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Abstract. This paper deals with the statistical analysis of landmark data observed at different tempo-

ral instants. Statistical analysis of dynamic shapes is a problem with significant challenges due to the

difficulty in providing a description of the shape changes over time, across subjects and over groups of

subjects. There are several modelling strategies which can be used for dynamic shape analysis. Here,

we use the exact distribution theory for the shape of planar correlated Gaussian configurations and derive

the induced offset-normal shape distribution. Various properties of this distribution are investigated, and

some special cases discussed. This work is a natural progression of what has been proposed in Mardia

and Dryden (1989), Dryden and Mardia (1991), Mardia and Walder (1994) and Kume and Welling (2010).
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1 Introduction

This article is concerned with some inferential issues arising from the analysis of dynamic shapes. De-

scribing, measuring and comparing the shape of objects is very popular in a variety of different disciplines

(see, for example, Dryden and Mardia, 2016, section 1.2). Much work has been done for static or cross-

sectional shape analysis, while considerably less research has focused on dynamic or longitudinal shapes.

If the objects of interest are two-dimensional, their shape features can be represented either by a set

of points or by a continuous closed line in the real plane. Here, we suppose that an object can be reliably

represented by a configuration of homologous landmarks labelled in the same order. It is also assumed

that such configurations are realizations from a random matrix, X† = (x†k y
†
k), k = 1, . . . , K, of K

landmarks in R2. Row k of X†, thus contains the Euclidean coordinates for landmark k.

Shape is typically defined as the geometrical information that remains when location, scale and rota-

tional effects are removed from an object (Dryden and Mardia, 2016). The shape of X†, denoted as [X†], is

then the equivalent class of configurations such that, [X†] =
{
βX†R + τ | β > 0,R ∈ SO(2), τ ∈ R2

}
,

where the actions of β, R and τ on X† represent all the possible rescalings, rotations and translations.

The space of these equivalence classes, denoted in the literature as Σ2
K , is called the shape space and

various metrics applied on it determine the type of the shape space constructed. The shape metrics which

give rise to geometrical models for shape spaces are induced via the quotient map

π : RK×2 −→ Σ2
K

X† −→ [X†]

where some original metric on the space of coordinates X† is assumed. For example, for the shapes

of planar triangles one can construct either positive curved spaces called Kendall’s spherical model or a

negative curved space called the Bookstein hyperbolic space of triangles (see, e.g., Le and Small, 1999).

When a temporal sequence of landmark data is available, the resulting sequence of shape observations

can be seen as generated via the quotient map of a product on configuration spaces as
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π : RK×2 × RK×2 · · · × RK×2 −→ Σ2
K × Σ2

K · · · × Σ2
K(

X†1,X
†
2, ...,X

†
T

)
−→

(
[X†1], [X

†
2], ..., [X

†
T ]
)
.

There are several aspects of shape analysis which merit the attention of statisticians. For example,

these include visualization, estimation and testing. Related statistical issues, which are of particular

interest for this paper, also concern modelling assumptions and the description of the changes over time

in shape.

In practice, at least four modelling strategies can be used for shape analysis. One possibility is to

develop models in shape spaces. Some examples on this line are as in Kenobi et al. (2010), Le and Kume

(2000) and Kume et al. (2007). However, because of the non-Euclidean nature of the shape space, the

definition of natural models and probability distributions, especially in a dynamic setting, is not straight-

forward. For example, in the static case, a family of shape distributions specified along the lines of Kent

distributions on the sphere, is proposed by Kent et al. (2006) as the complex Bingham quartic distribution,

where the mean and covariance are analogously defined as in the multivariate Gaussian distribution in Eu-

clidean space. The normalising constant of these distributions however, has to be calculated numerically

and the extension of the model to a dynamic setting is difficult.

Another approach, pioneered by Bookstein (1986), is to use an unrestricted multivariate Normal dis-

tribution in Bookstein coordinates. This methodology has the advantage of simplicity, but the inference

depends on the baseline chosen.

Another possibility is to build models in tangent space to shape space. This approach, which is very

common in shape analysis, first requires the estimation of a mean shape at which to take the projection.

Procrustes analysis can be used to estimate shapes and Le (1998) and Kent and Mardia (1997) have

shown that, for concentrated and isotropic data, the Procrustes mean shape is a consistent estimator of

the shape of the mean configuration. However, if the distribution for the landmarks is not isotropic or the

variability of the data is relatively high, then inconsistencies can arise. Hence, approaches to inference

based on tangent space approximation, are valid in datasets with small variability in shape. For a review of

statistical tests based on normality assumptions on the tangent space and non-parametric alternatives see,

for example, Dryden and Mardia (2016, pg.185). A discussion of using combination-based permutation
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tests in a dynamic shape analysis setting can also be found in Brombin et al. (2015) and Brombin et al.

(2016).

A fourth approach, which probably provides the simplest model for landmarks, assumes a multivariate

Normal distribution with mean configuration, µ†, and covariance matrix, Σ†. Various levels of generality

can be considered for the covariance matrix, assuming either isotropy or structured correlations between

and within landmarks. For the static case, Mardia and Dryden (1989) and Dryden and Mardia (1991)

worked out the induced distributions in the shape space under this model.

In this paper, we follow this modelling strategy and extend the structure of the landmark correlations

by specifying time series models for shapes. In order to illustrate the natural representation of temporal

dependence among landmarks, consider the simple first order stationary Autoregressive (AR) model for

configurations,

X†t = φ1X
†
t−1 + (1− φ1)µ

† + E†t E†t ∼ N2K(0, σ2I)

where E†t is an isotropic error term and φ1 the autoregressive parameter. By using a marginal approach

(Dryden and Mardia, 2016, pg.217), it is easy to show that, given Xt−1, the induced shape distribution of

[X†t ] is isotropic in the shape space with centre at [φ1 Xt−1 + (1−φ1)µ]. Such conditional dependence of

shapes [X†t ] is shown in Figure 1, where the dynamic of the shape of X†t is determined by the shape [X†t−1]

and a pulling effect towards the marginal mean shape [µ†]. In fact, the shape auto-correlation structure

in this case is the one induced by the first order autoregressive representation of configurations onto the

shape space via the quotient map. The geometrical interpretation in the shape space of the AR(1) model

also suggests that the correlation in this landmark-based model seems natural in the shape space where

the pulling towards a mean direction and the distribution of the innovations remain isotropic without any

preferred direction, like a zero mean error in multivariate time series models.

Specifying models directly on landmarks has an intuitive appeal and enjoys several advantages. For

example, the model is defined in the landmark space where the mean configuration and landmark corre-

lation are naturally defined. This is of practical importance as practitioners want to build models based

on assumptions in the configuration space and interpret their estimated quantities, such as mean and

correlation, in terms of landmarks.
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Figure 1: The conditional distribution of [X†t ] given [X†t−1] is isotropic in the shape space with center at [φ1 Xt−1+
(1− φ1)µ]

Second, the maximum likelihood (ML) estimate of mean shape will always be consistent, provided

the parameters of Σ† are identifiable. Hence, for structured correlations and/or relatively dispersed shape

data, inferential results from the likelihood approach could be preferred to those carried out via the Pro-

crustes tangent coordinates, since the tangent space approximation in shape spaces is only appropriate

for small regions in the shape space (Dryden and Mardia, 2016, pg.185). Direct evidence of this will be

shown by a simulation exercise in Section 6.

Third, the ML approach enables us to perform automatic model selection, construct maximum likeli-

hood ratio tests for a wide range of inference problems and cope with missing data, a feature not imme-

diately available for the Procrustes shape space approach.

Finally, when autoregressive models are used, k-step ahead forecasts can also be obtained for a time

series sequence of shape coordinates. To our knowledge, this is the first time an AR process is used to

produce forecasts of the mean shape.

The paper is organized as follows. In Section 2, we derive the shape space density induced by a

Gaussian distribution on a temporal sequence of landmark configurations. In this section, we also show

that our formulation generalizes the results given in Mardia and Dryden (1989) and Dryden and Mardia
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(1991) and discuss the difficulties of computing the expectation of a product of quadratic forms, a step

needed for the evaluation of the density. In Section 3, we discuss model parameter estimation and give the

general update rules of the Expectation-Maximization (EM) algorithm for generalµ† and Σ† in a dynamic

framework. By exploiting the separability structure between “space” and time, a computationally efficient

recursive algorithm to estimate AR processes is also introduced. By taking account of the temporal

correlation, we show that our approach generalizes the EM algorithm proposed by Kume and Welling

(2010). In Section 4 we discuss the difficulties associated with the computation of the expectations

required by the E-step and provide a technical result which facilitates the calculations. Then, Section 5

addresses issues related to relabelling invariance of landmarks and Section 6 shows results from a set of

simulation studies. In Section 7 we illustrate our method by examining three real data sets and, finally,

we conclude the paper in Section 8 with a discussion.

2 The offset normal distribution in dynamic shape analysis

In this section we derive the shape space density induced by a Gaussian distribution on a finite set of

K ≥ 3 not-all-coincident labelled landmarks,
{

(x†k,t y
†
k,t) ∈ R2, k = 1, . . . , K

}
, observed at t = 1, . . . , T

time points. At a given time t, these landmarks are organized in a (K × 2) configuration matrix, X†t , so

that the temporal sequence of the T configurations is denoted as X† =
(
X†1 X†2 . . . X†T

)
. For such con-

figurations, it is assumed that the distribution of X† is Gaussian, i.e. vec(X†) ∼ N2KT

(
vec(µ†),Σ†

)
,

where vec(X†) and vec(µ†) are (2KT × 1) vectors and Σ† is a (2KT × 2KT ) covariance matrix.

As specified above, various levels of generality can be considered for the covariance matrix, includ-

ing isotropy (the coordinates of all the landmarks are independent with the same variance) or structured

correlations − see Section 3. Given the coordinates of the labelled landmarks, the shape variables are

obtained by removing the similarity transformations by translating, rotating and scaling the available

configurations. In particular, the effect of translation can be removed by linearly projecting the landmark

coordinates to the preform space of centered configurations. In practice, if we map the first landmark

of each configuration X†t to the origin, the coordinates of the remaining K − 1 vertices can be obtained
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by left multiplying the temporal configuration matrix X† by the (K − 1 × K) matrix L constructed as

(−1K−1, IK−1), where IK−1 is the identity matrix of dimension (K − 1) and 1K−1 is a (K − 1)-vector

of ones. Therefore, we have X = LX† =
(
LX†1, . . . ,LX†T

)
=
(
X1, . . . ,XT

)
, where Xt denotes

the preform of configuration X†t and X is the temporal sequence of preforms. In the preform space,

we thus have vec(X) ∼ N2(K−1)T
(
vec(µ),Σ

)
, where vec(µ) = vec(Lµ†) =

(
I2T ⊗ L

)
vec(µ†

)
and

Σ =
(
I2T ⊗ L

)
Σ†
(
I2T ⊗ L′

)
.

The shape space of the centred configurations is obtained by removing the information about ro-

tation and scaling. Without loss of generality, we consider here Bookstein shape coordinates Ut =

(uk,t vk,t), k = 1, . . . , K − 1, with u1,t = 1 and v1,t = 0. At each time t, Ut can be computed through

the mapping Xt → Ut = βtXtRt, where βt and Rt are scaling factors and rotation matrices, respectively

(see Appendix 1 for details). Then, the temporal sequence of shape coordinates, U =
(
U1 U2 . . . UT

)
,

is defined as the transformation X→ U = XR, where R = diag
(
β1R1, β2R2, . . . , βTRT

)
.

To find the distribution of the observed “reduced” shape coordinates, u =
{

(uk,t, vk,t), k = 2, . . . , K−

1, t = 1, . . . , T
}

, we have to integrate out (or marginalize) the scale and the rotation information con-

tained in the (2T × 1) vector h = (h′1,h
′
2, . . . ,h

′
T )′, where ht = (x2,t, y2,t)

′. This can be done by

considering the transformation vec(X) = Wh, where W = diag
(
W1, . . . ,WT

)
, with

Wt =

 1 u3,t . . . uK,t 0 v3,t . . . vK,t

0 −v3,t . . . −vK,t 1 u3,t . . . uK,t


′

,

and writing the joint distribution of (u,h) as

f (u,h|µ,Σ) =
1

(2π)(K−1)T |Σ| 12
exp

{
−ψ(µ,Σ)

2

}
|J
(
X→ (h,u)

)
|,

where ψ(µ,Σ) =
(
Wh − vec(µ)

)′
Σ−1

(
Wh − vec(µ)

)
and |J

(
X → (u,h)

)
| =

∏T
t=1 ‖ht‖2(K−2) is

the Jacobian of the transformation X → (u,h). Since the quadratic form ψ(µ,Σ) can be expressed

as ψ(µ,Σ) = (h − η)′Γ−1(h − η) + g, where Γ−1 = W′Σ−1W, η = ΓW′Σ−1vec(µ) and g =
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vec(µ)′Σ−1vec(µ)− η′Γ−1η, the joint distribution can be written as

f (u,h|µ,Σ) =
exp(−g/2)

(2π)(K−1)T |Σ| 12
exp

{
−(h− η)′Γ−1(h− η)

2

} T∏
t=1

‖ht‖2(K−2). (1)

2.1 The Dryden-Mardia shape density

In this section we briefly cover some of the key results due to Mardia and Dryden (1989) and Dryden and

Mardia (1991) who derived the shape space density induced by the Gaussian distribution for an iid sample

of configurations. The Dryden-Mardia shape density, also known as offset-normal shape distrbution, can

be obtained by first setting T = 1 in equation (1) and then considering the eigen-decomposition of the

covariance matrix Γ. Following Mardia and Dryden (1989), Dryden and Mardia (1991), it can be shown

that the marginal density function of u can be found by integrating out the scale and rotation parameters,

so that

f (u;µ,Σ) =
|Γ| 12 exp(−g/2)

(2π)K−2|Σ| 12

K−2∑
j=0

(
K − 2

j

)
E[l2j1 |ζ1, σ1]E[l

2(K−2−j)
2 |ζ2, σ2], (2)

where E[·|ζ, σ] denotes the moments of the univariate Gaussian distribution with parameters (ζ, σ). Al-

though the Dryden-Mardia density appears complicated, the evaluation is relatively easy as these expec-

tations can be computed through the use of generalized Laguerre polynomials (see, Dryden and Mardia,

1991, and Section 2.3 below). For applications of the Dryden-Mardia distribution in the literature see, for

example, Dryden and Mardia (2016, pg. 43), Bookstein (2014); Kume and Welling (2010) and Stuart and

Ord (1994), Lele and Richtsmeier (1991) and Kendall (1991).

2.2 The offset-normal shape distribution for temporally correlated shapes

For pairs of correlated configurations, Mardia and Walder (1994) have shown that the density function in

equation (2) transforms in a rather complicated form and that extending their results to a larger number

of correlated configurations (i.e. T > 2) is a difficult task. Essentially, this is due to the difficulty of
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integrating out the dependence of X on ht which, as shown below, appears as the product of T norms

f (u|µ,Σ) =
exp(−g/2)|Γ| 12
(2π)T (K−2)|Σ| 12

∫ T∏
t=1

‖ht‖2(K−2)fN2T
(h|η,Γ)dh. (3)

By integrating out h, the integral above can be rewritten asE
[∏T

t=1(h
′Ath)(K−2)

]
, where, for 0t a (t×t)

null matrix, At = diag(02t−2, I2,02T−2t). Hence, evaluating the density (i.e., the off-set normal shape

distribution) involves the computation of the moments of a product of quadratic forms in the (noncentral)

normal random variable h ∼ N2T (η,Γ).

2.3 Evaluating the shape density

By following Kan (2008), it can be shown that these moments can be computed through the following

expansion

E

[
T∏
t=1

(h′Ath)K−2

]
=

1

s!

s1∑
v1=0

· · ·
sT∑

vT=0

(−1)
∑T

t=1 vt

(
s1
v1

)
· · ·
(
sT
vT

)
Qs(Bv) (4)

where st = (K − 2) for all t, s = T (K − 2), Qs(Bv) = E
[
(h′Bvh)s

]
, and Bv =

∑T
t=1

[
st/2 − vt

]
At.

Hence, the moments of a product of quadratic forms can be rewritten as a linear combination of the

moments of simpler quadratic forms Qs(Bv).

An expression for Qs(Bv) which is computationally efficient, is based on the recursive relation be-

tween moments and cumulants (Mathai and Provost, 1992, Eq.3.2b.8) and is given by

E [(h′Bvh)s] = s!2sds(Bv) (5)

where ds(Bv) = 1
2s

∑s
j=1 [tr(BvΓ)j + jη′(BvΓ)j−1Bvη] ds−1(Bv), d0(Bv) = 1. Although equation

(5) does not provide an explicit expression for Qs(Bv), it is easy to program.

Finally, we note that both Lemma 2 of Magnus (1986) and Theorem 3.2b.1 of Mathai and Provost

(1992), offer alternative solutions for evaluating these moments. However, these solutions are both com-

putationally expensive and are thus not useful in practice.

9



3 Model parameter estimation

In this section we briefly introduce the EM algorithm for ML parameter estimation and then discuss the

maximization and the expectation steps involved by the procedure.

3.1 EM implementation for likelihood optimization

The Expectation-Maximization algorithm (Dempster et al., 1977) is a ML parameter estimation method

where part of the data can be considered to be incomplete or “hidden”. In the static case, parameter

estimation of the Dryden-Mardia distribution through the EM algorithm was first proposed by Kume

and Welling (2010), who have discussed the necessary adjustments needed for using this algorithm for

shape regression, missing landmark data, and mixtures of offset-normal shape distributions. The approach

involves working with the original distribution of the landmark coordinates but treating the rotation and

scale as missing/hidden variables. Huang et al. (2015) have recently used the algorithm to consider a

mixture of offset-normal shape factor analyzers (MOSFA) and Brombin et al. (2016) have further explored

the use of the EM algorithm in a dynamic setting by discussing its limitations when Laguerre polynomials

are used to evaluate the offset-normal shape distribution. The methodology has also been extended to 3D

shape and size-and-shape analysis by Kume et al. (2017).

In this paper, by taking account of the temporal correlation, we consider an extension of the EM algo-

rithm for the more general distribution given in equation (10). A technical result discussed in Section 4

is proposed to overcome the computational difficulties associated with the E-step procedure (see, Brom-

bin et al., 2016). It will be shown that this result, associated with the recursive algorithm introduced in

Section 3.4, enables the estimation of AR processes with no constraints in the number of K and T .

For an iid random sample of N temporal configurations, let X = {X(n)}n=1,...,N denote the full data.

Our target is to find the values of µ and Σ which maximize the log-likelihood function l(µ,Σ| U) =∑N
n=1 logf(u(n)|µ,Σ), where U = {u(n)}n=1,...,N denotes the observed (shape) data and f(u(n)|µ,Σ) is

the off-set normal distribution of shape variables, u(n), as shown in equation (3).

Under the assumption of Gaussianity, it is easy to show that the EM procedure maximizes the condi-
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tional expected log-likelihood

Qµ(r),Σ(r)(µ,Σ) =
N∑

n=1

∫
log
(
fN (X(n)|µ,Σ)

)
dF (X(n)|u(n),µ(r),Σ(r)), (6)

where fN (X(n)|µ,Σ) is the pdf of a Gaussian distribution with meanµ and covariance Σ, and dF (X(n)|·)

is the conditional distribution of X(n) evaluated at the current parameters, µ(r) and Σ(r), and its shape

u(n). The EM iteration then alternates between performing an expectation (E) step, which computes the

expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maxi-

mization (M) step, which computes parameters maximizing the expected log-likelihood computed in the

E step. How to evaluate these expectations for different specifications of µ and Σ will be shown in the

following sections.

3.2 Estimating the mean

The mean of the process can be estimated by considering that, in the M-step, the maximum ofQµ(r),Σ(r)(µ,Σ)

is obtained at

vec(µ(r+1)) =
1

N

N∑
n=1

∫
vec(X(n))dF (X(n)|u(n),µ(r),Σ(r)). (7)

When the description of the changes over time is needed, any regression function can be used. A widely

used choice is represented by a polynomial function for which the trend is approximated by a polynomial

of low degree capturing the large-scale temporal variability of the process. Assuming ΣT as proportional

to the identity matrix, this modelling approach was first proposed in Kume and Welling (2010). Here, we

provide a more general formulation which takes care of the presence of the temporal correlation.

Suppose the mean of the process is parameterized by a polynomial function of order M , i.e. µ†t =

E[X†t ] =
∑M

m=0 B†mt
m, with B†p =

(
β

(x)†
m β

(y)†
m

)
, and β(x)†

m and β(y)†
m K-dimensional vectors of regres-

sion coefficients. Accordingly, we write vec(X†) ∼ N2KT (D†β†,Σ†), where β† = vec
(
B†0 . . .B

†
M

)
is a

2K(M+1)-dimensional vector of regression coefficients and D† = (T⊗ I2K) is the (2KT×2K(M+1))

design matrix (T > M + 1) with T having elements tmj , m = 0, . . . ,M , at each row j = 1, . . . , T .

In the preform space we also have vec(X) ∼ N2(K−1)T (Dβ,Σ), with β = (I2(P+1) ⊗ L)β†, D =

11



T ⊗ I2(K−1), and Σ = (I2T ⊗ L)Σ†(I2T ⊗ L′). Hence, considering the ML estimator of the regres-

sion parameters for the complete data (see Appendix 2), it is easy to show that the update rule in the

maximization step is given by

β(r+1) =
1

N

N∑
n=1

(
D′Ω(r)−1

D
)−1

D′Ω(r)−1

∫
vec(X(n))dF

(
X(n)|u(n),Dβ(r),Σ(r)

)
, (8)

where Ω = (Σ
(r)
T ⊗ I2K−2)

−1. The expectation step (E-step) is performed by finding the expectations

and, given that vec(X) = Wh and dF (X|u,µ,Σ) = f(h,u|µ,Σ)dh/f(u|µ,Σ), we notice that both

equations (7) and (8) require the evaluation of the following integral

∫
vec(X)dF (X|u,µ,Σ) = W

∫
hf(h,u|µ,Σ)dh

f(u|µ(r),Σ(r))
= W Q(µ,Σ,W). (9)

3.3 Estimating the general covariance matrices ΣS and ΣT

Due to the large number of parameters, numerical optimization of the full likelihood based on standard

numerical routines is difficult, especially when working with full covariance matrices. Separability condi-

tions on the covariance structures has been found useful to overcome most of the difficulties arising in the

modelling of complex spatial-temporal dependency structures. In shape analysis, a major advantage of

working with separable processes is that the covariance matrix can be decomposed into purely landmark

and temporal components.

Assume that the (2TK × 2TK) covariance matrix in the configuration space can be expressed as

Σ† = ΣT ⊗ Σ†S , where ΣT is a (T × T ) covariance matrix between temporal observations and Σ†S

is a (2K × 2K) covariance matrix between landmark coordinates. Under separability conditions, the

covariance matrix in the space of preform coordinates can be written as Σ = ΣT ⊗ ΣS , where the

landmark covariance is given by ΣS = (I2 ⊗ L)Σ†S(I2 ⊗ L′). Hence, the induced shape distribution can

now be written as

f (u|µ,ΣT ⊗ΣS) =
exp(−g/2)|Γ| 12

(2π)(K−2)T |ΣT |(K−1)|ΣS|
T
2

E

[
T∏
t=1

(h′Ath)(K−2)

]
, (10)
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where the covariance matrix of the scale and rotation parameters is Γ =
(
W′(Σ−1T ⊗Σ−1S )W

)−1.
The separability assumption has several advantages, including rapid fitting and simple extensions of

standard techniques developed in time series and classical spatial statistics (Genton, 2007). In some

applications, in fact, the covariance matrices can be assumed to have certain structures and imposing

these structures in the estimation typically leads to improved accuracy and robustness (e.g., to small

sample effects).

Given the ML estimators Σ̂S and Σ̂T (see Appendix 2), the update rules for the covariance matrices

in the M-step are defined as

Σ
(r+1)
S =

1

NT

N∑
n=1

T∑
t=1

P̌
(r)
t

∫
vec(X(n))vec(X(n))′dF

(
X(n)|u(n),µ(r),Σ

(r)
T ⊗Σ

(r)
S

)
P̌

(r)′

t

− 1

T
µ(r+1)Σ

−1(r)
T µ(r+1)′ (11)

Σ
(r+1)
T =

1

N(2K − 2)

N∑
n=1

2K−2∑
k=1

P̆
(r)
k

∫
vec(X(n))vec(X(n))′dF

(
X(n)|u(n),µ(r),Σ

(r)
T ⊗Σ

(r)
S

)
P̆

(r)′

k +

− 1

2K − 2
µ(r+1)′Σ

−1(r)
S µ(r+1) (12)

with P̆
(r)
k = IT ⊗ (L

(r)
S ek)′ and Σ

−1(r)
S = L

(r)
S L

(r)′

S , with P̌
(r)
t = (L

(r)
T et)

′ ⊗ I2K−2, Σ
−1(r)
T = L

(r)
T L

(r)′

T .

Here, LT and LS are lower triangular matrices and et and ek are, respectively, T -dimensional and (2K −

2)-dimensional vectors with entries, ej(j) = 1 for j = t, k, and zero otherwise. Note that without

restrictions, ΣS and ΣT are not identifiable. However, this non-identifiability problem can be addressed,

for example, by considering ΣT as a correlation matrix, and not as covariance matrix.

The ML estimates of the Kronecker factor matrices are thus obtained through the cyclic optimization

scheme of the EM where, in the E-step, the expected values of the complete data sufficient statistics in

equations (11) and (12) require the computation of the following integral

∫
vec(X)vec(X)′dF (X|u,µ,Σ) = W

∫
hh′f(h,u|µ,Σ)dh

f(u|µ(r),Σ(r))
W′. (13)
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We finally note that, although the model can be developed in terms of a general covariance matrix, a

useful assumption for practical applications would be to consider the observed configurations as following

a proper complex Gaussian distribution (Neeser and Massey, 1993) of which, both the isotropic and the

cyclic Markov structures are special cases.

3.4 Autoregressive models in configuration space

Assume that, in the preform space, a generic configuration follows the AR(p) model

Φ(B)
(
vec(Xt)− vec(µt)

)
= vec(Et)

where B is the usual backward shift operator, Φ(B) is the matrix polynomial Φ(B) = I2(K−1) −

Φ1B − Φ2B
2 − . . . − ΦpB

p and vec(Et) ∼ N2(K−1)(0,ΣS). Separable structures can be obtained

from this autoregressive representation by imposing appropriate parameter constraints. These follow

from the assumption that the matrix polynomial, Φ(B), reduces to a scalar polynomial φ(B), implying

that Φ(B) = φ(B)I2(K−1) or, equivalently, that ΦiB
i = φiI2(K−1), i = 0, 1, . . . , p, with φ0 = 1.

Consider an AR(p) process with constant mean vec(µt) = µ̃ for all t and landmark covariance matrix

ΣS = σ2(I2 ⊗ L)(I2 ⊗ L′). The model, thus implies that

vec(Xt) = µ̃(1− φ1 − · · · − φp) + φ1vec(Xt−1) + · · ·+ φpvec(Xt−p) + vec(Et), (14)

from which it follows that the conditional distributions are Normal, i.e. N2(K−1)
(
µ̃t|t−p,ΣS

)
, with

µ̃t|t−p = µ̃(1 − φ1 − · · · − φp) + φ1vec(Xt−1) + · · · + φpvec(Xt−p). Then, the following approxi-

mation allows for a fast evaluation of the conditional means as well as of the likelihood for autoregressive

models.

Result 1. Let the shape coordinates be generated from an AR(p) process and let vec(X0) be a given

initial configuration. Then, the required expectation of equation (9), i.e.
∫
vec(X)dF (X|u,µ,Σ), can be

approximated recursively as follows

E
[
vec(Xt)|W0,W1, . . . ,Wt

]
'Wt Q(µ̃t|t−p,ΣS,Wt), t = 1, . . . , T.
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Proof. See Appendix 3.

This result simplifies significantly the computation of the expectation in equation (9) as it only re-

quires the recursive evaluation of T simple conditional expectations for ht. It is easy to show that the

estimate of the marginal mean, µ̃, involves the computation of the expectation given by equation (9).

Then, conditional on µ̃, the estimate of the autoregressive parameters, φ1, . . . , φp, can be found by nu-

merical maximization of the log-likelihood. This is a simple optimization problem which can be carried

out efficiently through the recursive formula and ensures to check numerically for allowable model pa-

rameters. Extending the model to have a non-constant polynomial mean and/or a parameterized landmark

covariance matrix, e.g. a cyclic Markov structure (Dryden and Mardia, 2016), is also straightforward.

3.5 Baseline invariance

As shown in Section 2, the shape variables u are calculated after choosing, at each time t, the first two

(noncoincident) landmarks as the baseline. This choice, however, does not have to be fixed for each

shape observation since, as long as we appropriately rotate the mean and the covariance matrix, the

probability distribution turns out to be rotationally invariant (Kume and Welling, 2010). For a more

detailed discussion on baseline invariance, see Appendix 4.

4 Computational issues

In this section we discuss some of the problems related to the computation of the expectations

∫
hf(h,u|µ,Σ)dh =

exp(−g/2)|Γ| 12
(2π)(K−2)T |Σ| 12

E

[
h

T∏
t=1

(h′Ath)(K−2)

]
(15)

and

∫
hh′f(h,u|µ,Σ)dh =

exp(−g/2)|Γ| 12
(2π)(K−2)T |Σ| 12

E

[
hh′

T∏
t=1

(h′Ath)(K−2)

]
(16)

involved by equations (9) and (13), respectively. These expectations do not appear exactly in the form of
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equation (4) and their evaluation is thus difficult to compute analytically.

In the following, a technical result is introduced to overcome the problem. This makes use of an

auxiliary Gaussian random variable with mean and variance equal to one, and shows that the expectations

in equations (15) and (16) can be rewritten in the form of equation (4) for which results from Section 2

are available.

Result 2. Let w be an auxiliary Gaussian variable such that ha = (h′, w)′ ∼ N2T+1 (ηa,Γa), with

ηa = (η′ 1)′ and Γa =

 Γ 0

0 1

 . Also, let fN2T+1
(ha|ηa,Γa) = fN2T

(h|η,Γ)fN (w|1, 1). Then, the

component-wisely solution of equation (15) is given by

∫
hj

T∏
t=1

(h′Ath)K−2fN2T
(h|η,Γ)dh =

1

2
I1j + I2 −

1

2
I3j (17)

where I1j =
∫ ∏T

t=0(h
′Ath)stfN2T

(h|η,Γ)dh, I2 =
∫ ∏T

t=1(h
′Ath)K−2fN2T

(h|η,Γ)dh and, by setting

h̃j = (hj − w,h′)′ and Ã0 = diag(1,02T ), I3j =
∫ ∏T

t=0(h̃
′
jÃth̃j)

stfN2T+1
(h̃j|η̃j, Γ̃j)dh̃j .

Proof. See Appendix 5.

Each single term, I1j , I2 and I3j , can be written as the expectation of the product of quadratic forms

which, in turn, can thus be computed by using equations (4) and (5).

The elements of E
[
hh′

∏T
t=1(h

′Ath)(K−2)
]

can be computed as the expectations of product of

quadratic forms. The variance components, in fact, are given by I1j while the covariance elements,

are obtained as

∫
hjhl

T∏
t=1

(h′Ath)K−2fN2T
(h|η,Γ)dh =

∫ T∏
t=0

(h′Ath)stfN2T
(h|η,Γ)dh

where s0 = 1, st = K − 2 for t = 1, . . . , T and A0 is a selection matrix with aj,l = al,j = 1/2 and 0

elsewhere.

The computation of the expectations based on the use of Laguerre polynomials is discussed in Brom-

bin et al. (2016). Unfortunately, this is a far less efficient procedure which does not appear useful in

16



practice.

5 Applications

In what follows, we apply the offset Normal shape distribution to three real data examples, with the first

two concerning medical imaging studies and the third considering an application in the field of social

signal processing (Pantic et al., 2011).

5.1 Landmark shape analysis of Corpus Callosum

Morphologic assessment of brain structures through landmark-based shape analysis has been popular in

neuroanatomical research because of its convenience and effectiveness in obtaining shape information. In

this example we focus on the Corpus Callosum (CC) which is the major fiber bundle connecting the two

hemispheres of the brain. Changes to its shape or structure is the subject of active studies. There is, in

fact, an interest in linking the physical changes with neurological impairment and other pathologies such

as multiple sclerosis (MS), autism, schizophrenia and Alzheimer.

We have used the Open Access Series of Imaging Studies (OASIS) longitudinal database (www.oasis-

brains.org) to investigate shape changes of the CC for two groups of 34 non-demented (nd) and 15 de-

mented (d) people. The subjects have similar age (average 76.5 and 77.2, for nd and d respectively), are

all right-handed and include 23 men and 26 women. For each subject, we used MRI images available

from three visits (i.e. T = 3). A midsagittal slice was extracted from each volumetric image, and the

CC contours were then extracted by automatic segmentation for each subject. Finally, nine anatomical

landmarks were identified as described in He et al. (2010) on the boundary of each CC. Most of these

landmarks refer to extreme points or terminals and maxima of curvature and can be identified mathemat-

ically with good accuray. A pictorial representation of a typical midsagittal plane image and the chosen

set of landmarks is given in Figure 2.

In order to identify possible shape differences of the CC, the generalized likelihood ratio test (GLRT)

is applied to test whether the mean paths of demented and non-demented groups differ from each other
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Figure 2: Midsagittal plane image and landmarks of the CC: 1) Interior angle of genu, 2) Tip of genu, 3) Anterior
most of CC, 4) Topmost of CC, 5) Splenium topmost point, 6) Posterior most of CC, 7) Bottommost of splenium, 8)
Interior notch of splenium, 9) CC-fornix junction

only by some rotation. We thus consider the hypothesis test H0 : µ̃d = µ̃nd mod(rot), Σd = Σnd,

versus H0 : µ̃d 6= µ̃nd mod(rot), Σd = Σnd. Because of the limited number of visits and the small

number of landmarks, the means are estimated by using equation (7) and the covariance matrices by

using equations (11) and (12). To speed up the computation, shape coordinates are obtained using the

complex representation of planar points. The GLRT statistic (27.8 on 30 df) first suggests that a model

with a constant mean (in time) and general complex covariance matrix Σ is preferable to the full model

with time varying mean estimated by using equation (7), and same covariance structure. No further model

simplification, for example associated with the specification of restricted models with either ΣS = I or

ΣT = I, seems to be possible. The covariance matrices, Σ̂S and Σ̂T , obtained through equations (11) and

(12), are shown in Appendix 7. Clearly, the general covariance case allows to represent the second order

non-stationary features of the process.

To test the mean shape differences between the two groups, the selected model is first run for the

pooled sample, giving a log-likelihood value of 7315.4. The likelihood values for the alternative hypoth-

esis, equal to 5113.9 and 2207.7 for non-demented and demented groups, can be obtained by running the

EM separately for each group, while keeping the entries of Σd = Σnd the same as those of shown in

Appendix 7. Since the p-value for the GLRT statistic (12.44 on 15 df) is 0.65, there is strong evidence

that, modulo rotations, there are no differences in the mean shape paths of the two groups considered in

18



0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

3
1

2

4

5

6

7

8

9

Figure 3: CC in Bookstein shape coordinates with baseline defined by points (0,0) and (1,0). The green dots
represent the observed configuration landmarks while the black dots and circles represent the landmarks of the
estimated means for demented and non-demented groups

this study. This is clearly shown in Figure 3 where the landmarks of the two mean shapes are very close

to each other. The representation is in Bookstein shape coordinates with baseline given by landmarks 3

and 6.

5.2 Shape changes in the craniofacial complex

Sagittal malocclusions are highly prevalent and have functional, esthetic, and social implications that

make them a public health issue. Precise descriptions of how and when these abnormalities emerge

and change during childhood and adolescence can inform our understanding of their underlying of their

underlying biology and facilitate diagnosis from craniofacial shape. Many studies have described growth

extensively (see, for example, Sridhar (2011) and references therein), while the shape changes of the

craniofacial complex have been less investigated. The dynamics of the cranial and facial structures, in

fact, are of a very intricate nature and quantifying their variation, and detecting the locations where the

shape change is most active during different stages of development, still represent challenging problems

for the orthodontic treatment planning.
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The data for this study were obtained from the American Association of Orthodontists Foundation

(AAOF) craniofacial legacy growth collection files. The data are available on the internet and refer to a

digital repository of records from 9 craniofacial growth study collections in the United States and Canada.

Important details on the use of materials from the AAOF Craniofacial Growth Legacy Collection in the

orthodontic literature can be found in (Al-Jewair et al., 2018). Here, lateral cephalograms at 10 different

maturational stages in cervical vertebrae are used for the analysis. These stages, roughly correspond to

the chronological age classes of [7, 8], [8, 9], . . . , [16, 17] years. The data refer to a sample of 47 subjects

presenting normal occlusion (Class I molar and canine relationships, normal overbite and overjet), with

no vertical or sagittal skeletal discrepancies and with a well-balanced facial profile. The part of the cranio-

facial complex considered here is represented by a set of 9 anatomical landmarks and, as a representative

example, Figure 4(a) shows a typical cephalograph image with the landmark configuration. Starting from

the left, we find the posterior border of the ramus which is straight and continuous with the inferior

border of the body of the bone. At its junction with the posterior border is the angle of the mandible

which is important for the attachment of the Masseter and the Pterygoideus muscles. Moving toward the

right, we then find the menton which is the most inferior part of the mandibular symphysis. This ridge,

which sometimes presents a centrally depressed area, represents the median line of the external surface

of the mandible. Note that the Sella (the center of the hypophyseal fossa) and the Nasion (the junction of

the nasal and frontal bones at the most posterior point on the curvature of the bridge of the nose) act as

reference landmarks and will be considered as baseline for Bookstein registration.

Traditionally, craniofacial analysis has relied on simple distances and angles between anatomical land-

marks (Oyonarte et al., 2016), which give only a limited representation of the phenomenon under study

(Moyers and Bookstein, 1979; Franchi et al., 2001). Here to describe the dynamics of the craniofacial

complex, dynamic shape regression models are fitted to the data. Furthermore, since forecasting the shape

changes is an important part of the analysis, the last age is excluded from the estimation procedure and is

used only for comparative purposes to test the predictive performance of the model.

For a model with P parameters, model selection is based on the AIC = −2l(µ,Σ|U) + 2 P statistic.

Results from the analysis suggest that the best AIC value (−21825.24) among the fitted models is obtained
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Figure 4: a) Cephalometric landmarks (yellow points) superimposed on the cephalogram of a subject at
the first maturational level. The two anatomical landmarks of sella and nasion are used as baseline for
Bookstein registration. b) The Bookstein shape coordinates with baseline defined by points (0,0) and
(1,0) and the fitted paths are from the second order shape regression model with AR(1) errors (red line)
and the functional model (black line). Different colors are used to differentiate the patterns of Point B,
Pogonion and Menton.

for the second order polynomial shape regression with AR(1) errors (φ̂1 = 0.39) and isotropic ΣS . For

the EM algorithm, the starting value for β are taken such that B0 is the configuration at time t = 1 while

Bm, m > 0, are chosen at random. For nested models, previous estimates are used as starting values for

the fit of subsequent models. This procedure usually facilitates the convergence of the estimation process.

Results of the estimation procedure are shown in Figure 4(b). For comparison purposes, we also

consider the fit of a functional model based on the construction, and combination, of roughness penalties

on functions in space and time. Full details on the model are given in Kent et al. (2001) and we refer to

them for known results. The figure shows the fit of this model (in red) using the “special” parametrization

(see, Kent et al., 2001), which captures the curvature in the paths trough a term which is second order

in time and linear in space. As it can be noticed, both models are able to provide a good description of

the dynamics of the shape data and the fits are very similar. However, one drawback of the functional

model is that the associated model parameters are not easy to interpret and, in general, it is not designed

to produce k−step ahead forecasts of the shape coordinates.

The same Figure 4(b) clearly suggests that the shape changes are localized and that these mainly
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occur at the inferior border of the body, at the angle as well as at the mandibular symphysis. The analysis

of overall morphologic changes can also be completed by means of a transformation grid (Dryden and

Mardia, 2016). For example, at each time point, the subplots in Figure 5(a) show both the estimated

conditional means and the Bookstein shape coordinates for the 47 subjects. The grid is thus obtained by

using a pair of thin-plate splines which map specific points of the estimated conditional mean at time t

(i.e., µ̃t|t−p) onto homologous points of the target configuration at time t′ > t (i.e., µ̃t′|t′−p). The idea is

that each point of the mean configuration gives a local indication of shape change, and that one can use

the whole set of points of the estimated conditional means for finding global and local shape changes.

Considering for example the first and the ninth maturational stages, Figure 5(b) reveals a closure of the

angle associated with an upward-forward direction of the shape changes at the posterior border of the

ramus and with an upward direction of the shape changes at the symphysis.

We conclude the analysis by showing forecasting results in Figure 6 where the one-step ahead forecast

is compared with the Bookstein shape coordinates at the tenth stage. Specifically, the upper panels show

the best (left) and worse (right) predictions corresponding to the minimum (0.039) and maximum (0.149)

values of the distribution of the root mean squared prediction errors obtained for the 47 subjects. The

forecast corresponding to the 75◦ percentile (0.092) is also represented in the middle panel. The bottom

panels emphasize the magnitude of the prediction error at each landmark, with the length of each arrow

representing the distance between predicted and true coordinate shapes. In general, results suggest that

good shape predictions at the last age can be obtained for most of the analysed subjects.

Note that a similar analysis can also been found in Appendix 9 where we describe the shape changes

of eight biological landmarks of the skulls of 18 different rats observed at 8 different ages. The data have

been analysed for several purposes and a description can be found, for example, in Kent et al. (2001),

Kume and Welling (2010) and Kenobi et al. (2010). It is shown that our model improves the fit obtained

by Kume and Welling (2010) who already improved the fit provided by Le and Kume (2000).
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Figure 5: a) Craniofacial configurations in Bookstein shape coordinates with baseline defined by points
(0,0) and (1,0). At each time, the subplots shows the 47 subjects shape coordinates with the fit provided
by the estimated conditional mean (tick line) of a second order polynomial model with AR(1) errors. b)
Thin-plate spline transformation grid between µ̃t=1|· and µ̃t=9|·.
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Figure 6: Forecasts (continuous line) of shape coordinates at the tenth maturational level. The configurations are
represented using Bookstein shape coordinates with baseline defined by points (0,0) and (1,0). The upper panels
show the best (left) and worse (right) predictions corresponding to the minimum (0.039) and maximum (0.149) root
mean squared prediction errors computed among the 47 subjects. The forecast corresponding to the 75◦ percentile
(0.092) is also represented in the middle panel. The bottom panels emphasize the magnitude of the prediction error
at each landmark, with the length of each arrow representing the distance between predicted and true coordinate
shapes.
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5.3 Featuring facial expressions

One of the non-verbal communication method by which one understands the mood/mental state of a per-

son is the expression of face. Hence, due to the important role of facial expressions in human interaction,

the ability to perform Facial Expression Recognition (FER) automatically enables a range of novel ap-

plications in fields such as human-computer interaction and data analytics (see, for example, Wang et al.,

2018 and references therein). From a physiological perspective, facial expressions result from the de-

formations of some facial features caused by an emotion. Since each emotion corresponds to a typical

stimulation of the face muscles, the aim of this section is to evaluate the possibility of using our shape

regression models to recognize basic emotions by only considering the deformations of some facial per-

manent features such as eyes, eyebrows and mouth. It is assumed that the mean shape estimated by our

model can provide a pattern which encodes the expression as sufficiently as possible. For the purposes

of this paper we shall ignore any differences between the single individuals. However, if desired, a clas-

sification of the facial expressions could be performed, for example, by simply minimizing the Euclidean

distance between the estimated pattern and each landmark facial configuration or by using a finite mixture

of Gaussian distributions within the proposed EM algorithm.

We consider data from the FG-NET (Face and Gesture Recognition Research Network) database with

facial expressions and emotions from the Technical University Munich (Wallhoff, 2006). The database

has been generated in an attempt to assist researchers who investigate the effects of different facial expres-

sions as part of the European Union project. Here, we focus on the happiness and sadness expressions

trying to emphasize the main features of their dynamics. We work on landmark data as described in

Brombin et al. (2015) and consider the material gathered from 16 different individuals. The complete

set of landmarks on the face is shown in Appendix 8. The landmarks have been manually placed on the

first frame (representing the neutral expression) of the video sequences available for each subject and

then tracked automatically, frame-by-frame, by using the Kanade-Lucas-Tomasi algorithm (Boda and

Priyadarsini, 2016). An exploratory analysis of the data shows that the dynamic of both expressions is

mainly concentrated at the mouth. Hence, in the following, we limit the analysis only to this region

(i.e. landmarks 27-34) and we further consider a downsampling which uses 10 and 20 frames (times)
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Figure 7: Representation of the mouth for happiness (left) and sadness (right) expressions. The dots represent the
Bookstein shape coordinates while the mle fitted paths are from the first order shape regression model with AR(1)
errors. The closed circles on the estimated paths represent the position of a landmark at the neutral state.

for happyness and sadness expressions, respectively. Note that the last frame ends with the apex of the

expression. Figure 7 shows results from fitting a simple linear model with first order autoregressive struc-

ture (φ̂1 = 0.20 and φ̂1 = 0.40 for happiness and sadness, respectively). Though simple, this model

represents an extension of the regression model with independent errors used in Brombin et al. (2016).

The representation is in Bookstein shape coordinates with baseline given by landmarks 11 and 19. As it

can be noted, the estimated mean paths are consistent with the definition of the Action Units (AUs) de-

scribed in Ekman et al. (2002) and which code the fundamental actions of individual or groups of muscles

for both expressions. In fact, the left subplot clearly shows that happiness is characterised by a raising of

the lip corners describing an upward curving of mouth and expansion on vertical and horizontal direction

(AU 12+25). On the other hand, the subplot on the right shows that for sadness the lips are stretched

horizontally with the lower lip pushed up and the lip corners turned down (AU 15+17). The chin muscle

below the lower lip pushes the lower lip upward and is clearly raised in sadness, increasing the size of the

lower lip by curling it forward.
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6 Discussion

In this paper we have studied the problem of modelling the temporal dynamics of a sequence of shapes.

By extending the results proposed in Mardia and Dryden (1989) and Dryden and Mardia (1991) in a

space time setting, and with the idea that models specified in the configuration space are flexible and easy

to interpret, we have derived a closed form expression for the offset-normal distribution in shape space

induced by temporally correlated Gaussian processes specified in the configuration space.

Evaluating the exact likelihood in a dynamic framework is a computationally demanding task since

combinatorial complexities appear in the calculation of the product of quadratic forms. For general co-

variance matrices, and for longitudinal studies with small values of T , we have shown that one possibility

to overcome this difficulty is to rely on the technical result of section 4. For longer time series, more

structured temporal covariance matrices for autoregressive processes can be considered and an efficient

recursive algorithm can then be used as described in section 3.4.

In the application section, we have shown that the proposed models are able to describe the dynamics

of several real data and that they can be useful to improve the scientific understanding of the underlying

mechanisms of shape changes. Results from section 5.2, have also shown that these models warrant

consideration when the interest is in producing forecasts of shape data.

Simulation studies are always important tool for the evaluation of new methods. Hence, to better de-

scribe the performance of the EM algorithm, we have also carried out a set of simulations under different

scenarios. The study was designed to: a) give an indication of the computational difficulties in evaluat-

ing the exact likelihood, b) investigate the statistical properties of the EM algorithm and c) compare the

performance with competing methods.

In general, the procedure does not seem to show numerical instabilities and the algorithm tend to con-

verge quickly to the true parameter values. However, in real data applications, running the algorithm from

different starting points in the parameter space can increase the chance of finding the global maximum

of the likelihood function. Results have also shown that, in the general covariance case, applying the

methodology proposed in section 4 may appear to be limited as the result only fully applies in practice

for small T and K. However, under separability conditions, the same methodology can be applied to
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AR models and results show that with the use of the recursive algorithm Gaussian maximum likelihood

is feasible on much larger data sets than was possible previously. Focusing on bias, standard error and

mean square error for the parameters, further results also suggest that the proposed estimator shows good

statistical properties and that, for temporally correlated shapes, it is preferable to approaches based on

tangent space approximations. There is also the hint that the estimator seems to be robust to plausible

deviations from normality. Of course, a much more in depth simulation study is required to fully assess

the robustness of the estimator as we have only assumed here that the noise distribution follows a (sym-

metric) Student’s t-distribution with known degrees of freedom. Detailed results of the simulations can

be found in Appendix 6.

We have discussed the use of autoregressive models which come from separability assumptions of

Σ†. Working with full covariance structures, and avoiding separability, is possible in theory. However,

in practice, especially for a large number of landmarks, not all the parameters are identifiable and the

likelihood optimization, based on standard numerical routines, is generally difficult and unstable. The

development of vector AR process (VAR) appears more feasible in practice and the use of VAR models

with a richer parameter structure needs to be explored, also with the availability of a larger data set. This

will be a topic for future works.

Finally, we note that the procedure we have described here was given in terms of preforms X and

Bookstein’s shape variables. However, as discussed in Kume and Welling (2010), the algorithms can

also be derived in terms of the Helmertized preforms and Kendall shape variables. The only difference is

that the covariance matrices in preform space need to appropriately reflect the linear transformation for

producing the preforms. If there are missing values, the methods in Kume and Welling (2010) can be

used.
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SUPPLEMENTARY MATERIAL

Appendix 1: Bookstein coordinates

Bookstein shape coordinates are defined as Ut = (uk,t vk,t), k = 1, . . . , K−1,with u1,t = 1 and v1,t = 0.
Ut can be computed through the mapping Xt → Ut = βtXtRt, where at each time t, the scaling factors
and the rotation matrices are given by (Dryden and Mardia, 2016, pg. 43)

βt = (x22,t + y22,t)
−1 and Rt =

(
x2,t −y2,t
y2,t x2,t

)
, t = 1, . . . , T.

The temporal sequence of shape coordinates, U =
(
U1 U2 . . . UT

)
, is thus obtained through the trans-

formation X→ U = XR, where R = diag
(
β1R1, β2R2, . . . , βTRT

)
.

The “reduced” shape coordinates are defined as u =
{

(uk,t, vk,t), k = 2, . . . , K − 1, t = 1, . . . , T
}

;
i.e. they do not include the first landmark with coordinates u1,t = 1 and v1,t = 0.

Appendix 2: ML estimators for the regression parameters and co-
variance matrices

ML estimator of the regression parameters for the complete data is given by

β̂ =
1

N

N∑
n=1

(
D′Ω−1D

)−1
D′Ω−1vec(X(n)),

In order to derive the update rules for the covariance matrices, we write their ML estimators as

Σ̂S =
1

NT

N∑
n=1

T∑
t=1

P̌t vec(X
(n))vec(X(n))′ P̌′t −

1

T
µ̂ Σ−1T µ̂′

and

Σ̂T =
1

N(2K − 2)

N∑
n=1

2K−2∑
k=1

P̆k vec(X
(n))vec(X(n))′ P̆′k −

1

2K − 2
µ̂′ Σ−1S µ̂,

where, from the Cholesky decompositions Σ̂−1T = LTL′T and Σ̂−1S = LSL′S , we have P̌t = (LTet)
′ ⊗

I2K−2 and P̆k = IT ⊗ (LSek)′; et and ek are, respectively, T -dimensional and (2K − 2)-dimensional
vectors with entries, ej(j) = 1 for j = t, k, and zero otherwise.

31



Appendix 3: Proof of Result 1 in section 3.4

To save space, the proof is given for an AR(1) process. Extension to higher order is straightforward. We
use the following approximation

E
[
vec(Xt)|W0,W1,W2, . . . ,Wt,Wt+1, . . . ,WT

]
' E

[
vec(Xt)|W0,W1, . . . ,Wt

]
.

and implement this iteratively using the following identities based on the iterated expectations.

For t = 1, vec(X1) = µ̃(1 − φ1) + φ1vec(X0) + vec(E1) and since X0 is assumed given, we have
E
[
vec(X1)|W0,W1

]
= E

[
vec(X1)|W1

]
= W1Q(µ̃1|0,ΣS,W1), with µ̃1|0 = µ̃(1−φ1)+φ1vec(X0).

For t = 2, 3, . . . , T we also have vec(Xt) = µ̃(1− φ1) + φ1vec(Xt−1) + vec(Et) with

E
[
vec(Xt)|W0,W1, . . . ,Wt

]
= E

[
µ̃(1− φ1) + φ1vec(Xt−1) + vec(Et)|W0,W1, . . . ,Wt

]
= E

[
E
[
µ̃(1− φ1) + φ1vec(Xt−1) + vec(Et)|W0,W1, . . . ,Wt−1

]
|Wt

]
= E

[
µ̃(1− φ1) + φ1E

[
vec(Xt−1)|W0,W1, . . . ,Wt−1

]
+ vec(Et)|Wt

]
= E

[
µ̃t|t−1 + vec(Et)|Wt

]
= WtQ(µ̃t|t−1,ΣS ,Wt), t = 1, . . . , T. 2

where E
[
vec(Xt−1)|W0,W1, . . . ,Wt−1

]
is implemented in the previous step, so that µ̃t|t−1 acts as the

forecast mean of observation vec(Xt). This also shows that, given the past, the conditional likelihood can
be computed recursively and, for an iid sample of temporally correlated configurations, the update rule
for the mean in the M-step is obtained as

µ̃(r+1) =
1

α

N∑
n=1

T∑
t=2

∫
vec
(
X

(n)
t

)
dF
(
X(n)|u(n), µ̃(r), φ

(r)
1 ,ΣS

)
−

φ
(r)
1

α

N∑
n=1

T∑
t=2

∫
vec
(
X

(n)
t−1

)
dF
(
X(n)|u(n), µ̃(r), φ

(r)
1 ,ΣS

)

where α = N(T − 1)(1− φ(r)
1 ).

Appendix 4: Baseline invariance

By standardizing along a different pair of landmarks, we essentially re-parametrize the problem and,
accordingly, the MLE solutions represent the same objects. For example, the preform of X ∼ N (µ,Σ),
obtained after a choice of baseline landmarks, say 1 and 2, is actually linearly related via a matrix P 12,kl

to the preform ofX but with baseline landmarks choice k and l (see Lemma 3 in Kume and Welling, 2010
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for explicit expression of P 12,kl). Namely, the preform with baseline k and l coming fromX ∼ N (µ,Σ)

is the same in distribution as the preform coming from X̂ = P 12,klX ∼ N (µ̂, Σ̂) with baseline 1 and 2
where µ̂ = P 12,klµ and Σ̂ = P 12,klΣP 12,kl′.

Therefore, following a similar discussion as in Kume and Welling (2010), the elementary conditional
expectations of first and second conditional moments need to reflect the appropriate linear relations. For
example, if we are to evaluate our elementary expectations, E(Xt|U k,l

t ,µ,Σ) and E(XtX
′
t|U

k,l
t ,µ,Σ),

in terms of baseline coordinates k, l, we have

E(Xt|U k,l
t ,µ,Σ) = P 12,kl−1E(Xt|Û 1,2

t , µ̂, Σ̂)

E(XtX
′
t|U

k,l
t ,µ,Σ) = P 12,kl−1E(XtX

t
t ; Û

1,2
t , µ̂, Σ̂)P 12,kl−t,

where the expectations on the right are the same as if one chooses the baseline on landmarks 1 and 2
while rearranging the mean and variance components accordingly.

Appendix 5: Proof of Result 2 in section 4

The expected value of hj
∏T

t=1(h
′Ath)

K−2, for j = 1, . . . , 2T , can be obtained considering the following devel-

opment for the expectation of (hj − w)2
∏T

t=1(h
′Ath)

K−2

∫
(hj − w)2

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)fN (w|1, 1)dhdw =

=

∫
h2j

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh
∫
fN (w|1, 1)dw

− 2

∫
hj

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh
∫
wfN (w|1, 1)dw

+

∫ T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh
∫
w2fN (w|1, 1)dw

Since ∫
fN (w|1, 1)dw = 1,

∫
wfN (w|1, 1)dw = 1,

∫
w2fN (w|1, 1)dw = 2

we have∫
(hj − w)2

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)fN (w|1, 1)dhdw =

∫
h2j

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh+

− 2

∫
hj

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh + 2

∫ T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh
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Given

I3j =
∫

(hj − w)2
T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)fN (w|1, 1)dhdw

I1j =
∫
h2j

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh

Ij =
∫
hj

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh

I2 =
∫ T∏

t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh

and I3j = I1j − 2Ij + 2I2, the integral of interest can be obtained as Ij = 1
2I1j + I2 −

1
2I3j

The solution is∫
hj

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh = 0.5

∫
h2j

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh

+

∫ T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)dh− 0.5

∫
(hj − w)2

T∏
t=1

(h′Ath)
K−2fN2T

(h|η,Γ)fN (w|1, 1)dhdw

Appendix 6: Simulation results

This section provides a discussion of a set of simulations we have carried out to investigate the performance of the

EM approach under different scenarios. We begin by investigating how the estimation procedure performs under

the results proposed in sections 3 and 4. The study is designed to give an indication of the computational burden of

the EM algorithm, especially for different values of K, T and N .

The first set of simulations gives an idea of the computational difficulties of working with the exact likelihood.

Table 1 compares the CPU times1 (in seconds) required to compute the expectations in equations (9) and (13)

using both Laguerre polynomials and equations (4) and (5). The analysis is carried out using a “minimal model

specification setting” with K = 3 (i.e. a triangle), T = 4, 5, 6, N = 10, 20, 30 and ΣT equal to the correlation

matrix of a first order autoregressive process with φ1 = 0.5.

Results suggest that is difficult to work with Laguerre polynomials with K = 3 and T > 6 and that, in general,

despite an explicit expression for Qs(Bv) is available (see, for example, the discussion in Brombin et al., 2016), it

is impossible to use Laguerre polynomials for K and T greater than 4. Kan’s formulation and results from section

4 allow for a more efficient procedure. However, estimation remains infeasible for K and T greater than 6.

The second set of simulations is thus carried out using results from section 3.4 where the expectation of equation

(9) is computed recursively. By using K = 8, T = 8, 15, 30, 50 and N = 1, 10, 20, Table 2 shows the results from

50 simulations of a first order autoregressive process with parameter values φ1 = 0.25, 0.5, 0.75, constant mean µ̃

1Results are obtained in Matlab with an Intel(R) Core(TM) i7-4558U CPU 2.80 GHz with 8 GB.
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and Σ†S having an isotropic structure with σ2 = 1.

K = 3 K = 4 K = 5 K = 6

Kan’s formulation
T = 3 0.05 0.12 0.27 0.62
T = 4 0.09 0.45 1.74 5.22
T = 5 0.19 1.87 10.26 40.00
T = 6 0.45 7.55 59.32 288.31

Laguerre polynomials
T = 3 0.26 6.8 86.11 -
T = 4 3.56 389.0 11693.86 -
T = 5 54.0 21780.00 - -
T = 6 825.0 - - -

Table 1: CPU time (in seconds) required to compute the expectations in equations (9) and (13). Results refer to a
single iteration of the E-step of the EM algorithm, assuming N = 1, K = 3, . . . , 6 and T varying from 3 to 6.

N N N
T 1 10 20 1 10 20 1 10 20

φ1 = 0.25 φ1 = 0.50 φ1 = 0.75

8 0.008
(0.087)

0.004
(0.029)

0.017
(0.027)

−0.266
(0.127)

0.010
(0.024)

0.011
(0.021)

0.002
(0.096)

0.005
(0.029)

0.009
(0.022)

15 0.011
(0.080)

0.003
(0.025)

0.002
(0.018)

−0.111
(0.067)

0.002
(0.024)

0.003
(0.014)

−0.002
(0.048)

0.005
(0.014)

0.004
(0.013)

30 −0.008
(0.065)

−0.001
(0.025)

0.000
(0.018)

−0.041
(0.050)

0.001
(0.015)

−0.001
(0.009)

0.004
(0.034)

0.006
(0.011)

−0.002
(0.008)

50 0.003
(0.037)

0.005
(0.011)

0.003
(0.009)

−0.027
(0.028)

0.002
(0.012)

0.005
(0.007)

0.014
(0.028)

−0.004
(0.010)

0.002
(0.007)

Table 2: The bias (and standard errors) of the autoregressive parameter estimates from 50 simulations for different
N and T . The true parameters are φ1 = 0.25, 0.50 and 0.75 and the mean, µ̃, is constant.

Results suggest that the bias, the standard errors and the MSE for φ1 become negligible as T and N
increase. The bias is larger forN = 1, especially for φ1 = 0.5 for which it appears always negative. How-
ever, in general, as the size of the sample increases, the estimates become closer to the actual parameter
and the standard errors are also reasonably small.

For the same set of simulations, Table 3 also shows the means and the standard errors of the Full
Procrustes distance ρ, computed between the estimated mean, ˆ̃µi, i = 1, . . . , 50, and the true mean, µ̃.
In general, we have that the estimated mean does not differ much from the mean shape parameter since
ρ, averaged over the 50 simulations, is quite small. However, there is also the hint that the estimation of
the mean shape appears slightly more difficult as the temporal correlation increases.

The concepts of a mean shape and shape correlation have an underpinning role in our applications.
Regarding the estimation of these model parameters, it may be possible that different approaches can give
rise to different results. The following simulation thus aims at motivating the use of the offset-normal
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N N N
T 1 10 20 1 10 20 1 10 20

ρ ρ ρ

8 0.025
(0.010)

0.008
(0.003)

0.005
(0.002)

0.068
(0.036)

0.028
(0.014)

0.017
(0.006)

0.155
(0.084)

0.053
(0.023)

0.022
(0.015)

15 0.018
(0.006)

0.006
(0.003)

0.004
(0.002)

0.055
(0.030)

0.020
(0.008)

0.012
(0.006)

0.129
(0.061)

0.044
(0.021)

0.019
(0.011)

30 0.014
(0.008)

0.004
(0.002)

0.003
(0.001)

0.037
(0.014)

0.013
(0.005)

0.008
(0.003)

0.104
(0.051)

0.035
(0.018)

0.011
(0.007)

50 0.012
(0.005)

0.004
(0.002)

0.002
(0.001)

0.031
(0.012)

0.010
(0.005)

0.005
(0.001)

0.082
(0.033)

0.028
(0.014)

0.006
(0.005)

Table 3: The means (and standard errors) of the Full Procrustes distance ρ computed for each estimated mean,
ˆ̃µi, i = 1, . . . , 50, and the true mean shape, µ̃.

distribution by comparing EM parameter estimates with those obtained by using Procrustes tangent coor-
dinates (Dryden and Mardia, 2016). Since this is a commonly used approach in practical shape analysis,
one of the first things to investigate is whether the distribution of points in the tangent space may be used
as satisfactory approximation to their distribution in shape space. To this purpose, Table 4 shows estima-
tion results for simulated AR(1) with φ1 = 0.5. The numbers of landmarks, time points and independent
configurations are fixed as, K = 8, T = 8 and N = 20, respectively. An isotropic structure, with two
different levels of variability (σ = 1, 3), is also considered for the error term. The mean of the process,
µ̃, assumed as constant in time, is represented by the mean shape of the data used in example 5.3 (i.e. the
happiness configuration) and its coordinates range from 279.42 to 356.25.

Results suggest that the differences in estimating the mean are not so large as the Full Procrustes
distances between and ˆ̃µ and µ̃ are similar. However, using the Procrustes tangent coordinates clearly
affects the estimate of the autoregressive parameter φ since, working in the tangent space, both the bias
and MSE appear larger than those observed for the ML approach. Also, we note that, because of the
linear approximation, working in the tangent space may limit the interpretation of φ, especially for larger
error variances.

σ = 1 σ = 3

T ρpr ρml φ̂pr φ̂ml ρpr ρml φ̂pr φ̂ml

8 0.001 0.000 0.476
(0.033)

0.499
(0.028)

0.002 0.002 0.474
(0.031)

0.500
(0.028)

Table 4: Comparison of the estimates obtained by using Procrustes tangent coordinates and ML. φ̂pr and φ̂ml

represent the the means (and standard errors), taken over 100 simulations of the AR(1) process, of the autoregressive
parameter, φ = 0.5. The Full Procrustes distances, ρpr and ρml, represents the distance between the estimated mean,
ˆ̃µ, and the true mean shape, µ̃, using Procrustes tangent coordinates and the EM approach, respectively.
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Finally, to asses the performance of the EM estimator when the data exhibit departures from the
normal distribution, we have carried out further simulations with non-Gaussian noise. In Table 5, we
thus show results from 50 simulations for an AR(1) process with error terms following a Student’s t-
distribution. The mean is assumed constant, K = 8, T = 15, N = 20 and φ = 0.5 as used in Table
2 above. Results show that the estimator seems to be robust to plausible deviations from normality.
However, when the number of degrees of freedom result smaller than 5, then both the bias and the standard
errors for φ appear to increase significantly. The Full Procrustes distance, ρml, between the estimated
mean, ˆ̃µ, and the true mean shape, µ̃, also appears to increase considerably.

df
5 3 2.5 2.2

φ̂ml 0.010
(0.016)

0.022
(0.019)

0.046
(0.061)

0.057
(0.070)

ρml 0.023 0.038 0.146 0.184

Table 5: For different degrees of freedom (df) of the Student’s t-distribution, the first row shows the bias (and
standard errors) of the autoregressive parameter estimates from 50 simulations with N = 20, T = 15, φ1 = 0.50
and constant mean. The second row, gives the Full Procrustes distance, ρml, between the estimated mean, ˆ̃µ, and
the true mean shape, µ̃.
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Appendix 7: ML estimates of the landmarks and temporal covari-
ance matrices for the example 5.1

(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6) (x7, y7) (x8, y8)

(x1, y1) 1.48+0.00i 0.19 + 0.02i 0.36 - 0.11i 0.72 + 0.33i 1.27 + 0.20i 1.36 - 0.21i 1.31 - 0.00i 1.09 + 0.15i
(x2, y2) 0.19 - 0.02i 0.02+0.00i 0.04- 0.02i 0.10 + 0.03i 0.16 + 0.01i 0.17 - 0.04i 0.17 - 0.02i 0.14 + 0.00i
(x3, y3) 0.36 + 0.11i 0.04 + 0.02i 0.10+0.00i 0.15 + 0.13i 0.30 + 0.14i 0.35 + 0.05i 0.32 + 0.09i 0.26 + 0.12i
(x4, y4) 0.72 - 0.33i 0.10 - 0.03i 0.15 - 0.13i 0.43+0.00i 0.66 - 0.19i 0.62 - 0.41i 0.64 - 0.30i 0.57 - 0.17i
(x5, y5) 1.27 - 0.20i 0.16 - 0.01i 0.30 - 0.14i 0.66 + 0.19i 1.12+0.00i 1.14 - 0.36i 1.12 - 0.19i 0.96 - 0.02i
(x6, y6) 1.36 + 0.21i 0.17 + 0.04i 0.35 - 0.05i 0.62 + 0.41i 1.14 + 0.36i 1.28+0.00i 1.20 + 0.17i 0.99 + 0.29i
(x7, y7) 1.31 + 0.01i 0.17 + 0.02i 0.32 - 0.09i 0.64 + 0.30i 1.12 + 0.19i 1.20 - 0.17i 1.15+0.00i 0.97 + 0.14i
(x8, y8) 1.09 - 0.15i 0.14 - 0.00i 0.26 - 0.12i 0.57 + 0.17i 0.96 + 0.02i 0.99 - 0.29i 0.97 - 0.14i 0.83+0.00i

Table 6: ML estimates of the complex covariance matrix ΣS for the 8 landmarks of the CC in the preform space.
The estimates refer to the pooled sample and are obtaied using equation (10).

t1 t2 t3

t1 1.00 0.41 0.36
t2 0.41 1.00 0.44
t3 0.36 0.44 1.00

Table 7: ML estimates of the temporal correlation matrix ΣT for the three visits. The estimates refer to the pooled
sample and are obtaied using equation (11).

38



Appendix 8: Set of landmarks for the FG-NET data
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Figure 8: Example of facial landmark configuration with 34 landmarks. The box around the mouth highlights the
landmarks of interest.
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Appendix 9: Rat skulls data

A statistical analysis similar to that described in section 5.2, is described here for modelling the dynamics
of eight biological landmarks measured on the skulls of 18 rats at ages 7, 14, 21, 30, 40, 60, 90, and 150

days. Results from the analysis suggest that a first order autoregressive model with constant mean does
not look reasonable since the estimated autoregressive parameter φ1 is very close to 1. Kume and Welling
(2010) have shown that the non-stationary features of the process can be much better described by using
a polynomial function for the mean. The best AIC value among shape regression models assuming
temporally independent errors and isotropic landmark covariance matrix, is found for a second order
polynomial trend model, with P = 42 parameters, which has AIC= −4563.4. The AIC value for the first
order polynomial trend, with P = 28, is equal to −4321.4. The use of shape regression models for the
mean with an AR(1) structure for the errors suggests a slightly better model fit to the data. In fact, the
AIC for the second order polynomial model, which has φ̂1 = 0.19, is equal to −4700.3.

By making use of Bookstein shape coordinates, results of the estimation procedure is shown in Figure
9. For comparison purposes, the fit of our regression model is compared with the fit of the functional
growth model (using the “special” parametrization) described in Kent et al. (2001). The figure shows that
both models are able to provide a good description of the dynamics of the data and the fits represent an
improvement compared with those provided by Kume and Welling (2010) and Le and Kume (2000).

Forecasting results are also shown in Figure 10 where the one-step ahead forecast is compared with
the Bookstein shape coordinates of the rats at the last age (originally excluded from the analysis). Specif-
ically, the upper panels show the best (left) and worse (right) predictions corresponding to the minimum
(0.077) and maximum (0.340) values of the distribution of the root mean squared prediction errors ob-
tained for the 18 rats. The forecast corresponding to the 75◦ percentile (0.210) is also represented in
the middle panel. The bottom panels emphasize the magnitude of the prediction error at each landmark,
with the length of each arrow (blown up for visibility) representing the distance between predicted and
true coordinate shapes. In general, results suggest the quite good shape predictions at the eighth age can
be obtained for most of the analyzed rats. For some of the rats, there seems to be difficulties in pre-
dicting the growth at the Labda, Bregma, Spheno-ethmoidal synchondrosis, Intersphenoidal suture and
Spheno-occipital synchondrosis landmarks.
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Figure 9: Rat skulls in Bookstein shape coordinates with baseline defined by points (0,0) and (1,0). The dots
represent the observed configuration landmarks while the fitted paths are from the second order shape regression
model with AR(1) errors (solid line) and the functional growth model (dashed line)
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Figure 10: Forecasts (continuous line) of the rat shapes at the eighth age. The configurations are represented
using Bookstein shape coordinates with baseline defined by points (0,0) and (1,0). The upper panels show the
best (left) and worse (right) predictions corresponding to the minimum (0.077) and maximum (0.340) root mean
squared prediction errors computed among the 18 rats. The forecast corresponding to the 75◦ percentile (0.210) is
also represented in the middle panel. The bottom panels emphasize the magnitude of the prediction error at each
landmark, with the length of each arrow (blown up for visibility) representing the distance between predicted and
true coordinate shapes.
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