
Martin, Alejandro, Hernandez-Castro, Julio C. and Camacho, David (2018)
An in-Depth Study of the Jisut Family of Android Ransomware. IEEE Access,
6 . pp. 57205-57218. ISSN 2169-3536.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/69882/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/ACCESS.2018.2873583

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/69882/
https://doi.org/10.1109/ACCESS.2018.2873583
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

SPECIAL SECTION ON ADVANCED SOFTWARE AND
DATA ENGINEERING FOR SECURE SOCIETIES

Received July 19, 2018, accepted September 5, 2018, date of publication October 4, 2018, date of current version October 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2873583

An in-Depth Study of the Jisut Family of
Android Ransomware
ALEJANDRO MARTÍN 1, JULIO HERNANDEZ-CASTRO2, AND DAVID CAMACHO 1
1School of Engineering, Autonomous University of Madrid, 28049 Madrid, Spain
2School of Computing, University of Kent, Canterbury CT2 7NF, U.K.

Corresponding author: Alejandro Martín (alejandro.martin@uam.es)

This work was supported in part by the Next Research Projects, such as the Comunidad Autónoma de Madrid under Grant
S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data and Risks), in part by the Spanish Ministry of Science and Education and
Competitivity (MINECO), and in part by the European Regional Development Fund (FEDER) under Grant TIN2014-56494-C4-4-P
(EphemeCH) and Grant TIN2017-85727-C4-3-P (DeepBio).

ABSTRACT Android malware is increasing in spread and complexity. Advanced obfuscation, emulation
detection, delayed payload activation or dynamic code loading are some of the techniques employed by the
current malware to hinder the use of reverse engineering techniques and anti-malware tools. This growing
complexity is particularly noticeable in the evolution of different strands of the same malware family. Over
the years, these families mature to become more effective by incorporating new and enhanced techniques.
In this paper, we focus on a particular Android ransomware family named Jisut, and perform a thorough
technical analysis. We also provide a detailed overall perspective, which will hopefully help to create new
tools and techniques to tackle more effectively the threat posed by ransomware.

INDEX TERMS Ransomware, Jisut, android, malware, malware families.

I. INTRODUCTION
When current mobile operating systems made their first
appearance, late in the first decade of the current century,
there was already an extensive know-how on designing and
fighting against malware aimed at personal computers. The
emergence of malware targeting these new mobile platforms
was a foretold event. The importance reached by smartphones
in our daily lives have made them a particularly attractive
target, and this is specially true of the Android platform.
Whether due to its more open structure or to its notoriously
higher market share, most of malware developer’s efforts
focus on Android. Some of the advantages offered by the
Android platform unfortunately make it also an excellent
target for developing and distributing malware, not only
by experienced developers and cybercriminals, but also by
beginners.

The increasingly key role that smartphones play in our
daily lives turn them into a perfect bridge for extorting
victims. Unsurprisingly, ransomware has emerged as a very
profitable business, allowing to blackmail a victim by lock-
ing access to the device, frequently in combination with
encrypting data files or throwing false accusations of ille-
gal activity, with the ultimate goal of demanding a hefty
ransom.

Although there is an abundance of literature studying
Android malware, most of these works focus on a small
number of research paths: they either center around design-
ing detection tools [1], evaluating the effects of obfuscation
tools [2], on malware classification, or on detecting samples
containing a malicious payload [3]. Curiously, the work we
encompass in this paper, that is, a thorough research focusing
on a fine-grained analysis of the features and evolution of a
single malware family, seems to constitute a new approach.

We think that an in-depth study of the most important
Android malware families can help to understand their evo-
lution, both from a low level perspective (to evaluate imple-
mentation details) and from a high level (to assess common
patterns between variants of the same family). While this has
been a pointless exercise in the past, mostly due to the extreme
simplicity of the known malware families, the current com-
plexity and the consistent evolution and improvement they
are now experiencing warrants, in our opinion, the need for a
more detailed screening.

In this paper we aim to provide a deep insight on a spe-
cific Android malware family called Jisut, which has been
mainly distributed on Chinese markets (although there can be
found variants translated to other languages) and has taken
many different shapes, leading to numerous Jisut variants.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57205

https://orcid.org/0000-0002-0800-7632
https://orcid.org/0000-0002-5051-3475

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

The common denominator of these is that they ask for a
ransom after having locked the device with a permanent
screen, or after encrypting user’s files, and that they share
clear structural patterns. However, as it will be shown later,
there are also versionswhich only pursue to lock the operation
of the system, while offering no recovering option.

Throughout the different sections of this paper, the Jisut
family and its most important variations are carefully exam-
ined. It will be shown how these variants have emerged, and
how they had evolved to lead to new variants. At the same
time, the locking and encrypting mechanisms are inspected
and also exploited, providing the necessary details for recov-
ery when getting infected by this ransomware.

The contributions of this research can be summarized as
follows:
• To describe the Jisut family of Android ransomware
and its most important variants, outlining their purposes,
providing the most significant implementation details
and studying their encryption and/or screen-locking
mechanisms.

• To perform a temporal analysis of the evolution of the
different variants found in the wild, studying how mod-
ifications and improvements are successively included.

• To explore the weaknesses of this ransomware, in order
to provide the necessary details to recover both the
device and user data.

The rest of the paper is organised as follows: Section II
describes the background and related work, Section III
presents the Jisut family and some information regarding the
evolution of its most important variants, Section IV describes
the technical details of this family, Section V includes a series
of remarks based on the analysis performed and Section VI
provides some conclusions and recommendations.

II. BACKGROUND AND RELATED WORK
A. ANDROID RANSOMWARE EVOLUTION
In its almost ten years of existence, Android has been con-
stantly pointed as the main target of malware authors. Despite
all the new security policies and other novel countermea-
sures implemented, Android remains attractive as a plat-
form to design and develop new malware. Although when
Android first appeared in 2008 an extensive experience in
building malware for personal computers already existed,
the limitations of the platform made it difficult to translate
it to Android. But this appears to be changing, particularly
since 2016. As Malwarebytes Labs state in their 2017 State
of Malware Report [4], Android is evolving to accommo-
date more complex software and, hence, more powerful
malware.

A clear evidence of this growing complexity is Android
ransomware, which is now our main focal point [5] in this
work. Starting from a brief definition, ‘‘a ransomware is a
kind of malware which demands a payment in exchange for a
stolen functionality’’ [6], it is possible to categorise samples
of this type of malware into two different classes, depending
on the procedure adopted to coerce the victim [7]: lockers

(also called screen-lockers) or cryptoransomware. Added to
this, we also have a related category, scareware.

Regarding lockers, they try to stop most of the device func-
tionality by making use of persistent screens which cannot
be closed, or by locking the device with a password. In the
case of cryptoransomware, the malware encrypts user’s files,
so it is necessary to pay the ransom to recover them. Depend-
ing on the encryption methods used, we can identify [8]:
private-key ransomware, public-key ransomware or hybrid
ransomware, where a random secret key is generated in the
device and encrypted using public-key cryptography. Finally,
in scareware [9] the coercion procedure involves threatening
or frightening the victim. For instance, making public some
personal information or falsely accusing the victim of holding
illegal content (i.e. child pornography).

Regarding ransomware specifically designed for Android,
the first implementation able to encrypt files was called Sim-
plocker, reported in 2014 [10]. It showed a screen accusing
the victim of having child pornography while the user files
were encrypted in the background. A ransom was asked for
unlocking the victim’s data, which was encrypted using a
fixed key that can be found in the ransomware code. Later,
an evolution of this malware was described in 2015 [11], able
of communicating with its authors. In this new variant, Sim-
plocker is more complex and, for example, employs unique
keys.

Other family of malware usually cited in security reports
is Lockerpin [12]. While old versions of this family tried to
lock the victim’s device by constantly prompting a screen,
recent samples make use of the native Android locking sys-
tem. This procedure, for which the user has to grant Device
Administrator privileges, is really effective and cannot be
easily removed or bypassed. The Jisut family, also described
in the 2017 Trends in Android Ransomware by ESET [12],
has been widely spread in the Chinese market. With similar
aims and methods to the previous mentioned families, Jisut
locks the device by showing a permanent screen where the
user is encouraged to pay a ransom. Currently, many other
ransomware families are active: Slocker, Koler or LockDroid
are some of the most dangerous families that have emerged
over the last years [13].

B. ANDROID MALWARE FAMILIES ANALYSIS IN
THE LITERATURE
So far, research related to Android malware has usually
studied it from a general perspective, taking sets of samples
of varied families as a whole, without explicit attention to
the specifics that each kind of malware family presents.
To the best of our knowledge, only one previous research
has made a deep analysis of a malware family. In that study,
the GinMaster [14] family is described quite technically,
analysing the different generations that have appeared over
time, and mentioning the improvements which have been
sequentially added.

Other literature focused on this topic adopts a more
general perspective. Thus, an interesting research by

57206 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Zhou and Jiang [15] offers overall details of a big set of
Android malware families, providing a few technical details
and some general patterns. Andrubis [16], [17] draws a wide
analysis of a huge dataset of Android malware samples,
with the aim of providing a dataset of features, but no
technical details of the families are provided. Monika and
Lindskog [13] perform a study showing general trends among
Android families, describing their appearance over the years.
However, the approach taken is very general, and particular-
ities and technical details are not provided.

Other literature is focused on developing analysis and
detection tools. For instance, multiple research studies broad
feature sets to discern the nature of applications. The use of
third-party calls [1], string-based features [18] or API-calls,
permissions and network addresses [19] are some of the fea-
tures extracted from sets of malware and benign software to
build detection tools. To these features, other tools have also
incorporatedmore determinant features such as taint analysis,
used by Revealdroid [20], or dynamically extracted infor-
mation, as it is the case of Droid-Sec [21]. DroidSieve [2]
is also focused on presenting a tool for malware detection
and classification. This tool constitutes an interesting step
forward against obfuscated malware, giving special attention
to obfuscation-invariant features and directly extracting infor-
mation from the DEX files.

Specifically focused on Android ransomware,
Andronio et al. [22] concentrate on extracting features able
to detect malware thanks to the use of encryption pro-
cesses, threatening texts or locking services. A similar
approach opts for including into the model threatening pic-
tures or logos [23]. The use of API packages has also been
studied [24] to discern between apps of different nature with-
out specific previous knowledge. Instead of using code-level
features, the effects of ransomware have been measured by
monitoring hardware metrics, such as processor or memory
usage [25]. The particular weaknesses of the Android plat-
form when dealing with ransomware has also been studied
by Yang et al. [26]. However, neither these nor previous
literature analyse malware families independently.

The need to focus on the specifics of each family has also
been highlighted in the literature [27]. Wei et al. state that
when gathering a dataset of malware samples, detailed and
reliable informationmust be provided. This means, according
to the authors, that each type of malware must be profiled
independently and that manual analysis become mandatory.

III. THE JISUT RANSOMWARE
The Jisut family started spreading in 2014. There are no
available reports on the number of users infected, but it is
probably a significant figure, for the reasons shown below.
We can, however, approximate the number of different sam-
ples detected by antivirus engines during these years. For
instance, based on the database of the VirusTotal Intelli-
gence portal,1 4,693 different samples have been detected

1http://virustotal.com/intelligence/

by at least one antivirus from 2014 as belonging to the Jisut
family.2

Nevertheless, even classifying these samples as variants of
the Jisut family is a non-trivial issue. Some of these are also
categorised as Slocker, or as belonging to other families by
different antivirus. This problem has been already highlighted
in several research works, which showed that the procedure
for naming malware families [28] is inconsistent. This is
clearly visible when uploading a sample to the VirusTotal ser-
vice, as the categorisation performed by the different antivirus
can vary significantly.

Even when two engines agree on the type classification of
a piece of malware, they can call it as belonging to different
families. Added to this is the fact that there are some engines
which attribute no explanatory names (i.e. just a number
sequence) to malicious samples. Different researchers have
concentrated on addressing this problem, and have built tools
to offer an agreed tag [29].

However, sometimes it is possible to observe how dif-
ferent malware families along different variants are distin-
guishable due to the use of common structural patterns.
Although Jisut has unmistakable patterns, retrieving sam-
ples of different variants becomes an arduous task. In this
research, in order to gather a varied and representative set
of Jisut samples, a manually intensive work to search for
individual samples was necessary. Throughout the paper,
we will mainly refer to these variants with their main package
name.

With regard to the structure and general characteristics
of the Jisut family, it is important to stress the simplicity
observed in its coding style. This fact suggests authorship
by people with a lack of experience, possibly young. These
beginners probably started by reading the easy-to-find doc-
umentation available in many Chinese webs and blogs con-
taining instructions on how to develop a simple lock-screen
ransomware.

Among the variants found, the same base structure can
be identified. On top of this structure, we find from
variants implementing very small changes to versions
where the attacker opts for adopting a totally different
cryptoransomware-based model instead of the screen locking
scheme. Five screenshots of some of the most important
variants of this family are shown in Fig. 1.

A. THE EVOLUTION OF JISUT
We first have analysed the evolution of this family in terms
of number of distinct samples found, month by month,
by the VirusTotal portal and reported as Jisut by at least one
antivirus3 (see Fig. 2). This family has had two moments of
wide popularity:When it appeared in June 2014, new samples
were continuously found for almost a year. At the beginning
of 2016 it was reactivated, and it reached its global maximum

2We have applied a threshold of twominimum different sources uploading
a sample, in order to avoid minor variations which have not spread widely.

3We have applied a threshold of twominimum different sources uploading
a sample in order to avoid minor variations.

VOLUME 6, 2018 57207

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

FIGURE 1. Screenshots of the main variants of the Jisut ransomware, sorted by year. (a) Variant tk.jianmo.study (2014). (b) Variant lichongqing
_shuang (2014). (c) Variant nero.lockphone (2015). (d) Variant qqmagic (2016). (e) Variant Hongyian - Huanmie (2017).

FIGURE 2. Evolution of the number of samples categorised as Jisut submitted to VirusTotal, per month.

in September 2017. In this month, around 1,500 new samples
of different variants were found.

From these, different broad sample sets, which share
almost an identical code but which include minor changes
(i.e. a different package name or a different message on
the screen), can be identified. We call these sets variants.
The differences found between variants may include different
encryption mechanisms, different forms of scaring a vic-
tim, etc. Fig. 3 shows the most important variants (which
are described in depth below) of the Jisut malware. In this
figure, interesting behavioural patterns among variants can
be identified. The most significant characteristic lies in how
the number of uploads has peaks of different size depending
on the variant. For instance, the tk.jianmo.study generation,
which can be considered as the original one, had a peak
relevance during the second half of 2014 and the beginning
of 2015. Then a long hibernation is easy to spot. After that,

at the beginning of 2017, the most important peak is reached
detecting 70 new samples in January.

It should be also noted how the Nero.lockphone variant
appeared when the original family was decreasing in pop-
ularity, at the beginning of 2015. From that moment, both
variants have followed a very close pattern. With two recent
peaks in January and September 2017, both variants seem to
behave in a very similar fashion. This fact could reflect an
organised campaign, where the same people work simultane-
ously with different variants, but it could also be the result of
a ripple effect. One way or another, there is also a seasonal
component. The four highest peaks in the plot, August 2015,
January 2015, January 2017 and September 2017, correspond
to a period immediately after holidays. This makes sense,
particularly among young people, who have significant more
exposure time during holidays. Holiday gifts in the form of
new smartphones can also play a role.

57208 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

FIGURE 3. Evolution of the different Jisut variants, in terms of number of samples submitted to VirusTotal, per month.

In contrast with the two previous variants, the plot sug-
gests other variants follow different trends. In the case of
com.lichongqing.shuang or tos.tx, their repetitive pattern over
time has a reduced number of new samples detected. This dif-
ference among variants can be ascribed to different criminal
groups working independently.

IV. TECHNICAL IMPLEMENTATION DETAILS OF JISUT
This section deepens the analysis of these variants, revealing
technical implementation aspects, such as the the necessary
actions to undermine the integrity of the infected system and
the procedures used to encrypt user’s files. At the same time,
the evolution of each family is analysed separately.

A. THE JIANMO VARIANT
In June 2016, the first samples categorised as Jisut
were detected.4 These samples, whose main package is
tk.jianmo.study, implement a lock-screen malware.

1) APPLICATION ANALYSIS
Once installed and launched,5 this ransomware shows a
screen (see Fig. 1a) which reports that the device has been
infected by a Trojan virus, and that the user must contact
the author via the QQ messaging service within 24 hours.
Otherwise, user’s data will be definitely removed. At the
bottom, a timer registers the remaining time. We have

4The first sample on 6th June 2016. Can be identified by SHA-256:789f8
bfedf8f04ee8fe9c01cc0bda76604a89bf6fc641cd75dc9221a1a2a7ac3

5For this analysis, we have use the sample identified by SHA-256:4aaf
1687316ffa6de108e12768b8434a9f12b07ea6953450cbf8a2a6b633fdc1

checked the operation of this counter, proving that turning
the system clock back makes no difference (so the user
cannot extend the time). By taking a look into the code,
we can see that a file located in the path /data/data/tk.
jianmo.study/shared_prefs/TimeSave.xml is
continuously updated to store the remaining time. In a few
samples of this variant that we have studied, when the timer
expires, the user’s files are not removed (this functionality is
in fact not implemented). However, as it will be shown, there
are numerous variants which actually materialise this threat.

Thismalware is composed by just one packagewith several
classes:

The first class, BootBroadcastReceiver.class,
implements the necessary code to restart the app if it is
closed, by means of a BroadcastReceiver which launches
MainActivity.class if a Broadcast is received. This
last class manages the timer of the app, as explained, and
overrides the onKeyDown() method in order to control
which buttons are pressed:

The previous code works together with the following
method:

VOLUME 6, 2018 57209

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Listing. 1. Detection of keystrokes in the Jianmo variant.

Listing. 2. Keystroke detection in the Jianmo variant.

The goal of these code bits is to detect when a particular
sequence of keys are pressed. This is used to hide the deacti-
vation mechanism, which is prompted when the user presses
a certain sequences of keys. Said sequence is provided by
the criminal when the ransom has been paid. The method
used consists on evaluating when a particular key has been
pressed. As it can be seen in Listing 1, several conditional
statements compare the key pressed. Then, the keyTouch()
method is called with the keyTouchInt value and a constant.
When these two values are equal and the last key was pressed
less than 2 seconds ago, the value of keyTouchInt is incre-
mented by 1 in line 6, Listing 2. If these two conditions
are not met, the value of the variable is reset to 0 (line 7,
Listing 2). If the value of keyTouchInt reaches the value of 6
(line 14, Listing 1), a dialog is prompted which asks the
user to introduce a code while threatening the victim it will
delete all its data if not. The sequence of keys, in terms of

KEYCODES is: 4-4-25-24-4-3, that correspond to the keys:

KEYCODE_BACK - KEYCODE_BACK - KEY-
CODE_VOLUME_DOWN - KEYCODE_VOLUME_
UP - KEYCODE_BACK - KEYCODE_HOME

The last key is the HOME key, which although the Android
system does not allow to directly detect when pressed (the
onKeyDown() method is not called) is commonly used in
lockware like this by overriding the method onAttached-
ToWindow() and changing the type of the window, as it can
be seen below (see Listing 6). However, this trick is no longer
functional in the newest Android versions.

Listing. 3. Override of onAttachedToWindow method in the Jianmo
variant.

2) VARIATIONS OF THIS VARIANT
Throughout 2014, this variant was spread featuring only
minor changes. In most of them, modifications are limited to
different messages or package names. However, it is valuable
for this work to glimpse through how attackers employ simple
alterations to build new pieces of malware, since they allow
us to gather further insights on the key trends of the evolution
of ransomware.

For instance, one common pattern found among samples
that are almost clones is the use of different package names,
mostly by adding suffixes to the original name. This might
be an attempt to upload new samples to markets such as
Google Play and/or to produce, through new signatures, false
negatives by one or more antivirus. For instance, among the
samples of this variant found in 2014, from 35 to 41 of the
antivirus included in the VirusTotal service test for positive,
depending on the sample. Worse still, an average of 35%
of the antivirus engines incorrectly return a negative clas-
sification. Examples of these new package names, derived
from the original tk.jianmo.study are tk.jianmo.
studyds21 or tk.jianmo.studypj7m76mo.

Alternatively, differences also exists at the code level.
In another sample,6 we can observe an slightly different
specification of the onKeyDownmethod. But in this particular
case we are facing a useless piece of code, since it does not
lead to unlock the secret screen.

Other variation of this method found in a different sample7

is used to define a different sequence of key presses to unlock
the secret screen. This time, the user must press twice the

6Identified by SHA-256: 9e99dd63b41dffb12af7a82bad4efc80bf095
edcd6fe3dc718630dc76335b28a

7Identified by SHA-256: d2a5aed7c26caf55721460f252d6119c0ab6ffe
fbda875c42fccb1e5c71de873

57210 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

back key followed by a different key. Then, it is possible to
introduce the deactivation key, which is a string formed by
10 spaces.

B. THE LICHONGQING SHUANG VARIANT
One of the branches originated in 2014 evolved into a curious
type of scareware (see Fig. 1b). Analysing a sample of this
year,8 we found it plays a loud scream sound and shows and
frightening picture. The creator tries to scare and to coerce
the victim into paying the ransom. This lock-screen malware
also employs a hidden menu, which is activated through a
long press in the upper section of the screen. Again, the key
is assigned in the code, in plain text, to a variable. This
makes it easy to extract. In this particular sample, the key is:
‘‘2235600939’’.

The malware makes use of the MediaPlayer resource to
play the scream sound:

Listing. 4. Mediaplayer invocation in the Lichonqing Shuan variant,
preventing volume decrease.

The code, shown in Listing 4, starts by setting the volume
to its maximum level (line 2). Then it invokes themediaplayer
to play the sound on an infinite loop, while continuous actions
to increase the volume are sent in order to counter any
attempts by the to decrease it. In line 18, it also employs the
vibration function,

C. THE NERO.LOCKPHONE VARIANT
Samples of this variant (see Fig.1c) were detected for the first
time in 2014, but it was in 2015 when it was widely spread.

8Identified by SHA-256: 8043461bc97509bdf3300376898040d5dba4b5
f5804e942c1d0b4fb4119b69f9

Although the graphical interface of this variant9 is indeed
substantially different from the samples previously men-
tioned, the behaviour and intentions are identical. Proof of
this can be found just by taking a look at the code, where
it can be seen that the operation is also basically the same.
It encourages the user to contact the criminals through the
QQ chat app (where it is presumed he will ask for a ransom).
At the code level, the package structure contains the same
classes with identical names. The only major difference lies
in the deactivation procedure. On this occasion, the text box
to introduce the deactivation code is shown from the outset
on the screen.

The unlock code is also saved as plain text within the code:

Listing. 5. Unlock procedure in the Nero.Lockphone variant.

The ransomware checks (Listing 5) the time the button
on the left of the smartphone is pressed (line 2). When the
user performs a long press the app shows a counter, prob-
ably to confuse the user. When the button is only briefly
pressed, the code inserted by the user is compared against
the string ‘‘ QQ1767332988!". If both values are the
identical, the application terminates (line 7).

D. THE QQMAGIC VARIANT
The messages shown by the previous analysed versions dis-
play various kinds of threats to incite the victim to pay a
ransom. However, the malicious payload is limited to screen
locking, with unlocking possible after using a key provided in
plain in the code. Even when this key is encrypted, the orig-
inal one can be easily obtained since we can observe how
it has been encrypted with a symmetric key. However, this
qqmagic variant implements some interesting improvements
which make the process of obtaining the unlocking code
through reverse engineering much more complicated.

For instance, in a sample of this variant,10 the attacker
makes use of SMS services in order to receive a password,
randomly generated and encrypted. Thus, each time this ran-
somware is installed by a different victim, a new and different
password is generated, which is shared with the attacker
through a SMS. This allows to generate victim dependent
numbers, which the attacker use to generate victim dependent
deactivation codes. In Listing 6 it is possible to see how

9Identified by SHA-256: 4bed20bdb3586dfea0b7a09e28a0126ebc0566
9551d53c4c9ac69aaee5ca8f69

10Identified by SHA-256: b914c0dd57ffcb1c96cf37d61a3ae052a5372
f01c5fac3ea0535bbdb0da862dd

VOLUME 6, 2018 57211

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

two variables, which are used to calculate the unlocking
password, are initialised (lines 1 and 2), how a DES object is
initialised with a string (line 3) and also how the SmsManager
service is used (line 6):

Listing. 6. Password unlocking, QQmagic variant.

After analysing these objects, the malware checks if there
is a network connection. If it is possible to use network
services (lines 2-9), the app transmits the randomly gener-
ated code, which will be used by the attacker to generate a
deactivation code. If it is not possible to use SMS services
(lines 12-18), the app employs a DES algorithm to decrypt a
text provided in plain to be used as the encryption password,
so the functionality of the app is guaranteed.

Listing. 7. Deactivation code computation with no network connection in
the QQmagic variant.

One of the common code snippets shared with other
variants of Jisut is the class where the DES algorithm is
implemented, which is identical among these variants. This
algorithm is also used to decrypt the content received by SMS
from the attacker:

As it can be seen in lines 9 and 10, a decryption object is
invoked to transform two strings which are provided in plain
text.

In addition, the qqmagic variant11 goes one step further
and implements the necessary code to actually carry out the

11Identified by SHA-256: 506f668438477b7476674957d14407d207
de1f576e5c9de2852490b43a6a013b

Listing. 8. SMS decryption in the QQmagic variant.

removal of all user files, if the ransom is not paid after
a period of time. Nevertheless, the important enhancement
found in this sample is the use of an advanced obfuscation
software. The author employs Ijiami,12 a tool for hard obfus-
cation based on collecting the code into compiled libraries of
native code, where applying reverse engineering becomes a
particularly tedious and time-consuming task. Unzipping the
original apk file of this sample delivers the following tree:

The files highlighted in blue contain these compiled
libraries which are loaded at runtime to build a new apk.
In line 3, ijm-x86.so is loaded:

As shown in Listing 10, different folders are remounted
with read and write permissions. Then the new apk is placed
in the system apps folder (line 8) after giving the necessary
access and execution permissions with the following proce-
dure:

The use of this technique poses an additional challenge to
the use of reverse engineering techniques. Although there are
advanced techniques available to deal with obfuscated code,
the use of this scheme by the ransomware is really effective

12http://www.ijiami.cn/

57212 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Listing. 9. Runtime libraries compilation, QQmagic variant.

Listing. 10. Allocation of access and execution permissions, QQmagic
variant.

to make classical and specially static analysis tools almost
pointless. For instance, if we observe static API calls by
disassembling the app, we will not encounter any malicious
behaviour since this is actually contained in separated com-
piled files. The only suspicious element here lies in invoking
the call needed to load the external library. Nevertheless, this
is a process which cannot be solely attributed to malicious
code as many benign applications employ it to defend from
piracy or due to other legitimate security reasons.

E. THE HONGYAN AND HUANMIE VARIANTS
These variants also resemble the SLocker family in some
aspects (and in fact a few antivirus wrongly classify them
as SLocker). They provide interesting implementation differ-
ences and show clearly the process whereby new subvariants
are created. As in the case of the other variants analysed in this
document, the procedure followed by this malware is quite
simple: once the application has been installed and launched,
it displays a screen with a Chinese message which falsely
informs that the device configuration is being checked.

We have found two main versions of this variant, which we
have called theHongyan and theHuanmie versions (color and
disillusionment in English) in reference to the package name.
One of the most remarkable details of these variants is that
we can explicitly observe the process by which a variant gets
transformed into a new one. This process will be described at
the end of this subsection.

The Hongyan version has been chosen for a deep
analysis.13

1) APPLICATION ANALYSIS
After a few minutes, or if the app is closed and launched
again, it shows the screen displayed in Fig. 1e, that reports
that the user data has been encrypted and that it is necessary
to contact whoever caused it by using the QQ messaging
service. It also mentions the amount needed to unlock the
files, which is 20 yuans (this small value was probably chosen
to maximise the number of paying victims). The presentation
screen also shows a large number, which is expected to be
provided to the attacker when contacting him to obtain the
deactivation key, for which a text field is provided below.

This version really encrypts data. We left a few decoy files
with different extensions in the /sdcard/ partition. When
the app was launched, all files were immediately encrypted
and the extension was added to them
(it varies between different samples of this variant). The
ransomware does not make any distinction between file types,
it encrypts any file whatever its format is.

Taking a look at the package folder tree helps identi-
fying the different parts of this malware. The subpackage
Xbox contains the encryption tools, with methods that call
the algorithms implemented in the javax.crypto native
library and some new methods that allow to convert between
strings and bytes. The com.android.admin.hongyan
includes the main code section of the app, including the main
file MainActivity.class which is in charge of calling
the necessary classes to launch the malicious payload.

Among the rest of files, des.class invokes the DES
algorithm used to decrypt the text which will define the

13The sample chosen for this analysis is identified by SHA-256: 5212b
6a8dd17ccfc60f671c82f45f4885e0abcc354da3d007746599f10340774

VOLUME 6, 2018 57213

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

encryption key. lock.class contains the necessary code to
calculate the key provided to the user in the screen, and checks
whether the deactivation key introduced is correct. newone.
class performs the user data encryption process, and also
makes use of the code defined in LogCatBroadcaster.class to
automatically reactivate the encryption process if it stopped.

implements the SHA-1 andMD5 hash functions. Finally
it.sauronsoftware.base64 implements some auxil-
iary functions to deal with data operations.

2) ENCRYPTION PROCESS
The encryption method employed in this malware is fairly
straightforward. Using the javax.crypto built-in library
of the Android API (see Listing 11), the app executes the AES
algorithm over any user file.

Listing. 11. AES encryption in the Hongyan variant.

Since no parameters are provided in the algorithm call,
the cipher configuration is provider specific. In Oracle
Java JDK 7, the configuration used is AES + ECB +
PKCS5Padding. According to the taxonomy described by
Ahmadian et al. [8], this variant belongs to the private-key
cryptosystem ransomware (PrCR).

The author tries to hide the encryption/decryption key in
the code through a worthless obfuscation mechanism, con-
sisting on several concatenated decryptions of a large text
using a secondary decryption object whose key is coded in
plain:

Listing. 12. Encryption of decryption key, Hongyan variant.

As it can be observed in the first line, a des object is
initialised using two Chinese characters. This object repre-
sents a DES encryption algorithm (newly implemented using
javax.crypto) where the two characters are the encryp-
tion/decryption key. In the second line, this object is used to
decrypt a 16 characters text, whose result is used to reini-
tialise the des object. However, this step is redundant and
strangely useless, since the result obtained by the decryption
of the 16 characters text is equivalent to the two previous
Chinese characters, so it leads to the same argument and the
decryption object remains identical.

In the third line, the encryption/decryption key is
obtained applying the above mentioned des object to
several nested decryptions of a large text provided in
plain. This let us know the decryption key by just exter-
nally executing this piece of code. The resulting key is:
‘‘GiEhjghmZIO7RTWyycQ9PQ==’’. Although this key is
different from the one that is expected to be introduced by
the user to trigger the deactivation process, it allows a full
recovery of every file, even when after the malware has been
removed.

3) DEACTIVATION PROCEDURE EXAMINATION
A glance at the code level also allows us to reach all the
necessary details to understand how both the key provided
to the user and the deactivation key are generated. Although
in most of the samples there are signs of the use of obfus-
cation techniques, the code can be easily untangled. First
of all, a striking piece of code reveals (listing 13) that the
app retrieves the IMEI number (line 1):

Listing. 13. IMEI code retrieval in the Hongyan variant.

In the next line (line 2), two hash functions are composed,
taking as input the IMEI number. Thus, a variable saves the
result of the SHA-1 of the MD5 of the IMEI, which is the
value later displayed in the red ransomware screen. At this
point, if the user provides this number to the attacker, he will
send back the deactivation code.

In the same package class (named lock.java in most
samples) we can also find the procedure to check whether
the deactivation code inserted by the user is correct. It is
simply a string comparison between the value inputted by
the user and a transformation of the number provided to the
attacker, based again on the the use of cryptographic hash
functions:

Listing. 14. Deactivation code check in the Hongyan variant.

Actually, this new value is computed through a similar
process to the one described before: it is the SHA-256 of
the MD5 of the value given on the screen. In short, the key
which deactivates the ransomware (and starts the decryption
of user’s data) is computed as:

SHA− 1(MD5(SHA− 256(MD5(IMEI)))) (1)

57214 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

FIGURE 4. Different samples of the Hongyan and Huanmie variants of the Jisut ransomware. Each sample is identified by the first 8 characters of its
SHA-256 hash.

When the user introduces this value and clicks on the
Decrypt button, all the files are decrypted and the ransomware
can be uninstalled.

4) VARIATIONS OF THIS VARIANT
The above analysis is intended to describe the particularities
of the Jisut variant. However, after a long manual search
through the VirusTotal Intelligence service, we have found
multiple samples which implement a plethora of interesting
but mostlyminor changes. A comparative assessment of these
samples allows us to evaluate how different modification
were sequentially introduced. Fig. 4 shows the differences we
found between a number of important samples of this variant.
Each sample is represented by the first 8 hex characters of

their SHA-256 signature.14 The first submission date of the
sample to the VirusTotal portal is also included.15

In general terms, we have found that the Hongyan version
is the one which has led to most variations. The sample
identified by 5212B6A8 in the diagram (the first 8 characters
of the SHA-256 hash) has led to new samples with minor
changes (as shown in the left part of the upper box) and to
another set of applications where the adrt package has been
extracted to include the LogCatBroadcaster.class as

14The complete signatures can be found at http://aida.ii.uam.
es/jisutnoransom/index.php/jisut-hashes/

15This date does not represent when the sample was built or deployed,
but when it was first uploaded to the VirusTotal portal. This is the reason of
having samples in Fig. 4 shown as offspring of samples with a newer date

VOLUME 6, 2018 57215

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

a new class (in the group of apps placed at the right of the
box).

On the other hand, an important branch starts with sample
CDE39A13. It can be seen as the first attempt to make the
encryption key harder to retrieve, although the underwhelm-
ing implementation of this idea just consists on a bigger text
needing to be decrypted in order to obtain said key. This
sample leads to a new subset where substantial changes are
included. For instance, within the code of sample 1C8A5045,
together with a lot of useless classes we can find again a clone
of the previous versions under path com.a.a.android.
admin.hongyan. But a new package has been added under
com.a.a.android.admin.huanmie, which seems to
be mostly a copy of previous ones with some modifications
aimed to hinder attempts at reverse engineering. This is also
a clear evidence of the evolution of malware, where an old
version is taken to build a new and better one. Surprisingly,
the encryption process remains identical so we can still easily
decrypt every file with just a few lines of code.

In this sample, the main difference lies in the computation
of the deactivation key:

Listing. 15. Obfuscated key deactivation, Hongyan variant.

The above code was obtained using the JADX tool,
although it produces some decompilation problems probably
due to the use of Chinese characters. There are a number of
computations which finally lead to a value which is concate-
nated to this.val$xx. While this last value is the same
as the resulting from Equation 1, now it is concatenated with
a new value computed by this confusing procedure. As the
result of the decompilation process, there is one missing
variable declaration, the one related to f158. It appears that the
value of this variable is not relevant at all. When simplifying
all the computations, the variables start to cancel each other
out. The last variable key_decryption is:

((i− j− k)+ (m+ n+ i1+ 1)) (2)

Lets replace j, which is i-k:

i− i+ k − k + m+ n+ i1+ 1 (3)

The remaining variables are constants: m = 3, n = 1, i1 = 2.
So:

key_decryption = m+ n+ i1+ 1 = 7 (4)

So, in the end, the new deactivation key is calculated in
almost the same way as in the previously variant. The only
real change involves the additional concatenation of a ‘‘7’’:

SHA− 1(MD5(SHA− 256(MD5(IMEI))+ ‘‘7’’)) (5)

Finally, a more advanced variation (AE3F772B) was
found, where the malicious payload is hidden following a
procedure already taken by other ransomware. In this case,
several files with an .acc extension contain the compiled
code, which is loaded at runtime.

F. THE COM.BLL.APKIN VARIANT
This variant was first reported in 2017 by Lukas Stefanko [30]
as a ransomware capable of talking to victims. Again pri-
marily targeting Chinese users, this version asks for device
administration privileges and informs the user that it is neces-
sary to pay the ransom in order to unlock the device together,
also displaying a classical locking screen stating the QQ
number which the user must contact. The application lies in
MainActivity.class, which is in charge of detectingwhen a key
is pressed, and to launch a method which decrypts a text file.
This file can be found under assets/bll, and contains a
large seemingly random text.

The method initialises a large array with Chinese charac-
ters, building which seems to be a decryptor based on simple
transformations. But this time, they are not totally useless.
Instead, the file is read as a bytes array and passed as an
argument to the enorde() object (line 18 in Listing 16), which
is a decryption method previously initialised with the key bll
(see line 3). The enorde class contains both an encryption
and decryption method based on different transformation and
bytes operations. When applied to the bll file, it results in
a new text file which actually is a new apk. This new apk is
saved in a file on the external storage directory (see line 6),
and then it is read again (see line 11).

This new apk has been obfuscated using the Jiagu 36016

tool, as the name of the compiled libraries suggest. Among
the files found in this new apk, there are references to the
JavaMail library, which indicates the use of mail services for
communication.

16http://jiagu.360.cn/

57216 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Listing. 16. Hidden app recovering process, Hongyan variant.

V. DISCUSSION
As shown in the previous sections, the Jisut family has
explored different modifications and refinements in order to
improve its ability to lock users’ devices and obtain a ransom
from its victims. Although some of the techniques exposed
do not entail a high degree of technical sophistication, they
can be used to help in understanding the operation of the
criminal group behind the ransomware, and possibly as well
to establish authorship. Some of the later techniques reveal
a higher degree of technical acumen, particularly those that
dynamically load code. This, in our opinion, makes the use
of dynamic analysis tools mandatory to deal with the most
recent ransomware variants. We also believe the study per-
formed in this work can have valuable didactic contents for
anyone starting its journey in Android malware forensics.
Furthermore, while we have focused on theAndroid platform,
other environments such as iOS are not exempt from this
kind of threat. Although in general malware exploits specific
weaknesses of the target operating system, it is expected that
many of the common patterns and techniques will be spread
across platforms.

VI. CONCLUSION
The Jisut family can boast of a long and illustrious career
infecting Android smartphones. The family has evolved in
interesting ways to produce new variants, where both the
graphics and technical details vary while the core of the ran-
somware is nearly identical. Throughout this paper we have

analysed the most important variants of this ransomware,
describing how they take control of the device and try to
coerce the user to pay a ransom. We have described their
encryption, deactivation and screen locking mechanisms,
information that we hope will be useful for past, present and
future victims. At the same time, we have also shown how
these variants evolve and how past versions are taken as a
template to build up new, more powerful and more complex
variants.

The main objective of our work is to help not only victims
and beginners in Android forensic and malware analysis,
but also those interested in designing anti-malware tools.
For this we provide them with a detailed characterisation of
a currently active ransomware family. In our future work,
we plan to extend the approach followed in this paper to
analyse other Android malware families and to perform more
detailed comparative assessments.

ACKNOWLEDGMENT
This work was supported in part by the Next Research
Projects, such as the Comunidad Autónoma de Madrid under
Grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data
and Risks), in part by the Spanish Ministry of Science
and Education and Competitivity (MINECO), and in part
by the European Regional Development Fund (FEDER)
under Grant TIN2014-56494-C4-4-P (EphemeCH) andGrant
TIN2017-85727-C4-3-P (DeepBio). This work was also
funded by InnovateUK as part of the authenticatedSelf (aS)
project, under reference number 102050, and partly spon-
sored by the ICT COST Action IC1403 Cryptacus in the EU
Framework Horizon 2020.

This project has received funding from the European
Unions Horizon 2020 research and innovation programme,
under grant agreement No.700326 (RAMSES project). The
authors also want to thank EPSRC for project EP/P011772/1,
on the EconoMical, PsycHologicAl and Societal Impact of
RanSomware (EMPHASIS), which additionally supported
this work.

REFERENCES
[1] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘MOCDroid: Multi-

objective evolutionary classifier for Android malware detection,’’ Soft
Comput., vol. 21, no. 24, pp. 7405–7415, 2017.

[2] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, ‘‘DroidSieve: Fast and accurate classification of obfuscated
Android malware,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy,
2017, pp. 309–320.

[3] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘Genetic boosting classifi-
cation for malware detection,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2016, pp. 1030–1037.

[4] MalwareBytes. (2017). 2017 State of Malware Report. [Online].
Available: https://kitedistribution.co.uk/wp-content/uploads/2017/03/
StateofMalware_Report_final_PT.pdf

[5] G. Davis and R. Samani. (2018). McAfee mobile threat report Q1, 2018.
McAfee. [Online]. Available: https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-mobile-threat-report-2018.pdf

[6] A. Gazet, ‘‘Comparative analysis of various ransomware virii,’’ J. Comput.
Virol., vol. 6, no. 1, pp. 77–90, 2010.

[7] K. Cabaj and W. Mazurczyk, ‘‘Using software-defined networking for
ransomware mitigation: The case of cryptowall,’’ IEEE Netw., vol. 30,
no. 6, pp. 14–20, Nov. 2016.

VOLUME 6, 2018 57217

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

[8] M. M. Ahmadian, H. R. Shahriari, and S. M. Ghaffarian, ‘‘Connection-
monitor & connection-breaker: A novel approach for prevention and
detection of high survivable ransomwares,’’ in Proc. 12th Int. Ira-
nian Soc. Cryptol. Conf. Inf. Secur. Cryptol. (ISCISC), Sep. 2015,
pp. 79–84.

[9] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, ‘‘Cutting
the gordian knot: A look under the hood of ransomware attacks,’’ in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerability Assessment, 2015,
pp. 3–24.

[10] J. Hamada. Simplocker: First Confirmed File-Encrypting
Ransomware for Android | Symantec Connect Community.
Accessed: Feb. 10, 2018. [Online]. Available: https://www.
symantec.com/connect/blogs/simplocker-first-confirmed-file-encrypting-
ransomware-android

[11] N. Chrysaidos. Mobile Crypto-Ransomware Simplocker Now
on Steroids. Accessed: Sep. 1, 2018. [Online]. Available:
https://blog.avast.com/2015/02/10/mobile-crypto-ransomware-
simplocker-now-on-steroids/

[12] R. Lipovsky, L. Stefanko, and G. Branisa, ‘‘The rise of Android ran-
somware,’’ White Paper, 2016.

[13] P. Zavarsky et al., ‘‘Experimental analysis of ransomware on windows and
Android platforms: Evolution and characterization,’’ Procedia Comput.
Sci., vol. 94, pp. 465–472, Jan. 2016.

[14] R. Yu, ‘‘Ginmaster: A case study in Android malware,’’ in Proc. Virus Bull.
Conf., 2013, pp. 92–104.

[15] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization
and evolution,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2012,
pp. 95–109.

[16] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, ‘‘ANDRUBIS—1,000,000 apps later:
A view on current Android malware behaviors,’’ inProc. 3rd Int. Workshop
Building Anal. Datasets Gathering Exper. Returns Secur. (BADGERS),
Sep. 2014, pp. 3–17.

[17] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. van der Veen, and C. Platzer, ‘‘Andrubis: Android malware under the
magnifying glass,’’ Vienna Univ. Technol., Vienna, Austria, Tech. Rep.
TR-ISECLAB-0414-001, 2014.

[18] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘String-based malware
detection for Android environments,’’ in Proc. Int. Symp. Intell. Distrib.
Comput., 2016, pp. 99–108.

[19] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[20] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek,
‘‘Obfuscation-resilient, efficient, and accurate detection and family identi-
fication of Android malware,’’ Dept. Comput. Sci., George Mason Univ.,
Fairfax, VA, USA, Tech. Rep., 2015.

[21] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, ‘‘Droid-Sec: Deep learning in
Android malware detection,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 371–372, 2014.

[22] N. Andronio, S. Zanero, and F. Maggi, ‘‘HelDroid: Dissecting and detect-
ing mobile ransomware,’’ in Proc. Int. Workshop Recent Adv. Intrusion
Detection, 2015, pp. 382–404.

[23] A. Gharib and A. Ghorbani, ‘‘DNA-Droid: A real-time Android ran-
somware detection framework,’’ in Proc. Int. Conf. Netw. Syst. Secur.,
2017, pp. 184–198.

[24] D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and F. Martinelli,
‘‘R-PackDroid: API package-based characterization and detection of
mobile ransomware,’’ in Proc. Symp. Appl. Comput., 2017, pp. 1718–1723.

[25] S. Song, B. Kim, and S. Lee, ‘‘The effective ransomware prevention
technique using process monitoring on Android platform,’’ Mobile Inf.
Syst., vol. 2016, Mar. 2016, Art. no. 2946735.

[26] T. Yang, Y. Yang, K. Qian, D. C.-T. Lo, Y. Qian, and L. Tao, ‘‘Automated
detection and analysis for Android ransomware,’’ in Proc. IEEE 17th Int.
Conf. High Perform. Comput. Commun. (HPCC), IEEE 7th Int. Symp.
Cyberspace Saf. Secur. (CSS), IEEE 12th Int. Conf. Embedded Softw.
Syst. (ICESS), Aug. 2015, pp. 1338–1343.

[27] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis
of current Android malware,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment, 2017, pp. 252–276.

[28] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, ‘‘Finding non-trivial
malware naming inconsistencies,’’ in Proc. Int. Conf. Inf. Syst. Secur.,
2011, pp. 144–159.

[29] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, ‘‘AVCLASS: A tool
for massive malware labeling,’’ in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses, 2016, pp. 230–253.

[30] F-Secure Labs. Trojan: Android/SLocker Description. Accessed:
Feb. 10, 2018. [Online]. Available: https://www.f-secure.com/
v-descs/trojan_android_slocker.shtml

ALEJANDRO MARTÍN received the B.Sc.
degree in computer science from the Universi-
dad Carlos III de Madrid in 2014, and the M.Sc.
degree in computer science and technology from
the Universidad Carlos III de Madrid in 2015.
He is currently pursuing the Ph.D. degree with
the Autonomous University of Madrid, where he
is also involved with the AIDA Research Group.
His main research interests are related to machine
learning and cybersecurity, focused on malware

detection and classification problems.

JULIO HERNANDEZ-CASTRO was with the
University of Portsmouth, U.K., and Carlos III
University, Spain. He is also affiliated with the
Kent Cybersecurity Center. He is currently a Pro-
fessor of computer security with the School of
Computing, University of Kent. His research inter-
ests are wide, covering from RFID security to
lightweight cryptography, including steganogra-
phy and steganalysis and the design and analy-
sis of CAPTCHAs. He has been a Pre-Doctoral

Marie Curie Fellow and also a Post-Doctoral INRIA Fellow. He is cur-
rently the Vice-Chair of the EU COST Project CRYPTACUS. He receives
research funding from InnovateUK Project aS, EPSRC Project 13375, and
EU H2020 Project RAMSES.

DAVID CAMACHO received the Ph.D. degree in
computer science from the Universidad Carlos III
de Madrid in 2001, and the B.S. degree in physics
from the Universidad Complutense de Madrid
in 1994. He is currently an Associate Professor
with the Computer Science Department, Univer-
sidad Autonoma de Madrid, Spain, where he is the
Head of the Applied Intelligence and Data Anal-
ysis Group. He has published over 250 journals,
books, and conference papers. His research inter-

ests include data mining (clustering), evolutionary computation (GA, GP),
multi-agent systems and swarm intelligence (ant colonies), automated plan-
ning and machine learning, or video games among others. He receives
research funding from the Spanish Ministry of Science and Education and
Competitivity (EphemeCH and Deepbio), and from the EU (Justice, ISFP,
Erasmus+, and H2020).

57218 VOLUME 6, 2018

