited significance 

as an indicator of overall immune function, and more of a warning that the training load 

was becoming excessive. 

 

Numerous studies have investigated the role cytokines play in URS risk.  Genotyped 

athletes with an increased tendency to produce IL-6 have an increased likelihood of URTIs 

 ≥ 3 URS    s   s     2      s), w  r  s                  s w            c      r   c  

high levels of IL-2 have a decreased likelihood of developing URTIs (Cox et al., 2010).  

Gleeson et al. (2012) recently reported that increases in antigen-stimulated IL-10 

production was a risk factor for the development of URTI in an athletic population.  Eighty 
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athletes provided blood and saliva samples and kept training and illness logs for 4 months.  

I    ss  r           s       s  r     ≥ 3 w  ks    URTI s      s)        r          2.  

fold higher IL-4 and IL-10 by antigen stimulated whole blood than athletes who did not 

suffer any URTI symptoms.  Illness prone athletes also reported higher training loads, and 

decreased saliva SIgA secretion rates. 

 

Despite this, it is important not to ignore the influence psychological stress can have on 

immune function and infection risk.  The role of psychological stress may be marked more 

so during the monitoring of athletes over a prolonged period of time compared to the acute 

effects of an exercise bout in isolation.  Intensified periods of training normally occur in 

the lead up to competition which may bring anxiety, stress, and/or fatigue to the athlete, all 

of which can impact immunity (Perna & McDowell, 1995). However, the psychological 

stress that accompanies many non-athletic life events such as marriage, divorce, monetary 

issues, and exams, for example, may also play a more substantial role in some athletes risk 

of infection (Clow & Hucklebridge, 2001; Hardy, 1992). 

 

Functional in vitro assays, such as lymphocyte proliferation to an mitogen  have shown the 

cellular responses are sensitive to stress-induced alterations in function (Kiecolt-Glaser et 

al., 1987a; Kiecolt-Glaser et al., 1987b; Kiecolt-Glaser et al., 1993; Kiecolt-Glaser et al., 

2002).  The efficacy of vaccinations have also been shown to be affected by psychological 

stress (Burns et al., 2003a; Burns et al., 2003b; Burns et al., 2002; Kiecolt-Glaser et al., 

1996).  Burns et al. (2003a) vaccinated 31 undergraduate students with a trivalent 

influenza vaccine and measured psychological stressors prior to, and 5 weeks following 

vaccination.  They reported that subjects who lacked full protection from the vaccine 5 

months after vaccination (i.e. whose antibody titers for one or more strains of influenza 

contained in the vaccine) had reported significantly greater exposure to stressful life events 

and higher perceived stress scores thus indicating that psychological stress may have been 

detrimental to the long-term maintenance of antibody titters following vaccination.  The 

perceived pressures experienced by adult caregivers has also been shown to affect wound-

healing rates (Kiecolt-Glaser et al., 1995). 

 

There are very few studies that demonstrate marked changes in immune function to 

intensified training that differ from those that occur following acute exercise.  However, 

the risk of infection reported by athletes engaged in intensified training remains higher 

than those who are sedentary, or moderately active (Nieman, 1994a).  One mechanism that 
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has been proposed to cause the reduction of immune function is the cumulative effect of 

repeated bouts of exercise.  Repeated bouts of exercise result in an elevation of stress 

hormones (most notably glucocorticoids such as cortisol) which dampens the cell-mediated 

response via the temporary inhibition of Th1 cytokines (Gleeson & Robson-Ansley, 2006).  

Potentially, training regularly at a high intensity with insufficient recovery does not 

provide enough time for the immune system to recover (i.e. a prolonged open window), 

leaving athletes more vulnerable to infection, but more research is required in this area. 

 

1.3 Measurement of Immune Function in Sport and Exercise 

 

As discussed above, the immune system is expansive, recruiting a large variety of cells, 

tissues (e.g. lymph nodes, Peyer's patches, spleen, and liver), and proteins (Walsh et al., 

2011a).  The way in which the outcome of investigations or interventions are analysed can, 

therefore, have an impact on the meaningfulness of results.  Some studies seek to 

understand the underlying mechanics of sport and exercise immunology, while others are 

interested in the end product of their intervention - the host's ability to successfully defend 

and manage responses.  Sport and exercise immunology commonly report leucocyte 

responses; leucocyte function (i.e. neutrophil function or cytokine production); and 

salivary Ig concentrations, but there are a variety of methods which can be selected.  A 

selection of these are discussed below. 

 

1.3.1 Subjective Measures 

 

Essentially, the end point for sport and exercise immunology from a practical perspective, 

is a reduction in the number of URTIs athletes suffer.  When undertaking intervention 

studies, therefore, it can be useful to collect data on URS or illnesses alongside any 

objective measures collected.  Studies have employed various collection methods including 

self-reporting daily questionnaires (Fricker et al., 2005; Heath et al., 1991; Klentrou et al., 

2002; Nieman et al., 2000; Peters et al., 2010; Whitman et al., 2006); daily logs collected 

by a team physicians or physiologists (Francis et al., 2005); retrospective interviews 

(Matthews et al., 2002; Peters & Bateman, 1983; Seyfried et al., 1985); retrospective 

questionnaires (Dias et al., 2011; Ekblom et al., 2006; Fahlman & Engels, 2005; Nieman et 

al., 1990a); self-reporting questionnaires in conjunction with the collection, and 

subsequent laboratory analysis of nasopharyngeal and throat swabs to confirm the presence 

of a clinical infection (Spence et al., 2007); and physician examination (Cox et al., 2008; 
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Pyne et al., 2000; Weidner & Schurr, 2003).  Some studies have even gone to the length of 

deliberately exposing subjects to a low-infectious dose of respiratory illnesses or vaccines 

and monitoring illness responses (Bruunsgaard et al., 1997; Cohen et al., 1991; Weidner et 

al., 1998). 

 

Self-reported questionnaires are routinely employed by a large number of studies as a way 

in which to monitor or record the incidence and severity of URTIs and URS within 

athletes.  Data gathered from validated questionnaires allows for large cohorts of 

participants to be surveyed, and data collected on immune status and training history.  The 

data collected from self-reported questionnaires is very subjective, however, and may lead 

to the over reporting of symptoms.  In addition, a large percentage of athletes' URS can be 

attributed to causes such as asthma and/or airway irritation caused by allergens, pollution, 

or breathing in cold air.  The number of URTIs reported by this method may, therefore, be 

misleading in terms of the incidence of clinical infections caused by pathogens but, with 

regard to the effect symptoms have on training and competition, the effects of URTI 

symptoms may cause problems (e.g. disrupted training), regardless of their cause.  

Retrospective questionnaires appear to be the easiest method of URS data collection, 

however they are not without their own limitations.  Some studies have used one 

questionnaire to collect URS data for periods up to two months (Nieman et al., 1990).  In 

these cases, the accuracy of the data reported should be questioned.  However, when data is 

collected weekly, as in studies such as those by Dias et al. (2011), Fahlman & Engels 

(2005), and Gleeson et al. (2011), the risk of inaccuracies in the data is reduced.  A further 

limitation with self-reported questionnaires, which spans both retrospective and daily 

collection intervals, relates to the subjective nature of the data reported.  Often, subjects are 

asked to rank the severity of their symptoms.  The severity of any reported symptom is 

very often included in the analysis of diaries and will help inform researchers as to whether 

    s      s r   r    s      b    c       s   URTI    s   .      s bj c ’s     r r        

of a severe symptom, however, may be very different to that of a subject in the same study.  

In addition, there is scope for a symptom to be unrelated to a URTI and actually to be 

caused by pollutants or allergens.  Despite this, the etiology of common colds and/or the 

presence of a URTIs are rarely clinically confirmed in studies.  Studies which have used 

clinical measures (such as antigen detection, serology and isolation; reverse transcription-

PCR; and bacterial cultures and antibody assays) have managed to identify viruses and/or 

bacteria in approximately seventy percent of cold patients (Makela et al., 1998). 
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Spence et al. (2007) confirmed, through laboratory diagnosis, that only a small percentage 

(~30%) of illnesses reported were caused by either viral or bacterial pathogens, with 

rhinovirus being identified most commonly.  This finding was supported by Cox et al. 

(2008) a year later.  In the study by Cox et al. (2008), seventy elite-level athletes 

complaining of URS were assessed by a qualified physician for the presence of an URTI.  

In addition to the physician's assessment, athletes had both oropharyngeal throat swabs and 

blood samples taken for laboratory assessment.  The physician deemed eighty-nine percent 

of cases to be an URTI caused by viral or bacterial infections.  Laboratory analyses, 

however, confirmed that only thirty percent of athletes were suffering with an infection 

(based on the presence of an identifiable viral or bacterial pathogen).  A further twenty-

s v     rc              s’ b     w rk s    s         w r  s    r    w           c    , b   

no known pathogens could be detected.    With hundreds of pathogens known to cause 

URTIs, it is impossible to screen for every single possible cause.  This of course does not 

account for the pathogens that have not yet been identified. 

 

There will always be problems with self-reported subjective data which is why clinical 

diagnosis helps objectify the data.  However, where a clinical diagnosis cannot be made 

due to study limitations, the collection of questionnaire data daily should provide a more 

accurate record of URS symptoms, although the record keeping is more of a burden on 

study subjects.  One of the numerous questionnaires designed, and validated for the 

collection of this data is the Jackson Score questionnaire (Jackson et al., 1958).  However, 

the way in which results are interpreted can also effect results, and methods for assessing 

this have also been developed. 

 

The findings discussed in the abovementioned studies demonstrate the need for additional 

diagnostic techniques to be used in conjunction with self-reported questionnaires when 

monitoring immune function.  One way of doing this, although more costly, both in a 

monetary and time sense, is through the use of biological and/or biochemical markers, 

although these techniques are not without their own set of problems. 

 

1.3.2 In Vitro Methods 

 

In vitro refers to experiments performed on samples outside of the host (e.g. in a culture 

dish or test tube) and can provide valuable insight into functional aspects of the immune 

system such as neutrophil function and cytokine responses, for example. In vitro measures 
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of immune function, although not as specific or clinically relevant as in vivo techniques, 

can provide valuable mechanistic information on immune function.  These techniques are 

conducted through the use of in vitro assays following in vivo interventions.  The 

sensitivity of this technique is considered to be greater at detecting differences between 

groups compared with the abovementioned alternatives and therefore, despite not being as 

specific as in vivo methods, still play an important part in immunological studies. 

 

There are a number of ways in which immune function is measured.  In humans, these 

methods consist of those which consider overall immune function at a whole-body level, to 

those which asses immune function at a subcellular, mechanistic level.    For neutrophil 

function (i.e. degranulation) and cytokine production, whole blood in typically used.  

Whole blood, as opposed to purified cell cultures, is more reflective of in vivo conditions, 

but it is worth remembering that these conditions are outside of the host and therefore the 

humidity, temperature, and concentration of samples during processing and incubation can 

impact how the cells respond (Lancaster, 2006b).  Cells are typically incubated in a cell 

culture for anything from a few minutes to a few days, depending on the nature of the 

experiment.  Any change in the aforementioned conditions may result in an over, or under 

emphasised response compared to what may be observed in vivo.  In addition, the 

responses observed will remain to be dynamic (i.e. the cells still function) and there may 

be a need therefore for sampling of the culture to happen at multiple time points as 

opposed to one fixed point in time (Lancaster, 2006b). 

 

The results from in vitro experiments can provide insightful information on immune 

responses to an exercise intervention.  As discussed above, neutrophils have a strong 

response to exercise and therefore the measurement of their function is considered to be of 

value.  Stimulatory agents such as lipopolysaccharide (LPS) activate neutrophils, resulting 

in oxidative burst activity and degranulation which can be measured using flow cytometry, 

or with a subsequent enzyme-linked immunosorbant assay (ELISA) (Delves et al., 2011).  

Whole blood samples are typically incubated for an hour at 37⁰c with a stimulant 

containing LPS, and gently inverted at regular time points during incubation.   Sport and 

exercise immunology research rarely reports neutrophil function in isolation, however (e.g. 

Robson et al., 1999), and there is no categorical link between disturbances in neutrophil 

function within a healthy adult population and the ability to effectively fight infection 

(Albers et al., 2005). 
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One popular in vitro technique routinely employed is the measure of cytokine production 

by blood leucocytes (the effects of exercise on cytokine production are discussed in section 

1.2.5.  Cells (either whole blood, peripheral blood mononuclear cells (PMBC), or purified 

cell isolations) are most commonly stimulated with an antigenic substances such as a 

vaccine (Gleeson et al., 2012) which predominately stimulates lymphocytes (Lancaster, 

2006a), or bacterial LPS (Weinstock et al., 1997) which predominately stimulates 

monocytes (Lancaster, 2006a).  Studies employ various incubation times, however, and 

there is great variation in the array of cytokines analysed, and the downstream analysis 

techniques employed (Delves et al., 2011).  Cytokines belonging to the interleukin class 

are one of the most important groupings as they provide the communication between 

leucocytes (Delves et al., 2011).  However, other groupings (including TNF which target 

transformed cells with cytoxicity, or IFN which interfere with viral replication) are also of 

interest to sport and exercise immunologists.  IL-6's production is increased when muscle 

glycogen is depleted (Lancaster, 2006a).  It behaves much like a hormone, resulting in the 

release of glucose from the liver (Febbraio et al., 2004), and fatty acids from adipose tissue 

(van Hall et al., 2003).  It displays one of the strongest responses to prolonged strenuous 

exercise out of all the cytokines (Nehlsen-Cannarella et al., 1997), which is not surprising, 

based on its functional role, and is therefore the most researched cytokine within sport and 

exercise immunology.   

 

As discussed in section 1.2.5, Chan et al. (2004) and Nieman et al. (2003) both reported 

that IL-10 was undetectable at rest, whereas Gleeson et al. (2012) reported that reduced IL-

10 was linked to an increased risk of infection, so how is this possible?  Chan et al. (2004) 

and Nieman et al. (2003) analysed the cytokine mRNA present in muscle biopsy samples, 

whereas Gleeson et al. (2012) stimulated whole blood samples with a multi-antigen 

vaccine prior to analysis.  The findings of these contrasting studies goes to show that the 

way in which samples are collected and processed, and the array of cytokines selected are 

important considerations for immunological research.  The majority of studies today will 

use stimulated blood cultures which will have a downstream analysis by ELISA, or using a 

biochip, multiplexed array on an semi-automated immunoanalyser. 

 

Neutrophil function alone does not provide a substantial insight into what is happening to 

the immune system as a whole and, in addition, it is almost impossible to screen for all 

cytokines during the course of a study owing to the limitations of the downstream analysis 

techniques (individual manual ELISAs would require a huge amount of cell culture; and 
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the multiplexed arrays, although requiring less sample than traditional ELISAs, are limited 

in the number and combination of cytokines that can be multiplexed).  In vitro methods 

certainly have their place in sport and exercise immunology, but in vivo  techniques may 

provide a better indicator as to how the immune system is functioning as a whole, 

integrated system. 

 

1.3.3 In Vivo Methods 

 

Because both the innate and adaptive immune systems are so closely intertwined and work 

so synergistically, individual immune markers may not provide a clear picture of overall 

immune function or provide indications of athletes' risk of developing infection.  Within 

sport and exercise, a variety of subjective and in vitro haematological and salivary analyses 

are the methods most commonly employed, but this is not necessarily reflective of the 

measures that are considered to be the best measures of immune function.  EBV 

reactivation, DTH responses, and vaccine responses are a few relatively novel methods 

which provide an overview of immune function in vivo which, when used in conjunction 

with validated salivary, haematological, and other in vitro methods, can provide a better 

method for understanding both overall immune function and the immunological 

mechanisms involved. 

 

EBV is a member of the herpes simplex family of viruses and is associated most 

commonly with infectious mononucleosis (IM) (glandular-fever), among other diseases.  It 

is estimated that between eighty and ninety-five percent of the adult population are EBV 

seropositive, with athletes demonstrating a similar (Pottgiesser et al., 2006), if not slightly 

increased rate of infection (Pottgiesser et al., 2012) compared to the general population.  

Many individuals who are seropositive come into contact with the virus at a very young 

age with many remaining asymptomatic throughout their adult lives.  Once infected the 

carrier remains infected for the rest of their life.  The virus primarily infects B lymphocytes 

and, following primary exposure, a latent infection is established in memory B cells which 

circulate in a benign state, hidden from the immune system as the main cytoxic T 

lymphocyte targets are not expressed (Chen et al., 1995; Qu & Rowe, 1992; Tierney et al., 

1994).  Occasionally it can infect other types of cell, including epithelial cells.  The virus 

can reactivate and replicate in memory B cells.  This results in an expression of viral DNA 

and infectious virus into saliva via the epithelial cells of the parotid glands located either 

side of the oral cavity.  B-cells infected with EBV are generally contained by T-cells 



27 

 

(Clancy et al., 2006), but periods of physical (Gleeson et al., 2002; Pottgiesser et al., 2012; 

Yamauchi et al., 2011) and/or psychological (Glaser et al., 1999) stress have been shown to 

result in the viral shedding of EBV into saliva.    Clancy et al. (2006) provided the first 

evidence that this reactivation may be associated with a T cell defect in athletes.  The study 

set out to establish if there was an immune defect in fatigued athletes and, if present, 

whether or not this deficiency could be corrected with supplementation of a probiotic (L 

acidophilus).  Blood and saliva samples were collected from fatigued and non-fatigued 

subjects pre and post supplementation.  T cell function was determined via the secretion of 

IFN-γ  r   b     CD4+ T c   s, and EBV reactivation in the fatigued subjects was 

assessed by polymerase chain reaction (PCR) on saliva samples. The secretion of IFN-γ 

from CD4+ T cells was significantly lower pre-supplementation in the fatigued group 

compared to the healthy controls.  F    w    4 w  ks’    s               w    L 

acidophilus, there was a significant increase in the secretion of IFN-γ                  r    

which brought concentrations back within a similar range to that of the non-fatigued 

controls. Interestingly, EBV DNA was detected in 25% of saliva samples collected from 

fatigued athletes pre supplementation, compared to only 4% post supplementation.  Owing 

to the fact that the containment of EBV in its benign form is understood to be T cell 

mediated (Young et al., 2007), the decrease of EBV DNA detected in saliva samples 

combined with the increase in IFN-γ     ts toward a relationship between T cell function 

and EBV expression in athletes. 

 

Reactivation of EBV does not necessarily mean the carrier will display symptoms typically 

associated with EBV (e.g. IM), however.  Indeed many of those in whom viral-shedding 

occurs remain asymptomatic (Crucian et al., 2009) and some athletes carrying EBV may in 

fact suffer fewer URTI episodes compared to their seronegative counterparts (He et al., 

2013b).  EBV's reactivation can, however, provide information on the carrier's immune 

status.  The reactivation of EBV suggests that, for whatever reason, immune function may 

have been depressed and, it has been postulated in some cases, that it may contribute to 

some, but not all cases of URS (Walsh et al., 2011a). 

 

Gleeson et al. (2002) monitored the relationship between URS and EBV reactivation 

within a group of 14 elite swimmers engaged in a 30 day, intensified training period..  

They reported that athletes who were seropositive for EBV were significantly more likely 

to suffer with URS during intensive training.  The detection of EBV DNA in saliva was 

also linked to the onset of URS.  It is not yet fully understood, however, whether the 
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shedding of the latent virus contributes to the development of URS, or if it is an unrelated 

result of the immune system being stressed.  A relationship between EBV infection (or 

rather reactivation/shedding) and the development of URS has been observed in some 

studies.   The detection of viral DNA in saliva, therefore, is considered to be a good 

measure of overall, in vivo immune function in subjects who are seropositive to EBV. 

 

An alternative in vivo method which assesses integrated responses of immune function is 

the monitoring of DTH responses.  DTH works though the intracutaneous application of an 

antigen, or allergen which then provokes a T cell-mediated immune response at a local, 

dermal level.  Along similar lines is contact hypersensitivity, which uses a stimulus applied 

at a cutaneous level provoking a hypersensitivity response.  DTH responses (generally skin 

fold thickness and/or erythema readings) are measured 24-48 hours after application which 

reflects the integrated outcome of a cell-mediated immune response. 

 

Upon initial sensitisation, a hapten from the allergen binds to a carrier protein and is 

absorbed by a macrophage.  The macrophage processes the hapten, and produces a class II 

MHC which then attract naïve T-cells.  These T-cells bind with the class II MHC, 

activates, and the number of T-cells (Th1 Cells) then increase over the next few weeks.  

Upon secondary and subsequent exposure, the allergen is recognised by the body, and thus 

Th1 cells are activated which then release cytokines and recruit macrophages into action.  

It is the activation of these macrophages which result in the inflammation observed at the 

site of subsequent exposure and allow for the intensity of the immune response to be 

measured (Delves et al., 2011). 

 

A relationship between DTH and URI was reported by Zaman et al. (1997).  Zaman et al. 

(1997) studied 512 rural Bangladeshi children aged 0-59 months for one year and recorded 

instances of URI and DTH responses to the CMI Multitest
®

 at regular intervals throughout 

the study.  They reported a relationship between DTH responses and URI with children 

displaying anergic responses to the CMI Multitest
®
 being 20% more likely to suffer with 

an URI compared with those whose responses suggested that they were immunocompetent. 

 

Despite being considered to be a good measure of in vivo cell-mediated immune response, 

the application of DTH has been thwarted, somewhat, as a result of the CMI Multitest
®
 no 

longer being available commercially.   In addition to this, the antigens used by the CMI 

Multitest
®
 are no longer novel and this means that some people may have been exposed to 
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these antigens in the past in various doses, and at various points in time making variation 

in responses more likely between individuals.  This means that when monitoring the 

immune system's response to the CMI Multitest
®
, standardisation is difficult and more 

variation is likely to be observed between individuals.  Researchers have, however, started 

to explore the use of alternative methods and techniques.  Sleijffers et al. (2001), for 

example, measured contact hypersensitivity responses to diphenylcyclopropenone (DPCP) 

following cutaneous exposure and recorded primary allergic reactions 14 days after 

primary exposure, and elicitation responses 48 and 96 hours after secondary exposure 

which occurred 4 weeks after primary exposure.  The purpose of their study was to assess 

the effect of ultraviolet B (UVB) radiation on immune responses following vaccination 

with hepatitis B, and subjects were assigned to either an experimental UVB exposure, or a 

control group.  Although no changes were reported in humoral or cellular immune 

responses, contact hypersensitivity responses were suppressed in the experimental group, 

thus demonstrating that in vivo studies that measure immune function at a whole organism 

level can detect immunosupression where cellular measures may not.  Only a handful of 

studies to date have used contact hypersensitivity (CHS) and DPCP within an exercise 

setting. 

 

Harper-Smith et al. (2011) recently used contact sensitisation and DTH responses to DPCP 

within an exercise setting.   32 males were assigned to either an experimental group, or a 

control group.  The experimental group exercised for 2 hours at 60% of their    2peak.  

The control group remained seated in the laboratory for 2 hours.  Primary exposure to 

DPCP occurred 20 minutes after the end of the trial and, as in Sleijffers et al.'s study 

(2001), primary allergic reactions were measured 14 days after primary exposure and 

participants were exposed to a secondary dose at 5 different concentrations 4 weeks post-

initial exposure.  Skin fold thickness (SFT) and erythema readings were taken at each site 

and significant differences with reported between groups, with the exercise group 

displaying a lesser immune response.  This suggests that the exercise imposed on the 

experimental group provoked a depression in immune function post-exercise, thus 

diminishing the immune system's capability to tackle a novel antigen or allergen (in this 

case, the allergen DPCP) and develop immune memory.  The diminished responses noted 4 

weeks later upon secondary exposure demonstrate that the cell-mediated immune 

responses in the experimental group were less than that of the control group.  Harper Smith 

et al. (2011) went on to further back up these findings by undertaking a pilot study 

following on from the original trial in which 13 males from the original study were 
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systematically exposed to DPCP until they demonstrated a plateau response to recall 

challenges (typically achieved after the third recall challenge) (Friedmann, 2006; 

Friedmann, 2007; Friedmann et al., 1983; Friedmann & Pickard, 2010).  This pilot study 

followed the same protocol as the first study, but used a within group crossover design 

with 4 weeks between experimental conditions. Both SFT and erythema readings were, 

once again, significantly lower following the exercise intervention.  The findings of the 

study above demonstrate that DTH responses are a suitable measure of cell mediated 

immune responses to recall challenged in studies with either between, or within group 

designs. 

 

Following the same methodology as Harper-Smith et al. (2011) regarding sensitisation and 

elicitation to DPCP, Davison et al. (2016) and Jones et al. (2017) have both reported 

success using DPCP as an effective model of in vivo immunity.  Davison et al. (2016) 

undertook the first in vivo immune study using DPCP alongside a nutritional intervention.  

They reported significant differences in DTH responses between exercising and non-

exercising controls, but not between the exercising groups supplemented with carbohydrate 

or placebo. Jones et al. (2017) reported no overall differences in DTH responses to bovine 

colostrum supplementation following exercise.  However, following examination of the 

dose response curves for each conditions (bovine colostrum or placebo) they discovered 

that the dose of DPCP required to bring about an immune response was lower in the bovine 

colostrum group compared to placebo, indicating that CHS sensitivity is related closely to 

host defence. 

 

Although the majority of the population will not have been exposed to DPCP (it is 

commonly used in the treatment of alopecia; Buckley & du Vivier, 2001) and this may 

raise cause for concern, this particular method is an attractive one as it provides both 

control over sensitisation and the elicitation phase of the DTH response.  All studies to date 

have relied upon sub-toxic doses of DPCP (generally in concentrations between 0.002% 

and 0.032%) and only one of the abovementioned studies reported any systemic reactions 

which affected only one participant.   

 

The host's ability to cope with, and the host's response following exposure to a pathogen 

(i.e. mortality and morbidity rates) are considered to provide the most clinically relevant 

indication of the host's ability to cope with common pathogens (Albers et al., 2005 & 

2013).  In an ideal world, natural exposure to pathogens would provide the most accurate 
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picture of 'normal' exposure patterns and responses but this would be both impossible to 

control, and extremely unpredictable making it difficult to employ to clinical studies, and 

therefore an unsuitable method to implement in studies where the mechanisms need to be 

considered and/or assessed.  It is possible, however, to expose subjects to vaccines which 

contain either inactivated or attenuated micro-organisms which trigger an in-vivo immune 

response.  Information can then be gathered through the monitoring of these responses as 

to how subjects respond to "model infections".  Different types of vaccines will provoke 

different immune responses (Murphy, 2012).  Proteins based vaccines, for example, are T-

cell dependent and can be used to initiate and measure immune memory responses.  

Polysaccharide vaccines, however, initiate T cell-independent responses and increase 

transient responses of IgM and IgG2 but neither induces the development of 

immunological memory, nor provokes an increase in antigen titres even with repeated 

exposures (Delves et al., 2011).  The conjugation of a polysaccharide based antigen to a 

carrier protein (which acts as a T-cell epitope), however, has been shown to convert the 

mechanisms from that of a T-independent antigen to a T-dependent antigen.  As a result, 

researchers can target specific immune responses based on the type of vaccine 

administered. 

 

Primary exposure to restricted use vaccines (such as Hepatitis B) elicit primary T cell-

dependent responses.  Secondary, or subsequent exposure to vaccines of frequently 

occurring infections (such as influenza) can be used to initiate recall memory responses, 

with the exception of polysaccharide antigens (such as pneumococcal vaccinations) which 

do not provoke a secondary immune response due to nature in which they are processed at 

the point of primary exposure  (Cohen et al., 2001). 

 

Stress can have an impact on how well the host responds to vaccination.  Long-term, 

following vaccination, stress can reduce the size of the antigen specific Th2 lymphocyte 

pool, reducing the speed and magnitude of a response following secondary exposure.  

Long-term, circulating number of antigen specific, serum IgG can be reduced (Burns et al., 

2003b).  However, the efficacy of a vaccination can be influenced by stress at the point of 

administration. If subjects are experiencing stress when the vaccine is administered, the 

clonal expansion and maturation of T-lymphocytes to Th2 primed effector, and memory 

lymphocytes can be reduced, as can the initial clonal expansion of B lymphocytes and the 

lymphoid tissue's ability to produce IgM from short-lived plasma cells (Burns et al., 

2003b).  A large number of studies have investigated the effects of psychological, or 



32 

 

psychosocial stress on vaccination responses (Burns et al., 2003a; Burns et al., 2003b; 

Burns et al., 2002; Burns & Gallagher, 2010), but the majority of studies that have used 

exercise alongside vaccination have been researching the potential to use exercise as an 

adjunct to vaccination within at risk populations (Bachi, et al., 2013; Grant et al., 2008; 

Keylock et al., 2007; Kohut et al., 2002).  However, vaccinations are used as a model in 

sport and exercise immunological research (Campbell et al., 2010) but are not without 

limitation. 

 

The use of vaccinations within sport and exercise research, usually relies upon antigens 

such as influenza or tetanus.  The problem with these antigens is that the majority of the 

population will have experienced these antigens before through day to day contact with 

circulating pathogens, or through vaccination (Campbell et al., 2010; Edwards et al., 2010; 

Edwards et al., 2007).  This results in a mixture of primary, secondary, and tertiary 

antibody responses, from which it is very difficult to: measure IgM (i.e. group changes in 

isotopes) as very little IgM is expressed in secondary and tertiary responses; compare 

concentrations of antigen specific IgG as secondary and tertiary exposure will typically 

result in increased IgG; and, investigate the underlying mechanisms of any responses 

observed as primary, secondary, and tertiary exposure will result in different signalling 

pathways being activated (Walsh et al., 2011a). 

 

Despite these limitations, Bruunsgaard et al. 1997 successfully used an in vivo vaccination 

model in their study investigating the effects of a training competition (3 km swim, 130 km 

biking, and 21 km running) on 22 male triathletes on vaccination responses to a 

pneumococcal polysaccharide vaccine (T-cell independent) and two toxoids (tetanus and 

diphtheritis) (T cell dependent).  However, they did not identify any differences in vaccine 

responses between the exercising subjects and controls, despite the fact that the exercise 

group displayed a lower skin test response to a skin test (Multitest).  The authors concluded 

that cell mediated immunity was impaired following the training competition, whereas 

antibody production was not affected.  However, subjects may have previously come into 

contact with the antigens and toxoids administered via vaccination, and therefore the 

limitations with the technique (discussed above) may have influenced results. 

 

It is a combination of techniques that provide the most comprehensive overview of 

immune function, and therefore the studies in this thesis have, where possible, used a 

combination of subjective, in vitro and in vivo research techniques. 
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1.4 The use of Supplements and Nutraceuticals 

 

There are a growing number of herbs and botanicals used to boost immune function, but 

only a few, predominantly echinacea and sambucol, have made the cross over from 

traditional supplements, to something used by a growing number of athletes.  A growing 

number of athletes report using nutraceuticals as part of their training strategies.  Indeed, 

one study which assessed the use of supplements in elite swimmers reported that 98% of 

athletes used at least one supplement during training or competition (Baylis et al., 2001).  

This figure is rather high compared to the majority of research in the area, however, with 

most studies reporting values of between fifty and seventy percent (Herbold et al., 2004; 

Krumbach et al., 1999; Krushkall & Johnson, 2001; Nieper, 2005; Slater et al., 2003; 

Ziegler et al., 2003), and this may be due to the fact that a large number of studies have 

taken place in young and collegiate athletes as the percentage of athletes using 

supplements tends to be higher among elite athletes (Sobal & Marquart, 1994).  Female 

athletes are more likely to use supplements than males (Krumbach et al., 1999; Nieper, 

2005; Slater et al., 2003; Ziegler et al., 2003).  The maintenance of good health (Froiland et 

al., 2004; Herbold et al., 2004; Ziegler et al., 2003), and immune function (Froiland et al., 

2004; Krumbach et al., 1999; Nieper, 2005; Ziegler et al., 2003) are the most common 

reasons athletes use supplements.  Multivitamins are the most commonly used supplement 

taken on a regular basis (Baylis et al., 2001; Nieper, 2005; Ziegler et al., 2003), and up to 

61% of athletes reported using herbal or botanical supplements all, or some of the time 

(Baylis et al., 2001; Froiland et al., 2004; Herbold et al., 2004).  The nutraceuticals market 

as a whole was valued at $142.1billion globally in 2011, with this figure expected to reach 

$204.8billion by 2017
 
(Transparency Market Research, 2017). 

 

1.5 Thesis aims and objectives 

 

The studies contained within this thesis investigate the immune responses to various 

training, and nutritional interventions.  A variety of in vitro and in vivo immune techniques 

are used, and it is hoped the findings of these studies will build upon existing research in 

the field.   

 

Specifically, this thesis aims to further explore the use of salivary EBV DNA as a marker 

of in vivo immunity within sport and exercise through the investigation of its responses to 
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acute exercise, and the relationship it has with SIgA, and the incidence of URTI.  The time 

sequence for the onset of some episodes of URTI and the involvement of EBV has been 

reported previously by Gleeson et al. (2002).  Ahead of some episodes of URTI in elite 

swimmers, Gleeson et al. (2002) observed a suppression of SIgA, followed by a detection 

of EBV-DNA in saliva, ahead of the appearance of URS. Yamauchi et al. (2011) also 

reported that, within rugby-football players engaged in a month long training camp, URS 

increased along with a decrease in SIgA levels and the reactivation of EBV.  This followed 

the same time-sequence which had previously been reported by Gleeson et al. (2002).   The 

findings of these studies suggest that the viral shedding from a reactivated EBV infection 

may be linked to both the development of URTI and the subsequent mucosal immune 

response (e.g. a decrease in SIgA). It is acknowledged, however, that the detection of 

salivary EBV-DNA in the abovementioned studies may have been a reflection of the 

subclinical immune dysregulation associated with intensive training and not directly 

involved in the onset of URS.  Based on research published to date, we hypothesised that 

the concentration of EBV DNA detected in saliva following prolonged exercise would 

increase, owing to the immune-modulation that occurs following exercise, however we 

also hypothesised that the nutritional interventions built into the studies contained in 

chapters 4, 5, and 6 would alter the amount of viral DNA shed by EBV into saliva either by 

reducing the amount of amount of EBV DNA shed into saliva, or by depressing any 

exercise-induced increases in the concentration of EBV DNA. We further hypothesised 

that a rise in salivary EBV DNA concentration would be associated with an increased 

incidence of URTI and be linked to changes in SIgA (e.g. decreases in SIgA secretion 

rate).  Chapter 3 of this thesis details the design of 2 assays for the detection of EBV DNA 

in saliva.  One of these assays is used in chapters 4, 5, and 6 to investigate the response of 

EBV to exercise.  Chapter 4 aims to investigate the utility of EBV DNA as a marker of in 

vivo immunity within the context of acute exercise, by comparing responses with the well 

established marker of in vivo immunity, contact hypersensitivity.  In addition, the chapter 

aims to investigate the role of acute carbohydrate (CHO) supplementation on the 

expression of EBV DNA in saliva following exercise.  We hypothesised that there would 

be a relationship between the strength of the in vivo immune response to DPCP, and the 

concentration of salivary EBV DNA, and further hypothesised that CHO would blunt any 

increases in the concentration of EBV-DNA following exercise.  Chapters 5 and 6 aim to 

investigate the influence of Chlorella pyrenoidosa (CHL) supplementation on immune 

responses to 2 days of intensified training.  Research to date has shown that CHL has the 

potential to attenuate decreases in SIgA responses to exercise (Otsuki et al., 2011 & 2012) 
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and has shown promising potential in in vitro immuno-modulatory studies (e.g. Ewart et 

al., 2007; Kwak et al., 2012; Pugh et al., 2001).  Based on these studies, we hypothesised 

that supplementation with CHL would prevent the increased shedding of EBV DNA into 

saliva that we expected to observe following exercise. We also expected CHL 

supplementation to attenuate SIgA responses to exercise, and result in fewer incidences of 

URTI.   Within the general discussion, the data from all eligible studies are combined to 

explore the relationships between EBV DNA, URTI and the mucosal immune responses to 

exercise, as well as the potential of salivary EBV DNA to be used as a marker of in vivo 

immune function following acute exercise. 
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Chapter 2 

General Methods 
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2.1 URTI Questionnaires 

 

URTI data was collected using validated daily health questionnaires (Jackson et al., 1958).  

These questionnaires asked subjects to record data regarding the symptoms of illness 

(presence and severity), visits to the doctor, and use of medications (un-prescribed or 

prescribed).  Participants were asked to report on any of the following symptoms 

associated with a URTI (sore throat, catarrh in the throat, runny nose, cough, repetitive 

sneezing, fever, persistent muscle soreness, joint aches and pains, weakness or fatigue, and 

headache), symptoms which are associated with gastrointestinal upset (loss of appetite, 

stomach upset, vomiting, abdominal pain, and diarrhoea), and any loss of sleep or 

disruption to training (Gleeson et al., 2011).  Participants were asked to rate any symptoms 

on a scale of light (L), moderate (M), or severe (S) which were later given a score of 1, 2, 

or 3 for quantitative data analysis (Gleeson et al., 2012; Fricker et al., 2005).  One episode 

of illness was counted when a subject reported one or more symptom associated with 

URTI on two or more consecutive days when the severity was rated as either M or S.  If 

symptoms of URTI were separated by two days or less, they were considered to be a 

recurrence or continuation of the initial episode of illness and were counted as part of the 

original episode (Fricker et al., 2005).  When an episode of URTI was counted, the type, 

duration (number of days), peak severity, and total illness score (sum of duration of days × 

peak severity) was recorded (Fricker et al, 2005).  A cumulative score was also awarded to 

each episode which was calculated by awarding a daily score, based on the post-hoc 

numerical rating of symptoms, and by adding the daily scores from all days associated in 

one episode together (Gleeson et al., 2012).  GI upsets were counted as an episode where a 

participant reported one or more symptom associated with GI upset on one or more 

consecutive day when the severity was rated as either M or S.  The same principle was 

applied when participants reported a loss of sleep or an inability to train with both total 

‘     ss’ sc r s     c       v  sc r s b     c  c      . 

 

2.2 Saliva sample collection 

 

Saliva samples were collected using the passive drool technique.  To reduce the risk of 

blood contamination, prior to pre-exercise samples being collected, subjects were asked to 

refrain from eating or brushing their teeth for at least 1 hour, and to have avoided dental 

work within 24 hours of sample collection.  To remove any oral debris, subjects thoroughly 

rinsed their mouth with water 10-15 minutes before sample collection.  The delivery of 
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fluid boluses during exercise was timed as such to allow the last bolus to be delivered 

within this timeframe.  Unstimulated, whole saliva samples were collected by dribbling 

into sterile, pre-weighed 30 mL specimen collection tubes for at least 2 minutes, or until 

such time as approximately 1 mL of saliva had been collected.  Subjects were asked to 

passively drool, depositing any saliva into the collection tube while they remained seated, 

leaning slightly forward, chin tilted towards their chest, with minimal orofacial movement.  

Immediately prior to sample collection, subjects were asked to empty the oral cavity by 

swallowing.  At this point, a stopwatch was started, and the sample collection began.  

Following collection, the sample collection tubes containing the samples were weighed 

immediately to the closest milligram, and the volume of saliva calculated (assuming saliva 

density to be 1 g/mL).  Saliva samples were centrifuged for 5 minutes at 5 °C and 1,700 × 

g to remove debris (AccuSpin Micro 17R, Fisher Scientific, Hampton, New Hampton, 

U.S.A.).  The supernatant was aliquotted into 1.5 mL micro centrifuge tubes and stored at -

80 °C ahead of analysis. 

 

2.3 Blood samples 

 

Blood samples were collected from an antecubital vein into Vacutainer (Becton-Dickinson, 

Oxford, U.K.) tubes (containing K3EDTA, heparin, or silicone coated tubes for the 

separation of serum) using standard venepuncture techniques.  K3EDTA and heparin 

samples were centrifuged for 10 minutes at 1,500 × g at 4 °C (Eppendorf 5702R, 

Eppendorf Hamburg, Germany).  K3EDTA and heparin samples were processed as soon as 

possible following collection, once analyses on the whole blood had been undertaken.  

Serum samples were allowed to clot at room temperature for one hour before being 

centrifuged.  The serum and plasma samples were stored in aliquots at -80 ºC until use. 

 

2.4 SIgA analysis 

 

Concentration of SIgA was analysed using an in-house, sandwich ELISA method based on 

the work of Leicht et al. (2011).   

 

96 well immunoplates (Nunc Immunoplate, Life Technologies) were coated with a coating 

buffer containing 5 µg.mL
-1

 mouse anti-human (IgA) secretory component capture 

antibody in a 0.05 M NaHCO3/Na2CO3 solution (pH 9.6), covered, and incubated 

overnight at 4 °C.  Plates were washed 4 times (200 µl/well) with a wash buffer (PBS, 0.3 
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M NaCl, 0.1% Tween 20), blocked with 2% BSA (100 µl/well) (Fraction V, Sigma-

Aldrich, St. Louis, Missouri, U.S.A.), covered, and incubated at room temperature for 1 

hour.   

 

Defrosted saliva samples were spun in the microcentrifuge at 1,700 × g at 4 °C for 2 

minutes.  Saliva samples were then diluted 750x in PBS, and working standards prepared.  

A top working standard of 1 µg.mL
-1

 IgA (IgA from Human Colostrum (Sigma-Aldrich, 

St. Louis, MO, U.S.A.) was prepared in PBS, and diluted serially to give working 

standards with concentrations of 1 µg.mL
-1

, 0.5 µg.mL
-1

, 0.25 µg.mL
-1

, 0.125 µg.mL
-1

, 

0.0625 µg.mL
-1

, 0.03125 µg.mL
-1

, 0.015625 µg.mL
-1

, and 0 µg.mL
-1

 (PBS only). Plates 

were washed 4 times.  50 µl of standard or sample were loaded in duplicate, covered, and 

incubated at 4 °C overnight.  The intraassay coefficient of variation (CV) = 2.5%. 

 

Plates were washed 4 times (200 µl/well) with wash buffer and loaded with 50 µl/well of 

HRP conjugated polyclonal anti-IgA / PBS solution (1:2000 dilution of Polyclonal Rabbit 

Anti-Human IgA/HRP (Dako, Glostrup, Denmark) in PBS).  Plates were covered, and 

incubated at room temperature for 90 minutes.  Plates were washed 4 times (200 µl/well) 

with wash buffer and loaded with 50 µl/well of chromogenic substrate  (1.25 µl  of 30% 

H2O2 per 6 mL OPD substrate made from 1 OPD tablet (Dako, Glostrup, Denmark) per 3 

mL dH2O).  Plates were covered, and incubated in the dark for 5 minutes.  75 µl stop 

solution (1M H2SO4) was then applied to each well and plates were read immediately at 

490 nm and 630 nm on an automated absorbance plate reader (ELx808 Absorbance 

Reader, BioTek, Winooski, VT, U.S.A.). 

 

Background readings at 630 nm were then subtracted from the readings at 490 nm and the 

mean optical density (OD) of duplicate wells calculated.  A graph was then plotted with 

target IgA concentrations of the standards plotted on the x axis and the mean OD readings 

of standards on the y axis.  A polynomial standard curve was fitted and the IgA 

concentration of samples calculated.  The correct IgA concentration of samples were the 

calculated by multiplying sample concentration by the dilution factor (750) to give the 

final concentration (mg.L
-1

).  Secretion rate was calculated using the following equation: 
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The specificity (i.e. ruling out any interference from the sample matrix, and the assay's 

ability to only detect secretory specific IgA) of this method was validated in our 

laboratory.  To rule out any interference from the sample matrix (i.e. whether there was 

anything in the sample which may interfere with the detection, result, or assay performance 

for the target analyte), the ELISA was validated by preparing samples and the ELISA 

plates as outlined in the method above. Dilution medium and saliva samples were spiked 

with known concentrations of IgA standard (80 - 160 mg.L
-1

).  Spiked and un-spiked 

samples were run on the plate concurrently. Un-spiked concentrations (mg.L
-1

) were 

subtracted from the corresponding spiked sample concentration (mg.L
-1

) and this was 

compared to the known concentration of IgA standard added to the sample prior to loading.  

The recovery rates were similar between the spiked diluents and saliva samples (83.8 - 

82.5% for diluent and 88.6 - 100.6% for saliva samples).   This indicates that the capture 

antibody successfully binds to the plate and that the majority of SIgA proteins added to the 

plate, successfully bind to these capture antibodies.  A good level of recovery is present, 

indicating that there are no interfering substances (that affect this assay) in the saliva 

samples. 

 

The specificity of the ELISA was validated through the addition of plasma IgA (non-

secretory specific) into saliva diluent and samples before being loaded onto the plate.  

Final SIgA concentrations were not different from non-spiked samples, or affected by the 

addition of plasma IgA, indicating that the ELISA is specifically detecting SIgA, and not 

additional, non-specific proteins. 

 

2.5 EBV Serostatus 

 

EBV serostatus was determined by ELISA (Epstein Barr Virus (VCA) IgG ELISA; 

catalogue number: EIA-3475; DRG Instruments GmbH, Marburg, Germany).  Serum 

samples were analysed in duplicate, following the test procedure recommended by the 

manufacturer.  Standard curves and assay results were prepared in Microsoft Excel.  

Samples were considered seropositive when the mean absorbance value was more than 

10% above the cut-off control for the respective microtiter plate.  The intraassay CV = 

1.2%. 
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2.6 Blood Cell Counts 

 

Unless otherwise stated, Cell counts in whole blood (collected into a K3EDTA vaccutainer) 

were analysed using an automated haematology analyser (HA-670 Auto-Haematology 

Analyser; Hawksley & Sons, Lancing, West Sussex, U.K.) which had been maintained 

following manufacturer guidelines. 

 

2.7 Vitamin D 

 

25-hydroxy vitamin-D2 and 25-hydroxy vitamin-D3 in serum were sent off for analysis by 

Sandwell and West Birmingham Hospitals NHS Trust.  Vitamin D levels were determined 

using a Waters AQUITY
®
 ultra performance liquid chromatography (UPLC) and tandem 

quadrupole detector mass spectrometry (TQD) system with an electro-spray ionisation 

interface following standardised hospital procedures.  Low vitamin D status was classified 

as a baseline value below 50 nmol.L
-1

 for total 25-hydroxy vitamin D. 

 

2.8 Bike Ramp Protocol 

 

Maximal oxygen uptake (   2max) was estimated using a ramped exercise test on a 

cycling ergometer (Excalibur Sport, Lode, Groningen, the Netherlands).  Height and 

weight were recorded, and subjects were fitted with a heart rate (HR) monitor  (Polar 

Electro, Kempele, Finland), and facemask (Cortex Biophysik, GmbH, Leipzig, Germany) 

connected to a breath-by-breath gas analyser (MetaLyser 3BR2, Cortex Biophysik, GmbH, 

Leipzig, Germany).   Subjects completed 3 minutes of unloaded cycling before initiation of 

a continuous increment of workload by 30 W/min until volitional exhaustion.  HR and 

subjects' rating of perceived exertion (RPE; Borg, 1970) were recorded at the end of each 

minute.  The breath by breath analyser was calibrated prior to use according to the 

manufacturer's guidelines using a calibration gas of known composition and a three-litre 

syringe (Hans Rudolf Inc, Kansas, USA).  Subjects'    2max were estimated using the 

highest    2 (l.min
-1

) recorded using             3  s c   s.  S bj c s’   s   c      

thresholds (VT1) were estimated from the test data collected.  Twenty-five percent of the 

     r  c   Δ) b  w        VT1 at VT1 and    2max was calculated using a cluster of 

measures, including the V-slope method and the ventilatory equivalent method, and used 

for the prolonged endurance bout the next day (see below).  The corresponding work-rate 
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was calculated using a regression equation with Watts plotted on the x axis, and VO2 on 

the y axis.  A ramp rate correction of two thirds was applied to allow for   O2 lag (i.e. -20 

W). 

 

2.9 Prolonged endurance ride (90 minutes steady state) 

 

Subjects were fitted with a heart rate monitor (Polar Electro, Kempele, Finland) and a 

facemask (Cortex Biophysik GmbH, Leipzig, Germany) connected to a breath by breath 

gas analyser (MetaLyzer 3BR2, Cortex Biophysik GmbH, Leipzig, Germany).  Subjects 

cycled for 90 minutes at 25% Δ,          s       w  c  w s v         w            rs     

      s b        r       2 responses, with the intensity (W)   j s     cc r      .     2 

was recorded at 20, 30, 60, and 90 minutes using the Douglas bag collection method 

detailed below.  HR and RPE (Borg, 1970) were recorded every 10 minutes. 

 

2.10 Douglas Bag Collection Method 

 

Expired gas was collected into Douglas bags (Plysu Industrial, Ltd., Milton Keynes, UK) 

for 30 seconds every 20 minutes following validation of the relative intensity (see above). 

FEO2 and FECO2 were analysed using a dry gas analyser (Servomex, West Sussex, UK) 

and volume measured using a dry gas meter (Harvard Apparatus, Kent, UK) to determine 

gas exchange variables as described by Hopker et al. (2012).  Douglas bags were vacated 

of air prior to testing commencing, and the gas analyser calibrated following the 

manufacturer's instructions.  

 

2.11 High Intensity Interval Exercise (HIIE) Sessions 

 

A weighted cycle ergometer (Monark Erogomedic 874e; Monark Exercise AB, Vansbro, 

Sw    ) w s  r   r           b sk          w    7.          s bj c ’s b    w     .  

Subjects performed a five minute warm-up at 70 rpm with the basket suspended, 

incorporating a five second sprint against resistance three minutes in.  After two minutes' 

passive recovery seated on the bike, subjects performed three, thirty second sprints with 

       s c   s’ r c v r .  S bj c s w r      w      br        r c    c        7  r   

before the basket was released.  Lowest, peak, and mean power were recorded where 

possible (there were some technical difficulties with equipment for some of the tests, 

resulting in a loss of performance data).   
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Chapter 3 

The development of PCR, and qPCR assays to detect salivary Epstein-

Barr Virus DNA 
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Central to the techniques employed by a number of the projects featured in this thesis, was 

the development of a polymerase chain reaction (PCR) assay to detect EBV-DNA in 

saliva.  After commencing the first study, access to quantitative real-time PCR (qPCR) 

machine became available which not only allowed for the detection of EBV-DNA in 

saliva, but also quantification.  The data presented in this thesis, therefore, have been 

analysed using qPCR.  However, both methods have been employed by researchers in the 

past and, as access to qPCR may not be available to all as it remains more expensive than 

traditional PCR.  The development of both methods are presented hereof. 

 

3.1 Introduction to PCR 

 

PCR was developed in the mid 1980s by Kary Mullis (Saiki et al., 1985) who, along with 

Michael Smith, was awarded the 1993 Nobel Prize in Chemistry. The development of PCR 

has completely revolutionised the way in which microbiologists study gene function and 

gene sequencing, as well as the diagnosis of genetic and infectious disease.  The technique 

allows a short region of a DNA molecule to be copied many times by a DNA polymerase 

enzyme, resulting in an amplification of the chosen region (National Laboratory of Enteric 

Pathogens, Bureau of Microbiology, Laboratory Centre for Disease Control, 1991).  

Generally, DNA fragments up to 10 kilobases (10 kb) can be amplified through PCR, but it 

is possible to use specialised protocols which allow the amplification of DNA fragments 

up to 40 kb.   

 

Essentially, PCR relies on five key chemical components:  

 

 A small amount of DNA that serves as the initial template, and contains the target 

sequence - PCR is very sensitive so only a small amount of target DNA needs to be 

added for the experiment to be successful;  

 

 A pair of primers (oligonucleotides) that are complimentary to the 3' ends of each 

the sense and anti-sense stand of target DNA (i.e. each strand of the double helix); 

 

 A DNA polymerase that will copy the template DNA (this enzyme is usually from 

the bacterium Thermus aquaticus which lives in hot springs and is thermostable, 

meaning it does not denature in response to heat treatment); 
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 Four deoxynucleotide triphosphates which are the building blocks from which the 

DNA polymerase synthesises new DNA strands; 

 

 A buffer solution which provides stability of the DNA polymerase and often 

contains magnesium or manganese ions, and sodium or potassium ions.   

 

These five chemical components, when mixed in an appropriate reaction volume and put 

through heating and cooling cycles, mimic the natural DNA replication which occurs in 

cells. 

 

Amplification usually involves three main steps:  

 

 Denaturisation, which involves the reaction mix being heated to 90-95 °C for a few 

seconds, allowing the hydrogen bonds between the two strands of DNA to break, 

separating the double helix into two single strands of DNA;  

 

 Annealing, which involves the cooling of the reaction mix down to around 50-60 

°C for around 30 - 60 seconds, allowing the primers to attach (anneal) to the target 

DNA templates;  

 

 Extension, which involves the heating of the reaction mix up to 75 °C (the exact 

temperature will be dictated by the polymerase being used) for between 30 seconds 

and a few minutes (the length of time will depend upon the size of the fragment 

being amplified), which allows the DNA polymerase to bind with primer/template 

hybrid in the 5' to 3' direction, allowing a new DNA strand which is complimentary 

to the original DNA template being synthesised (Brown, 2010).   

 

This three step cycle is then repeated 30-40 times, with each repeated cycle exponentially 

increasing the number of new copies of the DNA sequence being amplified. 

 

It is not as simple as inserting bodily fluid or bodily tissue into a reaction, however.  The 

quality and purity of template DNA can influence the efficacy of the PCR reaction.  DNA, 

therefore, needs to be extracted from the target source before being incorporated into the 

reaction.  There are many protocols published, and commercial kits available which offer 

extraction of DNA from different starting materials (e.g. saliva, muscle, blood, soil).  
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When designing a PCR, therefore, it is important that the extraction method is also 

carefully considered in the planning stages.  PCR is, in theory, very simple to set up but the 

intentional, or unintentional, introduction of some chemical elements can influence the 

outcome significantly.  The choice of buffers for DNA extraction is, therefore, extremely 

important. 

 

However, it is not only chemical contaminants that can cause a PCR to fail.  Foreign 

nucleic acids can be introduced to reactions very easily if appropriate workflow, and clean 

laboratory techniques are not followed.  Problems can also occur if the primers are not 

specific for the target sequence (which can result in the formation of spurious products); if 

the annealing temperatures of the primers are not well matched; or if the primers bind to 

each other instead of the target DNA (known as primer dimer).  The design of the primers 

is, therefore, a crucial step in any new PCR design, which is discussed in more detail 

below.  The key stages and considerations for PCR design are discussed in further detail, 

before the optimisation process and methodologies of the PCR and qPCR adopted by this 

thesis are presented. 

 

3.2 PCR Design 

 

3.2.1 Primer Design 

 

PCR experiments are reliant upon the design of the primers selected.  The amplification of 

a single target DNA fragment within a target gene can only be achieved when primers are 

designed correctly.  Primers should generally meet seven criteria (Brown, 2010): 

 

 Be between 18 - 25 nucleotides long 

 Have a GC content of approximately 40 - 60% 

 Not contain runs of 4 or more consecutive G or C 

 Contain fewer than 4 G and C in the last 5 (3') bases 

 Not contain complementary sequences, in order to avoid primer-dimer 

 Span or flank an intron to prevent, or at least identify, potential amplification of 

genomic DNA 

 Not contain significant secondary structure within the amplicon or primer region 
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To help with achieving optimal PCR conditions, the primers should also have a similar 

melting temperature (Tm) (see below). 

 

3.2.2 PCR Conditions 

 

Each step of the PCR process (denaturisation, annealing, extension, and the number if 

cycles) needs to be carefully considered and tested.   

 

Denaturation allows double stranded DNA to be broken into single stranded DNA in 

anticipation of the next stage of DNA synthesis in which the primers will bind to the target 

regions, initiating extension.  In addition to facilitating the split in double stranded DNA, 

the high temperatures reached during this stage helps inactivate proteases and nucleases 

present in the sample, while protecting the DNA polymerases, which are thermostable (see 

below).  The temperatures associated with denaturation are typically 94 - 98 °C.  The 

temperature and time held at this step varies depending on the salt concentrations of the 

buffer (a high salt content will typically require a higher denaturation temperature to 

separate double stranded DNA), and the type of DNA being amplified (mammalian DNA 

is relatively complex and big which means it typically requires a longer incubation period). 

 

After primer annealing (see below), the 3' end of the primers need to be extended, 

complimentary to the template.  During this step, the DNA polymerase synthesises 

daughter strands of DNA by incorporating dNTPs through the 5' to 3' polymerase activity.  

The temperature of this step, typically between 70 - 75 °C, is dictated by the optimal 

temperature of the enzyme (e.g. taq polymerase).   

 

3.2.3 Annealing Temperature 

 

Getting the annealing temperature correct is the most important, and crucial stage of PCR 

development.  The temperature of the reaction is lowered to allow the binding of the 

primers to the target DNA.  The Tm of the primers are used to determine what annealing 

temperature should be used.  Tm is estimated using the number of nucleotides present in the 

DNA oligo, while taking into consideration the salt concentration in the reaction using the 

following formula: 

 

Tm = 81.5 + 16.6(log[Na
+
]) + 0.41(%GC) - 675/primer length 
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During PCR optimisation, it is advisable to start with an annealing temperature 3 - 5 °C 

below the lowest Tm of the primers.  However, if the temperature is too low, amplification 

of non-target sites is likely to occur as incorrect base pairs are able to form and, crucially,  

are tolerated which results in an increased number of potential hybridisation sites within 

the template molecule (Brown, 2010).   Vice versa, if the annealing temperature is too 

high, no hybridisation can occur.  Getting the temperature of this step correct, therefore, is 

critical.  One of the easiest methods to develop this is to run the same PCR reaction on a 

gradient of different temperatures.   

 

3.2.4 DNA Polymerase 

 

Every PCR reaction is dependent on enzymes to synthesise new strands of DNA 

complimentary to the template DNA. These are known as DNA polymerases, and there are 

four types typically used in genetic studies.  However, only the Taq DNA polymerase from 

the bacterium Thermus aquaticus is used in PCR studies.  Thermus aquaticus lives in hot 

springs which results in the enzymes being thermostable meaning they are not denatured 

by heat treatment.  This makes them ideal for PCR as they can withstand the high 

temperatures required during denaturation steps, without being inactivated. 

 

All DNA polymerases make mistakes, but one potential problem with Taq polymerase is 

that it does not possess a proofreading function meaning it cannot, like other polymerases, 

correct its errors.  For most applications, this does not present a problem as the errors are 

distributed randomly, and the error rate, in comparison to fragments of the correct 

sequence, are insignificant.  Within the context of this thesis, the mistakes associated with 

Taq polymerase are not important as the cloned PCR product is not being used in further 

experimentation, merely the amplified DNA is being loaded directly onto an 

electrophoresis gel for gene detection. 

 

3.2.5 PCR Cycling 

 

Each of the PCR stages above (denaturation, annealing, and extension) are cycled over and 

over again in order to amplify the target DNA.  The number of cycles in any PCR design 

will vary depending on the amount of template DNA in the reaction, and the required yield 

from the PCR reaction.  The PCR product doubles during each cycle, until such time as the 
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components of the reaction become depleted.  After 30 cycles, each starting molecule in 

the reaction will have generated over 130,000,000 short PCR products from the target 

DNA.  Typically between 25 and 35 denaturation - annealing - extension cycles will be 

carried out but, if the DNA input is fewer than 10 copies, up to 40 cycles may be carried 

out.  The greater the number of cycles, the lower the efficiency of the PCR and therefore 

anything over 45 cycles is avoided as reaction components start to deplete, and the 

accumulation of undesired by-products have been observed.  This results in a plateau of the 

PCR amplification curve (figure 3.1). 

 

 

 

Figure 3.1 PCR amplification curve demonstrating product accumulation in relation to the 

number of cycles (adapted from ThermoFisher, 2018) 

 

3.3 Downstream application of PCR 

 

Once PCR is complete, gel electrophoresis is typically used to separate, identify and purify 

DNA.  The PCR product is loaded onto an agarose gel containing a stain, such as ethidium 

bromide (EtBr), and an electrical current is run through the gel.  The sugar-phosphate 

backbone of nucleic acid is negatively charged, which means it is attracted towards a 

positive charge.  The electrophoresis tank is designed to run electricity from the negative to 

the positive electrode.  The negatively charged DNA therefore migrates through the gel 

towards the positive electrode.  The larger the DNA fragment, the slower it moves through 

the agarose gel.  The incorporation of EtBr into the gel, results in EtBr intercalating 

between the bases of DNA meaning that staining occurs during electrophoresis, allowing 

visualisation of the DNA fragment.  The use of a DNA ladder alongside the stained 

samples allows the size of the fragment to be determined.  The density of the gel, voltage, 

and time run, all influence the efficacy of the procedure. 
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3.4 Introduction to qPCR 

 

qPCR is a modification of traditional PCR whereby the amount of product generated by the 

PCR following each cycle is measured over time.  Traditional PCR is only semi-

quantitative as it is dependent on a comparison between relative values as opposed to 

absolute amounts.  qPCR, however, provides information on the absolute amount of PCR 

product as the PCR is run. 

 

Since the development of qPCR in the mid-nineties, instruments combining the rapid 

thermal cycling required for PCR, along with a real-time fluorescence measurement of the 

PCR product accumulating have been developed, making the routine quantification of 

nucleic acids in small biological samples practicable (Heid et al., 1996).   

 

3.5 qPCR Design 

 

3.5.1 qPCR Primers 

 

The design of primers for qPCR do not vary from traditional PCR.  However, the primers 

selected for qPCR usually result in a smaller product than traditional PCR and the 

efficiency is more important as it is much more sensitive 

 

3.5.2 qPCR Marker of Fluorescence 

 

One difference between traditional PCR and qPCR is the addition of a marker of 

fluorescence in addition to the 5 chemical components required for PCR (see section 3.1).  

Probably the most common method relies on SYBR Green 1 which is used for the 

detection of double stranded DNA.  A second method uses a sequent specific, fluorescent 

probe for the target gene product.  The probe contains a reporter dye for which the 

fluorescence emission is quenched by a secondary dye until the 5'-nuclease activity of the 

polymerase cleaves the probe and releases the reporter.  Using this method, fluorescence 

increases as more and more PCR product is accumulated during the amplification process 

(Holland et al., 1991).  This method ensures that only the specific PCR product is detected 

as the fluorescent signal is only produced when the probe hybridises with the correct target 

sequence.  It is the shape of curve produced (i.e. the quantification value, Cq) compared to 
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a standard curve which determine the precise concentration of the target (e.g. template) in 

the original sample. 

 

3.5.3 qPCR Conditions 

 

qPCR relies upon the same denaturation - annealing - extension cycles as described above.  

Like PCR, qPCR conditions should be optimised in order to ensure the experiment runs 

efficiently and accurately. 

 

3.6 Target Gene: Epstein-Barr Virus (EBV) 

 

EB   s         w  γ-herpesviruses, a subfamily of herpesviruses, distinguished by their 

 r   r  c    r     c           c   s  L     ck r & N     , 2  7).  γ-herpesviruses can 

further subdivided into lymphocryptoviridae (including EBV) and rhadinoviridae 

(Longnecker & Neipel, 2007).    Infection with EBV is prevalent in both child and adult 

populations with approximately 95% of the population infected by the time they reach 

adulthood (Jenson, 2011).  Primary infection usually occurs in childhood which typically 

results in an asymptomatic infection.  Where primary infection occurs later in life, the 

result is normally infectious mononucleosis (also known as glandular fever).  Following 

primary infection, the host usually remains a carrier of the latent virus for the remainder of 

their life (Rickinson et al., 2014; Young et al., 2007).  It is currently accepted that the latent 

virus resides in CD19+ B-lymphocytes, periodically shedding virus through the induction 

of lytic replication in these B-lymphocytes.  The number of infected cells is, however, 

extremely low, and cellular and humoral immune responses keep the viral load low.  A loss 

of balance within these cellular and humoral immune responses leads to an increase in viral 

load. 

 

The EBV genome (accession number NC_007605) is approximately 172,000 kb in length, 

and is composed of double stranded DNA (Jenson, 2011).  BALF5 (NCBI gene ID: 

3783681) is one of the early lytic EBV genes mediated in viral replication (Young et al., 

2007) and is located between 153,241 and 156,288 bp within the EBV genome, consisting 

of 3,048 bp.  During viral replication, it is one of the earlier genes expressed as it is the 

catalytic component of the viral DNA polymerase (Young et al., 2007).  As such, the 

detection of BALF5 is an early indicator that the cellular and humoral immune responses 

have lost balance and that the virus has started to replicate and reactivate. 
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3.7 DNA Extraction 

 

DNA extraction is a routine procedure which isolates and purifies the DNA from a sample 

using both physical and chemical methods.  Following collection of the sample of interest 

(in the case of this thesis, the sample of interest is always saliva, unless otherwise stated), 

the DNA from the sample needs to be isolated from within the cell membrane and nucleus, 

or the sample of interest (e.g. cell free DNA in saliva supernatant).  This can be achieved 

using a number of methods: 

 

 Acid guanidinium thiocyanate-phenol-chloroform extraction (AGPC) 

(Chomczynski & Sacchi, 2006) 

 

 Spin column-based nucleic acid purification 

 

 Boom method (Boom et al., 1990) 

 

 Synchronous coefficient of drag alteration (SCODA) DNA purification (Marziali et 

al., 2005) 

 

The length of DNA to be extracted, purity of DNA required, and time available will 

influence the method selected.  For the purposes of this thesis we have selected spin 

column-based nucleic acid purification which is a quick, solid phase extraction method.  

Spin column-based nucleic acid purification relies on the fact that, under certain 

conditions, nucleic acid will bind to the solid phase of silica.  The four stages of any spin 

column-based nucleic acid purification method are: 

 

 Lyse: If required, the cell's membrane and nucleus are broken to release the nucleic 

acid. 

 

 Bind: A buffer solution is added to the lysed cells, transferred to a spin column and 

centrifuged.  The solution is pushed through a silica gel membrane inside the spin 

column to which the nucleic acid binds. 
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 Wash: Impurities and residual buffers are removed by adding a wash-buffer to the 

spin column and centrifuging.  The nucleic acid remains attached bound to the 

silica gel. 

 

 Elute: The bound nucleic acid is removed from the silica gel membrane by adding a 

wash buffer (or MQdH2O).  The column is centrifuged again and nucleic acid is 

collected in the bottom of the column ready for use in downstream applications. 

 

There are a large number of commercial extraction kits available based on this method.  

Kits are designed to extract a specific type, or range of target DNA (e.g. genomic, 

mitochondrial, viral) from a target source (e.g. cells, tissue, blood, urine, soil, water), and 

are designed to extract DNA up to a certain size.   

 

3.8 Positive and Negative Controls 

 

As with any biological assay, there needs to a positive and negative control  

 

3.8.1 Bacterial Transformation 

 

Gene cloning allows for recombinant DNA to be replicated within a host organism.  

Bacteria, specifically E. coli, are commonly used as host cells for making copies of DNA 

as they are easy to grow in large numbers, and create a new generation of genetically 

identical bacteria every 20 minutes.  Prior to the vector being inserted, however, E. coli 

cells need to be treated to facilitate the uptake of the vector.  The most common method for 

this is a method is known as the Hanahan method.  The Hanahan method essentially 

involves the treatment of E. coli cells with CaCl2 and water which causes the cells to swell 

which is necessary for the uptake of the vector.  The swollen cells are known as competent 

cells.  It is possible to create competent bacteria in house, but for the purposes of this 

thesis, commercially prepared cells were purchased. 

 

3.8.2 Purification of DNA 

 

The resulting product from a bacterial transformation will contain both the plasmid DNA, 

and the bacterial chromosomal DNA present in the cell.  The presence of bacterial 

chromosomal DNA in gene cloning experiments can impact on the integrity of results and 
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therefore the plasmid DNA needs to be isolated and purified before further 

experimentation occurs (Brown, 2010).  Typically, a plasmid specific spin column-based 

nucleic acid purification method is used (as detailed above in section 3.7).  The 

concentration and purity of the DNA should then be assessed which is measured by 

ultraviolet (UV) absorbance spectrophotometry at 260 and 280 nm.  The concentration of 

DNA is determined by the UV absorbance at 260 nm (A260) as the amount of UV absorbed 

by the sample at A260 is directly proportional to amount of DNA in the sample (Brown, 

2010).  The purity of the sample is determined by the ratio of the UV absorbance of the 

sample at 260 and 280 nm (A260/A280).  A ratio of 1.8 is considered to be a pure sample.  A 

ratio below 1.8 suggests that the sample is contaminated with either protein or phenol 

(Brown, 2010). 

 

3.9 Methods 

 

3.9.1 Positive Control 

 

Bacterial transformation 

 

A pcDNA3.1
+
-BALF5-V5/His construct (Catalogue number: K4800-01: Life Technologies 

Corporation, Carlsbad, California, U.S.A.) was obtained from a research group at the 

University of Birmingham, U.K.  One µl (50 ng) of pCDNA3.1
+
-BALF5 was added to an 

   q    c          2  µ  S bc       E   c   c  DH α C         E. c    c   s  c         

number: 18265017: ThermoFisher Scientific, Waltham, Massachusetts, U.S.A.) and stirred 

gently using a pipette tip.  This was incubated on ice for 30 minutes, after which, the 

aliquot was promptly transferred to a water bath set at 42 °C for 30 seconds, then incubated 

once again on ice for a further 2 minutes.  250 µl of SOC outgrowth medium (Catalogue 

number B9020S; New England Biolabs, Ipswich, Massachusetts, U.S.A.) was added to the 

tube before being placed in a shaking incubator at 37 °C and 225 rpm for 45 - 60 minutes.  

Following this incubation, 100 µl of the media containing pCDNA3.1
+
-BALF5 was spread 

onto an LB agar plate containing 200 mg.L
-1

 ampicillin (Catalogue number: 11593027: 

ThermoFisher Scientific) (LB-amp) and placed in a bacterial incubator at 37 °C overnight.  

The following morning, the LB-amp plate was removed from the incubator.  In a 30 mL 

universal tube, 5 µl of ampicillin (1:1000 dilution; working solution of 100 mg.L
-1

) was 

added to 5 mL of LB broth.  The antibiotic broth was inoculated with a small, distinct 

colony from the LB-amp plate and placed in a shaking incubator at 37 °C and 225 rpm 
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overnight.  The following morning, a        c r   s  ck        DH α c   s c          

pcDNA3.1
+
-BALF5 was prepared and frozen at -80 °C.  The rest of the culture was taken 

forward into plasmid purification. 

 

Purification of DNA 

 

Plasmid purification was undertaken using a commercially available MiniPrep kit 

(QIAprep Spin Miniprep Kit, catalogue number: 27106; QIAGEN, Hilden, Germany).  The 

manufacturer's protocol for Plasmid DNA Purification using the QIAprep Spin Miniprep 

Kit and a Microcentrifuge was followed, with the exception that MQdH2O heated to 70 °C 

was used instead of buffer EB during step 10 (elution). 

 

Stock solutions 

 

A working stock with a concentration of 1 ng.µl
-1

 was prepared in MQdH2O and used as a 

positive control in all PCR assays, and to prepare standard the curves for all qPCR assays. 

 

3.9.2 Negative Control 

 

MQdH2O was used in place of template DNA to form a negative control for all PCR 

reactions. 

 

3.9.3 DNA concentration and purity 

 

The concentration and purity of samples were tested using a NanoDrop 2000 

Spectrophotometer (ThermoFisher Scientific, Waltham, Massachusetts, U.S.A.).  The 

concentration in ng.µl
-1

, and the A260/A280 is reported for each sample tested. 

 

3.9.4 DNA Extraction 

 

Our laboratory, historically, had used the AmpliSens DNA-sorb-AM, Nucleic acid 

extraction kit, (Cat #: K1-11-50-CE; Ecoli s.r.o., Bratislava, Slovakia) for the extraction of 

DNA from saliva.  This is a commercially available pre-made extraction kit, with 

accompanying PCR and electrophoresis kits.  However, the specificity of the extraction 

process, and target gene are undisclosed by the manufacturer.  The development of an in-
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house method was sought, therefore, in order to allow for the extraction of known genetic 

material (e.g. all DNA), and to allow for the confident use of alternative PCR assays on 

extracted samples.  The results from the AmpliSens DNA-sorb-AM, Nucleic acid 

extraction kit, (Cat #: K1-11-50-CE; Ecoli s.r.o., Bratislava, Slovakia)  were compared to 

an alternative, commercially available kit (Quick-DNA Universal Kit (Cat #: D4068; 

Zymo Research, Irvine, California, U.S.A.) which uses a spin-column method.  The 

manufacturer guidelines were followed in all cases (specifically the Biological Fluids & 

Cells protocol for the Quick-DNA Universal Kit). 

 

3.9.5 PCR Primers 

 

Design 

 

In earlier experiments, primer selection for BALF5 amplification was based on those used 

b  Y    c        ., 2    w  c    r   s EB     3   b   s  s :  ’-CCC TGT TTA TCC 

GAT GGA ATG AC-3’;     s  s :  ’-CTT CTG AAA AAG CCT GAC AAG GAG-3’) 

(Yamauchi primers).  These primers were diluted with MQdH2O resulting in 10M 

solutions (15.9 µl forward primer with 159 µl MQdH2O and 13.8 µl reverse primer with 

138 µl MQdH2O respectively).  Following preliminary experimentation using this 

methodology, the Yamauchi primers were run in-silico and did not meet a high enough 

criteria to be carried forward into further experiments (appendix A).  The primers and 

plasmid were changed to the methodology detailed below. 

 

Table 3.1 BALF5 PCR Primers 

 
 

Primer Length Position Tm %GC Sequence Amplicon (nt) 

      

452 

Forward1 20 155168-155187 59.4 55 
ATC TCC ACG CTG AGG TCT 

CT 

      

Reverse1 20 155619-155600 59.4 55 
CAC GGG TGT CGG ATC TTT 

GA  

      

      

275 

Forward2 20 154909-154928 59.4 55 
GGC TAC TGT GTC CAG CTT 

GT 

      

Reverse2 20 155183-155164 59.4 55 
ACC TCA GCG TGG AGA TTG 

TG 
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New primers (BALF5 primers) were designed using NCBI's Primer-BLAST (Basic Local 

Alignment Search Tool) (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) and checked 

using the Bioinformatics Sequence Manipulation Suite's Primer Stats software 

(www.bioinformatics.org/sms2/pcr_primer_stats.html).  The primers targeting BALF5, 

detailed in table 3.1, were selected following checks. 

 

Both sets of primers were ordered from Eurofins Scientific (Eurofins GSC LUX, 

Luxembourg).  Primers were reconstituted using MQdH2O to give a concentration of 100 

pmol.µl
-1

 (100 µM).   

 

Primer Stock Solutions 

 

A 1:10 dilution was prepared from these to provide a working stock of 10 pmol.µl
-1

 (10 

µM) (i.e. 10 µl primer into 90 µl MQdH2O). 

 

Table 3.2 PCR Design for DreamTaq Polymerase 

 

Component Volume (µl) 

DreamTaq Polymerase 12.5 

EBV Forward Primer 2.5 

EBV Reverse Primer 2.5 

Sample/Control 2.5 

MQdH2O 5 

TOTAL 25 

 

3.9.6 PCR Design 

 

PCR Reactions 

 

The AmpliSens EBV-EPh PCR Kit (Cat #: V0-100_R0,5-CE; Ecoli s.r.o., Bratislava, 

Slovakia) was known to successfully amplify EBV DNA (although the specific target gene 

was unknown).  Samples were therefore amplified using both the AmpliSens EBV-EPh 

PCR Kit, and an in house method.  The AmpliSens EBV-EPh PCR Kit manufacturer's 

recommendations were followed giving a final reaction volume of 25 µl which contained 

10 µl of template DNA and amplified a 290 bp amplicon of EBV.  The in house method 

used ThermoScientific DreamTaq Green PCR Master Mix (x2) (DreamTaq; 

ThermoScientific, Loughborough, UK) as a polymerase.   DreamTaq is a ready to use 

solution containing the Taq polymerase, buffer solution, MgCl2, and dNTPs.  Following 
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the manufacturer's recommendations, 2.5 µl each of the diluted forward and reverse 

primers, 2.5 µl of template DNA (either extracted saliva, plasmid, or negative control) and 

5 µl or MQdH2O were added to 12.5 µl of DreamTaq (Table 3.2). 

 

Cycling conditions 

 

During all analysis, samples were amplified in flat-cap 0.2 mL tubes (Cat #: AB062; 

ThermoFisher Scientific, Waltham, Massachusetts, U.S.A.) using an Eppendorf 

Mastercycler EP Gradient S Thermal Cycler (Eppendorf, Hamburg, Germany). 

 

The AmpliSens EBV-EPh PCR Kit had amplification programme settings already 

established which were followed as per the manufacturer guidelines.  The annealing 

temperature for the abovementioned kit was 65 °C.  The Tm for both set of custom BALF5 

primers was 59.4 °C.  As such, samples were run on a gradient from 55 °C to 65 °C (table 

3.3) to establish the optimal annealing temperature for the DreamTaq reaction.  For 

consistency, denaturation and extension phases of the AmpliSens EBV-EPh PCR Kit were 

maintained for both reactions set-ups

  

Table 3.3 Thermal PCR Cycling Conditions 

 

Step Temperature °C Time Number of Cycles 

Initial denaturation 95 5 min 1 

Denaturation 95 15s 

42 Annealing    → 6  25s 

Extension 72 25s 

Final extension 72 1 min 1 

 

3.9.7 Downstream application 

 

Gel 

 

A 1.6% agarose gel was prepared using 0.5% TAE buffer, and stained with EtBr.  For a 50 

mL gel, this would require 0.8 g agarose, 50 mL 0.5% TAE buffer, and 0.5 µl EtBr.   

 

23 µl of each amplified PCR product (sample or control) were loaded into individual wells 

alongside a DNA ladder. 
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DNA Ladder 

 

An Invitrogen Low DNA Mass Ladder (Thermo Fisher Scientific, Waltham, 

Massachusetts, U.S.A.) was used to help visualise approximate sizing of double-strand 

DNA in the range of 100 - 2,000 bp with bands at 100, 200, 400, 800, 1,200, and 2,000 bp.  

10 µl of Invitrogen Low DNA Mass Ladder was mixed with 2 µl of DNA Gel Loading 

Dye (Cat #: R0611; Thermo Fisher Scientific, Waltham, Massachusetts, U.S.A.).   12 µl of 

the DNA ladder, prepared as outlined above, were loaded into one or two wells per row, 

per gel. 

 

Electrophoresis power supply 

 

During all analysis, electrophoresis was powered by a Consort EV265 Electrophoresis 

Power Supply delivering 100 V for 1.5 hours (depending on the size of the gel - shorter 

gels required less run time and were monitored for the run off of preceding dyes). 

 

Gel Imaging 

 

Gels were imaged using a Syngene G:Box Gel Documentation Imaging System and 

complimentary software (Syngene, Cambridge, U.K.). 

 

3.9.8 qPCR Primers 

 

Primers were designed using the Roche Universal Probe Library (UPL) 

(https://www.roche-applied-science.com/sis/rtpcr/upl/ezhome.html).  The UPL 

automatically undertakes a BLAST search to ensure that the primers do not miss-prime 

with any other gene.  It also runs the PCR in silico to rule out primer dimer.  The primers 

targeting BALF5, detailed in table 3.4, were selected from the UPL. 

 

Table 3.4 qPCR Primers 

 

Primer Length Position Tm %GC Sequence 

      

Forward 20 1065-1084 60 60 GGA GCT GGA CAT GCT CTA CG 

      

Reverse 20 1105-1124 60 55 ACA ATC TCC ACG CTG AGG TC 
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These primers produce an amplicon that is 60 nt (GGAG CTGG ACAT GCTC TACG 

CCTT CTTC CAGC TCAT CAGA GACC TCAG CGTG GAGT TTGT) and meet all the 

criteria (i.e. there are no risks of miss-priming or primer dimer).  These custom primers 

were ordered from  Eurogentec (Liège, Belgium) and prepared following the 

manufacturer's guidelines to give working concentrations of 400 nM each. 

 

3.9.9 qPCR Probe 

 

These primers were used in combination with probe 11 (cat. no. 04685105001) from the 

UPL (Roche, Basel, Switzerland).  The probe was prepared following the manufacturer's 

guidelines to give a working concentrations of 200 nM. 

 

3.9.10 qPCR Design 

 

0.2 µl of each primer, 0.2 µl of probe, and 2.5 µl of template DNA was added to 1.9 µl 

MQdH2O and 5.0 µl of PCR mix prepared from the FastStart Essential DNA Probes 

Master (Cat #: 06402682001; Roche, Basel, Switzerland) following the manufacturer's 

guidelines.  Reactions were prepared in a 96 well plate and analysed using a LightCycler 

96 (Roche, Basel, Switzerland).  Fluorescence was measured every cycle to allow for Cq 

of samples and standards to be calculated.  The Cq and baseline settings were 

automatically calculated by the LightCycler 96 Application Software, applying a 

positive/negative filter based on end point fluorescence, maximum relative slope, and 

deviation from linearity. 

 

In accordance to the recommendations made by Roche, the following amplification 

programme was run: 

 

Table 3.5 qPCR Thermal Cycling Conditions 

 

Run Editor 
   

 

Detection format 
 

Reaction volume (µl)  

FAM 
 

20  

Programme 
   

 

Step Temperature °C Time 
Number of 

Cycles 

Acquisition 

mode 

Initial denaturation 95 10 min 1 None 

Denaturation 95 10s 

50 

 

None 

Annealing 55 30s Single 

Extension 

 

72 

 

1s 

 

None 
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3.10 Results and discussion 

 

3.10.1 Development of a positive control: Bacterial transformation 

 

The concentration of the purified pcDNA3.1
+
-BALF5 was 630.5 ng.µl

-1
.  The purity, as 

accepted by the  A260/A280, was 1.86.  The concentration and purity of this transformation 

are indicative of a successful experimental process.  A 1:100 dilution, followed by a 

subsequent 1:6 dilution were performed to provide a working stock with a concentration of 

1 ng.µl
-1

. 

 

3.10.2 DNA Extraction 

 

When extracting DNA, both the yield and quality of the DNA extracted are important to 

subsequent experimentation.  In the case of the present study, viral DNA needed to be 

extracted from the supernatant of saliva.  It was likely that the yield, in most cases, would 

be relatively low, and therefore the total quantity and quality of the DNA extracted needed 

to be of a good standard.  In order to identify the best kit for our purpose, two commercial 

extraction kits were used to extract total DNA from the same saliva sample.  The 

concentration and purity of the extracted DNA from each kit were then analysed, before a 

final decision could be made on which extraction method should be taken forward. 

 

Table 3.6 Comparison of DNA concentration and purity using 2 commercially available 

extraction kits 

 

Kit Sample Concentration (ng/µl) A260/A280 

    

 Quick-DNA Universal Kit Fresh 12.4 1.16 

 
-20 42.2 1.23 

  -80 37.8 1.16 

    AmpliSens DNA-sorb-AM Fresh 56 2.96 

 
-20 162.1 2.2 

  -80 99.8 2.91 

     

 

A fresh saliva sample from an EBV-seropositive subject was collected, centrifuged for 5 

minutes at 1,700 × g, and the supernatant removed.  The supernatant was aliquotted into 
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four 1.5 mL microcentrifuge tubes. With both kits, one aliquot was extracted immediately 

(fresh); one aliquot was frozen at -20 °C and thawed prior to extraction (-20); and one 

aliquot was frozen at -80 °C and thawed prior to extraction (-80).  

 

Following extraction, the concentration and purity of the DNA extracted was analysed as 

described above.  The results of this analysis are presented in Table 3.6. 

 

A ratio of 1.8 at A260/A280 is optimal, but a purity between 1.7 and 1.9 is expected for 

double-stranded DNA.  A low A260/A280 ratio is indicative of contamination with phenol, 

protein, or guanidine isothiocyanate which may prevent the DNA quantification from the 

A260 measurement (Lee at al., 2010).  Alternatively, it can be indicative of RNA 

contamination.  A high A260/A280 ratio is not indicative of an issue per say, but may be the 

result of a measurement issue (i.e. the solution used as a blank measurement during the 

nanodrop pedestal calibration should have the same pH as the solution to be measured) 

(Wilfinger et al., 1997).  Measuring the purity, and concentration, of DNA samples using 

spectrophometry, however, is not perfectly precise because of these issues mentioned 

above.   There may have been an efficient extraction of DNA, but because of 

contamination, a low A260/A280 ratio may be reported.  The only way to effectively check if 

an extraction has worked, is to subject the sample to further experimentation, such as a 

qPCR.  Three samples extracted using the Quick-DNA Universal Kit were compared to the 

same three samples extracted using an alternative, spin column based commercial kit 

(QIAamp DNA Blood Mini Kit, cat #: 51104; QIAGEN, Hilden Germany).  The qPCR 

only detected EBV DNA in 2 out of three samples extracted using the QIAamp DNA 

Blood Mini Kit (mean EBV DNA concentration 5.99 ± 5.20 ng.µl
-1

 ×10
-6

) compared to 

three out of three extracted using the Quick-DNA Universal Kit (mean EBV DNA 

concentration 63.60 ± 58.84  ng.µl
-1

 ×10
-6

).  The subsequent qPCR testing confirmed that 

the Quick-DNA Universal Kit was extracting an adequate concentration and purity of 

DNA for downstream application and it was therefore taken forward into the final 

methodology. 

 

3.10.3 Optimisation of the PCR 

 

Both the primers for 452 bp and the primers for 275 bp successfully amplified their 

corresponding regions with an annealing temperature of 65 °C for 42 cycles (table 3.8) 

using the BALF5 plasmid from Birmingham.  There was no amplification when the 
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primers were run independently of the plasmid, and vice versa, indicating there are not any 

underlying issues with the amplification, such as primer dimer.  As such, both sets of 

primers were accepted as a viable methodology for the detection of EBV in saliva samples. 

 

Table 3.7 Final PCR Thermal Cycling Conditions 

 

Step Temperature °C Time Number of Cycles 

    Initial denaturation 95 5 min 1 

Denaturation 95 15s 

42 Annealing 65 25s 

Extension 72 25s 

Final extension 72 1 min 1 

    
 

However, the amplification of extracted saliva samples had, as yet, been unsuccessful but it 

was unclear if this was due to a fault with the assay, or due to the samples lacking EBV 

DNA.  One way to check if a PCR assay has amplified successfully is to use an internal 

control, or reference gene.  An internal control can act as an indicator of nucleic acid 

extraction, the quality of samples, and the quality of the PCR.  The internal control, and 

target gene will be co-amplified, meaning it is important that the primers do not out 

compete, and should result in two clear, separate bands during subsequent analysis by 

electrophoresis.  In the present study, β-globin was selected as an internal control.  Primers 

GH20 and GH21 targeting the β-globin gene at chromosome 11 were selected from Takara 

B    s  s :  ’-GAA GAG CCA AGG ACA GGT AC-3’;     s  s :  ’-GGA AAA TAG 

ACC AAT AGG CAG-3’) w  c              r      w  c  w s 4 8 bp in length (Saiki et 

al., 1988).  Extracted saliva samples that tested positive for EBV using the AmpliSens 

DNA-sorb-AM kit and AmpliSens EBV-EPh PCR kit, respectively, were taken forward 

into experimentation.  Extracted saliva samples and controls were prepared and amplified 

using both the new BALF5 primers for 275 bp and the β-globin primers for 408 bp.  

Reaction volumes for each gene were prepared separately in order to confirm the success 

of the assay before attempts at multiplexing were made.  Preparations were made using the 

reaction volumes reported above (table 3.2) and cycled using the final 65 °C cycle (table 

3.7).  Initial experimentation worked (figure 3.2) with positive results for both EBV and β-

globin for extracted saliva samples and positive controls. The extracted saliva samples did 

provide faint, but positive results for EBV (Lanes D and E), despite the fact they had been 

extracted using the AmpliSens DNA-sorb-AM kit.  The previous failure of the BALF5 

assay to detect EBV in saliva may, therefore, have been to the number of starting copies in 
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the saliva.  If these were not present, or too low, there may not have been enough of the 

gene amplified to create subsequent banding on the gel (Yamauchi et al., 2011). 

 

Based on the success of this experiment, attempts were made to multiplex the assay with 

     r   rs   r B LF     27  b      β-globin at 408 bp. The resolution of the gel was not 

very clear, but the assay does not appear to have been efficient at amplifying any material 

other than the BALF-5 plasmid (figure 3.3).  In this, and all subsequent PCR multiplexed 

r  c    s, β-globin failed to amplify effectively.  This may have been due to degradation of 

the primers or, most likely, there may have been a need for an alternative PCR Master Mix 

(e.g. ThermoScientific Phusion U Multiplex PCR Master Mix in replacement of the 

ThermoScientific DreamTaq Green PCR Master Mix (x2); both ThermoScientific, 

Loughborough, UK).  However, in the interests of time, attempts to multiplex the assay 

were abandoned. 

 

Figure 3.2 Results of EBV (BALF5 275 bp) and β-globin (408 bp) 

 

Lane A: -ve EBV control; Lane B: -v  β-globin control; Lane C: BLANK; Lane D: +ve 

sample A with EBV primers; Lane E: +ve sample B with EBV primers; Lane F: Low 

Mass DNA Ladder; Lane G: +v  s        w    β-globin primers; Lane H: +ve sample B 

w    β-globin primers; Lane I: +ve EBV control; Lane J: +v  β-globin control.  Ladder 

bands are visible, from top to bottom, at 2,000, 1,200, 800, 400, 200, and 100 bp. 

 

3.10.4 Downstream application: Agarose gel electrophoresis 

 

Agarose gel electrophoresis separates DNA molecules by size.  The agarose gel is porous 

and the density of the gel should be adjusted to suit the size of molecule on which the 

experiment is being performed.  A 1.6 % agarose gel is optimal for the resolution of linear 

  A    B   C    D     E   F    G    H     I     J    

J   
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DNA that are 200 - 3,000 bp which is why it was selected for the present experiment.   100 

V  for  1.5 hours  in  a  relatively  large  gel  (~20 cm) worked well in the  

 

present experiment, but the voltage and time can be varied however the lower the voltage, 

the longer the run time needs to be. 

 

Figure 3.3 Results of EBV (BALF5 275 bp) and β-globin (408 bp) multiplex PCR assay 

 

 

 

 

 

 

 

Lane A: BLANK; Lane B: multiplexed reaction with saliva sample extracted using the 

Quick-DNA Universal Kit; Lane C: multiplexed EBV plasmid; Lane D: β-globin primers 

with saliva sample extracted using the Quick-DNA Universal Kit; Lane E: Low DNA 

Mass Ladder; Lane F: multiplexed negative control; Lane G: EBV primers with saliva 

sample extracted using the Quick-DNA Universal Kit; Lane H: BLANK.  Ladder bands 

are visible, from top to bottom, at 2,000, 1,200, 800, 400, 200, and 100 bp (although the 

clarity of the image here is poor). 

 

3.10.5 Traditional PCR design conclusions 

 

To conclude, either of the two sets of primers tested (table 3.1) are suitable for use in a 

traditional PCR assay for the detection of EBV in saliva targeting the BALF5 gene.  Which 

primer pair is selected will depend on the size of the amplicon required.  Reaction volumes 

should be prepared as described in table 3.2, and amplified using the programme described 

in table 3.7.  Future work should look to multiplex the assay with an internal control, such 

 s β-globin to confirm the efficiency of the amplification and improve the accuracy of the 

assay.  Alternatively, each r  c       . . EB      β-globin) could be run separately. 

A     B     C     D     E     F     G     H     
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3.10.6 qPCR 

 

In many ways, analysing samples using qPCR is simpler, methodologically, than 

traditional PCR.  Reactions volumes are prepared in a similar way, but the analysis is 

automated, removing the need for downstream analysis, such as electrophoresis.  The 

sensitivity of qPCR is greater than that of traditional PCR which allows for a greater 

accuracy of quantification, but it does mean that the risks of contamination interfering with 

the samples are greater.  Owing to the real time nature of qPCR analysis, the need for 

opening amplified PCR material is eliminated, however, which means the risk of 

contaminated laboratory space or equipment, is reduced greatly. 

 

The majority of the design of the qPCR for the present study was done using the online 

facilities provided by Roche.  Primers, probes, and MasterMix were all designed and/or 

sourced using Roche.  As such, there was an increased likelihood that components would 

be compatible, and the assay a success.   

 

Figure 3.4 Amplification Curves for EBV BALF5 qPCR 

 

 

 

The assay was first tested using a serial dilution of BALF5 plasmid.  This was followed up 

using BALF5 plasmid, and a number of saliva samples that had been extracted using the 

Quick-DNA Universal Kit.  A quantification cycle value (Cq) was calculated for each 

sample as the number at which fluorescence exceed a threshold limit (determined as 10 × 

SD of the baseline fluorescence calculated from cycles 3 - 10).    All samples were 

analysed in duplicate, and samples were classified as negative if the Cq exceeded that 
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which had been calculated automatically by the LightCycler 96.  The accepted criteria for a 

qPCR's success is a standard curve slope between -3.1 and -3.6 which will result in  an 

amplification efficacy of 90 - 110%.  In the present experiment, the mean standard curve 

slope value was -3.4661 ± 0.1350, which gave a mean efficiency of 1.95 ± 0.05 (94.60%).  

In addition,  the assay reported a mean r
2
 of 0.99 ± 0.01, and a mean y intercept of 18.39 ± 

0.27 (figures 3.4 and 3.5). 

 

Figure 3.5 EBV BALF5 qPCR Standard Curve 

 

 

 

Repeated experiments demonstrated that the methodology was robust and amplified and 

quantified EBV efficiently in samples where target DNA was detectible.  As such, the 

reported methodology is accepted as a reliable and valid method for the detection of EBV 

DNA in saliva, and has been used for the detection of EBV in saliva throughout the 

remainder of this thesis.  Samples were run in duplicate, and the intraassay CV = 6.0%. 
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Chapter 4 

The influence of acute carbohydrate supplementation on salivary EBV 

DNA expression in athletes, and the comparison of two in vivo measures 

of immune function 

 

Related publication: 

Davison, G., Kehaya, C., Diment, B., & Walsh, N. (2016). Carbohydrate supplementation 

does not blunt the prolonged exercise-induced reduction of in vivo immunity. European 

Journal of Nutrition, 55(4): 1583-1593. 
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Abstract 

 

Background  A recent study demonstrated that, despite the fact carbohydrate (CHO) 

supplementation blunts in vitro immunoendocrine responses to prolonged exercise, it does 

not influence the decrease in in vivo immune induction using experimental contact 

hypersensitivity with the novel antigen diphenylcyclopropenone (DPCP). 

Purpose  To investigate the relationship between the ingestion of CHO before, during and 

after exercise on URTI incidence, the in vivo immune measure of saliva EBV DNA 

expression, and saliva SIgA responses. In addition, the interactions between URTI, saliva 

EBV DNA expression, and saliva SIgA with cutaneous responses to DPCP are explored. 

Methods  In a double-blind design, 24 healthy males were matched as closely as possible 

according to speed at their lower ventilatory threshold, age, and speed at    2max, and 

randomly assigned to 120 min of treadmill exercise at 60%    2max with CHO (n = 12) or 

placebo (PLA) (n = 12) supplementation.  Standardised diets (24 hours pre trial) and 

breakfasts (3.5 hours pre trial) were provided.  Subjects received a primary DPCP exposure 

20 minutes after trial completion, and exactly 28 days later the strength of immune 

reactivity was quantified by magnitude of the cutaneous response (skin-fold thickness and 

erythema) to a low dose-series DPCP challenge. EBV serostatus, Saliva SIgA, saliva EBV 

concentration, stress hormones, leucocyte trafficking and URTI incidence in the 2 weeks 

after trial were also monitored. 

Results  CHO supplementation blunted the cortisol and leucocyte trafficking responses but 

did not influence in incidence of URTI (PLA n = 1, CHO n = 2; P = 0.571), or the 

concentration of EBV DNA in saliva 1 hour post exercise (EBV concentration (median 

(IQR): PLA 1.88 (2.02), CHO 1.68 (3.49) ng.µl
-1

 ×10
-6

; P = 0.231).  There were no overall 

changes in EBV DNA concentration 1 hour post exercise compared to baseline (P = 

0.929).  EBV DNA in saliva was not correlated with SIgA concentration or secretion rate, 

oedema and erythema responses to DPCP, or the incidence of URTI (P = 0.537, 0.942, 

0.809, 0.374, and 0.969 respectively). 

Conclusions  Acute CHO supplementation does not influence the incidence of URTI or the 

expression of EBV DNA; nor is there an interaction between EBV DNA and SIgA, 

cutaneous responses to DPCP, or the incidence of URTI.  The effects with more stressful, 

or fasted exercise remain to be determined.  However, there appears to be no benefit under 

the conditions of this, and a previous study, of CHO supplementation on in vivo immunity. 
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4.1 Introduction 

 

Athletes engaged in regular training which is prolonged in duration and/or strenuous have 

a higher than normal incidence of URTI (Gleeson, 2007; Walsh at al., 2011a).  It is thought 

that this is related to an exercise-induced immunodepression (Gleeson, 2007; Walsh et al., 

2011a) which is caused by an increase in exercise-induced stress responses (e.g. the release 

of stress hormones ), and the redistribution of leucocyte subsets (Davison & Gleeson, 

2005; Lancaster et al., 2005; Robson et al., 1999;).  As a result, immunological and 

nutritional sports studies have investigated the use of various sports supplements with a 

view to attenuating this response.  One supplement that has repeatedly been found to be 

particularly efficacious in blunting the abovementioned exercise-induced stress responses 

is the acute ingestion of carbohydrate (CHO), however, its effects on infection risk within 

an athletic population have not yet been established (Davison & Gleeson, 2005; Gleeson, 

2006a; Gunzer et al., 2012; Henson, et al., 1999; Lancaster, et al., 2005; Moreira, et al., 

2007; Scharhag et al., 2006; Scharhag, et al., 2002; Walsh et al., 2011a;).  The effects of 

CHO supplementation on in vitro immune markers (e.g. increased cortisol, cytokine and 

leucocyte redistribution responses, decreased neutrophil degranulation and oxidative burst 

functions, lymphocyte proliferation and function, and natural killer cell function) have 

been the main assessment outcome of research to date (Davison & Gleeson, 2005; Henson 

et al., 1999; Lancaster et al., 2005; Scharhag et al., 2006; Scharhag et al., 2002).  The 

effects of CHO on URTI incidence has seldom been reported (Nieman et al., 2002), and 

there is a lack of research investigating the effects of CHO on in vivo immune markers. 

 

The DTH response to DPCP is an established, well reported technique which measures a 

T-cell mediated dermatological response to a novel allergen.  We previously reported that 

the ingestion of a CHO drink before, during, and after endurance exercise did not affect the 

in vivo immune response to DPCP (Davison et al., 2016).  An alternative measure of in 

vivo immunity is the reactivation, or expression of, EBV.  EBV infected B-cells, when the 

host's immune system is working optimally, are regulated by T-cells which maintain the 

latent status of the virus (Cruchley et al., 1997).  When the immune system is exposed to 

stress (i.e. exercise), there is an opportunity for the virus to reactivate which can be 

detected by the presence of EBV-DNA in saliva.  Numerous studies have reported the 

presence of salivary EBV-DNA in athletes engaged in intensified periods of training 

(Gleeson et al., 2002; Mehta et al., 2000; Payne et al., 1999) but we are not aware of any 
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studies to date which have investigated the effects of CHO supplementation on the 

expression of EBV-DNA.   

 

The effects of exercise, and the effects of CHO during exercise on the in vivo immune 

response to DPCP, have been reported previously.  Harper-Smith et al. (2011) reported that 

the in vivo immune response to DPCP was significantly reduced following 2 hours of 

treadmill running, a finding that was supported by a later study by this group (Davison et 

al., 2016; Diment et al., 2015).   This reduction is observed following both the induction of 

the immune system in subjects with no prior exposure, and the elicitation of immunity in 

subject with a well-established immunological memory to DPCP (Diment et al., 2015).  

Furthermore, support has been provided to the assumption that the observed decrease in in 

vivo immune induction to DPCP is T-cell mediated, as similar effects have not been 

observed in response to croton oil (which is an irritant that stimulates a non T-cell 

mediated inflammatory response after a single exposure, similar in nature to the cutaneous 

erythema response to DPCP, but with no sensitising properties), following the same 

exercise stimulus (Diment et al., 2015). 

 

The aim of this study was to investigate the relationship between the ingestion of CHO 

before, during and after exercise on URTI incidence, saliva EBV DNA expression, and 

saliva SIgA secretion rate and concentration.  In addition, the interaction between URTI, 

EBV DNA expression, and SIgA were investigated with the established in vivo response to 

DPCP. 

 

4.2 Methods 

 

All subjects provided informed consent before participation and completed a pre-exercise 

screening questionnaire (Physical Activity Readiness Questionnaire: PAR-Q) before 

participating in each exercise test.  Ethical approval for the study was granted from the 

U  v rs       K   ’s E   cs C        . 

 

4.2.1 Subjects 

 

Twenty four    s c      c  v      s      3    8    rs         SD) v       r     r     

s              .78    .    ; w      76.68     .49 k ;           r b c c   c        2max) 

58.4 ± 6.8 mL
-1

.kg.min
-1

).  Subjects were excluded from participation if they were using 
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nutritional supplements or medication or if they had given blood, received vaccinations, or 

suffered an infection within 1 month of the study commencing.  All subjects were familiar 

with treadmill running and had not had any previous exposure to DPCP.  Subjects were 

asked to avoid strenuous exercise for 24 h before, and 48 h following each trial 

(exercise/sensitisation and elicitation) in addition to abstaining from the consumption of 

alcohol or caffeinated drinks 48 h ahead of each trial. 

 

4.2.2                                            2max) 

 

S bj c s’    2max was assessed using an incremental treadmill test.  Subjects were fitted 

with a HR monitor (Polar Electro, Kempele, Finland),  and facemask (Cortex Biophysik 

GmbH, Leipzig, Germany) which was connected to a breath by breath gas analyser 

(MetaLyzer 3BR2, Cortex Biophysik GmbH, Leipzig, Germany) that had been calibrated 

with gas of a known composition prior to use, following the manufacturer's guidelines.  

Subjects completed a 5 minute warm-up at 5 km.h
-1

 with a 1% treadmill gradient 

(h/p/cosmos Saturn treadmill, h/p/cosmos Sports and Medical gmbh, Nussdorf, Germany).  

Immediately following the warm-up, treadmill speed increased by 1 km.h
-1

 every minute 

until 18 km.h
-1
    w  c        s     r        s  b   b    r         r         cr  s   b  

    v r               v               s    .  S bj c s’    2max was determined as the 

highest value calculated from rolling 30 s averages.  Breath-by-breath gas, HR, and 

subjects' RPE (Borg, 1970) were collected throughout.  Speed (km.h
-1
) w s              s  

           k      2) (L.min
-1
)     s        6      2max was estimated using linear 

regression.  Following this session, subjects were split into pairs, matched according to 

speed at VT1 (first ventilatory threshold),    ,     s           2max (the aim being to 

achieve as close a    c   s   ss b     r s         T ,      w   b     ,      w   b  s     

      2max) and randomly assigned         r  2          r        r          6      

   2max with CHO supplementation (n = 12), or 120 min treadmill running    6   

   2max with placebo (n = 12).   

 

4.2.3 Familiarisation 

 

Approximately one week      w        r    2max test, and one week ahead of their main 

trial, subjects attended the laboratory to complete a familiarisation session.  Subjects 

completed a warm up for 5 min at 5 km.h
-1 

and 1% gradient on the same treadmill used for 

the    2max test.   Immediately following this warm up, subjects ran on the same treadmill 
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at a speed equivalent to 6      2max for 60 minutes.  If necessary, minor adjustments to 

running speed were made during the first 15 minutes to attain the target 6      2max.  

Subjects were provided with a fluid bolus containing 5 ml.kg
-1 

body mass water 20 minutes 

before, and upon completion of the trial, an additional 2 ml.kg
-1 

water was provided every 

15 minutes of the trial to familiarise subjects with the fluid provision schedule. HR and 

RPE were recorded every 5 minutes, and subjects were familiarised with the blood and 

saliva collection methods. 

 

4.2.4 Main Trial 

 

Approximately one week following familiarisation, subjects reported to the laboratory at 

07:00 following an overnight fast.  Dietary intake was controlled for the 24 h before the 

main trial by providing subjects with prescribed water intake (35 mL.kg
-1

.day
-1

), and food 

from a standardised list which met their estimated daily energy requirement (11.4 ± 1.5 MJ 

day
-1

) which comprised of 15, 60, and 25% of energy from protein, CHO and fat, 

respectively (equivalent to ~1.3, 5.4, and 1.0 g.kg
-1

.body mass, respectively, Cunningham, 

1991).   At 7:30am, subjects were provided with a standardised breakfast providing ~0.03 

MJ kg
-1

 (equivalent to 2.4 ± 0.3 MJ, comprised of ~0.2, 1.0, and 0.2 g.kg
-1

.body mass of 

protein, carbohydrate, and fat, respectively) and provided with a standardised volume of 

water (~6.6 ml.kg
-1

, proportional to their calculated requirement for the prior 24 h) which 

they could drink ad-libertum between 07:30 and 10:30, ahead of the trial's start at 11:00.  

Subjects were allowed to undertake light activity during this period, such as reading or 

using a computer.  They were then required to sit for 10 minutes with minimal movements 

before a venous blood sample was collected from a superficial anterior vein using standard 

venepuncture techniques detailed in chapter 2, and an unstimulated saliva sample was 

collected via passive drool technique detailed in chapter 2.  Subjects received a fluid bolus 

(5 ml.kg
-1

.body mass) of their respective drink (CHO or PLA) 20 minutes before, and 

immediately after exercise.  In addition, subjects were provided with a fluid bolus 

containing 2ml.kg
-1

.body mass of their respective drink every 15 minutes during exercise.  

Starting at 11:00, s bj c s r      6      2max for 120 minutes with a 1% treadmill grade.  

Within the 15 minutes that followed the trial, blood and saliva samples were collected 

before subjects showered and returned to the laboratory.  Exactly 20 minutes post-exercise 

(13:20), subjects were sensitised with DPCP (see below).  Further blood and saliva 

samples were collected 1 hour post-exercise.  During exercise, 60s steady state gas 

collections were analysed during minutes 10, 20, 40, 50, 70, 80, 100, and 110 using the  
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Douglas bag method detailed in chapter 2.  HR and RPE were recorded every 15 minutes 

during exercise, and nude body mass (NBM) was recorded pre and post-exercise.  DPCP 

elicitation was then performed exactly 28 days following this exercise trial (see below). 

 

4.2.5 Drink composition 

 

A lemon flavoured CHO-based sports drink (Go Energy, Science in Sport, Nelson, U.K.) 

was prepared according to the manufacturer's guidelines (with the exception that 100 mL 

of water was replaced with 100 mL sugar-free, artificially sweetened lemon-flavoured 

drink concentrate (Tesco, Dundee, U.K.) to give a CHO concentration of 10% w/v.  This 

was provided to subjects in the CHO condition.  The PLA drink was CHO-free, taste-

matched as closely as possible, and made using a sugar-free, artificially sweetened lemon-

flavoured drink concentrate (Tesco, Dundee, U.K.) which was diluted 4 parts water to 1 

part concentrate with an additional ~1.25 g NaCl.  An independent laboratory technician 

was responsible for preparing drinks ahead of the main trial in order to maintain double 

blind procedures. Experimental conditions and groupings were validated at the end of the 

study by checking drink osmolality using an osmometer (Osmocheck, Vitech Scientific 

Ltd, Horsham, UK). 

 

4.2.6 Induction of contact hypersensitivity (sensitisation) 

 

In line with previous studies, subjects were sensitised to DPCP at 13:20, exactly 20 

minutes post-exercise (Harper-Smith et al., 2011; Diment, et al., 2015)to ensure that 

cutaneous blood flow had an opportunity to return to baseline (Kenny et al., 2008).   An 

11-mm filter paper disk was placed on a 12-mm aluminium Finn chamber (Epitest Oy, 

Tuusula, Finland) on Scanpor hypoallergenic tape.   The disc was soaked in 22.8 µl of 

0.125% DPCP in acetone and allowed to air dry for 5 minutes before being applied to the 

skin of the subjects' lower back.  Subjects were required to keep this patch in place for 

exactly 48 hours.  This method provided a dose of 30 µg.cm
-2

 DPCP. 

 

4.2.7 Elicitation 

 

In accordance with the methods of Harper-Smith et al. (2011) and Diment et al. (2015), the 

magnitude of an in-vivo response was elicited by secondary exposure to DPCP.  Exactly 28 

days following the main trial and sensitisation to DPCP, subjects returned to the laboratory 
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and received a challenge with a dose-series of low-concentration DPCP (0.000, 0.0048, 

0.0076, 0.0122, 0.0195 and 0.03125% DPCP).  Six individual 7-mm filter paper disks were 

placed on six individual 8-mm aluminium Finn chambers (Epitest Oy, Tuusula, Finland) 

on Scanpor hypoallergenic tape.  Each disk was soaked in 10 µl of the appropriate 

concentration of DPCP, and allowed to air dry for 5 minutes before being applied to the 

volar aspect of the subject's upper arm.  This method provided a dose of: 0.00; 1.24; 1.98; 

3.17; 5.08; and 8.12 µg.cm
-2

 DPCP per patch, respectively.  The location of the patches 

remained the same between subjects, but their allocation order varied to minimise any 

anatomical variability in responses.  The allocation order was randomly assigned, but for 

every allocation pattern used in one group, there was an equivalent, identical pattern used 

in the other (i.e. this pattern was matched between subjects in each of the groups). Subjects 

were required to keep this patch in place for exactly 6 hours.  The strength of in-vivo 

immune reactivity was assessed as cutaneous responses exactly 48 hours post-application. 

 

4.2.8 Assessment of cutaneous responses 

 

Triplicate measures of both skin oedema and skin erythema were taken for each of the six 

elicitation sites (CV for measures of oedema and erythema = 1.9% and 1.5% respectively).  

Skin oedema is the key measure of contact hypersensitivity (CHS) elicitation responses 

(Harper-Smith et al., 2011). Modified spring loaded callipers (Harpenden Skin-fold 

Calliper, British Indications, England) were used to measure skin-fold thickness at each 

elicitation site to the nearest 0.1 mm.  Skin-fold thickness was measured by the same 

investigator on all occasions by holding the callipers at a 90 degree angle to the skin, and 

placing the jaws of the callipers at the outer diameter of each elicitation site (measuring 

skin-fold only, not subcutaneous fat) (Harper-Smith et al., 2011; Diment et al., 2015).  An 

erythema meter (ColorMeter DSM11, Cortex Technology, Hadsund, Denmark) was used 

to determine skin erythema at each elicitation site (Harper-Smith et al., 2011; Diment et al., 

2015).  The mean value of the triplicate measures was calculated for each site and, in order 

to determine the true increase in skin oedema and erythema, the value from the acetone 

only site was subtracted from each patch site value.  The dose-response for all of the sites 

minus  c      w r  s           v       v r    r  c  v         c  s bj c     DPCP  ∑-

      ,     ∑-erythema) (Harper-Smith et al., 2011; Diment et al., 2015). 
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4.2.9 Upper respiratory tract infections 

 

URTIs were recorded by subjects for 2 weeks following the main trial using the method 

detailed in chapter 2. 

 

4.2.10 Saliva sample collection 

 

Saliva samples were collected via passive drool and processed as described in chapter 2 

pre, post, and 1 hour post exercise. 

 

4.2.11 Blood sample collection 

 

Blood samples were collected and processed as described in chapter 2.  Blood samples 

were collected pre, post and 1 hour post exercise. A full study's worth of blood samples 

were only available for 14 of the 26 subjects. 

 

4.2.12 Determination of saliva SIgA 

 

Saliva SIgA concentration and secretion rate were measured using an in house ELISA as 

described in chapter 2.   

 

4.2.13 Saliva osmolality 

 

Saliva osmolality was measured using a freezing point osmometer (Osmomat 030 Series 

M, Gonotec, Berlin) which had been calibrated prior to use following the manufacturer's 

guidelines. 

 

4.2.14 Adrenaline and noradrenaline 

 

Plasma epinephrine and norepinephrine concentrations in K3EDTA plasma were 

determined using a commercially available CatCombi ELISA (IBL International, 

Hamburg, Germany).  Samples were measured in duplicate (CV for epinephrine and 

norepinephrine = 5.4% and 4.0% respectively). 
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4.2.15 Cortisol 

 

Plasma cortisol concentration in heparinised plasma was determined using a commercially 

available ELISA kit (DRG, Germany; Biomercia, California, U.S.A.).  Samples were 

measured in duplicate with an intraassay CV of 2.3%. 

 

Table 4.1 Subject characteristics and physiological response data 

 

 
Placebo 

(n = 12) 

Carbohydrate 

(n = 12) 
P value 

Age (years) 32 (9) 30 (8) 0.724 

Height (m) 1.78 (0.05) 1.78 (0.05) 0.752 

Weight (kg) 76.31 (10.73) 77.08 (10.69) 0.859 

   2max (L.min
-1

) 4.2 (0.6) 4.7 (0.5) 0.030 

   2max (ml.kg
-1

.min
-1

) 55.61 (6.69) 61.58 (5.60) 0.025 

VT1 (L.min
-1

) 2.1 (0.3) 2.3 (0.4) 0.388 

    

   2max during trial (%) 58.11 (3.88) 57.08 (4.87) 0.565 

Mean HR (BPM) 136 (17) 135 (11) 0.876 

Mean RPE (Borg, 1970) 11 (2) 11 (2) 0.533 

Mean (SD) 

 

4.2.16 Determination of serostatus 

 

EBV serology was determined from samples collected at baseline, using the methodology 

detailed in chapter 2. 

 

4.2.17 EBV Reactivation 

 

The concentration of EBV pre, post and 1 hour post exercise was determined by qPCR 

using the methodologies detailed in chapter 3. 

 

4.2.18 EBV Status and Quantification 

 

The majority of sport and exercise studies that have previously investigated EBV have 

simply classified athletes as positive or negative for EBV (Gleeson, et al., 2017), or 

reported percentages of samples with detectible EBV and those which were positive for 

EBV (Cox et al., 2004).  These data are presented in the present study, but in addition, the 

absolute change in EBV concentration pre, to 1 hour post exercise was calculated. 
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To investigate the relationship between EBV expression and DPCP responses, DPCP 

responders were classified as high and low   . .      r    r     ∑-oedema and/ r ∑-

erythema the higher the response) by splitting the groups down the middle.  The absolute 

change in EBV concentration was explored between these two groups. 

 

4.2.19 Statistical analysis 

 

All results are presented as mean (SD) unless otherwise stated.  For data that was not 

normally distributed (WBC, granulocytes, monocytes, adrenaline, noradrenaline, 

haematocrit, and EBV) the median and interquartile range (IQR) are reported.  A 

significance level of 0.05 was pre-set for all statistical analyses.  Normal distribution 

within the data was analysed using the Shapiro-Wilk test.  For normally distributed 

variables, means of subject characteristics and exercise trial physiological responses were 

compared using Independent Samples T-Tests.  Illness episodes were compared using the 

C   Sq  r   T s  w        F s  r’s E  c  T s  s    s  c r   r   .  T        r  s  r        

square-roots of data for which normal distribution could not be assumed were first tested 

using the Shapiro-Wilk test before non-parametric tests were undertaken.  Adrenaline, 

noradrenaline, and monocytes could be normalised through the log transformation or the 

square-root of the data.  The means, and changes over time for these variables were 

compared using two-way mixed ANOVAs.  Mann Whitney U tests were undertaken for 

WBC, granulocyte, haematocrit, EBV concentration, and EBV concentration change in 

r               ∑           and erythema.  Where post-hoc tests were required, Wilcoxon 

tests were undertaken to identify the effects of time.  Pearson correlations were used to 

analyse the correlations between EBV, SIgA, and URTI.  All other means and changes 

over time were compared using two-way ANOVAs.  Significant differences were 

identified using the Holm-Bonferonni Test.  All tests were carried out using SPSS Version 

24.0 (IBM Corp, Armonk, NY, USA). 

 

4.3 Results 

 

4.3.1 Subject characteristics and physiological response data 

 

There were no significant differences in subjects' characteristics or measures of 

physiological response (table 4.1).   
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Table 4.2 Acute responses to 1.5 hours treadmill running at 60%    O2max 

  Baseline Post 1H Post 
 

SIgA concentration (mg.L
-1

) 
PLA (n = 12)  279 (76) 274 (85) 262 (86) 

CHO (n = 10)  329 (106) 361 (103) 282 (93) 

     

SIgA secretion rate (µg.min
-1

) 
PLA (n = 12)  104.8 (60.5) 113.7 (86.3) 122.4 (62.8)   

CHO (n = 10)  129.3 (54.6) 167.6 (91.0) 142.5 (73.4) 

     

SIgA concentration : osmolarity 

PLA (n = 12)  3.64 (0.10) - 3.60 (1.12) 

CHO (n = 10)  4.65 (1.29) - 4.29 (1.40) 

     

Adrenaline (pg.mL
-1

) 

PLA (n = 7)  46 (66) 795 (50) 62 (24) 

CHO (n = 7)  68 (42) 91 (139) 62 (24) 

     

Noradrenaline (pg.mL
-1

)   *  

PLA (n = 7)  643 (171) 784 (419) 707 (203)   

CHO (n = 7)  368 (297) 869 (360) † 516 (255) 

     

Cortisol (ng.mL
-1

)     

PLA (n = 7)  256 (124) 368 (186) 374 (141) 

CHO (n = 7)  379 (134) 224 (104) † 209 (85) † 

     

WBC (×10^9 cells.L
-1

)   * ** 

PLA (n = 8)  5.07 (2.46) 9.48 (4.71)† 10.54 (5.94)† 

CHO (n = 6)  5.16 (0.94) 6.53 (0.88)† 6.09 (0.82) 

     

Lymphocytes (×10^9 

cells.L
-1

) 

    

PLA (n = 8)  1.24 (0.40) 1.55 (0.61) 1.26 (0.52) 

CHO  (n = 6)  1.55 (0.63) 1.52 (0.33) 1.42 (0.43) 

     

Granulocytes (×10^9 

cells.L
-1

) 

  * ** 

PLA (n = 8)  3.25 (1.89) 6.86 (3.56) †  8.14 (3.99) † 

CHO (n = 6)  2.98 (0.94) 4.27 (0.48) † 3.85 (0.58) † 

     

Monocytes (×10^9 cells.L
-

1
) 

    

PLA (n = 8)  0.66 (0.46) 0.84 (1.02) 0.97 (0.90) 

CHO (n = 6)  0.80 (0.49) 0.69 (0.45) 0.75 (0.40) 

     

GLR   * ** 

PLA (n = 8)  2.97 (1.20) 5.61 (3.15) 6.37 (2.21) †† 

CHO (n = 6)  2.32 (1.26) 2.91 (0.76) 3.07 (1.27) † 

     

Haematocrit (%)     

PLA (n = 8)  40.0 (3.4) 40.6 (2.8) 40.3 (2.1) 

CHO (n = 6)  40.2 (2.9) 41.0 (1.9) 39.3 (3.8) 

     

Haemoglobin (g.L
-1

)    * 

PLA (n = 8)  153.9 (8.8) 154.0 (6.8) 151.8 (7.5) 

CHO (n = 6)  154.0 (13.4) 154.8 (12.5) 150.8 (13.3) 
     

Mean (SD), except for WBC, granulocytes, monocytes,  adrenaline, noradrenaline, and haemoglobin 

whereby data are presented as Median (Interquartile Range (IQR) 

* (P < 0.05) indicate significant change from baseline (data grouped as there was a main effect of time) 

**  P ≤  .   )     c      s      c    c       r   b s             r       s    r  w s            c         ) 

†  P <  .  )     c    s      c    c       r   b s         s    s    c      w-up for time: each group analysed 

separately due to significant group × time-point interaction).  

††   P ≤  .   )     c    s      c    c       r   b s         s    s    c      w-up for time: each group 

analysed separately due to significant group × time-point interaction).   
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4.3.2 URTI Incidence 

 

Three subjects (13%) suffered a URTI during the two weeks following the exercise trial.  

Episodes lasted an average of 4 (1) days, had a peak severity of  3 (1), an illness score of  9  

 (1), and a cumulative score of 14 (6).  Data were then grouped into CHO and PLA 

conditions.  There were no significant differences in the number of URTI episodes in the 

CHO (n = 2) and PLA (n = 1) groups (P = 0.571).  Episodes lasted an average of 4 (1) days 

in the CHO group and 3 days in the PLA group, had a peak severity of 3 (1) in the CHO 

which remained unchanged in the PLA group (peak severity = 3), an illness score of 10 (1) 

in the CHO group compared to 9 in the PLA group, and a cumulative score of 12 (7) 

compared to 18 in the PLA group.   

 

4.3.3 SIgA responses 

 

SIgA data were grouped into CHO and PLA conditions.  SIgA concentration showed a 

main effect of time (P = 0.035), but not group (P = 0.134).  SIgA secretion rate did not 

show a main effect of time (P = 0.176) or group (P = 0.274).  There was not a group × time 

interaction for either SIgA concentration or secretion rate (P = 0.169 and 0.353 

respectively).  Post-hoc analysis did not reveal any changes in SIgA concentration at any 

time point from baseline.  SIgA concentration relative to saliva osmolarity did not change 

over time (P = 0.438), nor was there an effect of group (P = 0.523), nor was there a group 

× time interaction (P = 0.168) (see table 4.2). 

 

4.3.4 Catecholamines and cortisol 

 

Adrenaline and noradrenaline showed a main effect of time (P = 0.006 and <0.001 

respectively), but not a main effect of group (P = 0.963 and 0.310 respectively).  There was 

not a group × time interaction for adrenaline (P = 0.762), but there was for noradrenaline 

(P = 0.026).  Post-hoc analyses did not reveal any changes in adrenaline from baseline, 

however noradrenaline was significantly higher immediately post-exercise compared to 

baseline (P = 0.002).  Noradrenaline showed no main effect of time in the PLA group (P = 

0.298), but there was a main effect of time in the CHO group (P = 0.002) with 

noradrenaline significantly higher immediately post exercise compared to baseline (P = 

0.004).  There was not a main effect of time (P = 0.811) or group (P = 0.242) for cortisol, 

but there was a significant group × time interaction (P = 0.004).  Post-hoc analysis did not 
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identify a main effect of time in the PLA condition (P = 0.281), but there was a main effect 

of time in the CHO condition (P = 0.008) with a significant decrease in adrenaline from 

baseline both immediately post (P = 0.001) and 1 hour post (P = 0.042) (see table 4.2). 

 

4.3.5 WBC Counts 

 

WBCs and granulocytes were not normally distributed, and therefore non-parametric tests 

were conducted.  There were no significant differences in WBC counts at baseline between 

groups (P = 0.755) but there was immediately post, and 1 hour post the exercise trial (P = 

0.013 and 0.003 respectively).  WBCs were higher in the PLA condition compared to CHO 

both immediately, and 1 hour post exercise (P = 0.012 and P = 0.012 respectively), but an 

increase in WBCs from baseline was only evident immediately post exercise in the CHO 

group (P = 0.046) There was not a significant difference in the granulocyte count between 

groups at baseline (P = 0.755) but there was immediately post (P = 0.001), and 1 hour post 

exercise (P = 0.001).  Post-hoc tests identified a significant increase in circulating 

granulocytes from baseline in both the PLA and CHO conditions immediately post (P = 

0.012 and 0.028 respectively) and 1 hour post exercise (P = 0.012 and 0.027 respectively) 

(table 4.2). 

  

There was not a main effect of time (P = 0.089), group (P = 0.580), or a group × time 

interaction (P = 0.158) for lymphocytes.  There was not a main effect of time (P = 0.168) 

or group (P = 0.362) in monocytes, but there was a time × group interaction (P = 0.026).  

Post-hoc analysis identified a main effect of time in the PLA group (P = 0.009) but not the 

CHO group (P = 0.794).  There was a trend for an increase in monocytes immediately post 

(P = 0.059) but not 1 hour post exercise (P = 0.137) compared to baseline.  There was a 

main effect of time (P <0.001), group (P = 0.032) and a time × group interaction (P = 

0.002) for the GLR.  Post-hoc tests identified a significant increase in the GLR from 

baseline immediately post (P = 0.031) and 1 hour post exercise (P <0.001).  There was a 

main effect of time in both the PLA (P = 0.001) and CHO group (P = 0.039)  with a 

significant increase in the GLR at 1 hour post (P = 0.001 and 0.036 respectively) but not 

immediately post (P = 0.061 and 0.319 respectively) compared to baseline in both groups 

(table 4.2). 

There was a main effect of time (P = 0.005) for haemoglobin, but not group (P = 0.993) or 

a group × time interaction (P = 0.771).  Post-hoc analysis identified a significant decrease 

in haemoglobin 1 hour post (P = 0.016) but not immediately post (P = 1.000).  There were 
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no significant differences in haematocrit at baseline, immediately post, or 1 hour post (P = 

0.491, 0.573, and 1.000 respectively) (table 4.2). 

 

4.3.6 EBV Serology 

 

Nineteen (83%) of 23 subjects tested were seropositive for EBV (bloods were not available 

for 1 subjects).  Of the nineteen EBV-seropositive subjects, 15 had also provided saliva 

samples (five in the placebo group and 10 in the carbohydrate group).  Ten out of fifteen 

subjects (67%) had detectible levels of EBV DNA in their saliva at baseline (table 4.3). 

 

Table 4.3 EBV detection in saliva 

 

 Baseline Post 1 Hour post 

% of samples positive for EBV 

PLA (n = 5) 80 (4/5) 50 (1/2) 100 (5/5) 

CHO (n = 10) 60 (6/10) 100 (3/3) 63 (5/8) 

 

Median EBV concentration (ng.µl
-1

) ×10
-6

 (IQR) 

PLA (n = 5) 0.79 (1.00) 3.09 (0.00) 0.49 (2.86) 

CHO (n = 10) 0.94 (5.0) 0.31 (-) 1.27 (7.66) 

    

 

Within the 20 minute window post-exercise, ahead of DPCP sensitisation, the priority was 

given to subjects showering ahead of the timely application of the DPCP patch.  Any delay 

in obtaining saliva samples (e.g. reduced saliva flow rate) lead to this specific sample 

collection time-point being abandoned.  Owing to a lack of data immediately-post exercise, 

therefore, these data were excluded from further analysis.  A further 3 subjects' data were 

also excluded as they were missing a sample from the required time-points pre, or 1-hour 

post exercise.  The following analyses were therefore undertaken on the data of 12 subjects 

(four in the placebo group and eight in the carbohydrate group).   

 

There was not a significant effect of time (P = 0.929), nor were there differences in EBV 

concentration at baseline between groups (P = 0.732) or 1 hour post (P = 0.231) (see table 

4.4).  There were no significant differences between any of the four time points (P = 

0.753). 
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Table 4.4 Median EBV concentration (ng.µl
-1

) ×10
-6

 (IQR) 

 

 
Pre 1 hour post 

 

 

PLA (n = 4) 0.72 (0.52) 1.88 (2.02) 

CHO (n = 8) 1.78 (2.66) 1.68 (3.49) 

   

 

There was no significant correlation between the change in SIgA concentration or secretion 

rate pre to 1 hour post exercise and the change in EBV concentration pre to 1 hour post 

exercise (r = 0.222 and 0.027 respectively; P = 0.537 and 0.942 respectively). 

 

There was no significant correlation b  w        ∑-oedema,  r     ∑-erythema 48 hours 

following elicitation and the EBV concentration 1 hour post exercise (r = 0.088 and 0.316 

respectively; P = 0.809 and 0.374 respectively).  There was not a significant difference 

between the change in EBV concentration pre, to 1 hour post exercise when subjects were  

 r      b  DPCP ∑-oedema responses 48 hours following elicitation (P = 0.690), nor 

when EBV change was  r      b  DPCP ∑-erythema responses 48 hours following 

elicitation (P = 0.841).  The relationship between EBV expression and URTI could not be 

investigated as there were too few incidences of URTI in subjects for whom EBV analysis 

was undertaken (n = 1) for effective statistical analysis to be conducted.  

 

4.4 Discussion 

 

The aim of the present study was to investigate the relationship between the ingestion of 

CHO before, during and after exercise on URTI incidence, EBV DNA expression, and 

SIgA secretion rate and concentration.  In addition, the interaction between URTI, EBV 

DNA expression, and SIgA secretion rate and concentration were investigated with the 

established in vivo response to DPCP.  The main findings were that, despite CHO ingestion 

blunting the cortisol and leucocyte trafficking responses to prolonged treadmill running, 

there was no effect on the in vivo response of EBV reactivation, and no associated response 

between the CHS response to DPCP and the incidence of URTI, SIgA secretion rate, SIgA 

concentration, or EBV DNA expression.  Previous research has demonstrated that, 

following prolonged treadmill exercise, in vivo immunity is reduced when assessed by 

CHS to DPCP (Davison et al., 2016; Diment et al., 2015; Harper-Smith et al., 2011), 

however we are not aware of any research that has been published to date detailing the 

acute reactivation responses of EBV following an acute bout of exercise. 
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In the present study, 83% of subjects were seropositive for EBV which is in line with 

estimates in the general population (Pottgiesser et al., 2006).  67% of seropositive subjects 

had detectible levels of EBV DNA in their saliva ahead of the exercise trial.  This is very 

similar to the findings of Gleeson et al., 2002 where 64% of swimmers studied presented 

with evidence of latent EBV viral shedding.  Both the present study, and Gleeson et al. 

(2002) have found a greater number of subjects to be shedding EBV viral DNA into saliva 

compared to previous studies, where the proportion of subjects presenting signs of a latent 

EBV infection reactivating typically range from 17 - 21% (Mehta et al., 2000; Payne et al., 

1999).  

 

EBV reactivation is an emerging marker of in vivo immune function and is believed to be a 

sign of an upset immune balance which has been linked to the occurrence of URTI 

(Gleeson et al., 2002).  Given the findings of Gleeson et al. (2002) we hypothesised that 

there would be a link between EBV reactivation and the incidence of URTI within the 

present study.  However, contrary to our original hypothesis, there was not a discernible 

relationship between EBV expression and SIgA responses, or EBV expression and the 

CHS responses to DPCP.  This may be due to the acute nature of the present study.  The 

majority of subjects had detectible levels of EBV in their saliva before the start of the trial 

and therefore it may not have been a reactivation, as has been observed by longitudinal 

monitoring studies, such as Gleeson et al. (2002), but rather an increase in viral load. 

 

One established marker of in vivo immunity is CHS which measures the DTH response to 

a novel allergen.  A T-cell mediated immune response at a local dermal level results in an 

immune response (Delves et al., 2011).  In line with previous studies, the novel allergen 

DPCP was used (Davison et al., 2016; Harper-Smith et al., 2011; Jones et al., 2017; 

Sleijffers et al., 2001).  Exercise has been shown to result in a diminished DPCP response 

(Davison et al., 2016), and the ingestion of CHO was not effective at preventing the 

exercise-induced decrease of in vivo immune function (Davison et al., 2016).  CHO 

ingestion in the current study also appears to be ineffective in improving the in vivo 

immune response of viral EBV DNA shedding into saliva (i.e. decreasing the amount of 

viral DNA shed into saliva) despite CHO ingestion blunting the cortisol and leucocyte 

trafficking responses, as would be expected.  Both CHS and the shedding of EBV-DNA 

from B-cells into saliva are T-cell mediated (Delves et al., 2011; Diment et al., 2015) and 

there may, therefore, be a shared explanation as to why CHO supplementation does not 
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appear to influence these in vivo immune responses.  We recognise that a limitation of the 

present study is that we did not investigate the under laying mechanisms of the in vivo, T 

cell mediated immune responses.  However, there does not appear to be a relationship 

between the strength of DTH response and the amount of EBV DNA that was shed from 

infected B-cells into saliva, therefore, we speculate that the mechanistic pathways, 

although T-cell dependent, do not interact, although both appear to remain unaffected by 

the ingestion of CHO.  One further limitation of the present study is that a non-exercising 

control group was not present.  The differences in overall in vivo  immune responses 

following primary exposure to DPCP have, to date, only been observed between exercising 

subjects, and non-exercising controls (Davison et al., 2016; Harper-Smith et al., 2011).  It 

may be, therefore, that the utility of in vivo markers of immune function may only be of 

benefit when contrasts are being made between exercising and non-exercising controls.  

However, as discussed earlier, differences in host defence can be detected through the use 

of in vivo immune techniques, without the need for a non-exercising control group (Jones 

et al., 2017) and this therefore requires further investigation. 

 

URTIs can prove troublesome for athletes engaged in both training and competition (Pyne, 

et al., 2000; Pyne & Gleeson, 1998) and their cause has, therefore, come under a lot of 

scrutiny in the past.  Longitudinal studies have identified EBV reactivation, in addition to 

other herpes group viruses such as cytomegalovirus, to be associated with long-term 

fatigue, poor performance and, in some endurance sports, URS (Gleeson et al., 2002; Reid 

et al., 2004; Walsh et al., 2011a).  Not all cases of URTI in athletes can be attributed to 

EBV reactivation, however (Cox et al., 2004), with anything from 22 - 64% of athletes' 

URS being linked (Gleeson et al., 2002; Reid et al., 2004).  In the present study, when the 

change in EBV concentration pre- to post exercise is correlated with URTI, there is not an 

association.  There are obvious differences in the methodologies employed by this study 

compared to others which may be why the findings of this study do not agree with the 

findings of previous research. In the present study, 14% of subjects reported a URTI in the 

2 weeks following the exercise trial.  Although the current rates of URTI are not as high as 

those reported by some studies (Peters et al., 2010; Peters & Bateman, 1982), the findings 

of the present study align closely with the findings of Nieman et al. (1990) who reported 

that 12.9% of subjects suffered with a URTI in the 2 weeks following their participation in 

the Los Angeles Marathon.  However, it should be noted that the Los Angeles Marathon is 

a competitive, mass participation event whereby the study subjects' exposure to other 

athletes and, subsequently, the number of circulating pathogens they came into contact 
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with would have been greater than that of subjects participating in a study conducted 

within a controlled laboratory setting.  In the present study, there wasn't a statistically 

significant difference between the number of subjects reporting a URTI in the PLA (n = 1) 

and CHO (n = 2) groups.  Nieman et al., 2002, also found no difference in URTI incidence 

between subjects who had been supplemented with PLA or CHO during a marathon race (n 

= 98).  This suggests that CHO supplementation may not be beneficial for preventing 

URTI in the 2 weeks that follow an intensive bout of exercise. 

 

The effects of CHO ingestion on in vivo immunity has been previously reported (Davison 

et al., 2016) in a novel study undertaken by members of this research group.  Davison et al. 

(2016) reported that CHO supplementation did not benefit in vivo immune function.  It 

appears that the in vivo marker of EBV reactivation, as employed by the present study, is 

also unaffected by CHO supplementation. However, without a rested control group, it is 

not possible to draw conclusions as to the acute effects of exercise on EBV expression.  

The findings of the present study, that CHO supplementation was not beneficial to in vivo 

immunity post exercise, are not only supported by our previous findings in to the effect of 

CHO supplementation on the CHS response to DPCP (Davison et al., 2016), but also to 

those of Nieman et al. (2002).  Nieman et al. (2002) compared the effects of PLA or CHO 

supplementation during a marathon race on various physiological and immunological 

markers. Despite the fact that CHO supplementation resulted in a lower post-race cortisol 

concentration, there was no difference between the groups in terms of SIgA responses (an 

established marker which relates to URTI risk (Albers et al., 2013 & 2005) or URTI 

incidence in the 15 days following the race.  The findings of the present study do agree 

with the data reported by Nieman et al. (2002).  However, previous research has shown 

CHO supplementation to be of benefit to other immune markers such as leucocyte 

trafficking and anti-inflammatory cytokines such as IL-6, IL-10 and IL-1ra (Chen, et al., 

2008; Davison & Gleeson, 2005; Gleeson, 2007; Nieman, 1998), owing to the maintenance 

of blood glucose during exercise, and the blunting of exercise-induced increases in stress 

hormones, such as cortisol (Walsh, et al., 2011a).  From the research to date, there does not 

appear to be an effect of CHO supplementation on SIgA responses (Walsh et al., 2011a).   

In line with previous research, CHO supplementation during the present study resulted in a 

lower post-exercise cortisol concentration and the attenuation of the leucocytosis observed 

in the CHO group, but did not affect SIgA responses. 
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Neither SIgA concentration or secretion rate in the present study were affected by CHO 

ingestion.  This finding is in line with previous research (Li & Gleeson, 2005; Nieman et 

al., 2002).  However, SIgA concentration and secretion rates were also unaffected by the 

exercise stimulus.  There is, typically, a depression in SIgA immediately following 

intensive exercise (Gleeson & Pyne, 2000) in addition to a delayed period of time 

following exercise (up to 18 hours) in which SIgA concentration returns to baseline (Peters 

and Bateman, 1983).  The same acute, and delayed effects of exercise on mucosal 

immunity were not observed in the present study which may be due to the duration and/or 

intensity of the exercise stimulus.  A post-exercise decrease in SIgA has been a consistent 

observation made by many studies within an athletic population (Gleeson et al., 2002; 

Gleeson et al., 1996; Gleeson et al., 1995; MacKinnon et al., 1989).  Furthermore, Gleeson 

et al. (2002) presented the time-sequence of SIgA suppression, detection of EBV-DNA, 

followed by the appearance of URS.  This same pattern was not observed in the present 

study and there did not appear to be an association between SIgA, URTI, or EBV-DNA.  

None of the subjects in the present study presented with an SIgA concentration  below 40 

mg.L
-1

, or experienced a 40% drop in SIgA secretion rate from baseline, which have been 

previously stated as the thresholds at which an athlete's risk of developing a URTI 

significantly increases (Gleeson et al., 1999a; Neville et al., 2008).  If the exercise stimulus 

employed by the current study was not enough to cause a drop in SIgA severe enough to 

leave subjects vulnerable to URTI, it may also not have been severe enough to cause an 

increase in the expression of EBV DNA into saliva, as detailed by Gleeson et al. (2002).  

EBV infected B-cells are normally controlled by cytoxic T-cells which maintain the 

suppression of the virus (Cruchley et al., 1997).  If the immune system is put under stress 

(e.g. following intensive exercise), there is a transient suppression of cytotoxic T-cells 

(Gabriel & Kindermann, 1997) and it is this diminished T-cell control that is thought to be 

responsible for the expansion of the latent EBV infected-B-cells (Gleeson et al., 2002).  

The response of cytotoxic T cells, observed following aerobic exercise lasting up to, but 

not more than 2 hours,  is much more dependent on the exercise intensity, however, with 

the greatest responses being observed at anaerobic threshold (Gabriel & Kindermann, 

1997).  None of the athletes in the present study were working at intensity above their 

anaerobic threshold; however, the T-cell responses to the exercise stimulus were not 

measured in the present study.  This means that the reasons behind the lack of change in 

EBV-DNA concentration cannot be established, but it is likely owing to the exercise 

intensity and duration. 
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4.5 Conclusion 

 

In conclusion, CHO supplementation does not appear to be of benefit to the in vivo 

immune measure of salivary EBV DNA reactivation.  This is despite CHO 

supplementation blunting the exercise induced cortisol response, and attenuating the 

leucocyte responses following exercise.    In the present study, there is not a correlation 

between DPCP responses and the change in EBV concentration, nor is there a correlation 

between the change in EBV concentration and SIgA.  The effects with more stressful, or 

fasted exercise remain to be determined.  However, there appears to be no benefit under 

the conditions of this, and the previous study by Davison et al. (2016), of CHO 

supplementation on in vivo immunity. 
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Abstract 

 

Background It is widely reported that athletes engaged in regular prolonged activity and/or 

strenuous exercise have a higher than normal incidence of upper respiratory tract infection 

(URTI) which may be related to an exercise-induced impairment of immune function,  One 

food supplement that has been suggested to have beneficial effects on immune function is 

Chlorella pyrenoidosa (CHL).  However, there are relatively few studies of humans in 

vivo, and fewer still on athletes, and those with high physical activity levels. 

Purpose To investigate the effects of supplementation with CHL on leucocyte, mucosal 

immune responses, and EBV reactivation to two days intensified training. 

Methods Twenty-six subjects (age 29 ± 9 years;    2max 53.7 ± 11.7 mL.kg
-1

.min
-1

) 

provided resting blood and saliva samples for determination of leucocytes, SIgA, and 

salivary EBV-DNA at baseline, and following 4, 5 and 6 weeks of daily supplementation 

with CHL (n = 13) or placebo (n = 13).  During week 4, a 2-day intensified training period 

was undertaken [morning and afternoon sessions each day, respectively:    2max test, 

high-intensity interval exercise (HIIE, 3   3  s         s r   s); 9          6      2max; 

3 × 30 s HIIE]. 

Results  CHL increased resting SIgA secretion rate (trial × time, P = 0.016: no change with 

PLA but increases with CHL at week 4 and 5, P = 0.034 and 0.032 respectively.  PLA vs. 

CHL: week-0 = 53.8 ± 33.2 vs. 57.2 ± 36.9 µg.min
-1

; week-4 =  54.3 ± 34.5 vs. 83.1 ± 57.0 

µg.min
-1

;, and week-5 = 62.7 ± 45.8 vs. 98.0 ± 47.1 µg.min
-1

 respectively.  Minimal acute 

changes in SIgA were seen in response to individual exercise bouts, but it was higher at 

some times in the CHL group (for bouts 2 and 3). 

Conclusions Supplementation with CHL has beneficial effects on resting SIgA, which 

might be beneficial during periods of intensified training. 

 

5.1 Introduction 

 

During, and in the hours and days following periods of intensified training, athletes are at a 

greater risk of developing URTI and/or URS compared to their sedentary peers (Kakanis et 

al., 2010).  Athletes' increased risk of infection is believed to be due to immune 

disturbances which arise as a result of the training intensity and duration, endured by both 

some recreational, and elite athletes alike (Gleeson, 2007; Walsh et al., 2011a).  Recently it 

has been shown that large variations in training intensity, particularly acute increases in 

training load, have been shown to be a good predictor of the development of URS in 
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athletes (Svendsen et al., 2016).  This supports previous research in the area which 

demonstrates a relationship between training load and URTI risk (Dias et al., 2011; 

Fahlman & Engels, 2005; Klentrou et al., 2002).   There has been an interest in the use of 

nutritional interventions to help manage and attenuate the immune disturbances that are 

observed in athletic populations, but there is often limited evidence available (Bermon et 

al., 2017; Davison et al., 2014; Walsh et al., 2011b).  One nutritional supplement which has 

been shown to be beneficial for immune function, is Chlorella pyrenoidosa (CHL).  

 

Chlorella pyrenoidosa is a freshwater cyanobacteria, single-celled, freshwater microalgae, 

of which there are approximately 8,000 species in the genus.  Many claims have been 

made with regard to chlorella's beneficial effects on health including: boosting immune 

function and fighting infections (Halperin et al., 2003; Merchant & Andre, 2001); reducing 

high blood pressure and lowering cholesterol (Merchant & Andre, 2001); helping to 

control blood glucose in diabetes (Cherng & Shih, 2006); preventing the spread of cancer 

and slowing the growth of tumours (Merchant et al., 1990); and helping to relieve the 

symptoms of fibromyalgia (Merchant et al., 2001).  Although not all of the 

abovementioned claims are supported by an abundance of literature, there is a substantial 

and growing body of evidence to support chlorella's use as an immunostimulant, and its 

safety has been confirmed through a number of in-vivo studies. 

 

Despite the substantial pool of research investigating the effects of chlorella on a variety of 

chronic illnesses and ailments, there is limited research within the field of sport and 

exercise science.  The research that does exist in the wider, non-sports specific fields has 

shown that chlorella supplementation can improve Th1 immune responses in vitro (Ewart 

et al., 2007) and in vivo; (Kwak et al., 2012) and mucosal immunity in vivo (Otsuki et al., 

2011 & 2016); increase IFN- γ in vitro (Ewart et al., 2007) and in vivo (Kwak et al., 2012), 

TNF-α in vitro (Ewart et al., 2007, Pugh et al., 2001), IL- β in vitro (Kwak et al., 2012, 

Pugh et al., 2001), IL-12 in vitro (Kwak et al., 2012), IL-2 in mice (An et al., 2008), and 

NK-cell activity in vivo (Kwak et al., 2012).  In addition, Hsu et al. (2010) reported the 

activation of IL-1 mRNA expression; proIL-1 protein expression; and IL-1 secretion from 

macrophages in addition to the up regulation of LPS induced TNF-α     IL- β s cr         

response to hot-water-soluble polysaccharides from chlorella pyrenoidosa (CWSP) in vitro.  

Ewart et al. (2007) reported that the beneficial effects of chlorella appeared to be limited to 

Th-1 immune responses in vitro, with no effects observed in IL-4 or IL-13 in mice (An et 

al. 2008).  Increases in both SIgA levels and secretion rates (Otsuki et al., 2011; Otsuki et 
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al., 2012) through short-term use (4-8 weeks) in healthy, human populations consuming 5-

6 g of chlorella per day have been reported.  It has also been shown, through studies in 

mice with acquired immunodeficiency syndrome, to boost immune responses to both 

bacterial and viral infections through increasing the number of CD4
+
CD8

-
 and CD4

-

CD8
+
αβ T c   s (Hasegawa et al., 1995); and to accelerate superoxide generation and 

chemokinesis in polymorphonuclear leucocytes (Tanaka et al., 1986) in murine species. 

 

Only one study to date has measured immune responses to chlorella supplementation in 

athletes.  Ten female kendo athletes' diets were supplemented with either chlorella or a 

placebo for 4 weeks ahead of a 5 day training camp.  SIgA concentration and secretion 

rates maintained near-baseline levels throughout the duration of the training camp in the 

experimental group. Athletes' SIgA concentrations and secretion rates demonstrated a 

significant reduction from baseline in the control group (Otsuki et al., 2012).  The findings 

of this study, although in only a limited cohort of athletes, demonstrate that chlorella may 

help attenuate the suppression in immune function observed following both acute bouts of 

exercise and during intensified periods of training. 

 

The problem with a large number of these studies, however, is that they are conducted in 

murine species, often with in-vitro analysis using CWSP as opposed to direct 

supplementation in vivo.  For those studies conducted in humans, they are within 

populations with underlying health conditions, and do not consider any wider effects the 

supplementation may be having. The purpose of this study was to investigate the effects of 

CHL supplementation (SunChlorella Corporation, Kyoto, Japan) on immune responses to a 

two day intensified training period in trained cyclists. 

 

5.2 Methodology 

 

5.2.1 Subjects 

 

Twenty six trained cyclists (twenty-one males and five females) aged 29 ± 9 years (mean ± 

SD) volunteered for the study (height 173.3 ± 7.4 cm; weight 71.2 ± 11.1 k ;         

  r b c c   c        2max) 53.65 ± 11.69 mL.kg.min
-1

).  Subjects spent an average of 8 

hours training per week, and were excluded from participation if they were using 

nutritional supplements or medication, or if they had given blood, received vaccinations, or 

suffered an infection within one month of the study commencing.  All subjects provided 
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informed consent before participation.  Ethical approval for the study was granted from the 

U  v rs       K   ’s E   cs C        . 

 

5.2.2 Supplements 

 

In line with previous research, the final dose of 6 g per day (30 tablets) of CHL tablets 

(Sun Chlorella 'A' tablets, Sun Chlorella Corporation, Kyoto, Japan) or placebo (Otsuki et 

al., 2011, 2012 & 2016) (see table 5.1 for nutritional composition).  The placebo tablets 

were also provided by Sun Chlorella Corporation and were indistinguishable from the CHL 

tablets.  Supplements were provided in sealed foil pouches with a blinding code that was 

held by the manufacturer and not revealed until after all analyses had been completed.   

 

Table 5.1 Nutritional values of placebo and Sun Chlorella 'A' tablets 

 
 Placebo Chlorella 

   

Energy, kcal.6g
-1 24.36 23.22 

Moisture, g.6g
-1 0.19 0.29 

Protein, g.6g
-1 0.12 3.28 

Fat, g.6g
-1 0.35 0.71 

Total carbohydrate, g.6g
-1 5.21 1.28 

 Sugar, g.6g
-1 5.14 0.53 

 Dietary fibre, g.6g
-1 0.07 0.75 

Ash, g.6g
-1 0.13 0.43 

   

 

5.2.3 Study Design 

 

Subjects reported to the laboratory between 06:30 and 08:30 hours following an overnight 

fast.  Baseline blood and saliva samples were collected from subjects using the standard 

sampling methods detailed in chapter 2.  Subjects were randomly assigned to either the 

experimental (CHL) or control (PLA) group and provided with the first four weeks of 

supplementation (either CHL or a PLA tablets), along with daily illness questionnaires (see 

chapter 2).  Subjects were advised to swallow their tablets with water, consuming half 

alongside their breakfast and half alongside their evening meal for the duration of the 

study.  The dose was gradually increased over the first 3 days starting with a total of 10 
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tablets per day (2 g) on day one; 20 tablets per day on day two (4 g); and finishing with to 

30 tablets per day (6 g) which was then maintained for the duration of the study.  Subjects 

were advised to take their tablets with water, consuming half alongside their breakfast, and 

half alongside their evening meal. 

 

Subjects collected weekly saliva samples at home for 4 weeks and stored these at -20 ºC.  

After 4 weeks, subjects reported to the laboratory between 06:30 and 08:30 hours 

following an overnight fast.  Height and weight were recorded and subjects completed a 

r         2max test until exhaustion, as detailed in chapter 2.  Blood and saliva samples 

were collected pre, post, and one-hour post exercise using the methodology detailed in 

chapter 2. 

 

Subjects were allowed to return home following sample collection, and then reported to the 

laboratory again between 16:00 and 18:00 hours in a euhydrated state having refrained 

from eating within the hour preceding the test to complete a HIIE session (detailed in 

chapter 2) (HIIE1).  Saliva samples were collected pre, post, and one hour post exercise.  

The following morning, subjects once again reported to the laboratory between 06:30 and 

08:30 hours following an overnight fast.  Baseline blood and saliva samples were 

c    c   ,     s bj c s’ NBM w s r c r   .  Subjects were then fitted with a HR monitor 

(Polar Electro, Kempele, Finland) and a facemask (Cortex Biophysik GmbH, Leipzig, 

Germany) connected to a breath by breath gas analyser (MetaLyzer 3BR2, Cortex 

Biophysik GmbH, Leipzig, Germany) before undertaking a 90 minute steady state cycle 

(detailed in chapter 2).  A water bolus containing 2mL.kg
-1

.bm was provided every 15 

minutes.  Blood and saliva samples were collected immediately post and one hour post 

testing.  Subjects NBM was recorded as soon as post samples had been collected.  

Following testing, subjects were once again allowed to return home and returned to the 

laboratory later the same day between 16:00 and 18:00 hours in a euhydrated state having 

refrained from eating in the hour preceding exercise.  Subjects completed an identical HIIE 

session as undertaken the previous day (see chapter 2) (HIIE2).  Saliva samples were once 

again collected pre, post, and one hour post. 

 

Subjects continued to take their supplement, record daily illness diaries, and collect weekly 

saliva samples for a further 2 weeks following the intensified training period. 
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5.2.4 Biological samples 

 

Blood samples, cell counts, vitamin D status, saliva samples, SIgA, and EBV serology 

were conducted using the methodology detailed in chapter 2 

The concentration of EBV DNA in saliva samples was analysed by qPCR using the 

methods detailed in chapter 3. 

 

5.2.5 Statistics 

 

All results are presented as mean (SD) or, in the case of age, mean RPE for 90 minute 

cycle, severity of illness, all leucocyte responses, GLR, haematocrit, haemoglobin, and 

EBV, the median and interquartile range (IQR) are reported.  A significance level of 0.05 

was pre-set for all statistical analyses.  Normal distribution within the data was analysed 

using the Shapiro-Wilk test.  For normally distributed variables, means of subject 

characteristics, exercise trial performance, and illness duration, illness score, and symptom 

score were compared using Independent Samples T-Tests.  Illness episodes were compared 

using the Chi Squared Test with     F s  r’s E  c  T s  s atistic reported.  The log 

transformed and square-roots of data for which normal distribution could not be assumed 

were first tested using the Shapiro-Wilk test before non-parametric tests were undertaken.  

All leucocyte, haemoglobin, haematocrit, GLR, and EBV data could be normalised with 

log transformation or square roots.  As such, two-way ANOVAs were conducted on the 

transformed data for these variables.  Mann Whitney U tests were undertaken for age; 

mean RPE of the 90 minute trial; and severity of illness.  All other means and changes over 

time were compared using two-way mixed ANOVAs.  Significant differences were 

identified using the Holm-Bonferonni Test.  All tests were carried out using SPSS Version 

22.0 (IBM Corp, Armonk, NY, USA). 

 

5.3 Results 

 

5.3.1 Subject characteristics 

 

T  r  w r     s      c         r  c s    s bj c s’    s c   characteristics and 

physiological responses between groups (tables 5.2 and 5.3), nor were there any significant  
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Table 5.2 Subject Characteristics 

 
 Chlorella Placebo P-Value 

 (n = 13) (n = 13)  

 Mean 

(SD/IQR) 
Range 

Mean 

(SD/IQR) 
Range 

2 Tailed 

Age (yr) 23 (14) 19 - 43 29 (13) 19 - 45 0.204 

Height (cm) 175.2 (7.3) 165.0 - 188.2 171.2 (7.0) 154.0 - 181.0 0.170 

Weight (kg) 71.82 (9.38) 58 - 91.8 70.76 (12.52) 52.4 - 89.8 0.809 

   2max (mL.kg
-1

.min
-1

) 57.68 (13.21) 39.70 – 79.67 50.93 (9.86) 34.19 – 69.14 0.153 

No. (%) of females 1 (8)  4 (31)   

 

Table 5.3 Physiological responses to        2max Test on Day 1 of the Training 

Intervention 

 
 Chlorella 

(n = 13) 

Placebo 

(n = 13) 

P-Value 

 Mean (SD) Range Mean (SD) Range  

  O2max (L.min
-1

) 4.1 (0.7) 3.1 – 5.0 3.6 (0.7) 2.5 – 4.9 0.082 

  O2max (ml.kg
-1

.min
-1

) 57.7 (13.2) 39.7 – 79.7 50.9 (9.9) 34.2 – 69.1 0.153 

Work rate (% max) 56.1 (7.7) 47.1 - 66.6 59.9 (6.0) 52.8 - 72.3 0.979 

VT1 (L.min
-1

) 1.8 (0.4) 1.1 – 2.4 1.6 (0.3) 1.1 – 2.2 0.314 

VT1 (ml.kg
-1

.min
-1

) 25.3 (6.9) 15.5 – 36.4 23.6 (5.5) 15.4 – 33.5 0.497 

VT1 (% max) 44.0 (8.0) 34.2 – 62.7 46.3 (5.5) 38.7 – 55.1 0.410 

Wmax (watts) 341 (55) 254 - 425 303 (61) 187 - 404 0.109 

Time to exhaustion (min) 14.4 (1.8) 11.5 – 17.2 13.1 (2.0) 9.2 – 16.5 0.109 

 

Table 5.4 Physiological responses to 90 Minute Cycling on Day 2 of the Training 

Intervention 

 
 Chlorella 

(n = 13) 

Placebo 

(n = 13) 

P-

Value 

 Mean  

(SD/IQR) 

Range Mean 

(SD/IQR) 

Range  

      

Watts (W) 155 (28) 105 – 200 129 (30) 78 – 180 0.310 

Target   O2 (L.min
-1

) 2.4 (0.5) 1.6 – 3.0 2.1 (0.4) 1.5 – 2.8 0.980 

Mean HR (BPM) 138 (17) 110 – 170 133 (12) 115 – 153 0.378 

Mean RPE 13 (2) 12 – 16 13 (2) 12 – 18 0.762 

Mean   O2 (L.min
-1

) 2.4 (0.5) 1.6 – 3.1 2.1 (0.4) 1.6 – 2.9 0.344 

Mean RER 0.9 ± (0.0) 0.9 – 1.0 0.9 (0.1) 0.8 – 1.1 0.190 

      

 

Table 5.5 Change in NBM (kg) 90 Minute Cycling on Day 2 of the Training Intervention 
 

 Chlorella 

(n = 13) 

Placebo 

(n = 13) 

 P-Value  

 Mean (SD) Range Mean (SD) Range Group Time Trial 

× 

Time 

        

NBM Pre (kg) 71.5 (9.5) 56.4 - 92.0 70.6 (12.4) 52.0 - 89.8 
0.872 0.001 0.097 

NBM Post (kg) 70.9 (9.3) 55.8 - 90.4 70.4 (12.2) 51.6 - 89.3 
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differences in subjects performance   during   the   90   minute  steady  state   cycling  trial  

(table 5.4).  There was, however, a main effect of time in NBM pre to post exercise, but 

not a main effect of group, or a group by time interaction.  Post hoc analysis identified a 

significant decrease in NBM over time (table 5.5). 

 

5.3.3 Illness incidence 

 

Four subjects in each group (31%) suffered with a URTI in the 2 weeks following the 

exercise intervention.  There were no significant differences between the number of 

episodes (P = 1.000) (illness duration (PLA = 5 ± 2, CHL = 8 ± 5); peak severity (PLA 

[median] = 2 [IQR = 1], CHL [median] = 2 [IQR = 2]); illness score (PLA = 9 ± 5, CHL = 

15 ± 11); symptom score (PLA = 11 ± 7, CHL = 22 ± 13). 

 

5.3.4 Cell counts 

 

There was no significant main effect of group for total WBC (P = 0.245), lymphocyte (P = 

0.962), or monocyte numbers (P = 0.233), nor was there significant time × group 

interactions for the same (P = 0.938, 0.482, and 0.997 respectively).  There were, however, 

significant effects of time observed in total WBC, lymphocyte, and monocyte numbers (P 

<0.001, <0.001, and <0.001 respectively) with post-hoc tests showing a significant 

increase in total WBCs, lymphocyte, and monocyte numbers from baseline (pre 

supplementation) to immediately post 90 minutes (P <0.001, P = 0.022, 0.001 

respectively).  Total WBCs also showed a significant increase from baseline to 1 hour post 

90 minutes (P <0.001).  There was a significant main effect of group on total circulating 

granulocyte numbers (P = 0.025) and a main effect of time (P <0.001).  Post-hoc tests 

showed no significant effect of group at any time point.  For both the placebo and chlorella 

groups, however, a significant increase in circulating granulocyte numbers was observed 

from baseline (pre supplementation) to immediately post exercise (P = 0.031 and 0.008 

respectively) and 1 hour post exercise (P = 0.010 and 0.015 respectively).  There was no 

significant main effect of group (P = 0.078 and 0.251 respectively) or time (P = 0.295 and 

0.112 respectively) for haemoglobin or haematocrit.  There was no significant main effect 

of group for the granulocyte to lymphocyte ratio (GLR) (P = 0.080).  There was, however, 

a significant main effect of time (P <0.001) with post-hoc tests showing a significant 

increase from baseline (pre supplementation) to 1 hour post 90 minutes (P <0.001) (table 

5.6).



 

 

Table 5.6 Acute Blood Responses Compared to Baseline during 90 min Steady State Endurance Ride on Day 2 

  Bout 3 (Day 2 morning): 90 min SS 

 Baseline Pre-    O2max Pre-Ex Post-Ex 1h-Post-Ex 

      

Total WBC (×10^9 

cells.L
-1

) 

   ** ** 

PLA (n = 9) 4.80 (2.77) 5.59 (2.12) 5.73 (2.77) 7.08 (4.81) 8.67 (4.98) 

SC (n = 10) 6.07 (2.27) 6.13 (2.68) 6.53 (3.07) 9.58 (4.88) 10.31 (5.65) 

      

Lymphocytes (×10^9 

cells.L
-1

) 

   *  

PLA (n = 9) 1.30 (0.99) 1.76 (1.13) 1.15 (0.78) 1.98 (1.72) 0.97 (0.81) 

SC (n = 10) 1.40 (0.49) 1.43 (0.82) 1.26 (0.56) 1.72 (1.11) 1.36 (0.88) 

      

Monocytes (×10^9 cells.L
-

1
) 

   **  

PLA (n = 9) 0.63 (0.49) 0.65 (0.54) 0.72 (0.37) 1.01 (0.57) 0.81 (0.29) 

SC (n = 10) 0.79 (0.80) 0.82 (0.38) 1.02 (1.10) 1.34 (0.91) 0.91 (0.46) 

      

Granulocytes (×10^9 

cells.L
-1

) 

   * * 

PLA (n = 9) 3.14 (1.86) 2.91 (0.83) 3.16 (1.58) 4.17 (9.86) 6.28 (4.55) 

SC (n = 10) 3.72 (1.40) 3.79 (2.31) 4.22 (2.45) 5.97 (3.97) 8.56 (5.34) 

      

Haemoglobin (g.L
-1

)      

PLA (n = 9) 148 (27) 152 (18) 147 (19) 151 (38) 148 (25) 

SC (n = 10) 156 (13) 157 (22) 158 (20) 163 (19) 162 (20) 

      

Haematocrit (%)      

PLA (n = 9) 40.3 (5.7) 40.0 (3.5) 38.1 (2.8) 39.3 (3.7) 39.8 (5.1) 

SC (n = 10) 40.5 (4.0) 39.5 (4.4) 40.4 (3.8) 42.2 (5.4) 42.4 (5.0) 

      

Granulocyte:Lymphocyte    **  

PLA (n = 9) 2.22 (1.14) 2.10 (1.15) 2.53 (0.98) 2.60 (3.08) 6.62 (3.55) 

SC (n = 10) 2.53 (0.82) 2.49 (1.47) 2.91 (2.99) 3.10 (1.80) 4.95 (7.54) 

      

Values are median (IQR) 

90 min SS: steady state endurance ride. 

* (P < 0.05) and ** (P < 0.01) indicate significantly lower than baseline (post hoc follow-up for time: both groups pooled due to no group × time-point interaction).   
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5.3.5 Vitamin D status 

 

Blood for vitamin D analysis was available for 20 subjects (10 in each group).  There was 

not a significant main effect of group (P = 0.542) or time (P = 0.445).  Nor was there a 

significant time × group interaction (P = 0.567) for total vitamin D.  There was a 

significant main effect of group (P = 0.021) but no main effect of time (P = 0.062), nor 

was there a significant time × group interaction (P = 0.102) for subject who started the trial 

with insufficient vitamin D levels (<50 nmol.L).  There was no significant main effect of 

group (P = 0.923), but a significant effect of time (P = 0.048) and no time × group 

interaction (P = 0.595) for subjects who started with adequate vitamin D levels (>50 

nmol.L) (table 5.7). 

 

When D2 was analysed for all subjects, there was a main effect of group (P <0.001), a 

significant time × group interaction (P <0.001), and a significant main effect of group (P 

<0.001).  Post-hoc analysis showed a significant increase in D2 post-supplementation with 

chlorella (P =<0.001).  When D3 was analysed for all subjects, there was no main effect of 

group (P = 0.125), but a significant time × group interaction (P = 0.028).  There was not a 

significant main effect of time (P = 0.056).  Post-hoc analysis, although non-significant, 

showed a trend for D3 to decrease with chlorella supplementation but not placebo (P = 

0.056) (table 5.7). 

 

Forty percent of subjects had a vitamin D total <50.00 nmol.L
-1

 at baseline (n = 8; 4 × 

placebo, 4 × chlorella).  D2 in subjects with low starting vitamin D status showed a 

significant main effect of group (P = 0.001), a significant time × group interaction (P 

<0.001), and a significant main effect of time (P <0.001).  Post-hoc analysis showed a 

significant increase in D2 post-supplementation with Chlorella (P <0.001) but not placebo 

(P = 0.176) in subjects with low starting total vitamin D.  D3 in subjects with low starting 

vitamin D status showed no significant main effect of group (P = 0.377), nor a significant 

time × group interaction (P = 0.270), nor a significant main effect of time (P = 0.151) 

(table 5.7). 



 

 

Table 5.7 Vitamin D Responses to Supplementation 

 Baseline (ALL) 

 

Post Supplementation 

(ALL) 

Baseline (low 

starters) 

Post Supplementation 

(low starters) 

Baseline (adequate 

starters) 

Post Supplementation 

(adequate starters) 

 (PLA n = 10; CHL n = 10) (PLA n = 2; CHL n = 2) (PLA n = 8; CHL n = 8) 

       

Total Vitamin D (nmol.L
-1

)    **   

PLA 65.92 (36.85) 66.80 (33.17) 35.40 (3.03) 34.03 (9.94) 86.27 (34.60) 88.65 (22.10) 

SC 56.29 (20.01) 62.36 (10.28) 36.15 (3.96) 57.10 (8.10) 69.72 (13.06) 65.87 (10.67) 

       

Vitamin D2 (nmol.L
-1

)       

PLA 4.23 (2.71) 3.69 (1.89) 3.25 (0.83) 2.80 (0.00) 4.88 (3.39) 4.28 (2.32) 

SC 3.14 (1.08) 27.53 (9.78) ‡ 3.65 (1.70) 33.55 (12.72) ‡ 2.80 (0.00) 23.52 (5.16) ‡ 

       

Vitamin D3 (nmol.L
-1

)       

PLA 61.69 (36.52) 63.11 (32.24) 32.58 (2.36) 31.23 (9.94) 81.38 (35.10) 84.37 (21.36) 

SC 53.15 (20.50) 34.83 (12.92) † 32.50 (5.40) 23.55 (8.77) 66.92 (13.06) 42.35 (9.21) † 

       

Values are mean (SD) 

Low starters are subjects with a starting Total Vitamin D of <50.00 nmol.L
-1

; Adequate starters are subjects with a starting Total Vitamin D of >50.00 nmol.L
-1

 

†  P <  .  )     ‡  P <  .  )     c    s      c    c       r   b s         s    s    c      w-up for time: each group analysed separately due to significant group × time-point interaction).   
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5.3.6 SIgA 

 

There was no significant main effect of group for SIgA concentration or secretion rate 

between resting time-points throughout the trial (P = 0.248 and 0.124 respectively).  A 

significant effect of time (P = 0.015 and 0.002 respectively) and a significant time × group 

interaction (P = 0.022 and 0.016 respectively) was observed for both concentration and 

secretion rate.  Post-hoc analysis did not show any significant time effects for SIgA 

concentration in the placebo group (P = 0.782), however, there was a significant effect of 

time in the chlorella group (P <0.001) although no changes in SIgA concentration were 

indentified one week, and two weeks post the training intervention (P = 0.078 and 0.056 

respectively) (table 5.8).  C   r     s               r s              cr  s     SI   

s cr      r     r   b s          r     2max (P = 0.020), pre 90 minutes (P = 0.006), 1 

week (P <0.001) and 2 weeks post exercise intervention (P = 0.016).  No effect of time 

was observed in the placebo group (P = 0.557) (table 5.8 and figure 5.1).   

 

Figure 5.1 SIgA secretion rates 

A: SIgA secretion rates at rest compared to baseline, pre supplementation; B: SIgA secretion rates in 

response to 90 minutes steady state cycling, compared to baseline, pre-supplementation. 

* (P < 0.05) and † (P < 0.01) indicate significantly higher than baseline (post post hoc follow-up for time: 

each group analysed separately due to significant group × time-point interaction).   

 

 

Compared to pre-supplementation, there was no significant main effect of group for SI   

c  c   r         r s   s            2max test (P = 0.607).  There was a significant main 

effect of time (P <0.001), but no time × group interaction (P = 0.066).  Post-hoc analysis 

showed a significant decrease in SIgA concentration 1 hour post exercise compared to pre-

supplementation (P = 0.008).  When pre-supplementation values were excluded and 

exercise responses analysed in isolation, there was not a significant main effect of group in 
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SIgA c  c   r         r s   s            2max test (P = 0.745).  There was a significant 

main effect of time (P <0.001) and a significant time × group interaction (P = 0.040).  

Post-hoc analysis identified a significant main effect of time in both the placebo and 

chlorella groups (P = 0.014 and <0.001 respectively) with no significant changes in SIgA 

concentration in the placebo group but a significant increase in SIgA concentration 

immediately post (P    . 22)       s      c      cr  s         r   s     2max   s   P   

 . 38) c    r       r     2max test values in the chlorella group (table 5.9).  However, 

SIgA secretion rate remained unaffected by supplementation (P = 0.349) or time (P = 

0.107), and there was no significant time × group interaction (P = 0.066). When pre-

supplementation values were excluded and exercise responses analysed in isolation, there 

w r  s        c     s    SI   s cr      r       r s   s            2max test (group, P = 

0.267; time, P = 0.652; time × group interaction, P = 0.0587) (table 5.9). 

 

Compared to pre-supplementation, there was no significant main effect of group for SIgA 

concentration or secretion rate in response to HIIE1 (P = 0.771 and 0.194 respectively).  

There was a significant main effect of time for both SIgA concentration and secretion rate 

(P <0.001 and 0.018 respectively). No time × group interaction was observed in SIgA 

concentration (P = 0.790) but a significant interaction was observed for SIgA secretion rate 

(P = 0.016).  There was a significant decrease in SIgA concentration pre (P = 0.004) and 1 

hour post exercise (P = 0.004).   

 

When pre-supplementation values for SIgA concentration were excluded and exercise 

responses analysed in isolation, there was a significant main effect of time (P <0.001) but 

no main effect of group (P = 0.633) or a time × group interaction (P = 0.773) in response 

to HIIE1.  Post-hoc analysis identified a significant decrease in SIgA concentration pre-

HIIE1 (P = 0.005) and 1 hour post HIIE1 (P    .  3) c    r       r -   2max test.  SIgA 

secretion rate significant decreased immediately post HIIE1 (P = 0.044) in the chlorella 

condition.  There was not a significant effect of time in the placebo group (P = 0.075), 

however there was a significant effect of time (P = 0.003) in the chlorella group with a 

significant increase in SIgA secretion rate from baseline pre (P = 0.009), and immediately 

post exercise (P = 0.010).  When pre-supplementation SIgA secretion rate values were 

excluded and exercise responses analysed in isolation, there was a significant main effect 

of time (P = 0.047) but no main effect of group (P = 0.142) or a time × group interaction 

(P = 0.099) however no significant changes in SIgA secretion rate were identified in either 

group (PLA, P = 0.064; CHL = P = 0.111) (table 5.9). 
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There was no significant main effect for group in SIgA concentration or secretion rate in 

response to 90 minutes steady state cycling (P = 0.771 and 0.102 respectively).  There was 

a significant main effect of time for both concentration and secretion rate (P = 0.007 and 

0.023 respectively).  No time × group interaction was observed for SIgA concentration (P 

= 0.551), however as significant interaction was observed in SIgA secretion rate (P = 

0.017).  SIgA concentration significantly decreased 1 hour post exercise (P = 0.016).  Post-

hoc analysis showed a significant increase in the SIgA secretion rate from baseline 

compared to pre 90 minutes (P = 0.038), immediately post 90 minutes (P = 0.029), but no 

change was identified 1 hour post 90 minutes (P = 0.074) in the chlorella condition.   There 

was no significant effect of time in the placebo group (P = 0.996).  There was a significant 

effect of time (P <0.001) in the chlorella group with a significant increase in SIgA 

secretion rate from baseline pre 90 minutes (P = 0.023), immediately post 90 minutes (P = 

0.005) and 1 hour post 90 minutes (P = 0.004) (table 5.9 and figure 5.1).   

 

When pre-supplementation values were excluded and exercise responses analysed in 

isolation, there was a significant main effect of time (P <0.001) but no main effect of group 

(P = 0.438) or a time × group interaction (P = 0.291) for SIgA concentration.  Post-hoc 

analysis identified a significant decrease in SIgA concentration 1 hour post 90 minutes (P 

   .  9) c    r       r -   2max test (table 5.9).  No changes were observed in SIgA 

secretion rate (group, P = 0.060; time, P = 0.644; time × group interaction, P = 0.459)  

(table 5.9). 

 

In response to HIIE2, there was no significant main effect of group (P = 0.564 and 0.244 

respectively) or a time × group interaction (P = 0.554 and 0.181 respectively) for SIgA 

concentration or secretion rate.  A main effect of time was observed for both SIgA 

concentration and secretion rate (P <0.001 and <0.001 respectively)  Post-hoc analysis 

showed a significant decrease in SIgA concentration pre (P = 0.021) and 1 hour post 

exercise (P = 0.034) accompanied by a significant increase in IgA concentration 1 hour 

post exercise (P <0.001).   

 

When pre-supplementation values were excluded and exercise responses to HIIE2 analysed 

in isolation, there was a significant main effect of time (P <0.001 and 0.005 respectively) 

but no main effect of group (P = 0.464 and 0.150 respectively) or a time × group 

interaction (P = 0.619 0.577 respectively) for SIgA concentration or secretion rate.  Post-

hoc analysis identified a decrease in SIgA concentration pre-HIIE2 



 

 

 

 

 

Table 5.9 SIgA Responses Compared to pre-exercise 
 

  Bout 1 (Day 1 morning):     O2max  

test 

Bout 2 (Day 1 afternoon): HIIE Bout 3 (Day 2 morning): 90 min SS Bout 4 (Day 2 afternoon):HIIE 

 Baseline Pre-Ex Post-Ex 1h Post-

Ex 

Pre-Ex Post-Ex 1h Post-

Ex 

Pre-Ex Post-Ex 1h Post-

Ex 

Pre-Ex Post-Ex 1h Post-Ex 

              

SIgA concentration (mg.L
-1

) ** **  **   * *  * 

PLA (n 

= 13) 

205 (106) 176 (90) 197 (85) 148 (62) 131 (49) 201 (109) 141 (124) 194 (101) 168 (57) 126 (60) 135 (73) 197 (100) 147 (81) 

SC (n = 

13) 

193 (79) 199 (86) 266 (128) 123 (65) 151 (53) 215 (194) 137 (79) 192 (79) 179 (69) 157 (60) 148 (66) 248 (104) 169 (114) 

              

SIgA secretion rate (µg.min
-1

)          

PLA (n 

= 13) 

53.8 (33.2) 54.3 

(34.5) 

66.6 

(80.6) 

73.3 

(73.1) 

58.6 

(41.1)   

45.5 

(36.9)  

66.6 

(73.3) 

53.8 

(33.5)  

52.2 

(27.6)  

53.7 

(39.2)  

53.1 

(32.8) 

46.3 

(21.7) 

75.6 (41.5) 

SC (n = 

13) 

57.2 (36.9) 83.1 

(57.0) 

88.7 

(67.1) 

82.2 

(59.1) 
99.9 

(82.1) ‡ 

84.3 

(66.4) † 

92.6 

(97.2) 
87.7 

(49.6) † 

77.3 

(41.0) ‡ 

87.2 

(43.3) ‡ 

80.3 

(37.3) 

72.6 

(62.9) 

124.6 

(128.9) 
              

Values are mean (SD) 

HIIE: High-intensity interval exercise session; 90 min SS: steady state endurance ride. Values are mean (SD)  

* (P < 0.05) and ** (P < 0.01) indicate significantly lower than baseline (post hoc follow-up for time: both groups pooled due to no group × time-point interaction).   

†  P <  .  )     ‡  P <  .  )     c    s      c           r      b s         s    s    c      w-up for time: each group analysed separately due to significant group × time-point interaction).   

Table 5.8 Resting SIgA Responses compared to baseline, pre supplementation 

 
 Baseline Pre Exercise Day 1 Pre Exercise Day 2 1 Week Post 2 Weeks Post 

      

SIgA concentration (mg.L
-1

)      

PLA (n = 13) 205 (106) 176 (90) 194 (101) 185 (103) 192 (57) 

SC (n = 13) 193 (79) 199 (86) 192 (79) 261 (112) 368 (261) 

      

SIgA secretion rate (µg .min
-1

)     

PLA (n = 13) 53.8 (33.2) 54.3 (34.5) 53.8 (33.5) 62.7 (45.8) 58.3 (34.9) 

SC (n = 13) 57.2 (36.9) 83.1 (57.0) * 87.7 (49.6) * 98.0 (47.1) ** 85.1 (59.2) * 

      

Values are mean (SD)  

* (P < 0.05) and ** (P < 0.01) indicate significantly higher than baseline (post post hoc follow-up for time: each group analysed separately due to significant group × time-point interaction).   
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(P = 0.015) and 1 hour post HIIE2 (P = 0.018) accompanied by a significant decrease in 

SIgA secretion rate 1 hour post HIIE2 (P    . 3 ) c    r       r     2max.  A significant 

increase in SIgA concentration immediately post HIIE2 (P    . 39) c    r       r -

   2max test was also observed (table 5.9). 

 

There was a main effect of time (P = 0.018), but no main effect of group (P = 0.348), or a 

time × group interaction (P = 0.119) for saliva flow rate at resting time points.  Post-hoc 

tests identified a significant increase in saliva flow rate pre-90 minutes compared to 

baseline (P = 0.046) (table 5.10).  There was a main effect of time (P = 0.031), not a main 

effect of group (P = 0.400), or a time × group interaction (P = 0.435) for saliva flow rate 

responses to the   O2max test compared to baseline.  Post-hoc tests identified a significant 

increase in saliva flow rate 1-hour post the   O2max test compared to baseline (P < 0.001).  

When pre-supplementation values were excluded and saliva flow rate responses to the 

  O2max test analysed in isolation, there was a main effect of time (P < 0.001), but no main 

effect of group (P = 0.383), or a time × group interaction (P =  0.311).  Post-hoc tests 

identified a significant increase in saliva flow rate 1 hour post   O2max test compared to 

pre   O2max test (P = 0.001).  There was a main effect of time (P < 0.001), but no main 

effect of group (P = 0.227), or a time × group interaction (P = 0.171) for saliva flow rate 

responses to HIIE1 compared to baseline.  Post-hoc tests identified a significant increase in 

saliva flow rate pre HIIE1 (P < 0.001) and 1 hour post HIIE1 (P = 0.001).  When pre-

supplementation values were excluded, and the saliva flow rate responses to HIIE1 

analysed in isolation, there was a main effect of time (P < 0.001), but no main effect of 

group (P = 0.198), or a time × group interaction (P = 0.121).  Post-hoc tests identified a 

significant decrease in saliva flow rate immediately post HIIE1 compared to pre HIIE1 (P 

< 0.001).  There was a main effect of time (P < 0.001), but no main effect of group (P = 

0.133) or a time × group interaction (P = 0.075) for saliva flow rates in response to 90 

minutes steady state cycling.  Post-hoc tests identified a significant increase in saliva flow 

rate from baseline pre (P = 0.027) and 1 hour post the 90 minute cycle (P = 0.002).  When 

pre-supplementation values were excluded, and the saliva flow rate responses to the 90 

minute steady state cycle analyses in isolation, there was a main effect of time (P = 0.001), 

but no main effect of group (P = 0.103) or a time × group interaction (P = 0.683).  Post-

hoc tests identified a significant increase in saliva flow rate 1 hour post the 90 minute cycle 

compared to pre 90 minutes (P = 0.004).  There was a main effect of time (P < 0.001), but 

no main effect of group (P = 0.386), or a time × group interaction (P 



 

 

  

  

 

 

 

 

 

 

 

 

Table 5.11 Acute saliva flow rate (ml.min
-1

) responses to each exercise bout during the 2-day intensified training period (n = 13) 

 

  Bout 1 (Day 1 morning):     O2max  

test 

Bout 2 (Day 1 afternoon): HIIE Bout 3 (Day 2 morning): 90 min SS Bout 4 (Day 2 afternoon):HIIE 

 Baseline Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex 

    **† ** †† * *  *† ** †† **† 
PLA  0.30 

(0.15) 

0.35 (0.28) 0.27 (0.24) 0.45 (0.53) 0.31 (0.47) 0.22 (0.29) 0.33 (0.75) 0.27 (0.38) 0.26 (0.22) 0.48 (0.39) 0.39 

(0.47) 

0.21 (0.32) 0.53 (0.56) 

SC  0.23 

(0.33) 

0.41 (0.37) 0.36 (0.37) 0.66 (0.32) 0.61 (0.46) 0.47 (0.48) 0.57 (0.56) 0.51 (0.42) 0.38 (0.23) 0.55 (0.32) 0.57 

(0.34) 

0.26 (0.27) 0.73 (0.75) 

              

HIIE: High-intensity interval exercise session; 90 min SS: steady state endurance ride. Values are median (IQR)  

* (P < 0.05) and ** (P < 0.001) indicates  significant change from baseline   

†  P <  .  )     ††  P <  .   )     c     s      c    c       r   pre exercise values 

Table 5.10 Resting saliva flow rate (ml.min
-1

) responses compared to baseline, pre supplementation 

 
 Baseline Pre Exercise Day 1 Pre Exercise Day 2 1 Week Post 2 Weeks Post 

   *   

PLA (n = 13) 0.30 (0.15) 0.35 (0.28) 0.27 (0.38) 0.26 (0.38) 0.24 (0.32) 

SC (n = 13) 0.23 (0.33) 0.41 (0.37) 0.51 (0.42) 0.41 (0.40) 0.33 (0.38) 

      

Values are median (IQR)  

* (P < 0.05) indicates a significant change from baseline 



 

 

 

 

 

 

 

Table 5.12 Change in EBV concentration compared to baseline, pre supplementation 

 
 Baseline Pre Exercise Day 1 Pre Exercise Day 2 

    

EBV Concentration (ng.µl
-1

 x10
-6

)    

PLA (n = 9) 0.70 (2.07) 0.54 (123.73) 0.85 (10.85) 

SC (n = 6) 4.56 (15.35) 1.53 (2.23) 0.73 (1.91) 

    

EBV Concentration (ng.µl
-1

 x10
-6

)    

No URTI (n = 7) 0.72 (8.10) 1.05 (2.05) 0.82 (5.80) 

URTI (n = 8) 1.16 (15.77) 0.33 (123.80) 1.44 (8.04) 
    

Values are median (IQR)  
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= 0.261) for saliva flow rate in response to HIIE2, compared to baseline.  Post-hoc tests 

identified a significant increase in saliva flow rate pre (P < 0.001) and 1 hour post HIIE2 

compared to baseline (P < 0.001).  When pre-supplementation values were excluded, and 

the saliva flow rate responses to HIIE2 analysed in isolation, there was a main effect of 

time (P < 0.001), but no main effect of group (P = 0.377) or a time × group interaction (P 

= 0.061).  Post-hoc tests identified a significant decrease in saliva flow rate immediately 

post HIIE2 compared to pre (P < 0.001), and a significant increase in saliva flow rate 1 

hour post HIIE2 compared to pre (P = 0.018) (table 5.11). 

 

5.3.7 EBV 

 

15 of 20 subjects tested (75%) were seropositive for EBV (9 in the PLA group, and 6 in the 

CHL group).  There was no significant main effect of group (P = 0.735), time (P = 0.963), 

or time × group interaction (P = 0.087) for EBV concentration from pre-supplementation, 

and the mornings of both exercise days.  When subjects were grouped by those who had or 

hadn't suffered with a URTI in the 2 weeks following the exercise intervention, there was 

no significant main effect of group (P = 0.805), time (P = 0.964), or a group × time 

interaction (P = 0.931) (table 5.12). 

 

 

5.4 Discussion 

 

The aim of the current study was to assess the effects of chlorella supplementation on acute 

immune responses (leucocyte responses and salivary immune and stress response markers) 

and delayed immune responses (SIgA and illness incidence) in response to a two day 

intensified training period using a double blind, between groups design.  This is the first 

time the influence of chlorella on immune function has been investigated in response to 

intensified training.  The main findings of this study were that a daily dose of 6 g CHL for 

4 weeks before (and for the 2 weeks following) the training intervention increased the 

resting SIgA secretion rate by week 4, accompanied by a trend for increased resting SIgA 

concentration by week 5.  Neither SIgA secretion rate or concentration were acutely 

affected by any one individual exercise bout, but SIgA secretion rate in the CHL group 

appears to increase in response to some of the exercise bouts.  The same response was not 

observed in the PLA group.  None of these changes in SIgA could be attributed to changes 

in saliva flow rate.  There were also no differences in the frequency, severity, or duration 

of self- reported URS between the PLA and CHL groups.  WBCs, lymphocytes, 
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monocytes, and granulocytes increased from baseline immediately post the 90 minute 

cycle, with WBCs and granulocytes remaining elevated 1 hour post exercise, but there 

were no differences between the CHL and PLA groups.  The GLR increased from baseline 

1 hour after the 90 minute cycle on day 2 of the training intervention. Supplementation 

with CHL did not appear to effect haemoglobin or haematocrit levels in response to any of 

the exercise sessions, nor did it appear to have any effect on the in vivo immune marker of 

salivary EBV.  Vitamin D increased in the CHL group following 4 weeks of daily 

supplementation, however, this appears to be due to an increase in D2 alongside a reduction 

of D3 in the CHL group.  No changes were observed in the PLA group's levels of total 

vitamin D, D2 or D3. 

 

The acute decreases in SIgA concentration after some of the training sessions are in line 

with some research studies that have looked at intensive training periods (Hall et al., 2007) 

but not others (Davison, 2011).  However, the fact that no changes in SIgA secretion rate 

were observed following any of the exercise bouts differs from Hall et al. (2007) and 

agrees with Davison et al. (2011).  There is very little research, however, that has tracked 

salivary SIgA responses to multiple exercise sessions over such a short period of time.  

Papacosta at al. (2013) and Otsuki et al. (2012) have shown decreases in resting SIgA over 

longer periods (i.e. 1-2 week training camps) which differs from the current study in which 

no differences in resting SIgA concentration or secretion rates were seen in responses to 

day 2 of the exercise intervention, however this may be due to the shorter intensified 

training period of the current study.  Neither Papacosta et al. (2013) or Otsuki et al. (2012) 

assessed the response to individual training sessions in the training period, which a novel 

aspect of this the current study. 

 

SIgA  s            b   ’s   rs      s         c       s          s     r      r          r   

cavity.  A decrease in SIgA has been shown to be related to an increased risk of developing 

URTI and the development of associated URS.  Because of this, it was hypothesised that 

any increase (or the avoidance of a decrease) in SIgA would result in a reduced risk of 

URS (i.e. subjects would report fewer symptoms).  A decrease in the number of URS 

reported would be in line with previous research studies on intensified training 

periods/training camps and long-term monitoring of athletes (Fahlman & Engels, 2005; 

Gleeson et al., 2012; Gleeson et al., 2011; and Neville et al., 2008).  Following an acute 

bout of moderate intensity exercise, SIgA normally drops below baseline immediately 

post-exercise and returns to normal within the following hour.  For more intensive bouts of 
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exercise, or in periods of intensified or over training, SIgA levels can take much longer to 

return to baseline.  Chlorella supplementation in the group studied, appears to have 

attenuated the post-exercise drops in SIgA compared to baseline. 

 

Chlorella supplementation did not influence the exercise induced SIgA responses.  

However, chlorella supplementation significantly increased SIgA secretion rate from 

baseline at every resting time-point, while no changes in SIgA were observed in the 

placebo group.  Based on previous research, subjects in the chlorella group, therefore, 

should have had an increased protection against URTI (Gleeson et al., 2012).  However, no 

differences were observed between groups in the study, with a 31% incidence rate in both 

the placebo and chlorella groups.  This is not surprising as CHL supplementation in the 

present study did not influence the expression of EBV DNA into saliva.  Salivary EBV 

DNA expression is considered to be a good measure of in vivo immune function.  The 

incidence of URTI is also indicative of how well the immune system is working at an in 

vivo level, and therefore the fact that neither salivary EBV DNA expression, or URTI 

incidence were affected by CHL supplementation suggest that the immune function as a 

whole, indicated by these two measures, is not improved following 4 weeks of CHL 

supplementation.  This is supported by our finding that EBV concentration was not higher 

in subjects who went on to develop a URTI.  Yamauchi et al. (2011) reported that salivary 

EBV DNA expression tended to increase in subjects who were suffering with a sore throat 

and cough.  One limitation of the present study is that we did not manage to successfully 

collect all saliva samples during the 2 week period post the exercise intervention. One 

further limitation of the present study is the modest sample size (n = 26) which may have 

limited our ability to comprehensively determine the effects of chlorella supplementation 

on URTI/URS.  Furthermore, resting SIgA levels remained relatively close to baseline in 

the placebo group following most, but not all, of the exercise sessions.  The maintenance of 

SIgA levels close to baseline within this group means that URTI/URS risk was not 

adversely affected to a great extent, even with the intensified training period.  Despite this, 

our findings, in combination with those of Otsuki et al. (2012), do show some benefit of 

CHL supplementation in terms of increases above baseline levels of salivary SIgA.  

Importantly, resting SIgA concentration, although not acutely affected by supplementation 

before or during the intensified training period, did appear to start increasing in the two 

weeks that followed the training period (i.e. weeks 5 and 6).  It is possible, therefore, that 

the supplementation period used in the present study may not have been long enough to 

yield any beneficial effects on immune function and it would be feasible to suggest that, 
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had the training period commenced after 5  or 6 weeks of supplementation, rather than 4, 

that this may have translated into greater effects on URS reports.  However, this will 

require further study. 

 

The most likely mechanisms for the increase in salivary SIgA observed after 4-5 weeks of 

supplementation with CHL are via the immunostimulating properties of compounds found 

in CHL such as specific polysaccharides and glycoproteins or protein/polysaccharides 

complexes (Kralovec et al., 2007; Morris et al., 2008; Tanaka et al., 1998).  In particular, 

Kralovec et al. (2007) identified relatively high molecular weight (> 100 kDa) 

protein/polysaccharide complexes and polysaccharides as being responsible for the 

immunostimulatory effects of CHL in vitro.   They identified glutamic acid and aspartic 

acid as the major amino acid constituents of the protein/polysaccharide complexes (~22-

26%) with galactose (~22-50%), rhamnose (~18-40%), and arabinose (~14-26%) as the 

main constituent monosaccharides found in the polysaccharides and protein/polysaccharide 

complexes with the greatest immune stimulating activity in vitro.  This included B cell 

stimulation and proliferation, which could explain the beneficial effects seen in humans in 

vivo, including antibody response to influenza vaccination (Halperin et al., 2003) and 

aspects of mucosal immunity as observed in the present study and previous research 

(Otsuki et al., 2016, 2012, & 2011).  However it is not possible to determine the exact 

mechanisms and we can only speculate at this stage.  Indeed, CHL contains an abundance 

of nutrients, many of which could influence immunity in athletes.  However, in line with 

previous suggestions (Otsuki et al., 2016, 2012, & 2011), the specific dose of each of these 

nutrients is unlikely to be responsible for the effects we have observed on SIgA we have 

observed in a healthy young adult population with no known dietary deficiencies.  As such, 

we suggest it is the compounds such as polysaccharides and protein/polysaccharide 

complexes (Kralovec et al., 2007) that are responsible for the effects observed in the 

present study.  This will require further study (including the determination of the 

bioavailability from orally consumed CHL and monitoring levels of these substances in 

plasma and/or immune cells after ingestion, but this was beyond the scope of the current 

investigation). 

 

Although it is the polysaccharides (predominately galactose, rhamnose, and arabinose) and 

proteins in chlorella which are believed to be responsible for a large percentage of 

chlorella's immunostimulating activities (Kralovec et al., 2007), Chlorella also contains a 

number of vitamins (B1, B2, B6, B12, C, D2, E, K1, niacin, pantothenic acid, folic acid and 
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biotin); minerals (calcium, iron, magnesium, zinc, potassium, sodium and phosphorus); 

and amino acids (isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, 

threonine, tryptophan, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, 

glycine, proline and serine); is rich in beta-carotene; and high in protein (Dam et al., 1965).  

Although most of the nutrients in 6 g of chlorella are provided in very low doses (and 

therefore unlikely to influence immune responses), one nutrient in which CHL is abundant 

is vitamin (He at al., 2013a) (SunChlorella contains 54 µg/6 g, equivalent to 2,160 IU).  

The primary outcome analysis for subjects' vitamin D levels in the present study showed 

that there was no difference in vitamin total Dbetween the CHL and PLA groups at 

baseline, or post-supplementation.  When subjects were stratified by starting vitamin D 

status (either low <50 nmol.L
-1

, or normal >50 nmol.l
-1

) however, on face value it appears 

that CHL increases total vitamin D in subjects with a low level at baseline.  However, 

when levels of ergocalciferol (D2) and cholecalciferol (D3) were analysed, there was a 

significant increase in circulating D2 observed in this population, alongside a reduction in 

D3 (the same, although non-significant observation can be made in the CHL group who 

started with adequate vitamin D (table 5.7).  Both D2 and D3 function as prohormones and 

therefore have no biological effect.  In order to become active compounds, they must first 

be converted to 25-hydroxyvitamin D (25(OH)D).  Recent research has shown that vitamin 

D3 increases serum 25(OH)D more efficiently than vitamin D2 (Armas et al., 2004; Heaney 

et al., 2011; Oliveri et al., 2015; Trang et al., 1998).  Low levels of 25(OH)D have been 

linked to an increased risk of developing URTI (Berry et al., 2011; Ginde et al., 2009; He 

et al., 2013a). Therefore, a rise in vitamin D2 levels, in combination with a fall in vitamin 

D3 as observed in the CHL group of the present study may not have been beneficial to any 

aspect of their immunity including URTI.  40% (n = 8) of subjects for whom blood was 

available had low total vitamin D (<50 nmol.L
-1

) with  n = 4 of these subjects were in the 

CHL group.  Therefore 20% of subjects started with a low vitamin D status which would 

not have been corrected optimally via supplementation with CHL.  This may go some way 

to explaining why there was not a decrease in the number of URTI/URS reported in the 

CHL group as these subjects would have been more susceptible to infection. 

 

The leucocytosis observed in response to the training intervention and, specifically, the 90 

minute prolonged cycle at 25% Δ,  s         w               s     r v   s r s  rc  (Robson 

et al., 1999).  Typically, prolonged endurance exercise results in a delayed leucocytosis 

which usually sees a doubling of leucocytes in circulation but, in some instances, a four-

fold increase has been observed (Eskola et al., 1978).  The significant increase in 
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circulating lymphocytes following exercise is due to the redistribution of white blood cells 

already present.  Typically, following intensive exercise lasting less than one hour, 

leucocytosis is caused by a significant increase in circulating neutrophils and lymphocytes.  

Following prolonged exercise, leucocytosis is predominately caused by neutrophilia.  In 

this study, we were unable to differentiate granulocytes into neutrophils, eosinophils, 

basophils, and mast cells.  Increases in eosinophils, basophils, and mast cells in response to 

exercise within a healthy population are unlikely, however, so we can be confident in our 

assumption that the significant increases in granulocytes observed in this study, are in fact 

neutrophils.  Therefore, the cellular blood responses in the present study, where total 

WBC, lymphocytes, monocytes, and granulocytes (neutrophils) all significantly increased 

from baseline immediately following the 90 minute cycling on day 2 of the intervention, 

with granulocytes remaining elevated 1 hour post, are not atypical of the research currently 

in circulation (Blannin, 2006; Nieman et al., 1994, Pyne, 1994; Robson et al., 1999).    

Despite the fact a doubling of total WBCs from baseline was not observed (which would 

be typical of exercise sessions lasting in excess of one hour), the significant increases in 

WBCs do suggest that our training intervention provoked an inflammatory response.  A 

limitation of this study is that we did not measure cortisol responses to each exercise 

session and therefore the individual stress response has not been measured.  However, an 

increase in the GLR is also considered to be a good measure of immunological stress 

(Chen et al., 2017) and, in the present study, this increased immediately post-exercise and 

remained elevated one hour-post.   The typical leucocyte responses to exercise observed in 

the present study, and fact that there were no differences observed in the responses 

between the CHL and PLA groups suggest that CHL supplementation does not blunt the 

stress response typically observed following endurance exercise. 

 

5.5 Limitations 

 

One limitation of this study is that we did not measure    2max pre-supplementation, so it 

is not possible to see the effect of CHL supplementation on performance parameters, such 

as    2max, VT1, and Wmax.  Following four weeks of supplementation with Chlorella 

pyrenoidosa, Umemoto & Otsuki (2014) reported a significant, 9% increase in peak 

oxygen uptake during a maximal cycling test to exhaustion, attributed by the study's 

authors to be caused by branch chain amino acids (although the levels contained within the 

administered dose would be small compared to the amounts used in branch chain amino 

acid performance studies), the bioactive effects of some of the vitamins and nutrients, or to 
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do with the wide spectrum of nutrients available (as opposed to the bioactive effects).  This 

built on the findings of a murine study 3 years previously which reported a two-fold 

increase in time to exhaustion when undertaking a swimming challenge in mice that were 

supplemented with CHL (Mizoguchi et al., 2011).  However, the present study was not 

designed to measure cardiovascular or performance responses to supplementation, but 

rather the immunological responses to a controlled period of intensified training (i.e. with 

all subjects exposed to the same relative training demand).  We also did not record 

physiological responses during HIIE sessions, owing to technical difficulties, to ensure that 

exercise intensity was comparable between PLA and CHL groups.  However, we are 

confident that subjects produced a maximal effort (and hence the same relative demand) 

for these sessions based on the maximal RPE values expressed following all HIIE sprints. 

 

5.6 Conclusion 

 

The aim of the current study was to assess the effects of chlorella supplementation on acute 

and delayed immune responses to a two day intensified training period.  In conclusion, 

daily supplementation with CHL was able to increase salivary SIgA secretion rate at rest.  

Supplementation did not reduce the acute stress responses to exercise, as observed by 

leucocyte responses and, although vitamin D increased in the CHL group for subjects with 

low vitamin D levels (<50 nmol.L
-1

), it was an increase in vitamin D2 as opposed to the 

more efficacious vitamin D3 that provided the increase.  This is the first study of its kind to 

investigate the effects of CHL supplementation on vitamin D status. 

 

Together with previous research, there is now substantial evidence to show that CHL can 

enhance salivary SIgA; however, in the present study, it appears that a longer 

supplementation period may be required to translate to protection against URTI and 

reduced URS reports. 
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Chapter 6 

The effect of 4 weeks Chlorella pyrenoidosa supplementation on immune 

responses to 2 days intensified training: A crossover, double blind, 

placebo-controlled study 
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The study contained within this chapter was fully funded by SunChlorella Corporation, 
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Abstract 

 

Background: It is widely reported that athletes engaged in regular prolonged activity 

and/or strenuous exercise have a higher than normal incidence of upper respiratory tract 

infection (URTI) which may be related to an exercise-induced impairment of immune 

function.  The study detailed previously, in Chapter 5, reported that Chlorella pyrenoidosa 

(CHL) had beneficial effects on immune function at rest in trained cyclists.    

Purpose: To investigate the effects of supplementation with CHL on leucocyte, cytokine, 

and mucosal immune responses, illness incidence, and EBV reactivation to two days 

intensified training using a double blind, crossover study design. 

Methods: Fourteen subjects (age 31  ± 10 years;    2max 54.44 ± 13.39 mL.kg
-1

.min
-1

) 

provided resting blood and saliva samples for determination of leucocytes, neutrophil 

function, SIgA, and salivary EBV-DNA at baseline, and following 4, 5 and 6 weeks of 

daily supplementation with CHL or placebo.  During week 4, a 2-day intensified training 

period was undertaken [morning and afternoon sessions each day, respec  v   :    2    

  s ,     -     s        rv      rc s   HIIE, 3   3  s         s r   s); 9          6   

   2max; 3 × 30 s HIIE].  Subjects continued supplementation for a further 2 weeks before 

undertaking a 12 week wash out period.  The exercise responses of IL-4, IL-10 (stimulated 

in whole blood), salivary lysozyme, salivary lactoferrin, salivary cortisol, salivary α-

amylase were also investigated. 

Results: CHL increased resting SIgA concentration (time × trial, P = 0.024: no change 

with PLA but increase with CHL at week 5 (P = 0.040).  PLA vs. CHL: week-0 = 185 ± 71 

vs. 209 ± 163 mg.L
-1

 and week-5 = 168 ± 71 vs. 267 ± 123 mg/L
-1

, respectively.  Minimal 

acute changes in SIgA were seen in response to individual exercise bouts, but SIgA 

concentration was lower at some times in the PLA group (for bout 2). 

Conclusions: Supplementation with CHL has beneficial effects on resting SIgA, which 

might be useful during periods of intensified training. 

 

6.1 Introduction 

 

In the previous study, we reported that daily supplementation with Chlorella pyrenoidosa 

(CHL) increased salivary SIgA concentration and secretion rate at rest. This study reports 

on a follow up, double blind crossover study investigating the effects of CHL 

supplementation on immune responses and illness incidence to two days intensified 

cycling training. 
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6.2 Methodology 

 

6.2.1 Subjects 

 

Fourteen subjects who took part in the original study (Chapter 5) agreed to return to the 

laboratory following a 12 week wash out period to volunteer for the crossover study.  

Eleven males and three females returned for the follow up study (age: 31 ± 10 years (mean 

± SD); height 172.4 ± 4.3 cm; weight 71.01 ± 10.31 k ;           r b c c   c    

    2max) 54.44 ± 13.39 mL.kg.min
-1

) (table 6.1).  Subjects spent an average of 7 hours 

training per week, and  were excluded from participation if they were using nutritional 

supplements or medication, or if they had given blood, received vaccinations, or suffered 

an infection within one month of either phase of the study commencing.  All subjects 

provided informed consent before participation.  Ethical approval for the study was granted 

 r       U  v rs       K   ’s E   cs C        . 

 

Table 6.1 Subject Characteristics (n = 14) 

 Chlorella Placebo P-Value 

 Mean (SD) Range Mean (SD) Range 2 Tailed 

      

Age (yr) 31 (10) 19 - 45 31 (10) 19 - 45 0.336 

Height (cm) 172.3 (4.3) 165 - 181 172.4 (4.4) 165 – 181.7 0.190 

Weight (kg) 71.34 (10.57) 58.4 – 89.8 71.64 (10.85) 58 – 93.4 0.629 

   2max  

(mL.kg
-1

.min
-1

) 

53.62 (13.20) 34.19 – 78.69 54.97 (13.21) 35.10 – 79.67 0.117 

      

 

6.2.2 Study Design 

 

The study design remained the same for crossover as reported in Chapter 5, and subjects 

were provided with the opposite supplement to their first arm of the study (i.e. if a subject 

had been provided with placebo during phase one, they were provided with chlorella, and 

vice versa).  7 subjects started with CHL and 7 subjects started with PLA.  The collection 

of blood and saliva samples remained at the same points and there was consistency of 

collection methods.  The analysis of cell counts, vitamin D, EBV status and DNA 

expression, and SIgA remained as reported in Chapter 5.  In addition, whole blood 

stimulated cytokine release, neutrophil function, lysozyme, lactoferrin, salivary cortisol, 

    α-amylase were also analysed. 
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6.2.3 Vitamin D 

 

Vitamin D was analysed using methods detailed in chapter 2 with responses between CHL 

and PLA groups analysed, and responses of low (< 50 nmol.L
-1

) and adequate starters (> 

50 nmol.L
-1

). 

 

6.2.4 Cytokines 

 

Immediately following sample collection, 800 µl whole blood (collected into a heparin 

vaccutainer) was incubated at 37 °C for 60 minutes in a block heater with either 40 µl PBS 

(Sigma-Aldrich, St. Louis, Missouri, U.S.A.), or 40 µl Stimulant (84015-1VL, Sigma-

Aldrich, St. Louis, Missouri, U.S.A.) which had been reconstituted in dH2O as 

recommended by the manufacturer, aliquoted, and stored frozen at -80 °C until required.  

Samples were gently mixed by inversion at the beginning, and half way through the 

incubation period.  As soon as the incubation period was over, samples were centrifuged at 

4 °C and 17,000 × g in a microcentrifuge (Fisher Scientific accuSpin Micro 17R 

Microcentrifuge; Loughborough, U.K.) for 2 minutes.  Plasma was aliquoted into 1.5 mL 

Eppendorf tubes and stored frozen at -80 °C until analysis. 

 

IL-4 and IL-10 were measured by ELISA (Human IL-4 ELISA Max Deluxe; catalogue 

number: 430305; Human IL-10 ELISA Max Deluxe; catalogue number: 430605; both 

BioLegend, San Diego, California, U.S.A.).  Samples were thoroughly defrosted before 

use.  Stimulated samples were diluted 1:1 prior to use, and the test procedure 

recommended by the manufacturer was followed.  Un-stimulated samples were analysed in 

singular; stimulated samples were analysed in duplicate (CV for IL-4 and IL-10 = 9.8% 

and 8.7% respectively). Standard curves and assay results were prepared in Microsoft 

Excel.  Unstimulated values were subtracted from corresponding stimulated samples 

before statistical analysis.  Any samples which fell above or below the standard curve were 

re-analysed with the dilution factor adjusted accordingly.  The concentration was 

calculated using the following equation: 
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For statistical analysis, responses to exercise trials and supplementation were analysed but, 

in addition, subjects were stratified by those who got ill, and those who didn't (Gleeson et 

al., 2012).  IL-4 and IL-10 responses were then compared between these two groups. 

 

6.2.5 Blood contamination 

 

Saliva samples being analysed for alpha-amylase, cortisol, lysozyme, or lactoferrin were 

screened for blood contamination prior to investigation.  Saliva samples were analysed in 

duplicate (and the mean calculated for each sample) using an ELISA (Salivary Blood 

Contamination Enzyme Immunoassay Kit, 1-1302; Salimetrics, Pennsylvania, U.S.A.) 

assay, following the manufacturer instructions.  The intraassay CV = 2.8%.    Samples with 

more than 2 mg/dL transferrin were excluded from analysis for lysozyme, lactoferrin, and 

salivary cortisol. 

 

6.2.6 Lysozyme 

 

L s z    w s    s r   b  s   w c  ELIS    ss  M  ™ H     L s z    ELIS  

Kit, EL3010-1; Assaypro LLC, St. Charles, Missouri, U.S.A.) according to the 

manufacturer instructions.  Saliva samples were analysed in duplicate, and the mean 

calculated for each sample.  The intraassay CV = 12.8%.  The acute lysozyme responses to 

exercise pre, post, and 1 hour post 90 minutes steady state cycling are reported, using pre 

   2max values as a baseline. 

 

6.2.7 Lactoferrin 

 

L c    rr   w s    s r   b  s   w c  ELIS    ss  M  ™ H     L c    rr   ELIS  

Kit, EL2011-1; Assaypro LLC, St. Charles, Missouri, U.S.A.) according to the 

manufacturer instructions.  Saliva samples were analysed in duplicate, and the mean 

calculated for each sample.  The intraassay CV = 4.5% The acute lactoferrin responses to 

exercise pre, post, and 1 hour post 90 minutes steady state cycling are reported, using pre 

   2max values as a baseline. 
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6.2.8 Salivary cortisol 

 

Salivary cortisol was analysed by sandwich ELISA (Expanded Range, High Sensitivity 

Salivary Cortisol Enzyme Immunoassay Kit, 1-3002; Salimetrics, Pennsylvania, U.S.A.) 

according to the manufacturer instructions.  Saliva samples were analysed in duplicate, and 

the mean calculated for each sample.  The intraassay CV = 2.0%.  The acute salivary 

cortisol responses to exercise pre, post, and 1 hour post 90 minutes steady state cycling are 

reported, using pre    2max values as a baseline. 

 

6.2.9 α-amylase  

 

α-amylase activity was measured using   k     c   z     ss    S   v r  α-amylase 

Kinetic Enzyme Assay Kit, 1-1902; Salimetrics, Pennsylvania, U.S.A.) according to the 

manufacturer instructions.  Saliva samples were analysed in duplicate, and the mean 

calculated for each sample.  The intraassay CV = 6.4%. T    c    α-amylase responses to 

exercise pre, post, and 1 hour post 90 minutes steady state cycling are reported, using pre 

   2max values as a baseline. 

 

6.2.10 Neutrophil function 

 

Immediately following sample collection, 800 µl whole blood (collected into a heparin 

vaccutainer) was incubated at 37 °C for 60 minutes in a block heater with either 40 µl PBS 

(Sigma-Aldrich, St.Louis, Missouri, U.S.A.), or 40 µl Stimulant (84015-1VL, Sigma-

Aldrich, St.Louis, Missouri, U.S.A.) which had been reconstituted in dH2O as 

recommended by the manufacturer, aliquoted, and stored frozen at -80 °C until required.  

Samples were gently mixed by inversion at the beginning, and half way through the 

incubation period.  As soon as the incubation period was over, samples were centrifuged at 

5 °C and 17,000 × g in a microcentrifuge (Fisher Scientific accuSpin Micro 17R 

Microcentrifuge; Loughborough, U.K.) for 3 minutes.  Plasma was aliquoted into 1.5 mL 

Eppendorf tubes and stored frozen at -80 °C until analysis. 

 

E  s  s  c  c   r     s w r      r      b  ELIS    ss  M  ™ Human Neutrophil 

Elastase ELISA Kit; catalogue number: EE1001-1; AssayPro, St. Charles, Missouri, 

U.S.A.).  Samples were thoroughly defrosted before use.  Un-stimulated and stimulated 
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samples were diluted 1:50 and 1:1000 respectively prior to use, and the test procedure 

recommended by the manufacturer was followed.  Un-stimulated samples were analysed in 

singular; stimulated samples were analysed in duplicate.  The intraassay CV = 1.5%.  

Standard curves and assay results were prepared in Microsoft Excel.  Any samples which 

fell above or below the standard curve were re-analysed with the dilution factor adjusted 

accordingly.  Elastase release was calculated using the following equation: 

 

                          

                               

                                                   

 

Elastase release per neutrophil was calculated using the following equation: 

 

                                      
                          

                
 

 

The acute neutrophil responses to exercise pre, post, and 1 hour post 90 minutes steady 

state cycling are reported, using pre supplementation values as a baseline. 

 

6.2.11 Statistical analysis 

 

All results are presented as mean (SD).  A significance level of 0.05 was pre-set for all 

statistical analyses.  Normal distribution within the data was analysed using the Shapiro-

Wilk test.  For normally distributed variables, means of subject characteristics, and 

exercise trial performance were compared using Paired Samples T-Tests.  Illness episodes 

were compared between arms using the Chi Squared Test with the McNemar Test statistic 

reported (for within group comparison).  The log transformed and square-roots of data for 

which normal distribution could not be assumed were first tested using the Shapiro-Wilk 

test before non-parametric tests were undertaken.  Wilcoxon tests and Friedman tests were 

undertaken for monocyte, granulocyte, haemoglobin, haematocrit, and neutrophil-

lymphocyte ratios, IL-10 and IL-4 responses.  All other means and changes over time were 

compared using two-way ANOVAs.  For vitamin D status analysis, pre-supplementation 

vitamin D status was also included as a covariate in order to determine the effects of pre 

vitamin D status on the effectiveness of the supplementation induced changes of vitamin D 



122 

 

status. Significant differences were identified using the Holm-Bonferonni Test.  All tests 

were carried out using SPSS Version 22.0 (IBM Corp, Armonk, NY, USA 

 

6.3 Results 

 

6.3.1 Subject characteristics 

 

There w r     s      c         r  c s    s bj c s’    s c         r  r   c  c  r c  r s  cs 

between trials (tables 6.1 and 6.2).   

 

6.3.2 Exercise trial physiological responses 

 

T  r  w r     s      c         r  c s    s bj c s’ absolute (P = 0.113) or relative    2max 

(P = 0.117); lower gas exchange threshold relative to body mass (ml.kg
-1

.min
-1

) (P = 

0.052); Wmax (P = 0.539); or time to exhaustion (P = 0.954) b  w       2max tests.  

S bj c s’   w r v        r    c        r s      L.   
-1
),     s bj c s’   w r gas exchange 

  r s     w       r ss    s     rc          2max (L.min
-1

) were significantly lower in 

s bj c s’ CHL trials (P = 0.009 and 0.013 respectively) (table 6.2). 

 

Table 6.2 Physiological Responses to        2max Test on Day 1 of the Training 

Intervention, n = 14 

 

 Chlorella Placebo P-Value 

 Mean (SD) 

or Median 

(IQR) 

Range Mean (SD) 

or Median 

(IQR) 

Range  

      
VO2max (L.min

-1
) 3.9 (0.7) 3.0 – 5.1 3.7 (0.7) 2.9 – 4.8 0.113 

   2max (ml.kg
-1

.min
-1

) 55.0 (13.2) 35.1 – 79.7 53.6 (13.2) 34.2 – 78.7 0.117 
VT1 (L.min

-1
) 1.6 (0.3) 1.3 – 2.3 1.8 (0.4)* 1.1 – 2.3 0.009 

VT1 (ml.kg
-1

.min
-1

) 23.7 (6.3) 14.2 – 36.4 25.8 (7.0) 15.4 – 37.7 0.052 
VT1 (% max) 42.3 (4.5) 34.2 – 52.4 47.9 (5.4)* 39.3 – 61.1 0.013 
Wmax (watts) 326 (52) 254 - 425 327 (47) 264 - 403 0.539 
Time to exhaustion (min) 13.9 (1.7) 11.5 – 17.2 13.9 (1.6) 11.8 – 16.4 0.954 
      
* (P < 0.05) indicate significantly higher than chlorella 
 

There were no significant differences in power output (P = 0.524); target VO2 (P = 0.961); 

mean RPE (P = 0.216); meanVO2 (P = 0.289); or mean RER (P = 0.685) between trials 

during the 90 minute trials (table 6.3).  T  r  w s,   w v r,   s      c         r  c         

r     v  w rk-r    w       r ss    s     rc          2max (L.min
-1

) (P = 0.047) with 

subjects working at a higher relative work-rate in the placebo trial. There was not a main 
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effect of trial for NBM pre to post exercise between trials, or a main effect of time, or a 

trial × time interaction (table 6.4). 

 

Table 6.3 Physiological Responses to 90 Minute Cycling on Day 2 of the Training 

Intervention (n = 14) 
 

 Chlorella 

(n = 14) 

Placebo 

(n = 14) 

P-

Value 

 Mean (SD) or 

Median 

(IQR) 

Range Mean (SD) or 

Median 

(IQR) 

Range  

      

Work rate (W) 148 (34) 101 - 201 146 (30) 106 - 190 0.524 

Target VO2 (L.min
-1

) 2.2 (0.4) 1.7 - 2.8 2.2 (0.4) 1.6 - 2.8 0.961 

Mean RPE 12 (1) 11 - 15 13 (1) 11 - 14 0.216 

Mean VO2 (L.min
-1

) 2.1 (0.4) 1.4 - 2.9 2.2 (0.4) 1.6 - 2.9 0.289 

Work rate (% max) 56.1 (7.7) 38.0 - 66.6 59.9 (6.0)* 52.8 - 72.3 0.047
*
 

Mean RER 0.94 (0.10) 0.85 - 1.11 0.95 (0.08) 0.88 - 1.08 0.685 

      

Data are presented mean (SD), with the exception of mean RER, whereby median (IQR) is reported 

* (P < 0.05) indicate significantly higher than chlorella 

 

Table 6.4 Change in NBM (kg) 90 Minute Cycling on Day 2 of the Training Intervention 
 

 Chlorella 

(n = 14) 

Placebo 

(n = 14) 

 P-Value  

 Median 

(IQR) 

Range Median 

(IQR) 

Range Trial Time Trial 

× 

Time 

        

NBM Pre (kg) 68.1 (16.4) 56.4 - 91.0 68.5 (18.5) 58.0 - 89.8 
0.093 0.077 0.051 

NBM Post (kg) 67.1 (10.0) 55.8 - 90.4 69.1 (18.7) 58.0 - 93.1 

        

 

6.3.3 Illness incidence 

 

Two subjects in the PLA trial (14%), and 6 subjects in the CHL trial (43%) suffered with a 

URTI in the 2 weeks following the exercise intervention which was not a significant 

difference (P = 0.094) (figure 6.1).  Subjects in the PLA trial reported that symptoms lasted 

an average of 7 ± 3 days, had a peak severity of 2 ± 1, and a symptom score of 15 ± 9.  In 

the CHL trial, subjects reported that symptoms lasted an average of 7 ± 4 days, had a peak 

severity of 2 ± 1, and a symptom score of 15 ± 11. 

 

6.3.4 Cell counts 

 

There were no significant main effects of trial for total WBC count (P = 0.530), total 

circulating lymphocyte count (P = 0.137), total circulating monocyte count (P = 0.132), or 
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total circulating granulocyte count (P = 0.321).  There were significant effects of time for 

total   WBC   count   (P <0.001),   total   circulating   lymphocyte   count  (P <0.001),  total 

circulating monocyte count (P <0.001), and total circulating granulocyte count (P <0.001).   

There a not a significant time × trial interaction for total WBC count (P = 0.330), but there 

was for total lymphocyte count (P = 0.031).  Post-hoc tests showing a significant increase 

in total WBC count from baseline immediately post-exercise (90 min bout) (P <0.001), and 

1 hour post-exercise (P <0.001) (table 6.5); a significant increase in lymphocyte count 

immediately post-exercise (90 min bout) (P = 0.024) in the placebo trial; a significant 

increase in monocyte count from baseline immediately post-exercise (90 min bout) (P 

<0.001); and a significant increase in granulocyte count from baseline immediately post-

exercise and 1 hour post-exercise (90 min bout) (P <0.001 and <0.001 respectively).  There 

was no significant main effect of trial for the granulocyte to lymphocyte ratio (P = 0.201), 

but there was a significant effect of time (P <0.001) with post-hoc tests showing a 

significant increase in the granulocyte to lymphocyte ratio at 1 hour post-exercise (90 min 

bout) (P <0.001).  There  were no significant main effects of trial for haemoglobin 

concentration (P = 0.968) or haematocrit (P = 0.625).   There were significant effects of 

time for both haemoglobin (P = 0.006) and haematocrit (P <0.001) but post-hoc tests did 

not identify any specific time differences (table 6.5). 

 

 

Figure 6.1 URTI Incidence between trials 
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6.3.5 Vitamin D status 

 

There was no significant main effect of trial (P = 0.620) or time (P = 0.454), nor was there 

a significant time × trial interaction (P = 0.133) for total vitamin D concentration.  When 

baseline values for each condition were included as a covariate, there was not a significant 

difference between adjusted means for placebo (mean ± SEM: 65.43 ± 1.40 nmol/L) and 

chlorella (mean ± SEM: 62.75 ± 1.14 nmol/L) with a mean difference of 2.682 nmol/L (P 

= 0.174). There was not a significant change between adjusted means for pre (mean ± 

SEM: 63.14 ± 0.00 nmol/L) and post (mean ± SEM: 65.04 ± 1.77 nmol/L) with a mean 

difference of -1.90 nmol/L (P = 0.307), and differences between trials were not dependent 

on changes over time as there was not a significant trial by time interaction (p = 0.172).  

There was no significant main effect of trial (P = 0.778), time (P = 0.554), or a trial × time 

interaction (P = 0.569) for subjects who started with adequate vitamin D levels (>50 

nmol.L
-1

).  There was not a significant main effect of trial (P = 0.478) or a main effect of 

time (P = 0.121), but there was there a significant time × trial interaction (P = 0.042) for 

subject who started the trial with insufficient vitamin D levels (<50 nmol.L
-1

).  Post-hoc 

analysis showed no significant effects of chlorella (P = 0.056) or placebo supplementation 

(P = 0.758) when subjects started with low vitamin D levels (table 6.6). 

 

6.3.6 SIgA responses 

 

There were no significant main effects of trial (P = 0.145 and 0.348) or time (P = 0.112 

and 0.139) for SIgA concentration or secretion rate, respectively, between resting time-

points throughout the trial.  There was a significant time × trial interaction for SIgA 

concentration (P = 0.024), but not secretion rate (P = 0.329).  Post-hoc analysis identified a 

significant difference in SIgA concentration between trials 1-week-post intervention (P = 

0.040) with SIgA concentration higher in the CHL trial.  There was not an effect of time on 

SIgA concentration in the PLA group (P = 0.748) but there was an effect of time in the 

CHL trial (P = 0.011) but post-hoc tests did not detect any changes over time (table 6.7). 



 

 

Table 6.5 Acute Blood Responses Compared to Baseline during 90 min Steady State Endurance Ride on Day 2 

  Bout 3 (Day 2 morning): 90 min SS 

 Baseline Pre- VO2max Pre-Ex Post-Ex 1h-Post-Ex 

Total WBC (×10^9 cells.L
-1

)    ** ** 

PLA (n = 13) 6.02 (1.80) 6.41 (2.04) 5.50 (1.44) 8.94 (3.37) 9.80 (3.56) 

SC (n = 13) 5.60 (1.94) 5.82 (1.46) 5.53 (1.89) 8.56 (3.20) 10.23 (3.45) 

      

Lymphocytes (×10^9 cells.L
-1

)      

PLA (n = 13) 1.54 (0.71) 1.84 (0.82) 1.37 (0.49) 2.72 (1.35) † 1.16 (0.47) 

SC (n = 13) 1.48 (0.53) 1.53 (0.60) 1.42 (0.61) 1.71 (0.52) 1.15 (0.46) 

      

Monocytes (×10^9 cells.L
-1

)    **  

PLA (n = 13) 0.64 (0.42) 0.79 (0.65) 0.69 (0.49) 0.96 (0.53) 0.77 (0.42) 

SC (n = 13) 0.55 (0.43) 0.63 (0.32) 0.62 (0.46) 0.76 (0.43) 0.82 (0.27) 

      

Granulocytes (×10^9 cells.L
-1

)    ** ** 

PLA (n = 13) 3.93 (1.99) 3.41 (1.46) 3.61 (1.97) 4.20 (2.71) 7.62 (7.82) 

SC (n = 13) 3.70 (2.03) 3.69 (2.35) 3.67 (2.09) 5.31 (2.92) 7.51 (4.06) 

      

Haemoglobin (g.L
-1

)      

PLA (n = 13) 152.1 (15.0) 159.0 (14.5) 152.0 (15.0) 159.1 (12.9) 160.0 (19.7) 

SC (n = 13)  156.0 (10.5) 157.0 (13.5) 155.0 (19.0) 161.0 (16.5) 160.3 (17.0) 

      

Haematocrit (%)      

PLA (n = 13)  41.2 (3.89) 41.4 (2.56) 39.9 (3.2) 41.3 (4.2) 41.4 (5.1) 

SC (n = 13) 40.7 (2.5) 40.1 (2.6) 41.0 (4.4) 42.7 (3.4) 42.0 (4.32) 

      

Granulocyte:Lymphocyte     ** 

PLA (n = 13) 2.94 (1.76) 2.12 (2.01) 2.53 (1.45) 1.91 (2.25) 6.62 (4.57) 

SC (n = 13) 2.35 (1.20) 2.45 (1.15) 2.24 (1.12) 3.06 (1.63) 8.09 (7.49) 

90 min SS: steady state endurance ride. Values are median (IQR) with the exception of total WBC and lymphocytes whereby mean (SD) are presented 

* (P < 0.05) and ** (P < 0.01) indicates a  significant change from baseline (post hoc follow-up for time: both groups pooled due to no group × time-point interaction).  

†  P <  .  )     c   s   s      c    c       r   b s         s    s    c      w-up for time: each group analysed separately due to significant group × time-point interaction).   
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There were no significant main effects of trial (P = 0.833 and 0.225) or a trial × time 

interaction (P    .947      . 88)   r SI   c  c   r       r s cr      r   , r s  c  v   ,    

r s   s            2max test.  There was a significant main effect of time (P = 0.004) for 

SIgA concentration, but not secretion rate (P = 0.251).  However, post-hoc analysis could 

not identify any changes in SIgA concentration over time.  When pre-supplementation 

values were excluded and exercise responses analysed in isolation, there was not a main 

effect of trial (P = 0.685 and 0.271) or time (P = 0.181 and 0.444) for SIgA concentration 

or secretion rate, respectively.  There was a significant time × trial interaction (P = 0.011) 

for SIgA concentration, but not secretion rate (P = 0.320).  Post-hoc analysis of SIgA 

concentration identified a time effect in both the placebo and chlorella trials (P    .  4     

 . 32 r s  c  v   ).  I  b           c b      c   r      r   s,    r  w r     s      c    

c     s    SI   c  c   r       r    r -   2max test to immediately post (P = 0.152 and 

0.626, respectively), or 1 hour post (P = 0.071 and 0.060, respectively) (table 6.8). 

 

There was no significant main effect of trial for SIgA concentration or secretion rate in 

response to HIIE1 (P = 0.434 and 0.853, respectively).  There was no main effect of time 

(P = 0.240) or a time × trial interaction (P = 0.156) for SIgA secretion rate, however there 

was a significant main effect of time (P <0.001), and a time × trial interaction (P = 0.045) 

for SIgA concentration.  Post-hoc analysis of SIgA concentration in response to HIIE1 

identified a significant effect of time in the placebo condition with a significant decrease in 

SIgA concentration from baseline pre (P = 0.006) and 1 hour post (P <0.001).  The same 

effects were not observed in the chlorella trial (P = 0.371).  When pre-supplementation 

values were excluded and exercise responses analysed in isolation, there was a significant 

main effect of trial (P <0.001) for SIgA concentration, but not SIgA secretion rate (P = 

0.695).  No significant main effects of time (P = 0.243 and 0.444), or time × trial 

interactions (P = 0.051 and 0.066) were observed for SIgA concentration or secretion rate, 

respectively.  Post-hoc analysis of SIgA concentration in response to HIIE1 identified a 

significant main effect of time in the placebo trial (P <0.001) with a significant decrease in 

SIgA concentration pre-HIIE1 (P = 0.004) and 1 hour post HIIE1 (P <0.001).  There was 

no significant main effect of time in the chlorella trial (P = 0.139) (table 6.8). 

 

There was no significant main effects of trial (P = 0.632 and 0.926) for SIgA concentration 

or secretion rate, respectively, in response to 90 minutes steady state cycling.  There was a  

  



 

 

 

 

 

Table 6.6 Vitamin D Responses to Supplementation 
 

    

 Baseline (ALL) 

(n = 14) 
Post Supplementation 

(ALL) (n = 14) 
Baseline (low 

starters) (n = 5 

PLA, 4 CHL) 

Post Supplementation 

(low starters) (n = 5 PLA, 

4 CHL) 

Baseline (adequate 

starters) (n = 9 PLA, 

10 CHL) 

Post Supplementation 

(adequate starters) (n = 9 

PLA, 10 CHL) 

       

Total Vitamin D (nmol.L
-1

)       

PLA  66.9 (31.9) 63.9 (24.6) 38.3 (5.9) 43.3 (18.0) 35.4 (3.0) 34.0 (9.9) 

SC 59.4 (23.7) 66.1 (16.9) 29.6 (6.8) 51.2 (12.6) 71.3 (15.6) 72.1 (14.3) 

       

Vitamin D2 (nmol.L
-1

)       

PLA 5.8 (3.1) 4.6 (2.1) 4.4 (2.0) 3.4 (1.4) 6.5 (3.5) 5.2 (2.3) 

SC  3.8 (1.8) 27.7 (12.0) 5.5 (2.2) 32.5 (17.5) 3.1 (1.1) 25.8 (9.6) 

       

Vitamin D3 (nmol.L
-1

)       

PLA  61.2 (32.0) 59.4 (23.8) 34.0 (4.4) 39.8 (17.8) 76.3 (30.6) 70.2 (19.8) 

SC  55.6 (24.3) 38.5 (17.1) 24.2 (7.3) 18.7 (6.3) 68.1 (14.9) 46.4 (12.8) 

       

Values are mean (SD) 

Low starters are subjects with a starting Total Vitamin D of <50.00 nmol.L
-1

; Adequate starters are subjects with a starting Total Vitamin D of >50.00 nmol.L
-1

 

  

 

 

 

 



 

 

Table 6.7 Resting SIgA Responses compared to baseline, pre supplementation 

 
 Baseline Pre Exercise Day 1 Pre Exercise Day 2 1 Week Post 2 Weeks Post 

      

SIgA concentration (mg.L
-1

)      

PLA (n = 14) 185 (71) 190 (80) 195 (88) 168 (71) 190 (52) 

SC (n = 14) 209 (163) 201 (96) 187 (95) 267 (123)* 355 (268) 

      

SIgA secretion rate (µg .min
-1

)     

PLA (n = 14) 79.5 (51.6) 79.6 (55.2) 84.5 (67.3) 104.8 (92.0) 90.3 (70.1) 

SC (n = 14) 59.9 (54.6) 70.3 (52.5) 69.1 (41.2) 79.0 (39.7) 64.4 (47.4) 
      

Values are mean (SD)  

* (P < 0.05) indicate significantly higher than placebo.   

 

Table 6.8 Acute SIgA responses to each exercise bout during the 2-day intensified training period (n = 14) 

 

       1 (    1        )      2max  

test 

Bout 2 (Day 1 afternoon): HIIE Bout 3 (Day 2 morning): 90 min SS Bout 4 (Day 2 afternoon):HIIE 

 Baseline Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex 

              

SIgA concentration (mg.L
-1

)     *  *    
PLA  185 (71) 190 (80) 229 (107) 150 (66) 127 (66) † 210 (111) 101 (48) ‡ 195 (88) 156 (40) 133 (65) 142 (70) 221 (110) 159 (75) 

SC  209 (163) 201 (96) 238 (163) 145 (67) 153 (63) 175 (109) 157 (105) 187 (95) 192 (157) 149 (56) 135 (68) 199 (103) 134 (82) 

              

SIgA secretion rate (µg.min
-1

)           

PLA  79.5 

(51.6) 

79.6 (55.2) 63.3 (37.7) 69.4 (35.5) 58.3 (25.9) 50.8 (31.7) 71.1 (56.4) 84.5 (67.3) 64.0 (48.0) 58.0 (36.3) 61.9 

(39.0) 

62.3 (49.6) 107.5 (94.3) 

SC  59.9 

(54.6) 

70.3 (52.5) 67.6 (64.1) 67.0 (57.5) 63.6 (27.9) 59.0 (33.7) 59.1 (46.0) 69.1 (41.2) 59.6 (27.8) 75.3 (33.9) 57.3 

(27.6) 

43.3 (21.7) 68.1 (41.1) 

              

HIIE: High-intensity interval exercise session; 90 min SS: steady state endurance ride. Values are mean (SD)  

* (P < 0.05) indicates  s      c    c       r   Pr -E , B           2max  test) (post hoc follow-up for time: both groups pooled due to no group × time-point interaction).   

†  P <  .  )     ‡  P <  .  )     c     s      c    c       r   b s         s    c      w-up for time: each group analysed separately due to significant group × time-point interaction).   
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significant effect of time for SIgA concentration (P = 0.044) but not SIgA secretion rate (P 

= 0.753).  There was no  time × trial interaction (P = 0.452) for SIgA concentration but 

there was for SIgA secretion rate (P = 0.032).  Post-hoc analysis showed a significant 

decrease in SIgA secretion rate 1 hour post compared to baseline (P = 0.009), however 

there was no significant effect of time in either the placebo trial (P = 0.054) or the chlorella 

trial (P = 0.185).   No significant differences were identified in SIgA concentration.  When 

pre-supplementation values were excluded and exercise responses analysed in isolation, 

there was a significant main effect of trial (P = 0.048) and a significant main effect of time 

(P = 0.006) for SIgA concentration, but not SIgA secretion rate (P = 0.343 and 0.369, 

respectively).  There were no significant time × trial interactions for either SIgA 

concentration (P = 0.529) or secretion rate (P = 0.384).  Post-hoc analysis identified a 

significant decrease in SIgA concentration pre 90 minutes (P = 0.024) and 1 hour post 90 

minutes (P    . 2 ) c    r       r     2max test (table 6.8). 

 

There were no significant main effects of trial for SIgA concentration or secretion rate in 

response to HIIE2 (P = 0.082 and 0.161 respectively), nor were there time × trial 

interactions (P = 0.427 and 0.258).  There was a significant main effect of time (P = 0.016) 

for SIgA concentration, but post-hoc analysis could not identify a difference.  No 

significant main effects of time were identified for SIgA secretion rate (P = 0.069).  When 

pre-supplementation values were excluded and exercise responses analysed in isolation, 

there was a significant main effect of trial for SIgA concentration and secretion rate (P = 

0.001 and 0.031 respectively) but not time (P = 0.253 and 0.220 respectively).  There was 

no time × trial interaction for SIgA concentration (P = 0.748), but there was for SIgA 

secretion rate (P <0.001).  Post-hoc analysis of SIgA secretion rate in response to HIIE2 

identified a significant main effect of time in the placebo trial (P = 0.013) but no specific 

changes across time points could be identified.  There was no main effect of time in the 

chlorella condition (P = 0.075) (table 6.8). 

 

There was no significant main effect of trial (P = 0.060), time (P = 0.084), or a time × trial 

interaction (P = 0.099) for saliva flow rate at resting time points (table 6.9).  There was no 

main effect of trial (P = 0.249) or a time × trial interaction (P = 0.600) on saliva flow rate 

in response to the   O2max test, but there was a main effect of time (P = 0.004) but post-

hoc tests failed to find any specific differences between time points.  When pre-

supplementation values were excluded and exercise responses analysed in isolation, there 

was no main effect of trial (P = 0.393), or a time × trial interaction (P = 0.673) on saliva 
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flow rate in response to the   O2max test, but there was a main effect of time (P < 0.001) 

with post-hoc tests identifying a significant decrease in saliva flow rate immediately post 

  O2max test compared to pre   O2max test (P = 0.027).  There was no main effect of trial 

on saliva flow rate in response to the HIIE1 (P = 0.307), however there was a significant 

main effect of time (P = 0.017) and a significant time × trial interaction (P = 0.003).  Post-

hoc tests identified a significant decrease in saliva flow rate from baseline in the placebo 

group immediately post HIIE1 (P = 0.049), and a significant increase in saliva flow rate 

from baseline 1 hour post the HIIE1 (P = 0.036).  When pre-supplementation values were 

excluded and exercise responses analysed in isolation, there was no main effect of trial (P 

= 0.527), however there was a main effect of time (P < 0.001), and a time × trial 

interaction (P = 0.004) for saliva flow rate in response to HIIE1.  Post-hoc tests identified a 

significantly higher saliva flow rate in the CHL condition compared to PLA immediately 

post HIIE1 (P < 0.001) and significantly lower in the CHL trial compared to PLA 1 hour 

post HIIE1 (P = 0.037).  There was no main effect of trial (P = 0.753), time (P = 0.061), or 

a time × trial interaction (P = 0.054) for saliva flow rate in response to 90 minutes steady 

state cycling.  When pre-supplementation values were excluded and exercise responses 

analysed in isolation, there was no main effect of trial (P = 0.893), time (P = 0.102), or a 

time × trial interaction (P = 0.209) for saliva flow rate in response to 90 minutes steady 

state cycling.  There was no main effect of trial (P = 0.778), or a time × trial interaction (P 

= 0.577) for saliva flow rate in response to HIIE2, however there was a significant main 

effect of time (P = 0.004).  Post-hoc tests did not identify any significant changes in saliva 

flow rate at any time point from baseline in response to HIIE2.  When pre-supplementation 

values were excluded and exercise responses analysed in isolation, there was no main 

effect of trial (P = 0.999), nor a time × trial interaction (P = 0.690), however there was a 

main effect of time (P = 0.002) for saliva flow rate in response to HIIE2.  Post-hoc tests 

identified a significant decrease in saliva flow rate immediately post HIIE2 compared to 

pre (P < 0.001) (table 6.10). 

 

6.3.7 S   v      s z   , s   v      c        , s   v    c    s  ,     α-amylase 

 

There was no significant main effect of trial (P = 0.477 and 0.549), nor was there a 

significant trial × time interaction (P = 0.198 and 0.451) for salivary lysozyme 

concentration or secretion rate, respectively.  There was a significant main effect of time (P 

<0.001 and 0.010) for both salivary lysozyme concentration and secretion rate, with post-



 

 

 

 

Table 6.10 Acute saliva flow rate (ml.min
-1

) responses to each exercise bout during the 2-day intensified training period (n = 14) 

 

       1 (    1        )      2max  

test 

Bout 2 (Day 1 afternoon): HIIE Bout 3 (Day 2 morning): 90 min SS Bout 4 (Day 2 afternoon):HIIE 

 Baseline Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex Pre-Ex Post-Ex 1h Post-Ex 

   ††   #† #     ††  
PLA  0.39 

(0.18) 

0.44 (0.23) 0.30 (0.44) 0.47 (0.47) 0.47 (0.42) 0.24 (0.49) * 0.87 (0.77) * 0.45 (0.41) 0.36 (0.31) 0.47 (0.36) 0.48 

(0.54) 

0.26 (0.30) 0.59 (0.62) 

SC  0.35 

(0.32) 

0.38 (0.36) 0.30 (0.29) 0.41 (0.49) 0.46 (0.43) 0.40 (0.35) † 0.52 (0.59) 0.42 (0.42) 0.34 (0.42) 0.51 (0.36) 0.48 

(0.42) 

0.26 (0.32) 0.43 (0.67) 

              

HIIE: High-intensity interval exercise session; 90 min SS: steady state endurance ride. Values are median (IQR)  

* (P < 0.05) indicates  significant change from baseline   

†  P <  .  )     ††  P <  .   ) indicate  significant change from pre exercise values (post hoc follow-up for time: each group analysed separately due to significant group × time-point 

interaction).   

# (P < 0.05) indicates significant difference between conditions 

 

Table 6.9 Resting saliva flow rate (ml.min
-1

) responses compared to baseline, pre supplementation 

 
 Baseline Pre Exercise Day 1 Pre Exercise Day 2 1 Week Post 2 Weeks Post 

      

PLA (n = 14) 0.39 (0.18) 0.44 (0.23) 0.45 (0.41) 0.38 (0.38) 0.25 (0.26) 

SC (n = 14) 0.35 (0.32) 0.38 (0.36) 0.42 (0.42) 0.45 (0.66) 0.42 (0.44) 

      

Values are median (IQR)  
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hoc tests showing a significant decrease in salivary lysozyme concentration one hour post-

exercise (90 min bout) (P = 0.015), with no significant changes in salivary lysozyme 

secretion rate at any specific time points.  There was no significant main effect of trial (P = 

0.909 and 0.908), nor was there a significant trial × time interaction (P = 0.686 0.495) for 

salivary lactoferrin concentration or secretion rate, respectively.  There was no significant 

main effect of time for salivary lactoferrin secretion rate (P = 0.383), but there was a 

significant main effect of time for salivary lactoferrin concentration (P = 0.010).   Post-hoc 

tests did not identify any changes at specific time points for salivary lactoferrin 

concentration.  There were no significant main effects of trial (P = 0.830 and 0.657), nor 

was there a significant trial × time interaction (P = 0.209 and 0.309) for salivary cortisol 

concentration or secretion rate, respectively.  There was no main effect of time for salivary 

cortisol concentration (P = 0.065), but there was for salivary cortisol secretion rate (P = 

0.047) with post-hoc tests showing a significant decrease in salivary cortisol secretion rate 

one hour post-exercise (90 min bout) (P = 0.045).  There were no significant main effects 

of trial (P = 0.415 and 0.906) or time (P = 0.111 and 0.051), nor were there significant trial 

× time interactions (P    .4        .69 )   r α-amylase concentration or secretion rate 

(table 6.11). 

 

6.3.8 EBV expression 

 

Twelve out of fifteen subjects (80%) were seropositive for EBV.  For saliva EBV DNA 

concentration, there was a main effect of trial (P = 0.035), and a trial × time interaction (P 

= 0.012), but no main effect of time (P = 0.088).  Post-hoc analysis identified a greater 

concentration of EBV DNA at baseline, and the start of day 2 of the exercise intervention 

in the CHL trial, but not  the start of day 1 of the exercise intervention (P = 0.004, 0.032, 

and 0.986 respectively).  During the placebo trial, there was a significant increase in EBV 

DNA concentration from baseline at the start of first day of exercise (P = 0.026), but not at 

the start of the second day of exercise (P = 0.252).  In the chlorella trial, there was no 

significant change in EBV DNA concentration from baseline at the start of the first (P = 

1.000), or the second day of exercise (P = 1.000).  EBV DNA concentration was compared 

between subjects who fell ill, and those who didn't.  There was no main effect of group (P 

= 0.195), time (P = 0.091), or a group × time interaction (P = 0.986) in the PLA trial.  

There was no main effect of group (P = 0.803), or time (P = 0.428), but there was a group 

× time interaction (P = 0.047) in the CHL group.  Post-hoc tests did not identify any  



 

 

Table 6.11 Salivary Markers Compared to Baseline during 90 min Steady State Endurance Ride on Day 2 
  Bout 3 (Day 2 morning): 90 min SS 

 Pre-    2max Pre-Ex Post-Ex 1h-Post-Ex 

Lysozyme     

Concentration(mg.L
-1

)    * 

PLA (n = 10) 2.3 (1.7) 2.7 (2.5) 4.7 (2.6) 1.3 (0.9) 

SC (n = 10) 4.0 (3.2) 23. (2.0) 5.8 (5.3) 1.7 (1.6) 

Secretion rate (mg.min
-1

)     

PLA (n = 9) 1.2 (1.0) 1.6 (1.5) 1.9 (1.4) 0.8 (0.6) 

SC (n = 9) 1.6 (1.2) 1.3 (1.2) 2.1 (1.9) 1.1 (1.1) 

Lactoferrin     

Concentration (mg.L
-1

)     

PLA (n = 10) 5.7 (11.1) 7.1 (7.7) 7.3 (18.3) 6.8 (6.0) 

SC (n = 10) 6.0 (6.0) 6.1 (8.7) 6.7 (15.9) 6.0 (9.1) 

Secretion rate (mg.min
-1

)     

PLA (n = 9) 4.9 (4.4) 4.8 (4.1) 6.0 (4.6) 3.8 (2.3) 

SC (n = 9) 3.7 (3.1) 4.8 (2.7) 5.2 (4.1) 4.6 (2.8) 

Salivary Cortisol     

Concentration (nmol.L
-1

)     

PLA (n = 10) 11.8 (5.4) 9.1 (5.4) 9.0 (4.2) 6.4 (4.8) 

SC (n = 10) 10.0 (3.6) 8.8 (3.7) 10.9 (4.3) 5.7 (3.3) 

Secretion rate (nmol.min
-1

)    * 

PLA (n = 9) 6.2 (3.2) 5.2 (4.0) 3.8 (2.0) 3.3 (2.3) 

SC (n = 9) 5.1 (3.2) 5.6 (3.8) 3.9 (1.5) 2.8 (1.7) 

α-amylase     

Concentration (U.mL
-1

)     

PLA (n = 10) 74 (93) 141 (192) 102 (69) 86 (61) 

SC (n = 10) 48 (36) 182 (210) 55 (27) 89 (48) 

Secretion rate (U.min
-1

)     

PLA (n = 9) 22.1 (31.3) 41.0 (38.9) 57.2 (52.7) 45.2 (61.9) 

SC (n = 9) 22.7 (23.2) 34.6 (81.9) 34.4 (33.1) 53.0 (41.1) 

9      SS: s      s         r  c  r   .      s  r        SD) w          c          L c    rr   C  c   r          α-amylase secretion rate whereby the values are the median (IQR)  

* (P < 0.05) indicates a  significant decrease from baseline (post hoc follow-up for time: both groups pooled due to no group × time-point interaction).  



 

 

 

 

 

Table 6.12 Change in EBV concentration compared to baseline, pre supplementation 

 
 Baseline Pre Exercise Day 1 Pre Exercise Day 2 

    

EBV Concentration (ng.µl
-1

 x10
-6

) *  * 

PLA (n = 12) 0.07 (0.21) 0.3 (0.16)† 0.08 (0.19) 

SC (n = 12) 0.91 (1.51) 1.07 (1.48) 1.13 (4.66) 

    

EBV Concentration (ng.µl
-1

 x10
-6

)    

No URTI (n = 16) 0.16 (0.60) 0.11 (0.87) 0.15 (4.29) 
URTI (n = 8) 0.83 (1.76) 1.16 (2.26) 1.02 (2.17) 
    

Values are median (IQR)  

* (P < 0.05) indicate significant difference between groups at time point (post-hoc follow up: group comparisons made due to significant trial interaction) 

†  P <  .  )     c    s      c      cr  s   r   b s         s -hoc follow up: each group analysed separately due to significant group × time point interaction). 



136 

 

 

significant differences between subjects who developed a URTI and those who didn't in the 

chlorella group (table 6.12). 

 

6.3.9 Neutrophil degranulation (Elastase release) 

 

For stimulated elastase release per neutrophil, there was no significant main effect of trial 

(P = 0.622) nor  was  there  a  significant  trial × time interaction  (P = 0.747).  There was a 

significant main effect of time (P <0.001) with post hoc tests identifying significant 

increases in neutrophil degranulation immediately post (P = 0.030) and 1 hour post 

exercise (P <0.001) (table 6.13). 

 

6.3.10 Cytokine responses 

 

 There were no significant effects of trial for stimulated IL-4 or IL-10 responses (P = 0.091 

and 0.945 respectively).  There was no significant effect of time for stimulated IL-4 

responses  (P = 0.052), but there was a significant effect of time for stimulated IL-10 

responses (P = 0.010).  Post-hoc tests could not identify any specific time effects for IL-10 

(P = 0.120) (table 6.13).  When subjects were stratified into those who got ill and those 

who didn't, there were no significant effects of time (P = 0.388 and 0.622), group (P = 

0.526 and 0.882), or a group × time interaction (P = 0.745 and 0.676) for stimulated IL-4 

or IL-10, respectively (table 6.13). 

 

6.4 Discussion 

 

The aim of the current study was to assess the effects of chlorella supplementation on 

immune responses (leucocyte responses, salivary immune and stress response markers, 

SIgA, EBV DNA, and illness incidence) in response to a two day intensified training 

period using a double blind, cross-over design.  The main findings of this study were that a 

daily dose of 6 g CHL for 4 weeks before (during, and for the 2 weeks following the 

training intervention) increased resting SIgA concentration by week 5, but did not 

influence the frequency, severity, or duration of self-reported URS.  Neither SIgA 

secretion rate or concentration were acutely affected by any one individual exercise bout, 

but SIgA concentration in the CHL group appears to increase in response to some of the 

exercise bouts.  The same response was not observed in the PLA group. WBCs,



 

 

 

Table 6.13 Elastase and Cytokine responses to 90 min Steady State Endurance Ride on Day 2, Compared to Baseline 

  Bout 3 (Day 2 morning): 90 min SS 

 Baseline Pre-    2max Pre-Ex Post-Ex 1h-Post-Ex 

      

Elastase (fg.mL
-1

)     * 

PLA (n = 9) 705 (197) 712 (472) 678 (198) 1781 (2012) 1625 (977) 

SC (n = 9) 689 (431) 615 (392) 805 (361) 1303 (490) 1332 (458) 

      

IL-4 production (pg.mL
-1

)      

PLA (n = 14) 0.06 (0.21) 0.07 (0.15) 0.04 (0.06) 0.07 (0.08) 0.02 (0.03) 

SC (n = 14) 0.04 (0.02) 0.11 (0.27) 0.05 (0.05) 0.06 (0.10) 0.09 (0.09) 

      

IL-10 production (pg.mL
-1

)      

PLA (n = 14) 0.21 (0.47) 0.25 (0.49) 0.00 (0.40) 0.66 (2.01) 0.13 (0.45) 

SC (n = 14) 0.40 (0.89) 0.18 (0.99) 0.13 (0.38) 0.33 (0.70) 0.22 (0.72) 

      

IL-4 production (pg.mL
-1

)      

No URTI (n = 16) 0.05 (0.04) 0.12 (0.28) 0.04 (0.07) 0.07 (0.09) 0.004 (0.12) 

URTI (n = 8) 0.02 (0.18) 0.07 (0.05) 0.05 (0.03) 0.06 (0.04) 0.10 (0.05) 

      

IL-10 production (pg.mL
-1

)      

No URTI (n = 16) 0.41 (0.69) 0.26 (0.50) 0.22 (1.31) 0.74 (1.01) 0.28 (0.49) 

URTI (n = 8) 0.29 (0.72) 0.73 (0.85) 0.20 (0.66) 0.87 (1.7) 0.57 (1.29) 

      

90 min SS: steady state endurance ride. Values are median (IQR) with the exception of elastase whereby mean (SD) are presented 

* (P < 0.05) indicates a  significant change from baseline (post hoc follow-up for time: both groups pooled due to no group × time-point interaction).  
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lymphocytes, monocytes, and granulocytes increased from baseline immediately post the 

90 minute cycle, with WBCs and granulocytes remaining elevated 1 hour post exercise, but 

there were no differences between the CHL and PLA conditions.  The GLR increased from 

baseline 1 hour after the 90 minute cycle on day 2 of the training intervention, but there 

were no effects of CHL supplementation. Supplementation with CHL did not appear to 

affect the GLR; haemoglobin; haematocrit; vitamin D (even in those whose levels were 

inadequate to start with (>50 nmol.L
-1
);   s z   ;   c    rr  ; α-amylase; salivary cortisol; 

IL-4; or IL-10.  

 

The previous study (Chapter 5) reported that a daily dose of 6 g CHL for 4 weeks before 

(and for the 2 weeks following) the training intervention increased resting SIgA secretion 

rate by week 4, accompanied by a non-significant trend for resting SIgA concentration to 

increase by week 5 which could not be explained by changes in saliva flow rate.  However, 

in the present study, there were no changes in responses of SIgA secretion rate in either the 

PLA or CHL group.  There was, however, an increase in resting SIgA concentration by 

week 5 which is in line with the previous study.  As discussed in the previous chapter, 

there is very little research that has tracked salivary SIgA responses to multiple exercise 

sessions over such a short period of time.  The findings of the current study neither concur, 

nor differ categorically with previous research (Davison., 2011; Hall et al., 2007; Otsuki et 

al., 2012; Papacosta et al., 2013).  Because a decrease in SIgA has been shown to be 

related to an increased risk of developing URTI and the development of associated URS, it 

was hypothesised that any increase (or the avoidance of a decrease) in SIgA would result 

in a reduced risk of URS (i.e. subjects would report fewer symptoms).  As discussed in the 

previous chapter, a decrease in the number of URS reported would be in line with previous 

research studies on intensified training periods/training camps and long-term monitoring of 

athletes (Fahlman & Engels, 2005; Gleeson et al., 2012; Gleeson et al., 2011; and Neville 

et al., 2008).  Typically, an acute bout of moderate intensity exercise results in a drop of 

SIgA below baseline immediately post-exercise, with levels returning to normal within the 

following hour.  For more intensive bouts of exercise, or in periods of intensified or over 

training, SIgA levels can take much longer to return to baseline.  This can leave athletes at 

an increased risk of developing URTI in the hours that follow exercise (Kakanis et al., 

2010).  In the present study, however, there were no differences in URTI incidence 

between the CHL and PLA conditions.  This finding, taken in combination with the fact 

that CHL supplementation did not increase SIgA secretion rate or concentration following 

the majority of exercise sessions, suggests that CHL supplementation, or at least the 
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supplementation schedule employed by the present study, does not provide protection 

against URTI via the SIgA pathway, or otherwise.  It is not only SIgA which forms the 

first line of defence for pathogens entering via the oral cavity, however.  AMPs and 

  z   s s c   s   s z   ,   c    rr  ,     α-amylase also help in the prevention of 

illness.  There are fewer studies investigating the role of these AMPs on URTI risk 

compared to SIgA but, owing to the fact these proteins and enzymes possess bacteriocidal 

properties, low levels in saliva should, in theory, result in an increase in URTI.  However, 

owing to the fact the research pool is limited, this is merely speculation.  The general 

consensus is that intense and exhaustive exercise results in increased levels of lysozyme 

(Allgrove et al., 2008; West et al., 2010; West et al., 2006), lactoferrin (West et al., 2010) 

    α-amylase (Allgrove et al., 2008; Bishop et al., 2000; Li & Gleeson, 2004; West et al., 

2006) but in all cases, it is very much dependent on the exercise intensity.  No changes in 

lysozyme, lactoferrin, or  α-amylase were observed in the present study, however, which is 

not in line with previous research.  Li & Gleeson (2004) reported that 2 hours cycling at 

60%    2max   cr  s   α-amylase  c  v   .  T     cr  s s    α-amylase activity were 

observed 1 hour into the exercise trial and remained elevated for the remainder of the trial 

period (a further 1 hour).  These findings are similar to previous research in the area 

(Blannin et al., 2000; Walsh et al., 1999).  It is the increases in plasma catecholamines and 

β-sympathetic activity associated with exercise that are believed to be responsible for the 

  cr  s s    α-amylase activity during, and immediately following exercise (Dawes, 1981; 

Walsh et al., 1999).  The present study did not investigate plasma catecholamines, but it 

did investigate salivary cortisol which is an indicator of sympathetic activity.  The fact that 

no increases in salivary cortisol were observed in response to exercise, makes it 

unsurprising that no changes to AMPs were observed either. 

 

The increase in the concentration of EBV DNA detected in saliva in the chlorella trial is 

interesting insomuch as it appears CHL supplementation may decrease in vivo immunity 

which goes against our hypothesis.  However, subjects at the start of the CHL condition 

had an increased expression of EBV DNA in their saliva compared to when they were 

supplemented with PLA.  This may have had an impact on how they responded to the 

exercise intervention, albeit 4 weeks later, resulting in the increased EBV DNA 

concentrations observed at the start of the second exercise intervention day.  In addition, 

although no significant differences in URTI incidence were identified by statistical 

analysis, a greater number of subjects reported a URTI following exercise when 

supplemented with CHL, compared to PLA (6 vs. 2 subjects respectively).  This may be 
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indicative of a link between EBV concentration and the incidence of URTI, as 

demonstrated in the study by Yamauchi et al., 2011.  It also appears in the present study, 

that CHL supplementation may actually protect against changes in EBV DNA expression, 

as significantly increased levels of EBV DNA were observed in the PLA trial, but not the 

CHL trial, but further research with a larger sample size may be required to investigate this 

further. 

 

It is unlikely that there was a seasonal effect as half the subjects were supplemented with 

CHL first, and vice versa, minimising any seasonal variation between conditions 

(Matthews et al., 2002). SIgA only rises in the CHL condition five weeks after 

supplementation, and a week after the intensified training period.  The immune 

permutations that would occur up-to 72 hours after the intensified training period (Kakanis 

et al., 2010)  would have passed, and therefore the likelihood of contacting an illness in 

either group during week 5 or week 6, would be decreased somewhat.  The fact that the 

beneficial effects of CHL do not appear to transpire until 5 weeks after the start of 

supplementation indicates it is possible that a longer supplementation period may be 

required to yield any beneficial effects on immune function and it would be feasible to 

suggest that, had the training period commenced after 5  or 6 weeks of supplementation, 

rather than 4, that this may have translated into greater effects on URS reports.  However, 

this will require further study. 

 

The most likely mechanisms for the increase in salivary SIgA concentration observed after 

5 weeks of supplementation with CHL are via the immunostimulating properties of 

compounds found in CHL, discussed in chapter 5.  One nutrient CHL is abundant in which 

has been shown to have a strong influence on immunity, is vitamin D.  The primary 

outcome analysis for subjects' vitamin D levels in the present study showed that there was 

no difference in vitamin D status between the CHL and PLA groups.  Furthermore, when 

subjects were stratified by starting vitamin D status (either low <50 nmol.L
-1

, or normal 

>50 nmol.l
-1

), no differences were observed between conditions.  This finding is not in-line 

with the previous study (Chapter 5), in which   CHL supplementation for subjects starting 

with a low vitamin status increased total vitamin D however this was due to an increase in 

vitamin D2 and an decrease in vitamin D3.  There was a trend for subjects total vitamin D to 

decrease over the course of this study however, and the data show a substantial, although 

insignificant, increase in vitamin D2 and a slight decrease in vitamin D3 following 

supplementation with CHL (table 6.6).  Further study with a larger sample size may be 
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required to explore this further.    This may go some way to explaining why there was not a 

decrease in the number of URTI/URS reported in the CHL group as these subjects would 

have been more susceptible to infection, however this can only be speculated at this stage 

as the statistics do not support this interpretation.. 

 

The leucocytosis observed in response to the training intervention and, specifically, the 90 

minute prolonged cycle at 25% Δ,  s         w               s     r v   s r s  rc    R bs   

et al., 1999), and the previous study (chapter 5).  Typically, prolonged endurance exercise 

results in a delayed leucocytosis which usually sees a doubling of leucocytes in circulation 

but, in some instances, a four-fold increase has been observed (Eskola et al., 1978).  The 

significant increase in circulating lymphocytes following exercise is due to the 

redistribution of white blood cells already present.  Typically, following intensive exercise 

lasting less than one hour, leucocytosis is caused by a significant increase in circulating 

neutrophils and lymphocytes.  Following prolonged exercise, leucocytosis is 

predominately caused by neutrophilia.  In this study, we were unable to differentiate 

granulocytes into neutrophils, eosinophils, basophils, and mast cells.  Increases in 

eosinophils, basophils, and mast cells in response to exercise within a healthy population 

are unlikely, however, that we can be confident in our assumption that the significant 

increases in granulocytes observed in this study, are in fact neutrophils.  Therefore, the 

cellular blood responses in the present study, where total WBC, lymphocytes, monocytes, 

and granulocytes (neutrophils) all significantly increased from baseline immediately 

following the 90 minute cycling on day 2 of the intervention, with granulocytes remaining 

elevated 1 hour post, are not atypical of the research currently in circulation (Blannin, 

2006; Nieman et al., 1994, Pyne, 1994; Robson et al., 1999).    Despite the fact a doubling 

of total WBCs from baseline was not observed (which would be typical of exercise 

sessions lasting in excess of one hour), the significant increases in WBCs do suggest that 

our training intervention increased cardiac output/blood flow and catecholamine output, 

resulting in the mechanical shear stress of WBCs. 

 

One measure of physiological stress is salivary cortisol.  In the present study, there was a 

significant decrease in cortisol secretion rate 1 hour post the 90 minute cycle, however, this 

is not in line with previous research (Allgrove et al., 2008; Jacks et al.. 2002).  Typically, 

an increase in cortisol would be observed following a prolonged, acute bout of exercise as 

seen in the present study (Allgrove et al., 2008; Jacks et al., 2002; Walsh et al., 2011a).  

The responses observed in this study may be due to the diurnal responses of salivary 
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cortisol which typically start to decline 3 hours after waking.  In addition, subjects who 

awake early (as was required for this study) have a tendency to secrete more cortisol in the 

hour or so after waking, followed by a steeper decline (Edwards et al., 2001).  Neutrophil 

count, and GLR, as measured in the present study, can also be used as a measure of 

immunological stress (Chen et al., 2017).  It is believed that an increase in IL-6 (not 

measured in the present study) increases the rate and number of neutrophils released from 

the bone marrow resulting in a neutrophilia and, as a result, an increased GLR ratio (Wang 

et al., 2011).  In the present study, there was a significant increase in granulocytes 

immediately, and one hour post the 90 minute cycle.  This was accompanied by an 

significant increase in the GLR 1 hour post.  This is in line with present research that uses 

GLR, amongst other techniques, to measure stress responses to a stimuli, or levels of 

inflammation (i.e. the greater the stress response/inflammation, the greater the GLR) (Chen 

et al., 2017; Lopes et al., 2016; Wang et al., 2011).  The level of stress the body 

experiences as a result of an exercise bout is important as the "stress responses" (i.e. cell 

counts, neutrophilia, increases in cytokines, etc) are intricately linked to immune function.  

The greater the stress response to any given exercise bout, the greater the impact on the 

host's ability to recover from said exercise bout, and effectively fight infection.  Therefore, 

in the present study, we hypothesised that an increase in the "stress response" to the 

intensified training period would result in an increase of URTI and self reported URS.  In 

the context of the present study, however, it does not appear that CHL supplementation 

blunts the "stress response" to exercise as there were no significant differences between 

conditions observed for salivary cortisol, granulocytes, or the GLR, and this may go some 

way towards explaining why no differences were observed in URTI between conditions, 

when taken into consideration alongside the arguments outlined above. 

 

In the present study, there were no significant changes in IL-4 or IL-10 production in 

response to exercise. Increases in anti-inflammatory cytokines tend to increase with the 

exercise intensity (Lancaster, 2006a).  The increases in IL-10 and IL-4, observed following 

exercise tend to be relatively mild compared to IL-6, for example.  Studies which have 

monitored the acute changes in IL-4 and IL-10 in response to exercise, have found little, or 

no change in these specific cytokines (Lancaster, 2006a; Lasisi & Adeniyi, 2016).  Gleeson 

et al. (2012) reported that illness prone athletes had impaired pro-inflammatory, and 

elevated anti-inflammatory states most notably, with a 2.5 fold increase in IL-4 and IL-10 

production by antigen stimulated whole blood culture.  In the present study, when athletes 

were grouped into those who got ill (i.e. experienced at least one episode of self-reported 
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URTI when scored using the Fricker method), or those who didn't (i.e. did not experience 

any episodes of self-reported URTI when scored using the Fricker method), there were no 

differences in either IL-4 or IL-10 at any of the time-points analysed.  Although these 

findings are not in line with Gleeson et al. (2012) and others (Handzlik et al., 2013), our 

study does not track the chronic effects of exercise on immune responses, and therefore the 

acute effects of exercise may not reflect what is observed longitudinally (i.e. over a 4 

month period as in the abovementioned study).  The fact that the present study did not 

report any changes in IL-4 or IL-10 is most likely due to the nature of the monitoring 

period (i.e. acute response to exercise) and the intensity of the exercise session (i.e. 

    r   , 2   Δ   r 9        s). 

 

It should be noted that, although there were no differences in any biological markers of 

physiological stress, there was a difference in the physiological marker of VT1 and 

VT1%max in response to the    2max test, with VT1 and VT1%max lower in the chlorella 

condition.  This resulted in an increased relative work-rate for the 90 minute cycle in the 

placebo condition, as the calculation of 25% Δ r    s       T . Previous research has 

reported improvements to both cardiovascular fitness and physical performance following 

supplementation with CHL.  Following four weeks of supplementation with Chlorella 

pyrenoidosa, Umemoto & Otsuki (2014) reported a significant, 9% increase in peak 

oxygen uptake during a maximal cycling test to exhaustion, attributed by the study's 

authors to be caused by branch chain amino acids (although the levels contained within the 

administered dose would be small compared to the amounts used in branch chain amino 

acid performance studies), the bioactive effects of some of the vitamins and nutrients, or to 

do with the wide spectrum of nutrients available (as opposed to the bioactive effects).  This 

built on the findings of a murine study 3 years previously which reported a two-fold 

increase in time to exhaustion when undertaking a swimming challenge in mice that were 

supplemented with CHL, attributed by the authors to be due to a greater preservation of 

glycogen stores, and an increase in the amount of energy being produced by fatty acid 

degradation in mice supplemented with CHL (Mizoguchi et al., 2011).  The findings of the 

current study, therefore, are not in line with previous research.  VT1 is an important 

threshold as it's considered the threshold at which exercise intensity changes from 

easy/steady (below VT1) to moderate (above VT1) (Lansley et al., 2011).  Essentially, the 

closer VT1 is to    2max, the greater the intensity an athlete can exercise while remaining 

in an easy, or steady state.  This is advantageous, particularly for endurance athletes.  In the 

present study, 25% Δ   . .          r  c  b  w     T         2max) would be lower when 
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expressed as    2, in subjects whose VT1 was further away from their    2max, as seen in 

the CHL condition.  This would go some way to explaining the higher relative work rate 

during the 90 minute cycle as the VT1 in the PLA condition was higher.  The present study 

was not designed to measure cardiovascular responses to supplementation, however, and 

future research would be required to substantiate these findings. 

 

6.5 Limitations 

 

One limitation of this study is that we did not measure    2max pre-supplementation, so it 

is not possible to see the effect of CHL supplementation on performance parameters, such 

as    2max, VT1, and Wmax.  However, this study was not designed to measure 

cardiovascular or performance responses to supplementation, but rather the immunological 

responses to a controlled period of intensified training (i.e. with all subjects exposed to the 

same relative training demand).  We also did not record physiological responses during 

HIIE sessions to ensure that exercise intensity was comparable between PLA and CHL 

groups.  However, we are confident that subjects produced a maximal effort (and hence the 

same relative demand) for these sessions based on the maximal RPE values expressed 

following all HIIE sprints.  One further limitation is that we did not collect and incubate a 

full complement of whole blood samples for analysis of cytokines as the equipment was 

not available when data collection commenced.  It was also the intention to investigate the 

responses of an array of cytokines (IL-1RA, IL-2, IL-6, IL-8, INF-γ,     TNF-α    addition 

to IL-4 and IL-10 in response to 24 hour incubations) however, there were too many 

missing timepoints to make the analysis worthwhile and the decision was made to 

investigate IL-4 and IL-10 only, using the samples originally intended for the sole 

investigation of elastase.  Future studies should look to use a multiplex cytokine array, or 

incubate a greater quantity of whole blood to increase the yield of incubated sample for 

analysis. 

 

6.6 Conclusion 

 

The aim of the current study was to assess the effects of chlorella supplementation on acute 

and delayed immune responses to a two day intensified training period.  In conclusion, 

daily supplementation with CHL was able to increase salivary SIgA concentration at rest, 

but only following 5 weeks of supplementation.  Supplementation did not reduce the acute 

stress responses to exercise, as observed by leucocyte and cortisol responses. 
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Together with previous research, there is now substantial evidence to show that CHL can 

enhance salivary SIgA; however, in the present study, it appears that a longer 

supplementation period may be required to translate to protection against URTI and 

reduced URS reports.  The evidence in the present study does not show as much promise 

as the results presented in the previous chapter.  However, the nature of a crossover design 

means that the results are more powerful owing to the elimination of inter-person 

variability, compared to those subjected to a between groups comparison.  Future studies 

should seek to extend the supplementation period, and increase the number of subjects. 
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Chapter 7 

General Discussion and Conclusion: The use of salivary EBV DNA as a 

marker of in vivo immunity 
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7.1 Main findings of the thesis 

 

The main findings from this thesis are that the concentration of EBV DNA detected in 

saliva following prolonged exercise does not increase; carbohydrate, nor Chlorella 

pyrenoidosa alter the amount of viral DNA shed by EBV into saliva; and a rise in salivary 

EBV DNA concentration is not associated with an increased incidence of URTI or changes 

in SIgA (e.g. decreases in SIgA secretion rate).  EBV, within the context of these studies, 

does not appear to be a useful marker of in vivo immune function.  Studies within this 

thesis observed no correlations between EBV and DTH responses (chapter 4), SIgA 

(chapters 4, 5, 6, and 7), or URTI (chapters 4, 5, 6 and 7).  Exercise does not appear to 

change the expression of EBV within an acute context (up to 24 hours post-exercise) 

(chapters 4, 5, 6, summarised in chapter 7), and neither carbohydrate or Chlorella 

pyrenoidosa (CHL) supplementation appears to affect EBV expression (this is with the 

exception of chapter 6, whereby EBV expression appeared to be higher overall in the CHL 

condition, but there were greater, and significant changes in EBV concentration within the 

placebo group only). 

 

In vivo markers of immune function are highly suitable for immunomodulation studies as 

they measure the integrated immune response, and are biologically relevant (Albers et al., 

2005 & 2013).  Measures of in vivo immune function, such as vaccine responses, DTH 

responses, and the response to attenuated pathogens all have a sound, comprehensive 

evidence base (Albers et al., 2005 and 2013; Bermon et al., 2017; Davison et al., 2016; 

Diment et al., 2015; Harper-Smith et al., 2011; Walsh et al., 2011a; Weidner et al., 1998).  

However, relatively few studies to date have investigated the use of EBV as a marker of in 

vivo immune function in athletes (Cox et al., 2004; Gleeson et al., 2002; Yamauchi et al., 

2011).  The aim of this thesis was to investigate the use of salivary EBV DNA as a marker 

of in vivo immunity in response to training and nutritional intervention.  In addition, an 

array of established in vivo and in vitro markers of immune function were measured to help 

inform conclusions. 

 

Throughout this thesis, the response of EBV, and its relationship to other immune markers 

following physical and/or nutritional intervention has been reported and discussed in a 

general nature, in amongst a wide range of physiological, and immunological markers.  

Within this, the final chapter of the thesis, all available EBV data collected throughout this 

PhD were consolidated, and the relationship between EBV and URTI incidence, and the 



148 

 

relationship between EBV and SIgA investigated.  The change in EBV concentration 

within an acute context (i.e. pre to post an isolated exercise event) were compared to 

delayed changes 24 hours after exercise. 

 

To date, only a handful of studies have investigated the role EBV may play in the URTI 

incidence rates in athletes.  He et al. (2013b) monitored 236 student athletes over a 4 

month winter training period and found that positive EBV serostatus did not influence the 

number, severity, or duration of URTI infections that athletes suffered.  However, latent 

viral EBV shedding has been linked to URS in elite swimmers, with low levels of SIgA 

and increases in EBV DNA being detected in saliva before the occurrence of a URTI 

(Gleeson et al., 2002).  A more detailed review of the literature can be found in section 

1.3.3 of chapter 1. 

 

The data from chapters 4, 5 and 6 were pooled to provide a larger data set than any of the 

single studies provided.  It is acknowledged that the study design varied between chapters, 

but the aim of this chapter is to consider the relationship between salivary SIgA and EBV 

DNA, which was assessed in all studies.  However, all studies within this thesis measured 

salivary SIgA and EBV DNA, and monitored URTI incidence for the 2 weeks that 

followed the intervention study.  It is these data that have been analysed in order to provide 

a better understanding on the utility of salivary EBV DNA as a measure of in vivo immune 

function.  Based on research published to date, we hypothesised that the concentration of 

EBV DNA detected in saliva following prolonged exercise would increase, owing to the 

immune-modulation that occurs following exercise, however we also hypothesised that the 

nutritional interventions built into the studies contained in chapters 4, 5, and 6 would alter 

the amount of EBV DNA in saliva either by reducing the amount of EBV DNA shed into 

saliva, or by depressing any exercise-induced increases in the concentration of EBV DNA. 

We further hypothesised that a rise in salivary EBV DNA concentration would be 

associated with an increased incidence of URTI and be linked to changes in SIgA (e.g. 

decreases in SIgA secretion rate).  Subjects were included when EBV serology had been 

determined, a baseline saliva sample which had been analysed for both SIgA and EBV was 

available, and where 2 weeks of post-exercise URTI questionnaires had been collected.  In 

the case of the Chlorella pyrenoidosa studies (chapters 5 and 6), only subjects in the 

placebo conditions were included in this analysis.  This provided data for 28 individual 

subjects (table 7.1).  As in previous chapters, and as detailed in Chapter 2, subjects were 

stratified as seropositive, or seronegative for EBV.  EBV concentration pre, and post 
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exercise were used to calculate the absolute change in EBV concentration over time, and 

the percent change in EBV concentration.  In addition, subjects were split into groups 

based on whether they had suffered with a URTI in the 2 weeks following exercise.  SIgA 

pre, and post exercise were used to calculate the absolute change in SIgA over time, and 

the percent change in SIgA.  Data from chapter 4 were included to compare the acute 

reponses immediately pre and post exercise of EBV to SIgA and URTI (Acute).  Data from 

chapters 5 and 6 were included to compare the delayed responses (24 hours) in EBV to 

SIgA and URTI (Delayed). 

 

Table 7.1 Subject characteristics 

 

 Acute Delayed 

   

Gender (Male/Female) 13 / 0 10 / 5 

Age (years) 30 (9) 31 (10) 

Height (m) 1.79 (0.06) 1.72 (0.06) 

Weight (kg) 78.31 (10.75) 69.88 (11.50) 

   
Data are reported as mean (SD), except for height whereby median (IQR) is reported 

 

All results are presented as median ± IQR unless otherwise stated.  A significance level of 

0.05 was pre-set for all statistical analyses.  Normal distribution within the data was 

analysed using the Shapiro-Wilk test.  For normally distributed variables, independent 

samples T-tests were undertaken, and ANOVA for SIgA concentration and secretion rates 

between Acute and Delayed groups.  Illness episodes were compared using the Chi 

Squared Test with the Pearson Chi Square test statistic reported. The log transformed and 

square-roots of data for which normal distribution could not be assumed were first tested 

using the Shapiro-Wilk test before non-parametric tests were undertaken.  Mann-Whitney 

U tests were undertaken for height; differences in baseline and post exercise EBV 

concentration between groups; absolute and percent changes in EBV concentration 

between groups; percent changes in SIgA concentration between groups; and absolute and 

percent changes in SIgA secretion rate between groups.  Wilcoxon tests were undertaken 

for changes in EBV concentration from baseline to post-exercise in the Acute and Delayed 

groups.  Pearson correlations were used to analyse the correlations between EBV and SIgA 

and EBV and URTI.  Significant differences were identified using Holm-Bonferonni 

corrected T-Tests.  Cohen's d is reported for effect size.  All tests were carried out using 

SPSS Version 24.0 (IBM Corp, Armonk, NY, USA). 

 



150 

 

In the analysis undertaken within this chapter, a total of 21 (75%) subjects were 

seropositive for EBV (9 (69%) subjects in the Acute, and 12 (80%) subjects in the Delayed 

groups).  This is in line with the findings of chapters 4, 5 and 6 within this thesis whereby 

83, 75, and 80% of subjects were seropositive respectively.  This also aligns with the 

findings of other research studies within a similar field whereby rates of 75 - 84% have 

been reported (Cox et al, 2004; Gleeson et al., 2002; He et al., 2013b).  Out of 42 samples 

tested in this chapter, EBV DNA was detectable in 33 samples (79%) which is much 

higher than rates previously reported by Mehta et al. (2000) and Pierson et al. (2005) who 

detected EBV DNA in 17 and 23% of samples respectively.  Mehta et al. (2000) and 

Pierson et al. (2005) studied the effects of Antarctic expedition and space flight on EBV 

expression, and reported the detection of the EBV polymerase accessory gene, BMRF1.  

The difference in subject demographic, or the gene studied may provide some explanation 

as to why a greater number of samples tested positive for EBV in the present study.  

However, when the expression of BALF5 was investigated in response to a 1 month 

training camp in rugby players, a similar proportion of samples collected (22%) tested 

positive for EBV (Yamauchi et al., 2011). It is impossible to know why such a high 

number of samples in the present study had detectable levels of EBV, but it may due to the 

acute nature of the study design, the design of the qPCR, or the populations studied.  

Alternatively, the assay developed within this thesis for the detection of BALF5 may have 

a greater sensitivity or specificity compared to the assays employed by previous research.  

Without further study, we can only speculate as to the cause and therefore future studies 

should look to include a monitoring period both before and after the exercise trial, and/or 

investigate alternative methods for the detection of EBV DNA in saliva.  There were no 

significant changes in EBV DNA concentration pre to post exercise between the Acute and 

Delayed groups, baseline EBV concentration, post exercise EBV concentration, or the 

absolute change or percent change in EBV concentration between the Acute and Delayed 

groups (tables 7.2 and 7.3). 

 

In the present analysis, a total of 4 subject (14%) suffered with a URTI in the 2 weeks 

following their exercise intervention, of which 75% of these subjects were seropositive, 

and 25% were seronegative.  The average duration of each episode was 6 ± 4 days.  He et 

al. (2013b) reported that previous exposure to EBV does not influence the likelihood of 

developing a URTI.  These findings are supported by the findings of the present chapter 

whereby one out of seven seronegative (14%), and three out of twenty-one seropositive 

(14%) subjects developed a URTI in the 2 weeks following the exercise intervention.  
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Subjects' serology to EBV did not affect the likelihood of them developing a URTI in the 2 

weeks following exercise (P = 1.000).  Baseline exercise EBV DNA concentration was not 

linked to the occurrence of URTI (No URTI: 0.76 (3.63), URTI: 1.44 (-) ng.µl
-1

 ×10
-6

; P = 

0.616; Cohen's d = 0.52), nor was post exercise EBV DNA concentration (No URTI: 0.48 

(1.97), URTI: 0.67 (-) ng.µl
-1

 ×10
-6

; P = 0.800; Cohen's d = 0.14).  There was not a 

significant change in EBV DNA concentration pre to post exercise in subjects who didn't 

(Pre: 0.76 (3.63), Post: 0.48 (1.97) ng.µl
-1

 ×10
-6

; P = 0.647) or those who did suffer with a 

URTI in the 2 weeks post exercise (Pre: 1.44 (-), Post: 0.67 (-) ng.µl
-6

 ×10
-6

; P = 0.180).  

The absolute change in EBV concentration was not linked to the occurrence of URTI (No 

URTI: -0.46 (3.05), URTI: 0.00 (-) ng.µl
-1

 ×10
-6

; P = 0.336; Cohen's d = 0.00).  The 

percent change in EBV concentration was not linked to the occurrence of URTI (No URTI: 

-64.03 (179.80), URTI: 0.00 (-)%; P = 0.193; Cohen's d = 0.18).  EBV infection has 

previously been linked to the incidence of URTI in athletes (Gleeson et al., 2002), but the 

sample size was relatively small, in comparison to He et al. (2013b).  Gleeson et al. (2002) 

reported a greater incidence of URTI in athletes seropositive for EBV than the present 

study, but there were no URTI instances recorded in seronegative subjects, leading to their 

conclusion that previous exposure to EBV was associated with the increased incidence of 

URTI.  However, studies which investigate the incidence of URTI typically require a large 

sample size to accumulate enough URTI episodes, and statistical power to make them 

worthwhile.  When you introduce a variable such as serology for EBV of which, we have 

already discussed, 75 - 84% of subjects will be seropositive, that means that only 16 - 25% 

of subjects will be seronegative.  When the likelihood of developing a URTI naturally (as 

opposed to being inoculated with a URTI causing pathogen within a controlled study, such 

as that conducted by Weidner et al., 1998) is considered, the number of URTIs likely to 

occur in the sample of seronegative subjects is relatively few (in the present study we 

observed only one incidence of URTI in seronegative subjects).  Future studies should seek 

to recruit as large a sample size as possible in order to increase the statistical power of their 

subsequent analyses and should, ideally, consider controlled inoculation with a URTI 

causing pathogen in order to increase the likelihood of developing a URTI.   

 

It is not only the association between EBV concentration and the incidence of URTI in the 

present study which presented null findings.  The association between EBV concentration 

and SIgA responses also failed to demonstrate a relationship between these variables. The 

data analysed in the present chapter demonstrated that baseline SIgA concentration was not 

linked to the occurrence of URTI (No URTI: 238 ± 113, URTI: 204 ± 109 mg.L
-1

; P = 
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0.671; Cohen's d = 0.31) and neither was SIgA secretion rate (No URTI: 94.6 ± 58.2, 

URTI: 83.3 ± 58.5 µg.min
-1

; P = 0.976; Cohen's d = 0.19).  Neither post exercise SIgA 

concentration (No URTI: 218 ± 98, URTI: 226 ± 120 mg.L
-1

; P = 0.703; Cohen's d = -

0.07) or post-exercise SIgA secretion rate (No URTI: 98.9 ± 63.5 µg.min
-1

, URTI: 69.7 ± 

47.5; P = 0.196; Cohen's d = 0.52) were linked to the incidence of URTI.  There was no 

significant change in SIgA concentration pre to post exercise in subjects who didn't (Pre: 

238 ± 112, Post: 218 ± 96 mg.L
-1

; P = 0.203) or those who did suffer with a URTI in the 2 

weeks following exercise (Pre: 201 ± 121, Post: 228 ± 137 mg.L
-1

; P = 0.733) with the 

same being true for SIgA secretion rate pre to post exercise in subjects who didn't (Pre: 

93.2 ± 58.6, Post: 94.0 ± 103 µg. min
-1

; P = 0.939) or those who did suffer with a URTI in 

the 2 weeks following exercise (Pre: 92.6 ± 55.9, Post: 102.7 ± 66.2 µg.min
-1

; P = 0.437). 

 

Table 7.2 Baseline and post-exercise EBV and SIgA between groups  
 

 Acute Delayed P-value Effect Size 

     

Baseline EBV (ng.µl
-1

 ×10
-6

) 0.93 (3.11) 0.76 (2.91) 0.943 0.20 

Post Exercise EBV (ng.µl
-1

 ×10
-6

) 0.46 (1.24) 0.82 (7.08) 0.332 0.48 

     

Baseline SIgA (mg.L
-1

) 310 (105) 187 (74) 0.002 1.35 

Post Exercise SIgA (mg.L
-1

) 253 (89) 198 (99) 0.142 0.59 

     

Baseline SIgA (µg.min
-1

) 118.7 (56.5) 74.0 (52.2) 0.043 0.82 

Post Exercise SIgA (µg.min
-1

) 126.5 (60.7) 71.3 (58.3) 0.024 0.93 

     

Data are presented as median (IQR), with the exception of baseline and post exercise SIgA concentration and 

secretion rate whereby mean (SD) is reported. 

 

When absolute changes in SIgA were analysed in response to the occurrence of URTI, no 

link was found between the absolute change in SIgA concentration and the occurrence of 

URTI (No URTI: -19.84 ± 80.13, URTI: 21.92 ± 157.26 mg.L
-1

; P = 0.129; Cohen's d = -

0.46), or the absolute change in SIgA secretion rate and the incidence of URTI (No URTI: 

-2.49 (50.76), URTI: 6.22 (64.68) µg.min
-1

; P = 0.768; Cohen's d = 0.38).  Furthermore, 

when the percent changes in SIgA were analysed in response to the occurrence of URTI, 

the percent change in SIgA concentration was not linked to the occurrence of URTI (No 

URTI: -10.75 (45.31), URTI: -4.39 (147.34)%; P = 0.680; Cohen's d = -0.36) and neither 

was the percent change in SIgA secretion rate (No URTI: -6.75 (79.54), URTI: 7.42 

(94.43)%; P = 0.953; Cohen's d = 0.18).   There were no significant correlations between 

EBV DNA concentration and SIgA concentration post-exercise (r = 0.022, P = 0.919); 

EBV DNA concentration and SIgA secretion rate post-exercise (r = -0.143, P = 0.506) 

(table 7.2); the absolute changes in EBV DNA and SIgA concentrations post-exercise (r = 

-0.096, P = 0.654); the absolute changes in EBV DNA  concentration and SIgA secretion 
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rate post-exercise (r = -0.194, P = 0.364); the percent changes in EBV DNA and SIgA 

concentrations (r = 0.065, P = 0.763); or between the percent changes in EBV DNA 

concentration and SIgA secretion rate (r = 0.056, P = 0.795) (table 7.3).  SIgA has been 

identified as a predictor of URTI (Fahlman & Engels, 2005; Gleeson et al., 1999a) but the 

present study also failed to identify such an association for either SIgA concentration or 

secretion rate and URTI risk.  Gleeson et al. (2002) reported that SIgA levels were lower 

immediately before the first signs of a URTI.  The present study did not find an association 

between SIgA levels post-exercise and URTI risk, but the study design differed from that 

of Gleeson et al.'s (2002), whereby the incidence of URTI was monitored for 2 weeks 

following exercise as opposed to longitudinally over a longer study period.  It is therefore 

difficult for direct comparisons to be made.  The association of SIgA and URTI was not 

the main focus of the present study, however, although it is noteworthy that there is not a 

significant correlation of SIgA, a predictor of URTI, and EBV as this supports the finding 

of the present study, discussed above, that there is also not a significant correlation 

between EBV concentration and URTI. 

 

Table 7.3 Changes in EBV and SIgA between groups  
 

 

 Acute Delayed P-value Effect Size 

     

Absolute change EBV (ng.µl
-1

 ×10
-6

) -0.44 (3.63) -0.20 (2.26) 0.546 0.44 

Percent change EBV (%) -46.98 (172.44) -34.10 (213.93) 0.858 0.44 

     

Absolute change SIgA (mg.L
-1

) -56.24 (76.66) 11.36 (93.22) 0.054 0.80 

Percent change SIgA conc. (%) -18.39 (35.82) 1.30 (49.44) 0.205 0.63 

     

Absolute change SIgA (µg.min
-1

) 10.10 (117.60) -2.49 (34.10) 0.591 0.21 

Percent change SIgA SR (%) 18.46 (94.70) -6.75 (73.30) 0.495 0.41 

     

Data are presented as median (IQR), with the exception of absolute change in SIgA concentration whereby 

mean (SD) is reported. 

 

However, the majority of studies which have investigated the role of established in vivo 

immune markers in response to acute bouts of exercise have, to date, only demonstrated 

differences in in vivo markers between rested controls and experimental subjects (Davison 

et al., 2016; Harper-Smith et al., 2011), or exercise intensities (Diment et al., 2015).  The 

fact that no discernible differences in EBV concentration could be determined from the 

studies contained within this thesis may not, therefore, be indicative of its lack of 

usefulness within the context of immunomodulation research but, instead, reflective of the 

manner in which it has been employed.  However, Jones et al. (2017), who, it should be 

noted, also reported a lack of significant differences to the overall in vivo reactivity to 

DPCP following supplementation with bovine colostrum, analysed the DPCP responses 
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further by sensitivity analysis.  They found that the minimum dose required to elicit a 

response at 48 hours was 1.8 fold greater in the placebo group, indicating that the 

sensitivity to DPCP was relevant to host defence, and that it is possible to identify a 

discernible difference between exercising groups without the need for a rested control.   

That said, the majority of research contained within this thesis has also failed to show any 

significant changes in established, ex vivo and in vitro markers of immune function, such 

as SIgA, blood counts, cytokine responses, and the incidence of URTI and the potential 

reasons for this are discussed below.  The present findings cannot rule out any associations 

between EBV, immune markers and URTI risk, but just there are no associations within 

the context of the type of exercise/training employed in the present study.  It is possible 

that relationships may exist under conditions of greater stress (e.g. more prolonged 

exercise and/or longer periods of intensified training), that cause greater perturbations in 

immunity but this will require further studies being conducted. 

 

7.2 Strengths and limitations of the thesis 

 

The research conducted within this thesis was well controlled which would allow for 

replicability, and integrated the use of established markers of immune function, such as 

SIgA, alongside the novel method of salivary EBV DNA detection.  The research 

contained within this thesis is not without limitation, however.  The relatively small 

samples sizes of each of the projects limited statistical power.  Subject recruitment 

transpired to be one of the biggest hurdles to overcome.  The frequency with which 

spontaneous URTI infections were recorded was also limited to just a handful of subjects.  

The frequency with which URTI episodes were observed were not too dissimilar to rates 

reported in previous literature  but this, in combination with low subject numbers, resulted 

in an extremely limited data pool for subsequent analyses.  Finally, as supported by the 

findings of chapters 5 and 6, and the summary presented above, it appears that the 

magnitude of difference in markers of in vivo immunity are most pronounced between 

exercising, and non-exercising controls.  The studies contained within this thesis failed to 

include a non-exercising control group and therefore there is a limitation of the data 

presented as, in retrospect, the inclusion of a non-exercising control could, potentially, 

have been extremely insightful.  The inclusion of a resting control trial or group would 

have allowed further comparisons of the overall affects of exercise, which are generally 

greater in magnitude  than the effects between exercise trials with vs. without nutritional 

intervention. 
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7.3 Future research 

 

The utility of EBV as a marker of in vivo immune function warrants further investigation, 

despite the null findings within this thesis.  First and foremost, it appears, based on the 

studies contained within this thesis and previous research in the field, that the use of in vivo 

markers of immune function may be better suited to assess differences of greater 

magnitude (e.g. exercise vs. rest) than those typically observed in nutritional intervention 

studies.  A study should, therefore, be conducted to investigate if what has been observed 

for DTH responses (Davison et al., 2016 and Harper-Smith et al., 2011) is also true for 

EBV.    Secondly, the lack of spontaneous URTIs that arose within the studies contained 

within this thesis certainly limited the statistical power when comparing these data.  One 

model that could be employed in future EBV research is the inoculation of subjects with a 

pathogen known to cause URTI (e.g. Weidner et al., 1998).  Once studies following these 

models have been undertaken, it is hoped that a better understanding of the role of EBV in 

acute exercise immunology studies may be better understood.  The research conducted 

within this thesis are reflective of what athletes do as part of their training, however, and 

therefore the evidence presented within the context of this thesis, suggests that there are no 

benefits of the nutritional interventions investigated (with the exception that 

supplementation with Chlorella pyrenoidosa may potentially be beneficial in athletes, 

especially those with low SIgA, as it appears to increase SIgA concentration at rest).  

However, the evidence from previous research is strong for the use of salivary EBV DNA 

as a marker within longitudinal monitoring studies, and therefore it may be that EBV's 

utility is limited to this research context, at least until further research on the effects of 

acute exercise can be conducted. 

 

7.4 Conclusion 

 

In line with the findings of chapters 4, 5 and 6, and the subsequent analysis undertaken in 

this chapter, it does not appear that salivary EBV DNA is a useful marker of immune 

function within an acute setting (up to 24 hours after exercise within the context of the type 

of exercise/training employed in the thesis).  It should also be acknowledged that the small 

sample sizes recruited, and the limited incidences of URTI observed may have contributed 

to the null findings of this thesis.  Future research is needed to further investigate the use of 
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EBV as a marker of in vivo immune function before conclusive decisions can be made 

regarding its utility.   
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Appendix A 

Comparison of AmpliSens EBV-EPh PCR kit, and the DreamTaq 

reaction with Yamauchi et al. (2011) 
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An initial experiment used samples that had previously been shown to contain EBV DNA 

using the AmpliSens EBV-EPh PCR kit (AmpliSens, Bratislava, Slovakia).  The 

AmpliSens EBV-EPh PCR kit was run concurrently with the DreamTaq reaction and the 

Yamauchi primers. Both were run using their individual cycling recommendations (table 

A1.1) 

 

Table A1.1 Thermal Cycling Conditions AmpliSens and DreamTaq 

 

 AmpliSens EBV-EPh PCR Kit DreamTaq 

Step 
Temp 

°C 
Time Cycles Temp °C Time Cycles 

Initial 

denaturation 
95 5 min 1 95 5 min 1 

Denaturation 95 15s 

42 

95 15s 

30 Annealing 65 25s 55 25s 

Extension 72 25s 72 25s 

Final extension 72 1 min 1 72 1 min 1 

 

 

The amplified PCR products were analysed using gel electrophoresis but the DreamTaq 

reaction was unsuccessful.   The low annealing temperature was possibly responsible for 

the failure of amplification, or the relatively low number of cycles.  The experiment, 

therefore, was repeated using a gradient for 42 cycles (table 3.7).  DreamTaq reactions 

were placed in the block at 55.00, 58.13, 61.25, and 65.00 °C (figure A1.1). 

 

The DreamTaq reactions with plasmid amplified successfully across the temperature 

gradient, however there was a failure of amplification of an extracted saliva sample (Lane 

F) that had previously provided a positive result for EBV using the AmpliSens EBV-EPh 

PCR kit.  The sample had been extracted using the AmpliSens DNA-sorb-AM kit, and 

therefore it is most likely that the kit extracts specific targets from biological samples 

compatible with its kits for downstream application (e.g. AmpliSens EBV-EPh PCR kit). 

 

The plasmid amplified successfully, however, and therefore the cycling conditions (i.e. an 

annealing temperature of 65 °C for 42 cycles) and PCR design (table *.*) for EBV 

detection were accepted as a viable methodology.  However, as mentioned above, the 

primers were run in-silico using NCBI's Primer-BLAST, and failed checks at the first 

stage.  As such, alternative experiments were tested using the BALF5 primers which 

amplified a region of the gene at 452 and 275 bp (chapter 3). 
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Figure A1.1 Results of 55 - 65 °C gradient PCR testing the AmpliSens EBV-EPh PCR kit 

(Amp), and the DreamTaq reaction with Yamauchi et al. (2011) primers  

 

Lane A: DreamTaq (DT) and plasmid at 55.00 °C; Lane B: DT and plasmid at 58.13 °C; 

Lane C: DT and plasmid at 61.25 °C; Lane D: DT and plasmid at 65.00 °C; Lane E: Low 

DNA Mass Ladder; Lane F: DT and extracted saliva sample at 65 °C; Lane G: DT -ve 

control at 65 °C; Lane H: DT and AMP +ve control at 65 °C; Lane I: Low DNA Mass 

Ladder; Lane J: Amp and Plasmid at 65 °C; Lane K: Amp and +ve sample at 65 °C; 

Lane L: Amp and -ve control at 65 °C; Lane M: Amp and Amp +ve control.  Ladder 

bands are visible, from top to bottom, at 2,000, 1,200, 800, 400, 200, and 100 bp. 
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