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Synopsis

Nowadays, there is an increasing concern with the environmental sustainability of
human activities and current logistics practices. Various organisations and busi-
nesses are starting to pay more attention to their current logistics activities that
may bring negative effects on the environment. Therefore, attempts are being
made to develop route planning approaches that give the minimum impact to en-
vironmental damages. This research specifically seeks to design vehicle routes that
serve a set of customers with the objective to minimise both the transportation
cost and CO, emissions through the fuel consumption measure. The greenhouse
gas emissions which cause global warming can be captured by the measurement
of the amount of fuel consumed by a vehicle. This measure is influenced by nu-
merous factors such as travelling distance, vehicle load, speed, acceleration, and

road gradient.

This thesis presents an investigation into the impact of the load factor in the
heuristic search for the case of environmental routing problem. In other words, this
work examines the classical vehicle routing problem (VRP) namely the capacitated
VRP (CVRP) with the incorporation of the load factor. We explore three types of
heuristic searches which include the constructive heuristic, the local searches, and
the integrated heuristics such as the composite and the multi-level metaheuristics.
Newly developed formulations based on the load factor are introduced for the
selected constructive method and the local searches. In the integrated heuristic,
multiple local search operators are exercised all together within the search as it
leads to a better exploration of the solution space. Furthermore, this research
introduces a learning mechanism to guide the search more efficiently and in an
adaptive way. Interesting results are obtained when using the 46 well-known VRP
instances ranging in size from 21 to 1200 customers. It was found that in general,
for small and large data sets, the learning search within the composite method
yielded a better solution. However, for the medium data set, the learning search

within the multi-level heuristic performed better.



The contributions of this study are fourfold: (i) the modification of the construc-
tive heuristic namely the savings method by introducing the load factor, (ii) the
incorporation of the load factor into several local searches, (iii) the exploration
of the composite and multi-level metaheuristics, and (iv) the introduction of a

learning mechanism into the overall search.

This thesis is arranged into seven chapters. A brief description of each chapter is
given in the following. Chapter 1 provides an overview of the routing problems
focusing on transportation planning. Issues associated with COq emissions and its
relationship with the load factor are also highlighted here. In addition, a common

research methodology to solve the routing problems is discussed.

Chapter 2 investigates some of the literature related to this research. This includes
an overview of VRP especially the capacitated one and its basic optimisation
model. Some review of researches from the area of VRP focused on the one that
associated with sustainable transportation activities are covered. Another class of
VRP named the green VRP is explored which includes pollution routing problem
and VRP with reverse logistic. We also studied some related literature to the
estimation of vehicle fuel consumption and emission. This estimation method is
essential in this research as we adopted it to approximate the total routing cost

in the subsequent chapters.

Thereafter in Chapter 3, one of the most studied constructive heuristics namely,
Clarke and Wright savings is analysed. We introduced two new savings formu-
lations to incorporate the load factor known as the integrated and the combined
savings. The emission model known as the Comprehensive Modal Emission Model
(CMEM) is customised to be the cost function to calculate fuel consumption in
evaluating the CO, emission. To put an emphasis on the load factor, we also
conducted an assessment to use both directions of the established route. This
assessment, which we refer to as the evaluation of the reverse route, remained to
be of the essence throughout this research. Computational experiments performed

using the 46 well-known VRP instances generated stimulating results.

Subsequently, Chapter 4 examines the first three basic local search operators which
are the 2-opt, (1,0) relocate and (2,0) relocate. The computation of these operators
is generally simple and relatively quick. The 2-opt is performed only for the intra-
route case, but the other operators are used for both the intra-route and the
inter-route cases. This chapter presents new mathematical formulations which

cater for the load factor. An illustrative example is then provided followed by full

ii



computational results obtained based on the same VRP instances. In addition, we
also highlighted the computational comparison between the brute-force and the
new formula-based searches. Its finding strongly supports the development of the

new formulations.

In Chapter 5, three more intensive local search operators namely, the (1,1), (2,1)
and (2,2) interchange are analysed. These operators are considered as advanced as
they require relatively much more computing effort. Both the intra-route and the
inter-route cases are implemented separately for a single operator. Similar to what
was studied in Chapter 4, the load factor is adapted to obtain new mathematical
formulations. An illustrative example is also given. This is followed by an extensive

computational experiment which yields interesting outcomes.

Chapter 6 analyses the performance when all these local search operators are
combined all together in the search. The method, which is referred to as the
integrated search, comprised of two powerful mechanisms namely, the composite
and the multi-level heuristics. These two metaheuristics refine the solution by
using improvement schemes, also known as the local searches operators. These
are arranged in a certain order which can be critical. The two methods are quite
similar to each other, apart from the way it directed the search once a particular
improvement scheme is implemented. In this study, we provided a brief description
of the two methods as well as their algorithms which led to twelve variants. This
is followed by the computational results conducted over all the variants. Two
of these variants are found to be prominent and they are selected for the next
stage where the learning mechanism is then introduced. We established a pseudo-
random selection scheme based on a certain test probability to select the next
local search. Three sets of test probability are chosen to be incorporated in the
integrated search. Computational tests performed over five runs lead to interesting

results.

Finally, Chapter 7 presents our conclusions and highlights some future research

opportunities which we believe to be worthwhile.
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Chapter 1

Introduction and Research
Methodology for Environmental

Vehicle Routing Problems

1.1 Introduction

This chapter provides an overview of routing problems focusing in the environment
aspect by using the load factor. A brief of common research methodologies in
solving the routing problems especially those techniques that will be used in this

research is given. This is followed by the aim and the organisation of the thesis.

1.2 Environmental effect in transportation

Although transportation activities support increasing mobility demands for pas-
senger and freight, it is also recognised as causing harm to our environment and
our health. The hazardous impacts of transportation on the environment relate
to climate change, air quality, noise, water quality, soil quality, biodiversity and
land take (Rodrigue et al., 2017). Recently, nations worldwide increased their
awareness that they need to address these hazardous impacts in order to achieve

a sustainable transportation system.

At another level, transport activities also contribute to release greenhouse gases of
which COs is a potent element. The greenhouse gases consist of seven gases which

are carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons,



CHAPTER 1. Introduction and Research Methodology for Environmental
Vehicle Routing Problems

sulphur hexafluoride and nitrogen trifluoride. The last four gases are collectively
referred as fluorinated gases or F-gases (DECC, 2015).

High concentration of CO, in the atmosphere poses a significant threat to the
global environment. The emissions of CO4 are directly proportional to the quantity
of fuel consumed by vehicles. The vehicle fuel consumption largely relies on a
variety of items including the type and size of vehicles, environment, and traffic-
related parameters such as vehicle speed, load, acceleration and road gradient
(Demir, Bektag, and Laporte, 2011).

In this research, one of the main factors that affects fuel consumption, namely
the vehicle load, is studied. In other words, the more load the vehicle carries, the
more horsepower the engine demands. This leads to a higher fuel consumption.
Vehicle load also influences the inertia force, rolling resistance and road slope force.
Therefore, it is such a significant element of routing decisions that it cannot be

ignored.

1.3 Routing problems in transportation planning

Routing problems can be identified as the development of a collection of tours
on a network with the need to satisfy certain objectives without violating side
constraints. These problems are performed in various kinds of networks including
telephone networks, electronic data networks, and transportation networks. For
transportation, it has become one of the most important means in everyday life
that enables a particular entity to move from one point to another. The entity can
be a person travelling or merchandise that is being distributed. The transportation
sector is also regarded as the central infrastructure for economic and industrial
growth and development for it mainly focuses on the maximum profit at hands

and on the reduction of their operational costs.

Relating to that, the majority of road freight transportation is operated by trucks,
which mostly run on diesel engines and which emit a large portion of pollutants.
Diesel engines have been known as the main sources of nitrogen oxides (N,O),
particulate matter (PM) and carbon dioxides (COz) emissions which are associated
to a series of health problems when continuously exposed to them (Demir, Bektag,
and Laporte, 2014a).
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The vehicle routing problem (VRP) is fundamental in road transportation plan-
ning and often aims at minimizing the cost of the routes. VRP can be defined
as the design of least cost routes for a fleet of vehicles in satisfying the demand
of a set of customers under certain constraints. The vehicle begins and ends the
journey at its own depot and each customer must be visited once only. This prob-
lem could be enriched by the incorporation of terms related to fuel consumption
to meet the environmental concerns. Therefore, consideration of the load factor
within the formulation in developing optimal or good routes is the purpose of our

study.

Toth and Vigo (2002b) examined VRP and some of its main variants along with
exact and heuristics methods developed for solving it as well as its application
in real-world instances. These two types of optimisation methodologies will be
briefly reviewed in Subsection 1.4. Figure 1.1 shows the basic version of VRP and
their interconnections with the addition of green VRP variant in the shaded box
as most studies under this variant adapted the existing VRP model to integrate
environmental concerns in addition to economic interests. This VRP variant will

be discussed further in Chapter 2.

R
Basic VRP

| S
Route —
length
| (‘ V ]{ l )

Time
windows

Mixed
service

VRPPD

Backhauling

VRPB
VRPBTW VRPPDTW

FIGURE 1.1: Basic problem of VRP class and their interconnections (Toth and
Vigo, 2002b)
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1.4 Research Methodology

Generally, methods to solve optimisation problems are categorised in two groups
which are the exact and the approximate/heuristic methods. The exact methods
are classical approaches to solve combinatorial and global optimisation problems
optimally. They usually include, for example, branch and bound, cutting plane,
and dynamic programming. The idea is to recursively split up a problem into
basic sub-problems so that they can be solved at once. Then, its solutions are
combined to form a solution to the original problem. Though the exact methods
are used to produce an optimal solution, they can be extremely time-consuming
when solving large real-world combinatorial or global optimisation problems. From
the literature, it is found that the exact methods can efficiently provide a solution
for a VRP problem with up to about 100 customers. This leads to the vast research
in heuristic design especially for the one with a large-scale and complex practical
problem that are inappropriate for exact methods. Some of the relevant heuristics
will be briefly discussed here but for more information see the recent book by Salhi
(2017).

There is no general basis for devising a good heuristic method and it is not certain
for any problem to assuredly obtain a good quality solution. The success of the
heuristic method depends upon its aptitude to adjust to a particular realization,
to avoid entrapment at local optima, and to manipulate the basic structure of the
problem. Based on these notions, numerous heuristic search methods have been
fostered to tackle difficult combinatorial and global optimisation problems. The
search seeks to approximately produce a good-quality solution within reasonable
computing times and efforts that can be considered to be acceptable for practical

purposes.

Heuristic search can be classified in numerous ways. One categorization, consisting

of four groups, is provided by Salhi (2017) as follows:

(i) improving solutions only
(ii) not necessarily improving solutions
(iii) population-based

(iv) hybridisation
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In this research, we mainly focused on the heuristics in the first category (i).
For our purpose, we further divided it in three types including the constructive
heuristics, the local search, and metaheuristics. This section is followed by a short
description of multi-objective optimisation method that will also be reviewed in
the next chapter. In the following subsections, we briefly describe the methods
that we use in this study though others that belong to the same category are also

briefly mentioned here.

1.4.1 Constructive heuristics

This approach is often employed to generate an initial solution. It is performed
by constructing the solution starting from scratch. Certain selection strategies are
applied during the build-up of the solution. This will then contribute to the final
solution. We give a brief description of four VRP-based constructive heuristics
with the first two being explored in this thesis, either to construct the solution or

to refine it.

Techniques used
(a) Savings method

One of the earliest method and frequently use in practice to solve the VRP is the
Clarke and Wright (1964) savings. It was introduced with a simple but yet an
effective procedure to produce a near-optimal solution. In this study, we imple-
ment this method to generate our initial solution and incorporate the load factor
in its algorithm. We shall discuss this method and its algorithm in more details
in Chapter 3.

(b) Insertion-based method

Another intuitive approach to the VRP is to start with a sub-route and extend
it by adding the unserved customers one by one until all customers belong to a
route. The rule of inserting a new customer is to choose the point in which the
insertion would increase the cost the least in the route cost. Mathematically, the
insertion cost of unrouted customer k between customers ¢ and j can be calculated

as
I(k,ij) = di, + di; — dij
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This approach is flexible as it can also be applied to improve the initial solutions.
It can be used as we will show in subsequent chapters. The improvement can
be used within the route (intra-route) or among the routes (inter-route). In this
study, we refer to this as p-relocate which will be explained next in the local

search, Subsection 1.4.2.

Other techniques
(a) Nearest neighbour search

This method is also one of the earliest and simple to conduct. It is used to solve
the travelling salesman problem (TSP) where the salesman makes the first visit
to one city, either randomly or chosen using a certain criterion, and goes on to
the next nearest unvisited city. This process is repeated until all cities are visited.
Similarly, this is applied for the VRP in which the tour will start from the depot
and the nearest customer to it. This customer then becomes a reference point
for the next customer, who is unvisited and the nearest to the reference point, to
be visited. This process continues as long as the vehicle capacity or the distance
constraints are not violated. Otherwise, a new tour is created and the process

recurs until all customers are assigned.
(b) Sweep method

This approach is proposed by Gillett and Miller (1974) where an iterative proce-
dure which is similar concept to the nearest neighbour method is used to construct
the routes. The selection of the first customer k£ in the route can be crucial. For
example, a customer with the largest demand can be visited first. Afterwards,
instead of selecting the nearest customer, an unrouted customer with the smallest
angle from the depot to k is inserted in the route. The search progressively adding
customers into the route until a route is full. This means that inserting new cus-
tomer in the route will violate the constraints. Consequently, the resulted routes

are non-intersecting, although more routes than necessary may be developed.

1.4.2 Local search methods

Local search methods, also known as improvement heuristics, are implemented

on an established solution to improve the solution quality. We provide some
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definitions and description of the notions related to these methods, as given in
Salhi (2017).

Local search definition The mechanism (i.e. operator) to generate a solution
X' from a solution X in a given neighbourhood N (X) where X' = Argmin{F(X);
X e N(X)}.

Neighbourhood definition A solution, say X € S in which S is the set of fea-
sible solutions, has an accompanying set of neighbours, say N(X) C S. Therefore,
N(X) is the neighbourhood of X.

Selection strategies The following strategies are often used in selecting a so-

lution X’ from a solution X in a given neighbourhood N(X).

(i) Best improvement strategy, which analyses all solutions X’ € N(X) in the
neighbourhood and accepts the attribute that returns the best outcome
based on a particular acceptance condition (i.e. the least cost in a min-

imisation problem).

(ii) First improvement strategy, which selects the first solution X’ € N(X) once

the acceptance condition is satisfied.

Local search operators In this study, three types of local search operators are
implemented to improve the initial solution. We investigate the effect of the load

factor by modifying the formulation of these operators.

(a) The A-opt method is originally proposed by Lin (1965) where he introduced
the A-optimality concept. Basically, the method is implemented by taking
out A arcs from the route and then reconnecting the A remaining segments
in a feasible way. The procedure halts at a local minimum when further
improvements cannot be obtained. In this research, we consider A = 2 and
present our investigation in Chapter 4. Other values of A could also be

attempted.

(b) The p-relocate shifts a number of customers p from a route to a different

position in the same route (i.e. intra-route) or to another different route

7
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(i.e. inter-route). The most common operator of this type is 1-relocate or
sometimes called the (1,0) operator, where one customer is removed from
a route and inserted in another location. This type of operator is widely
used in the research due to its simplicity and time-saving computation. This
operator could be easily extended to a more complex computation depending
on the value of p. For instance, if 1 = 2, the two customers could shift either
separately or jointly to another location. In this study, we consider p = 1,2
and the customers are being shifted consecutively when p = 2. Further

exploration is given in Chapter 4.

(¢) The pu-yp interchange or also known as (1,1)) operator exchanges p customer
from one route with v customer from another route. Here, the exchange
position is not necessarily the same as before. In other words, once u cus-
tomers are removed from route, say i, 1 customers from route j can be
inserted anywhere in route i, and vice versa. This version is referred to
as the best exchange which will be discussed further in Chapter 5. If ¢
customer is inserted in the previous position of u customers, the procedure
reduces to a simpler version which we refer to as the direct exchange or the
swap move. This operator could also be implemented for both the intra-
and the inter-route cases. We apply the direct exchange or swap move and
the best exchange for the intra- and the inter-route cases, respectively. A
similar implementation could also be applied for other values of p and .
The illustration of how this mechanism can be used is also shown in Osman
(1993).

1.4.3 Metaheuristics

Metaheuristics is another class of heuristics which exploits classical heuristics with
refined strategies to explore further into the solution space in identifying a good
solution. Osman and Laporte (1996) in their bibliography provide a formal defi-

nition of metaheuristic as given below:

An iterative generation process which guides a subordinate heuristic by
combining intelligently different concepts for exploring and exploiting
the search space, learning strategies are used to structure information

in order to find efficiently near-optimal solutions.
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In this study, we concentrate on two powerful mechanisms which are the composite
and multi-level heuristics. A general idea of these two methods are presented
briefly below. Other metaheuristics are also briefly mentioned, though they are

not investigated in this work, which could be worth to explore if necessary.

Simple composite heuristic

This method uses an improvement procedure or local search one after another to
generate better quality solutions. One possible skeleton of this approach is given
below in Salhi (2017). We shall examine this method further in Chapter 6.

Step 1: Initialise k possible refinements (usually £k = 2 or 3) and generate an

initial solution.
Step 2: Apply the k refinements in sequence on the incumbent solution.

Step 3: If there is improvement, repeat Step 2. Otherwise, record the last solution

and stop.

Multi-level heuristic

This mechanism can be considered as an extension to the composite method. This
is because, in each level, a single local search or even a composite heuristic itself
could be operated. The multi-level mechanism is designed to allow for as much
distortion as possible to the solution to provide diversity on condition that the
computing effort remains acceptable. A general algorithm of this method, which
is originally proposed by Salhi and Sari (1997) with p levels is presented below.
For clarity, a Type p composite heuristic is considered less complex than Type

p+1 (p > 1). Further investigation of this method is given in Chapter 6.
Level 1: Generate an initial solution.

Level 2: Apply a composite heuristic of Type I.

Level 3: Apply a different composite heuristic of Type II. If there is improve-

ment, go to Level 2.
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Level p: Apply a composite heuristic of Type p — 1. If there is improvement,
go to Level 2.

Level p + 1: If none of the stopping criteria is met, perform a diversification mech-
anism and go back to Level 2. Else, record the final solution and

stop.

A learning strategy is also introduced and implemented with the conjunction of
the above two methods. This is done to enhance and intelligently guide the search
to be more adaptive and practically more effective. This will also be presented in
Chapter 6.

Other metaheuristics

There are many methods that fall into this category. Among others, a variable
neighbourhood search (VNS), which is firstly proposed by Mladenovi¢ and Hansen
(1997), seeks to systematically change the neighbourhoods followed by a local
search, though not always. Simulated annealing (SA) originally developed by
Metropolis et al. (1953) comes from an analogy of the cooling process of a mate-
rial. The algorithm follows the procedure to gradually reduce the system temper-
ature until it turns into a steady, frozen state. Like SA, tabu search (TS) method
accepts non-improving moves but in a deterministic way as it explores the entire
spaces to escape from local optimality. A ‘tabu’ or prohibition is therefore intro-
duced to prevent cycling (i.e. the search from coming back to the attributes that
recently involved in the procedure). This is developed by Glover (1986). Genetic
algorithm (GA) is a population-based heuristic put forward by Holland (1992).
The new population is constructed from the former ‘parent’ by combining its fea-
tures through crossover and mutation operators. For more information on these
methods and others, see Salhi (2017).

Multi-objective optimisation

Multi-objective optimisation simultaneously solves two or more conflicting objec-
tives in order to obtain non-dominated solutions. In this study, we adapted this
method to formulate the objectives to minimise the total distance and vehicle
fuel consumption. A weighting method, which assigns a non-negative weighting

coefficient to each objective function, aims to minimise the weighted sum of the
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objectives. More details on this area, which will be used in this research will also

be reviewed in Section 2.4.

1.5 Aim and organisation of the thesis

The aim of this research is to investigate the effect of vehicle load in evaluating
the amount of fuel consumption in a comprehensive way. This led to new mathe-
matical formulations for constructive heuristic and local searches to cater for the
load factor in the area of routing. To our knowledge, these are new formulations
produced for the first time. This contribution adds a useful tool to deal with

environmental effect which is crucial in nowadays.

This thesis is presented in seven chapters. This chapter has introduced a related
subject to transportation routing and the environmental concern of this activ-
ity. In addition, a common research methodology is also discussed. In the next
chapter, some of the literature related to this research are examined, including a
review of research from the area of vehicle routing problems associated with sus-
tainable transportation activities and the estimation of vehicle fuel consumption

and emission.

A constructive heuristic for generating an initial solution of the problems is dis-
cussed in Chapter 3. This chapter also covers the evaluation procedures in adapt-
ing the load factor in the routing problem. Chapters 4 and 5 describe the mod-
ification of the local search operators based on the load factor. There are six
operators in consideration for this matter. An illustrative example along with the
computational experiments’ result for each operator are also discussed. Chapter 6
analyses two metaheuristic searches, namely the composite and multi-level heuris-
tics to observe the performance of using multiple operators within the search. In
addition, a learning mechanism is also introduced. Conclusions are drawn and

suggestions for future research are given in the final chapter.

11



Chapter 2

Review of Green VRP and
Related Literature

2.1 Introduction

This literature review examines previous studies that have been undertaken in the
area of vehicle routing problem (VRP). Several VRP variants especially the ca-
pacitated VRP and its basic optimisation model are briefly described. We discuss
the class of VRP named the green VRP which relates to sustainable transporta-
tion practices from operations research perspectives. As this research combines
both cost and CO, emissions, some research works concerning the multi-objective
optimisation problem are also covered. Models for assessing fuel consumption and

vehicle emission are also considered.

2.2 Overview of vehicle routing problem

Vehicle routing problem (VRP) has arisen more than fifty years ago when Dantzig
and Ramser (1959) introduced the problem as the truck dispatching problem where
it is concerned with routing a fleet of gasoline delivery truck between the terminal
and a large set of service stations provided by the terminal. The aim is to find a
way so that the truck is assigned to stations and thus satisfying its demand while

keeping the total mileage of the fleet at the minimum.

In this study, we focus on the problems pertaining to the distribution of goods

between depots and final user (customers). These problems are mostly called as

12
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Vehicle Routing Problems (VRPs) or Vehicle Scheduling Problems. The distribu-
tion of goods involves the service under a given time interval, for a set of customers
by a set of vehicles that are situated in one or more depots. The vehicles are oper-
ated by a set of staffs (drivers) that travel through an appropriate road network.
Generally, VRP requires the solution by constructing a set of routes, each route
operated by a vehicle that begins and ends its tour at its own depot. Apart from
that, the solution must ensure that all the customers’ requirements are met, all
the operational constraints are accomplished, and the overall transportation cost
is minimised. More details of the VRP terminology can be found in Toth and
Vigo (2002a).

2.2.1 The Capacitated VRP

Researchers have come out with many other variants of VRP and proposed nu-
merous solution methods. The simplest version of VRP which is mostly studied in
the literature is when the amount of transported goods is restricted to the vehicle
capacity. This problem is called the Capacitated VRP (CVRP). In the CVRP, all
the customers correspond to delivery services along with the predetermined and
indivisible demands (the number of goods to be delivered to them). The vehicles
used are homogenous and located at one main depot. Only the capacity limita-
tions are imposed on the vehicles. The objective is to serve all the customers with

the minimisation of the total cost of the routes.

The CVRP may be described through the graph-theoretic problem where on an
undirected graph G = (V, A) there exists a set V = {0,1,...,n} of vertices to-
gether with a set A = {(i,j) : i,7 € V,i # j} of arcs. The graph represents the
road network used for the transportation of goods with arcs represent the road
sections and with vertices stand for the depot and customers’ location. Vertex 0

denotes a depot and sometimes it is expressed as vertex n + 1.

A set of K identical vehicles with an individual capacity @) is accessible at the
depot. Each customer i € V \ {0} is associated with a non-negative demand
¢; < @ that should not exceed vehicle capacity to ensure feasibility. However, in

case it does, a full vehicle load will be used.

A non-negative cost, ¢;; is defined on the arc set A and represents the cost incurred
when travelling from vertex i to vertex j. The cost is associated with the use of

the vehicle which can be found in the unit of distance, travel time, etc. If G is

13
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a directed graph, the cost matrix c is asymmetric, then this problem is known as
asymmetric CVRP. Else, ¢;; = ¢j; is existing for all (4, j) € A and the problem is

known as symmetric CVRP.

In this study, the solution method is tested for the symmetric VRP as the cost ¢;;
is defined as the Euclidean distance between the two vertices ¢ and j. Later, it is
compared to the one with the consideration of varying load in ¢;; function which
led to the problem becomes asymmetric. Further details can be found in Chapter
3. Additionally, the summary of the most important concepts, algorithms and
results for the classical VRP in which only vehicle capacity constraints are present

can be referred in Laporte (2007).

Among the previous works that successfully solved the CVRP using the VRP
benchmark instances with high quality outcomes include Xu and Kelly (1996), Li,
Golden, and Wasil (2005), Tarantilis (2005), Pisinger and Ropke (2007), Chen,
Huang, and Dong (2010), Zachariadis and Kiranoudis (2010), and Jin, Crainic,
and Lokketangen (2012).

Basic optimisation model of CVRP

There are three main mathematical programming formulations that can be used to
model the VRP. The first modelling approach known as vehicle flow formulations
make use of integer variables that associated with each arc or edge of the graph.
The variables add up the number of times the arc or edge is traversed by a vehicle.
This model is often used for a basic version of VRP. It is suitable for cases in which
the solution cost can be expressed as the sum of any costs associated with the arcs.

The formulations are presented as follows.

The second approach is based on the commodity flow formulations where ad-
ditional integer variables are associated with the arcs or edges. The variables
correspond to the flow of the commodities through the vehicle routes. This model

has been known as a basis for the exact solution of CVRP.

The third approach is called as a set partitioning problem which uses an expo-
nential number of binary variables associated with a different feasible circuit. The
VRP is then expressed as a set partitioning problem with the objective to serve
all the customers with the minimisation of the collection of circuits and satisfy
additional side constraints. An example of the use of this approach can be found
in Salhi, Wassan, and Hajarat (2013).

14
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Vehicle flow formulation For the use of this study, here we describe an integer
linear programming formulation for basic CVRP. The model is presented in Toth
and Vigo (2002a) known as two-index vehicle flow formulation. In this model, the
variable = is used to show if a vehicle traverses an arc in the optimal solution.
That is if arc (4, j) € A belongs to the optimal solution then the variable x;; takes

value 1 and 0 otherwise.

min Z Z CijTij
i€V jev

subject to

dayy=1  VjeV\{0}, (2.1)

eV

dayy=1 VieV\{0}, (2.2)
JEV

Z Tio = K, (23)
eV

> w0 = K, (2.4)
JEV

S X ayzr(S) VS V\{0},5#0, (2.5)
i¢S jeSs

Lij S {0, 1} VZ,j eV. (26)

The indegree and outdegree constraints (2.1) and (2.2) require that only one arc
arrives and leaves each vertex associated with a customer, respectively. Con-
straints (2.3) and (2.4) impose the degree requirements for the depot vertex. The
capacity-cut constraints of (2.5) impose both the connectivity of the solution and
the vehicle capacity requirements. In fact, they specify that each cut (V' \ S,5)
defined by a customer set S is crossed by a number of arcs not smaller than r(5)

(minimum number of vehicles needed to serve set .S).

2.2.2 Other VRP variants

The CVRP has been extended to a wide range of VRP versions. The first extended
version is when the capacity constraint for each route is replaced by a route length
restriction. This is called Distance-Constrained VRP (DCVRP) In this case, a

non-negative length, ¢;; of each arc (i,j) € A is accumulated such that for each
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route, the total length cannot exceed the maximum route length, 7'. Furthermore,
if arc lengths represent travel times, a service time, s; is associated with each

customer ¢ indicating the time duration of servicing the customer at its location.

Another common version is the VRP with Time Windows (VRPTW) where under
the vehicle capacity constraints, each customer ¢ must be visited within a prede-
fined time interval [a;, b;], named a time window. The time in which the vehicles
travelling from depot to customer location, travel time ¢;; for each arc (,j) € A
and an additional service time s; for each customer ¢ are also provided. The ve-
hicle must begin to serve the customer within the associated time window and
stop at their location for s; duration. The importance of applications of VRPTW
in real cases has made researchers do efforts to find appropriate algorithms and
propose different methods to solve them. For example, Figliozzi (2012) presents
an algorithm that can tackle time dependent vehicle routing problems with hard
or soft time windows without any alteration in its structure and introduced read-
ily replicable test problems that capture the varying speed of congested urban

settings.

VRP with Backhaul (VRPB) is an extension of CVRP where it involves two
subsets generated from the customers’ set V' '\ {0}. The first subset, L includes
linehaul customers, each calls for a given amount of goods to be delivered to
them. The second subset, B comprises of backhaul customers each requiring a
given amount of goods to be picked up. The solution for VRPB must observe that
a set of routes is constructed with the minimum cost wherein each route, all the
deliveries must be made before any pickups and the vehicle capacity constraints

is not violated by either the linehaul or backhaul customers assigned to the route.

VRP with Pickup and Delivery (VRPPD) is a VRP variant which requires a
known amount of goods to be delivered and at the same time, may be picked up
at customer 7. A basic version of this problem assumed that at each customer,
the delivery is performed first. Thus, the current vehicle load must be updated at
each point and this must be non-negative and cannot exceed the vehicle capacity
(). This problem is beneficial to put the vehicle at full use when it returns to
the depot after all deliveries have been carried out. For more information on this

topic, see Wassan and Nagy (2014).

Both VRPB and VRPPD are in the field of delivery and pickup problems. The first
problem, VRPB usually deals with the transportation of goods between customers

and the depot. The second problem, VRPPD mostly refers to the situations where

16



CHAPTER 2. Review of Green VRP and Related Literature

goods are transported between the pickup and delivery locations (customers). A
two-part survey paper on pickup and delivery problems by Parragh, Doerner, and
Hartl (2008a) and Parragh, Doerner, and Hartl (2008b) provide a clear classifica-
tion between VRPB and VRPPD and their variants.

Vehicle routing problem has also been extended and modified to cater for real-
world problems. These include the addition of a variety of constraints to be

imposed in terms of vehicle, driver, customer, type of goods, and the environment.

2.3 Green vehicle routing problem

Government and business organisation have recently paid a close attention to
take the environmental, ecological and social effects into consideration when con-
structing logistics policies, in addition to the economic benefit. Green logistics is
introduced knowing that our production and distribution logistics policies in the
present are not lasting for future generations. Activities promoting green logis-
tics include measuring the environmental impact of various distribution strategies,
reducing the energy usage in logistics activities as well as reducing waste and man-
aging its treatment (Sbihi and Eglese, 2009). A review by Dekker, Bloemhof, and
Mallidis (2012) highlighted the contribution of operations research in integrating

the environmental aspects in logistics.

In order to achieve the environmental-friendly logistics policy, transportation scheme
also needs a change toward sustainable distribution network with the least dam-
ageable to the environment as transportation features in major parts of logistics.
Bjorklund (2011) has provided an alternative definition of green transportation
services as a service that has a lesser or reduced negative impact on human health
and the natural environment when compared with competing transportation ser-

vices that serve the same purpose.

The issues concerning green transportation are wide and involve participation
of whole division from local passenger to the high authority policy-maker. For
example, the promotion of alternative fuels utilisation, modern technology elec-
tronic vehicle, green intelligent transportation systems, and other environmentally
friendly infrastructures. The incorporation of the environmental themes in routing

problems can be considered as green transportation.
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All this while, a number of VRP studies has been carried out with the aims at
minimising the total distance travelled and total assigned vehicles, it has already
satisfied the effort of sustainable transportation through reducing consumption
level and subsequently reducing the COy emissions from road transportation (Sal-
imifard, Shahbandarzadeh, and Raeesi, 2012). Nevertheless, researchers have often
been unconscious of their indirect contributions to the environment. The need to
properly address the environmental issues specifically in routing problems, such
as minimizing the COy emissions while travelling has just arisen to become one of

the hot topics in the literature in recent years.

Studies of VRP that is in relation to sustainable transportation issues from the
operational research perspectives are denoted as green vehicle routing problems.
Green VRP is concerned with the optimisation of energy usage in transportation
routing. High volumes of energy usage and air pollution pose a threat on our eco-
logical environment. The greater concern to transportation companies in pursuing
fewer fuel costs is the amount of fuel consumed itself (Xiao et al., 2012). Fuel cost
attributes a significant part of the total operational transportation cost. Thus,
reducing fuel consumption and shifting it for efficient transportation strategies
would lead to a beneficial course of action not only for economic gain but also for

environmental savings as the emission of CO, can be correspondingly lessen.

To conclude the amount of fuel consumed in the routing model, there are many
factors that influenced the vehicle traveling cost along a route which are essential
in quantifying the fuel consumption. These factors are categorised in two parts
according to their relationship with travelling schedule (Xiao et al., 2012). The
first one has a direct relationship with travelling schedule, such as distance, vehicle
load, speed, road conditions, fuel consumption rate (fuel consumption per distance
unit), and etc. While parameters such as depreciation of the tyres and vehicle,
maintenance, driver wages, and government tax are grouped in the second set
which has no direct relationship with travelling schedule. By laying down all the
factors as mentioned above, the amount of fuel consumption can be computed by

controlling the factors in the first set.

In a recent study by Demir, Bektag, and Laporte (2014a), factors affecting fuel
consumption are summarised and divided into five categories; vehicle, driver, envi-
ronment, traffic, and operations. According to the authors, most fuel consumption
formulation has focused on vehicle, environment, and traffic influences but do not

include the driver related concerns which are rather difficult to measure. Apart
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from that, operations related factors are regularly considered as externalities that
influence the amount of fuel consumed. A related study by Kontovas (2014) ex-
plained the relationship of fuel consumption and emission, and how to estimate

them in the area of ship routing and scheduling.

There is a shortage of published work of VRP in determining the amount of fuel
at minimum use. The so-called Energy Minimising Vehicle Routing Problem by
Kara, Kara, and Yetis (2007) considered vehicle load and distance travelled in their
new cost function that mainly focuses on the total energy consumption of the ve-
hicle. By reducing the total work done by the vehicle, their aim is to consequently
minimise the total energy used in terms of fuel consumption. The CVRP prob-
lem is formulated using integer programming for collection and delivery cases.
Their comparative analysis between distance-minimising and energy-minimising
solutions shows that there is a trade-off such that the energy usage increases as
the total distance decreases. A related study by Pradenas, Oportus, and Parada
(2013) defined a new objective function that considers minimising the required
energy instead of the distance travelled in the VRPBTW.

Xiao et al. (2012) improve the existing current studies on the CVRP through a
proper formulation of the work characteristics by taking fuel consumption rate
as a load dependent function. A string-based simulated annealing algorithm is
developed to solve the proposed model. The authors provided insight such that
the pursuing of the shortest distance that leads to lower cost may not be efficient
in reducing fuel consumption. This is because the vehicle load is also significant
besides the distance in contributing to the overall fuel consumption along the
routes. Gaur, Mudgal, and Singh (2013) consider both load and distance travelled

to measure fuel consumption in their cumulative VRP model.

According to Kuo (2010), fuel consumption is regarded as an important index in
the VRP as the need to address the environmental issues become significant partic-
ularly in reducing carbon emission. The author develope a model to calculate the
total fuel consumption for time-dependent VRP (TDVRP) in which he assumed
travel speed and travel times are depended on the departure time in routing prob-
lems. Transportation distance, speed and loading weight are also considered in
calculating the model. A simulated annealing algorithm is proposed to optimise
the fuel consumption of the routes. Based on the comparative analysis between
fuel consumption minimisation and both distance and travel time minimisation,

the result indicate that more than 20% improvement in fuel consumption can be
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achieved. Later, Kuo and Wang (2011) publish a similar work where they propose

a simple tabu search algorithm to solve the model.

Studies of Green VRP also deal with the use of modern vehicles and greener fuel
sources other than petroleum-based fuels in routing problems. Business organi-
sations are transforming their vehicle fleet to the use of alternative fuel vehicles
(AFV) in order to lower the negative impact of the environment. Among the ear-
liest work done to address this is Erdogan and Miller-Hooks (2012) in which their
objective is to find the shortest distance in distribution system using the AFVs.
They develop formulation and solution technique to overcome the difficulties of
limited refuelling infrastructure using a mixed integer linear programming and
constructive heuristics with improvement technique. Later, Felipe et al. (2014)
extend the study by introducing Green Vehicle Routing Problem with Multiple
Technologies and Partial Recharges (GVRP-MTPR) using electric vehicles.

Another relevant study is carried out by a group of researchers in Serbia who
developed a model in routing environmentally friendly vehicles (EFV) in urban
areas (Cirovic’, Pamucar, and Bozani¢, 2014). The EFV is assumed as ‘clean’
motor vehicle where it does not release harmful substances in its exhaust fumes
and make less noise without triggering other environmental damages. The authors
propose an adaptive neural network trained with a simulated annealing algorithm
for a neuro-fuzzy model of vehicle routing to minimise air pollution, noise level and
logistics operating costs. A similar model has been used by Jovanovié¢, Pamucar,

and Pejci¢-Tarle (2014) in public transportation scenario.

In the next subsections, we first give some reviews about the new variant of routing
problem under this topic which is the pollution-routing problem. Next, we also
describe briefly about VRP in reverse logistic in literature which can be categorised
in four areas; (a) selective pickups with pricing, (b) waste collection, (c) end-of-life

goods collection, and (d) simultaneous distribution and collection.

2.3.1 Pollution-Routing Problem (PRP)

The Pollution-Routing Problem (PRP) aims at choosing a vehicle dispatching
scheme with less pollution, particularly in minimising carbon emissions. The PRP
model approximates the total used energy on a given road segment, which directly

converts into fuel consumption and further into greenhouse gas emissions.
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A number of studies aims at a reduction CO, emissions including for instance, the
work done by Tiwari and Chang (2015) who consider a distance based approach
to compute the CO, emission while adding the truck load as a factor for CO,
emissions. A block recombination approach is applied to generate different clusters
(block) for each city visited by a different truck. Then, the cluster with a higher

fitness value is selected and combined it according to their rank.

Ubeda, Arcelus, and Faulin (2011) present the green logistics which concentrated
at the operational level of transportation with the target to reduce the CO5 emis-
sions in the real case study of Eroski (food distribution company in Spain). Several
adjustments to current logistics management practices are proposed. These aim to
improve delivery routes scheduling, reduce the number of trips by adding backhaul
movements, and develop an environmental friendly method to solve routing prob-
lems. The authors applied a distance-based method for calculating CO4 emissions,

which is based on distance travelled and distance-based emission factors.

On the one hand, a PhD thesis by Palmer (2007) investigated the efficient method
in freight vehicle routes that minimise COs emissions to the environment. The
author develop a model that fits novel techniques in measuring the CO, emitted
by a vehicle which has traffic using software tool that involved the use of digitized
road network. Attributes such as traffic volume, road categories, speed, acceler-
ation, and driving cycle are considered in the study which influenced vehicle fuel

consumption and subsequently converted into CO, emissions.

There are many other works that consider CO, emission in determining vehi-
cle routes to satisfy customer demand and vehicle capacity. However, not many
emphasised on the vehicle load factors through the fuel savings methods. For in-
stance, Kwon, Choi, and Lee (2013) studied the use of heterogeneous fixed fleet
VRP with the highlight of carbon emission in optimising vehicle routes. Bauer,
Bektag, and Crainic (2009) emphasised minimising greenhouse gases emissions in
the context of intermodal freight transportation. Soysal, Bloemhof-Ruwaard, and
Bektag (2015) modelled the time-dependent two-echelon capacitated vehicle rout-
ing problem (2E-CVVRP) with a comprehensive mixed integer linear program-
ming formulation that comprises vehicle type, travelled distance, vehicle speed,

load, multiple time zones and emissions.

Oberscheider et al. (2013) aimed to minimise driving times and greenhouse gas
emissions in timber transport. They modelled the problem as a multi-depot vehicle
routing problem with pickup and delivery and time windows (MDVRPPDTW).
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Suzuki (2011) presented the truck routing problem with the objective to minimise
fuel consumption and pollutant emissions using the traveling salesman problem
with time windows (TSPTW) model. Yang et al. (2013) established a 0-1 mixed
integer programming model to minimise carbon emissions for the airport shuttle
service. Fagerholt, Laporte, and Norstad (2009) introduced speed optimisation
procedure to reduce fuel emission in shipping scenarios which was later adapted

in the majority of PRP studies.

Bektag and Laporte (2011) extended the classical VRPTW by introducing the term
pollution routing problem (PRP) which comprehends the travel distance as well as
the amount of greenhouse emissions, fuel, travel times along with their costs in the
objective function. The authors presented mathematical models for the PRP with
and without time windows and performed computational experiments on realistic
instances. Through the incorporation of fuel consumption and CO, emissions into
existing planning methods for vehicle routing, this study has potential in yielding

savings of the total cost.

Following on that, Demir, Bektag, and Laporte (2012) proposed a new solution
method to solve PRP using an adaptive large neighbourhood search heuristic algo-
rithm while creating several new operators to improve their current solutions, and
employed speed optimisation procedure. The authors then presented a multi-
objective model where they adapted the previous solution approach with two
objective functions concerning fuel consumption and driving times minimisation
(Demir, Bektag, and Laporte, 2014b).

Franceschetti et al. (2013) introduced time-dependent PRP which stretched the
PRP by taking into account traffic congestion. The paper described a procedure
to optimise departure times and speeds on a fixed route, also building on the
analytical results proven for the single-arc version of the problem. Knowing the
fact that vehicles with a higher power engine and larger loading capacity do not
necessarily results in fuel savings, Kog et al. (2014) introduced the fleet size and
mixed PRP wherein the use of heterogeneous vehicle fleet is considered. The aim
is to keep the total of vehicle fixed cost and routing cost at a minimum where
the routing cost comprising the fuel and COy emissions cost and driver cost.
The paper applied a hybrid evolutionary meta-heuristic to solve the problem and
then demonstrated the significant differences of using a heterogeneous fleet over a

homogeneous one.

A time window with pickup and delivery pollution routing problem (TWPDPRP)
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is introduced by Tajik et al. (2014) to deal with uncertain information of trans-
portation environment including fuel consumptions, COy emissions cost and ve-
hicles velocity. The paper included many factors that impacted fuel consumption
and CO, emissions in their objective function of cost formulation. These include
the physical condition of the chosen roads, the weight of the vehicles, and the
loads they carry, frontal surface of the vehicles, friction rate of air, acceleration,
and velocity of the vehicles. Furthermore, a robust concept of a mixed integer lin-
ear programming is introduced by applying the recent robust optimisation theory.
Another recent study by Kramer et al. (2015) extends the PRP by applying a new
matheuristic approach that is a hybrid iterated local search leading to the latest

state-of-the-art outcomes.

2.3.2 VRP in reverse logistics (VRPRL)

Reverse logistics can be defined in many ways and has been widely studied across
numerous logistics activities including transportation. Govindan, Soleimani, and
Kannan (2014) described it as a process which starts from end users where used
products are collected from customers and then attempts to manage end-of-life
products through different decisions including recycling, remanufacturing, repair-
ing, and finally, disposing of some used parts. VRP in reverse logistics is concerned
with the management of the way goods have been transported with their recovered
value after use. Huge amount of research on reverse logistics are found but from
the VRP views, there are not many studies. Unlike the Lin et al. (2014b) survey,
this review focuses on the works of reverse logistics in vehicle routing problem with
clear environmental considerations. Based on the paper, the VRPRL is divided
into four types, which are selective pickups with pricing, waste collection, end-of-
life goods collection, and simultaneous distribution and collection. The following

reviews employ their category in order to organise the existing research.

(a) Selective pickups with pricing Aras, Aksen, and Tugrul Tekin (2011)
optimised the routes of a homogeneous fleet of capacitated vehicles each of which
will depart from a collection centre, visit a number of dealers to pick up cores, and
return back to the same centre. Privé et al. (2005) can be modelled as a variant
of the vehicle routing problem with a heterogeneous vehicle fleet, time windows,
capacity and volume constraints. The objective function here is to combine routing

costs and the revenue resulting from the sale of recyclable material.
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(b) Waste collection Apaydin and Gonullu (2008) and Zsigraiova, Semiao, and
Beijoco (2013) benefit the use of routing optimisation software with geographic
information system (GIS) element in the case of waste collection for the reduction
of operation costs and pollutant emissions. In Bing et al. (2014), the plastic
waste collection is modelled as VRP and a tabu search algorithm is proposed to
solve the problem. The objective is to minimise the total cost that comprises of

transportation cost, labour cost and emission cost.

(c) End-of-life goods collection Ramos, Gomes, and Barbosa-Pdvoa (2014a)
modelled the recyclable packaging waste collection problem as a multi-product,
multi-depot vehicle routing problem (MP-MDVRP) with two objective functions:
distance and CO, emissions minimisation. A decomposition method is developed
to solve the problem. In the same year, the same authors produced another paper
which studied the multi-objective, multi-depot periodic vehicle routing problem
with inter-depot routes (MDPVRPI) based on a set partitioning approach to solve
a similar case study of recyclable packaging waste collection system. The idea is
to support tactical and operational planning decisions of reverse logistics systems
while considering economic (i.e. minimising variable costs), environmental (i.e.
minimising greenhouse gas emissions), and social (i.e. balancing driver’s schedule)

objectives (Ramos, Gomes, and Barbosa-Pdvoa, 2014b).

(d) Simultaneous distribution and collection Lin et al. (2014a) studied the
Capacitated Vehicle Routing Problem with a Simultaneous Delivery and Pickup
(VRPSDP) model in the case of delivering and collecting plastic carboys to min-
imise both economic and environmental costs. Other works that employed the
VRP with simultaneous pickup and delivery (VRPSPD) can be found in Catay
(2010) and Dethloff (2001) but they did not clearly mention the importance to

conserve the environment.

A relevant study by Salhi, Wassan, and Hajarat (2013) introduced the fleet size
and mix VRP with backhauling (FSMVRPB) to better address the routing and
distribution problem with a wide applicability for logistic companies that wish to
determine the composition of their vehicle fleet as well as operating their delivery

routes efficiently. Environmental factors could be incorporated into the model.
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2.4 Multi-objective optimisation

Routing problems are regularly used to cater for real-life cases or applications
where they are often set up with a single objective of minimising the costs. Yet
the majority of the problems faced in industry, particularly in transportation and
logistics are multi-objective in nature. There could be a number of costs related to
a single tour in real life. Moreover, the objective is not necessarily the cost of the
solution; other aspects could be added such as balancing the workload in terms of

time, distance, and etc.

In general, multi-objective optimisation (MOO) can be defined as the practice of
simultaneously solving at least two conflicting objectives in order to obtain optimal
solution subject to a set of constraints. Thus, it can be stated in the following
form (Demir, Bektasg, and Laporte, 2014b):

minimise  fi(2), fa(2), ..., fi(2) (2.7)

subject to x € S

where k > 2 is the number of objective functions that need to be minimised

simultaneously.

With conflicting objectives, sometimes a single solution that simultaneously op-
timises every objective cannot be achieved. An attempt to enhance an objective
will result in losing the quality of the other objectives. A solution known as a non-
dominated Pareto optimal is usually adopted. This is when the solution cannot
be removed from consideration by replacing it with another solution which im-
proves upon one of the objectives without worsening another. Therefore, the aim
of formulating and solving an MOO problem would be finding such non-dominated
solutions as well as quantifying the trade-offs in fulfilling the different objectives.
In the multi-objective problem, the concept of optimality is changed since its pur-
pose seeks good compromises or trade-offs rather than a single solution as in global

search.

In the field of VRP, the use of multi-objective optimisation attracts more research
attention since it offers new opportunities in defining the problems. The article
by Jozefowiez, Semet, and Talbi (2008) provides a review of existing research re-
lated to multi-objective optimisation in routing problems. In their survey, routing

problems are examined with regard to their definitions, their objectives and the
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multi-objective algorithms proposed for solving them.

Ghoseiri and Ghannadpour (2010) studied the multi-objective VRPTW wherein
the total required fleet size and total distance travelled are simultaneously min-
imised given the restriction on vehicle capacity and time windows. The problem
is formulated using goal programming and further adapted genetic algorithm for
efficiently solve it. The proposed genetic algorithm heuristics incorporate local
exploitation in the evolutionary search and the concept of Pareto optimality for

the multi-objective optimisation.

Ghannadpour et al. (2014) presented the study of the dynamic VRP with the
concept of fuzzy time windows (DVRPFTW) with multi-objective. A direct in-
terpretation of DVRPFTW is used as a multi-objective problem to the extent of
minimising the total required fleet size, overall total travelling distance and waiting
time imposed on vehicles as well as maximising the overall customers’ preferences

for the service.

There are many ways to tackle the multi-objective optimisation (MOO) prob-
lem. The classification of MOO methods provided by Demir, Bektas, and Laporte

(2014b) is summarised as below;

1. Generating methods — generating one or more Pareto efficient point(s) with-

out any prior information

(a) No-preference methods do not require any primary input and often
simply return one Pareto optimal point. E.g. global criterion, multi-

objective bundle method

(b) Posteriori methods using scalarization approach convert the problem
into single objective problem by real-valued objective function. E.g.

weighting method, e-constraint method

(c) Posteriori methods using multi-objective approach use a multi-objective
rank trial solutions based on the objective function values. E.g. non-

dominating sorting genetic algorithm, ant colony optimisation
2. Preference-based methods — need additional input from decision maker

(a) Priori methods — decision maker’s preferences are sought and then in-
cluded in initial formulation of single objective problem. E.g. values

function method, lexicographic ordering, goal programming

26



CHAPTER 2. Review of Green VRP and Related Literature

(b) Interactive methods require the interaction with decision maker during
solution process. E.g. interactive surrogate worth trade-off method,
NIMBUS method

Based on the above categories, we have an interest and intend to pursue the pos-
teriori methods with scalarization approach in formulating our vehicle routing
model. The reasons are that the method seems to have less complexity in scalar-
izing the objective function and easy to implement in such a way that we do not

have to wait to receive any information from decision maker beforehand.

The weighting method specifically, assigned each objective function with a non-
negative weighting coefficient «; for all ¢ = 1,2,...,k to minimise the weighted
sum of the objectives. Through this, several objective functions are converted to
single objective function. Then the problem can be solved with existing methods
used to solve single-objective optimisation problem. The problem to be solved

takes the form;

k
minimize Y o, f;(x)
i=1

subject to res

where the weights are normalised in such a way that X%  a; = 1.

Among the existing works done using the posteriori methods with scalarization
approach is Demir, Bektag, and Laporte (2014b) which concentrated on four
posteriori methods with scalarized objective functions. These are the weighting
method, the weighting method with normalization, e-constraint method, and the
hybrid method that combined the adaptive weighting and e-constraint methods.
A study done by Soysal, Bloemhof-Ruwaard, and van der Vorst (2014) chose the
e-constraint method to solve multi-objective linear programming model for the

case of a generic beef logistics network problem.

In this research, the weighting method is adapted to formulate a bi-objective
problem in integrating the economic and environmental aspects. In other words, all
the objectives to be optimised are included in a single function using a combination
of mathematical operations. Specifically, the objectives are to minimise the total
distance travelled and the amount of fuel consumed. Weights are assigned in the

increment of 0.1 from 0.6 to 1.0. This aspect will be visited in the next chapter.
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2.5 Fuel consumption and emission estimations

The importance of reducing the harmful effects of transportation on the environ-
ment has call for a better operational level planning in estimating and minimizing
the vehicle emission. Thus, a good estimation model has to be well chosen and
adapted in the route planning methods based on the type and nature of the prob-
lems. Demir, Bektag, and Laporte (2011) present a comparative analysis of several

emission models and assess their positive and negative characteristics.

Numerous energy and emission models are available and differ from their ap-
proaches and structures of their modelling as well as the data required for their
computation. In this research, we emphasise on how to estimate the amount of
fuel consumed by the vehicle. As we stressed the relationship of fuel consumption
and the COy emission in the previous chapter, we feel that the fuel consumption

measure can be complex.

In Demir, Bektag, and Laporte (2014a), the fuel consumption models are cat-
egorised into three main groups of increasing complexity levels: factor models,
macroscopic models and microscopic models. Among all of the emission models
described, we briefly discuss two that were utilised for this research. These are
the methodology for calculating transport emissions and the energy consumption
(MEET) model and the comprehensive modal emission modeling (CMEM). In the
MEET model, an average speed is used to estimate the emissions for a variety
of trips. The CMEM estimates the fuel consumption and emission rates with
the instantaneous vehicle kinematic parameters, such as speed and acceleration to

predict traffic emissions more accurately.

2.5.1 The methodology for calculating transport emissions

and energy consumption (MEET) model

Hickman et al. (1999) published a report known as the methodology for calcu-
lating transport emissions and energy consumption (MEET) project funded by
the European Commission. The model contains an assortment of approximat-
ing functions that are largely dependent on speed v and a number of fixed and

predefined parameters for different groups of vehicles weighing from 3.5 to 32
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tonnes. For smaller vehicles weighing less than 3.5 tonnes, the CO, rate of emis-
sions is estimated by using this form of speed-dependency regression function
e = 0.0617v* — 7.8227v + 429.51. For other vehicle classes, it is suggested by
MEET to use the CO5 emission factors (g/km) in the form of

e =K +av+bv®+cv® +dfv+e/vP + f/v?

for an unloaded goods vehicles on a zero gradient road where K is a constant and

a to f are predefined coefficients provided in this model.

This emission factors are tested with the standard condition, i.e. zero road gradient
and empty vehicles, and are assessed as a function of average vehicle speed ranging
from 10 to 90 km/h. Therefore, a few correction functions may be required for the
effects of road gradient and vehicle load be significant on emissions estimation.
Depending on the vehicle categories, the road gradient corrector function is in
the form GC = Agv® 4+ As0° + Apw* + As03 + Av? + Ajv + Ay where A4, to
Ag are constants. The function of taking load factor into account is as follows
LC = K +ny +py?2 + ¢® + rv + sv? + tv® + u/v where 7 is the load factors per

gradient in percent, K is a constant and n to u are the coefficients.

Then according to MEET, the evaluation of CO5 emission (g) can be calculated
as;

E(v,D) =¢-GC - LC - Distance

2.5.2 The comprehensive modal emission modeling
(CMEM)

The CMEM described in the report by Barth, Younglove, and Scora (2005) is de-
veloped at the University of California, Riverside to especially cater for heavy-duty
diesel vehicle to measure instantaneous (i.e., modal) emissions and fuel consump-
tion. This model requires detailed vehicle specific parameters for the estimations
and is composed of three modules that are engine power, engine speed and fuel

rate.

Demir, Bektas, and Laporte (2014b) simplify the presentation of the model and

expressed the fuel consumption of a vehicle on arc (4, j) with length d as a function
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of speed v and load L as follows;
E(vij, L) = AMENV 4+ wyoyjvij + you; Lijvij + 57”%)dz‘j/vij (2.8)

Let the parameter M be the total vehicle weight (kilogram) where M = w+ L, w
is the kerb weight (i.e., the weight of an empty vehicle) and L is the vehicle load.

Let A = £/ky and v = 1/10007,n be constants where ¢ is the fuel-to-air mass
ratio, k and 7 are constants, ¢ is the conversion factor of fuel from gram/second
to liter /second, and 7;s is the vehicle drive train efficiency. The parameter & is the

engine friction factor, N is the engine speed, and V' is the engine displacement.

Furthermore, let « = 7 4 gsinf + gC, cos@ be a vehicle-arc specific constant
and let 5 = 0.5CypA be a vehicle-specific constant where 7 is the acceleration
(meter/square second), ¢ is the gravitational constant, 6 is the road angle, p is
the air density, A is the frontal surface area of the vehicle, and C, and C, are the

coefficients of the rolling resistance and aerodynamic drag, respectively.

2.6 Summary

In this chapter, we presented an overview of the VRP including some of its variants
and basic optimisation model. Furthermore, we reviewed other class of VRP which
is the green VRP as this study also concerns about sustainable route planning.
Among the works of green VRP, we described briefly the ones about the so-called
pollution routing problem and the VRP with reverse logistic. We also provided
a brief description of the multi-objective optimisation method. This method is
adopted to formulate objective functions used in this study and this is presented
in the next chapter. In addition, we also discuss some models which are known
for assessing fuel consumption and vehicle emission. This model is adapted to
estimate the amount of fuel consumed for the route which is used as a basis when
we introduce the load factor into the formulation. In the next chapter, we discuss

the savings method and present new formulations embedded with the load factor.
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Chapter 3

The incorporation of the load
factor in classical constructive

heuristics

3.1 Introduction

In this chapter, we first briefly describe a classical constructive heuristic namely,
the Clarke and Wright savings and then present two new formulations to incorpo-
rate the environmental effect. These adaptations could also be pursued in other
constructive heuristics. We also provide the description of the fuel consumption
function which is used to measure the CO5 emission as well as the initial settings
and adjustments made for computational experiments. We focus on investigating
the load factor which is one of the main influences of the fuel consumption mea-
sure. The use of route direction is also explored. Computational results using the

well known VRP instances are analysed and discussed.

3.2 Constructive methods

One of the methods used to generate an initial solution is to construct the solu-
tion starting from scratch. During the build-up of the solution, certain selection
strategies are applied which can contribute to the final solution quality. For in-
stance, for the TSP one way is to start from a random node, then add the nearest
to it until the complete tour is formed. This greedy approach is usually called

‘nearest neighbour rule’. We will focus on the savings method in this chapter,

31



CHAPTER 3. The incorporation of the load factor in classical constructive
heuristics

though others such as the nearest neighbour search, the insertion-based and the

sweep methods can also be attempted, see Laporte and Semet (2002).

3.2.1 The Clarke and Wright savings

The Clarke and Wright savings is one of the earliest and most studied methods for
solving the capacitated vehicle routing problem. The basic version of this method
is when two routes are originally performed by two vehicles of the same vehicle
type (same capacity). These can be combined so that only one vehicle will carry
out the task and thus yields the savings in the total cost. The savings .S;; of
supplying customers on vertex ¢ and vertex j in one route as opposed to supplying

them individually directly from the depot can be calculated as follows;

Sij = 2d02 + 2d0j — (dOz + dij + d()j)
= do; + doj — di; (3.1)

where d;; denotes the cost or distance between customer ¢ and customer j and

vertex 0 is the depot.

Figure 3.1 illustrates the situation where the initial routes of serving the individual
customers from the depot are represented by solid arrow and then the merged route
is formed to obtain the savings in mileage. This is represented by the dashed

arrows.

Larger values of \S;; imply that it is relatively attractive, pertaining to costs, to
travel to vertex ¢ and j on the same route such that customer at vertex j is visited

immediately after the one at vertex i.

There are two versions of the savings algorithm, namely; the sequential and the
parallel versions. In the sequential method, only one route is developed at a time
until it is full (i.e. the vehicle capacity is violated), while in the parallel method
several routes may be developed simultaneously. In brief, the first step of the
algorithm is to calculate the savings for all combinations between two customers
and then arrange them in descending order. The route is built by placing the
combination of customers with the highest savings first and followed by the next
largest as long as the vehicle capacity is not exceeded. The process is repeated
until all customers are allocated in a route. In this study, the sequential version

of the savings algorithm is used to generate the initial solution.
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Depot
Vehicle 1 Vehicle 2
Route 1: 0-i-0 Route 2: 0-j-0
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Vehicle A
Route A: 0-1§-0

FIGURE 3.1: An example of the savings concept in a routing problem (same vehicle
types)

Based on the Clarke and Wright savings formula, we have made some adjustment
to its formulation (3.1) to incorporate the environmental factor as the original
savings only involves the travel cost or simply, the economic factor. The environ-
mental criteria that we include in the formulation is defined as the function of
fuel consumed by a vehicle. This is directly related to the emission of CO, that
poses a potential threat to the environment through climate change. Two ways
on how the incorporation of environmental and economic factors are integrated in
the savings formulation (3.1) are proposed. We refer to these two variants as (i)

the integrated savings and (ii) the combined savings.

3.2.2 Formulation 1: The integrated savings

The incorporation of economic and environmental issues is reflected in the new
environmental savings by defining the cost or distance between customer ¢ and
customer j as dependent on an environmental cost function. Factors that affect
the fuel consumption and CO, emissions such as travelling distance d;;, travelling
times t;;, vehicle load L;;, speed v;;, and road gradient 6;; are embedded in the

environmental cost function Fj;.

Specifically in this research, F;; denotes the function of the fuel consumption
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which can be adapted from the emission models (see Demir, Bektag, and Laporte
(2011) and Demir, Bektag, and Laporte (2014a)). The arguments included in the

function depend on the model used to represent Ej;.

In the formulation called the integrated savings, the weight of arc (7, j) in the new
savings algorithm S:Z-j is transformed in a way that both elements of economic and
environmental criteria are included, see (3.2). In (3.2b), any other vertices in the
road graph are denoted by k and [ to differentiate the vertex ¢ and vertex j with

the vertices that give the maximum value of distance, dy; or fuel consumption Ey;.

Sij = do¢ + C~0j — dij, (3.2)

where in each arc, the cost is defined as

dj = Ozd;j + (]. - Oj).EZ‘j (32&)
. d;; . E;;
dij = Eyi=——"—a«ae€ (O, 1) (32b)

y 19 9
eIl gl

Note that both d;; and E;; are normalised. For illustration C7Z-j is shown in Figure
3.2.

FIGURE 3.2: Arc (i,7) based on formulation 1

3.2.3 Formulation 2: The combined savings

In this formulation, we combine two different savings between customer i and j
with a weight attached. The first one is the regular savings S;; calculated based
on the length between customers (3.1). The second one is the new environmental

savings, which is based on the fuel consumption. The environmental savings which
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we define by S} is computed in the following form similar to (3.1);

55 = 2Ey; + 2Ey; — (Eo; + Eij + Eo;)
= Eoi + Eo; — Eyj,

where E;; is the function of the fuel consumption adapted from the emission

models.

Subsequently, both cost and environmental savings formulae are combined to ob-
tain the overall savings S:;j as shown in (3.3). Note that, the indices k and [ below
are the vertices in the road network other than ¢ and j that gives the maximum

value of the regular savings Sy; or the environmental one SE.

~ ~ .

Sij = aSi; + (1 — a)Sfj, (3.3)
3 Sij E S :
where S;; = o 50 and S;; = e 57 are normalised and « € (0,1).

It is observed that the value of S;ff must be significant for the whole savings
to be worthwhile. The constant parameter « (or weight) in the overall savings
reflects the impact of economic or environmental aspects on the overall savings
when solving the green VRP. For instance when a = 1, the problem reduces to
the classical VRP where the objective is the operational cost minimisation only
representing the economic element as usually done. On the other hand, when oo = 0
the environmental component is now the only criteria considered with the emphasis
on the reduction in fuel consumption and CO, emission. A representation of S;;

is shown in Figure 3.3.

FIGURE 3.3: Arc (i,7) based on formulation 2

35



CHAPTER 3. The incorporation of the load factor in classical constructive
heuristics

3.2.4 The fuel consumption function

Some of the existing emission models that are used to evaluate the energy and
fuel consumption can be found in Demir, Bektag, and Laporte (2011) and Demir,
Bektas, and Laporte (2014a). We introduced a new variable E;; which can be
extracted from any of those models to represent the environmental criteria. Among
those models, we investigate two known models, which are the MEET and the
CMEM models to measure E;;.

The load factor

The vehicle load is one of the most important factor that affects the routing in
terms of the fuel consumption of the vehicle and subsequently contributes to the
CO4 emission. We focus our investigation on the CMEM model as it is shown to
be more thorough and widely used in estimating the COy emission. Other models

could also be worth exploring in the future for further comparison.

Initially, we adapted this model to observe the single effect of changing load to
fuel consumed by the vehicles. Thus, we try to simplify the function by using the
average speed within the specified network. The assumption is that the vehicle is
travelling throughout the network with a constant speed so that we can observe
how the varying load will affect the routing. This problem could be expanded
with the use of predefined vehicle speeds for a particular arc (4, j) which represent
different types of road. For example, when the vehicle takes a trip on urban roads,
the recommended speed v = 30 km/h, for outside-urban roads v = 50 km/h and

on motorways v = 70 km/h, etc.

To simplify the notation in Equation (2.8), let ag = )\(k;NVvigl + wyay; + 571}%)

and a; = Ayoy; be constants. The function then will take the form as follows;

Eij = MENVu' 4+ wyai; + Byvl)dij + Myai; Lijdy;

The parameter p is the pth type of vehicle (p = 1,..., P) with P representing
the number of vehicle types. If an homogenous fleet is used (i.e. p = 1), we can
ignore p from the notation. A larger vehicle (heavy-duty vehicle) will have a large
frontal surface area and therefore will require a huge amount of aerodynamic drag

force which influences the power demand, fuel economy and emissions. Using the
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parameter values adapted from Demir, Bektag, and Laporte (2014b), where the
vehicle is traversed at the constant speed of 55 km/h (see Table 3.1) the function

E;; will reduce to

Ei; = [(1.52933 x 107%) + (8.40323 x 107%) Ly;]d;;

TABLE 3.1: Parameters used in the fuel consumption function for computational
tests (Demir, Bektag, and Laporte, 2014b)

Notation Description Typical values
w Kerb weight (kg) 6350
& Fuel-to-air mass ratio 1
Y Conversion factor of fuel (g/s to 1/s) 737
K Heating value of a typical diesel fuel (kJ/g) 44
i Efficiency parameter for diesel engines 0.9
Nef Vehicle drive train efficiency 0.4
k Engine friction factor (kJ/rev/1) 0.2
N Engine speed (rev/s) 33
1% Engine displacement (1) 5
g Gravitational constant (m/s?) 9.81
C. Coefficient of the rolling resistance 0.01
Cy Coeflicient of the aerodynamic drag 0.7
) Air density (kg/m?) 1.2041
A Vehicle frontal surface area (m?) 3.912
Observation

Because of the load factor in £j;, it becomes more difficult to compute the environ-
mental savings. Note that the normal savings are usually symmetrical. However,
when we consider the decreasing load when making delivery (and the increasing
load when they are being collected), the vehicle load of travelling from ¢ to j is
not the same as the journey from j to i. Hence, the introduction of the load factor
renders the environmental savings assymetrical. This makes the computation and
the choices of routes taken for the delivery vehicle routing problem very different

to its counterpart the collection vehicle routing problem.

From now on, the simplified formula of the model as in formulation (3.4) will be
used as the measure to calculate the environmental criterion. The measure will
compute the fuel consumption based on the average speed with the effect of the
varying load when the vehicle travels from one node to another. This measure is

also used as a base to modify some of the constructive heuristics and the commonly
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used local search operators for investigating the effect of the vehicle load in the

routing. The latter will be explored in the next two chapters.

Adjusting the vehicle capacity and customers’ demand

In this study, note that the parameter values in the model are adapted from
Demir, Bektasg, and Laporte (2014b) and the test instances used in their work are
generated from a real case study. Whereas the test instances used in this study
are the VRP data sets from the literature with the smallest and the largest vehicle
capacity restriction of 140 and 30000, respectively.

By simple mathematical manipulation, the fuel consumption function as in (3.4)
is separated into two components of oy and ;. We observed that if the vehicle
load (demand) L;; value is way too smaller than the vehicle kerb weight w, we
can hardly see any effect of varying load in the routing process. This is because
of the constant parameters in the first component, oy such as the kerb weight,
among others, dominated the latter component ;. The second component «y
depends on the vehicle load L;; which is determined by the customer’s demand
¢; and restricted by the vehicle capacity (). Hence, it is important for us to
come out with a solution to have a meaningful fuel consumption measure with
the monitoring of the load factor while using the same parameter values and test

instances.

To counter this issue, we adjusted the vehicle capacity in the instance data sets so
that it will be equal to the empty vehicle weight that we use in the model. In this
sense, our approach follows that of Bektag and Laporte (2011) who conclude that
vehicles transport around as much freight as their kerb weight. This conclusion
was based on their review where they discovered that the ratio of the vehicle kerb
weight to its Gross Vehicle Weight Rating (GVWR) is around 50% for several
vehicle types.

If the adjusted vehicle capacity )’ = w, then we have the adjusted constant,
k=w/Q -0 where ¢ is the correction factor coefficient. As a result, the adjusted

vehicle capacity is composed as Q' = k@ and the adjusted customers’ demand as

qz{ = kq;.
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Adjusting the savings algorithm for the effect of changing
load

An illustration of how the vehicle load is changing in an example of the savings
situation for the delivery problem is given in Figure 3.4. This relates to the
adjustment of the savings algorithm to take on the load factor in the problem.
Thus, two new savings formulations are adjusted as follows. For the integrated
savings formulation (3.2), the integrated cost C~’ij is modified so that we can address
the changing load that occurs along the route. Thus, the adjusted formula for the

integrated savings (3.5) is as follows;

Si; = Coi + Cio + Co; + Cjo — (Co; + Cij + Cjo)
= Coi + Cip + C7Oj — (CTOi + C_'U) (3.5)

where Cj; = ady; + (1 — @) E;j and Cj; = ady; + (1 — oz)Eéij.

We also modify the combined savings formulation (3.3) as we have to take into

consideration the vehicle load while the vehicle traverses along the arc (i, j).

i j i. J

L ® ‘*__"wo+qj L
Wo ¥ 4 “o W0+‘DW0 |:> Q""h wo
u | —m
0 0 0

FIGURE 3.4: Vehicle load consists of vehicle weight w and customers’ demand ¢
from ¢ to j for delivery problem

The adjusted formula for environmental savings of the route from i to j (3.6) is

as follows;

575 = FEy; + Eio + on + EjO - (EOZ + Ej + E~JO)
= FEy; + Eip + EOj - (EOz + EZ]) (36)

Ey; is the fuel consumption function for arc (i,7) after i and j are combined in the
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same route. Note that when back to the depot, F;; and E~jo have the same value

since the vehicle returns empty by carrying the same load (its weight only).

3.3 Computational experiments

The formulae are coded in Visual Studio C++ and executed on an Intel Core i5-
3230M CPU at 2.6GHz PC with 6GB RAM. Computational tests were undertaken
on a sample of 46 VRP benchmark test problems from the literature. These
problems are categorised into three sets according to the size of customers which
we refer to as small, medium and large data sets. For ease, the test problems
are labelled with the initial of the first author from where the problems are first
presented in. Note that, some VCAP are in hundreds and thousands. The extreme
one, F2 also has a large amount of customer’s demand. Details of the data sets
are given in Table 3.2. In this study throughout all the chapters, we carry out all

the experiments on these 46 test problems using the same software and computer.

In the small data set, we utilised 14 problems ranging in size from 21 to 199 cus-
tomers. The first three problems are from Fisher (1994) which are extracted based
on the real-life application. Problem F1 and F3 are concerned with the groceries
deliveries, while problem F2 is concerned with the delivery of vehicle parts to gaso-
line service stations. Problems C1 to C7 are from Christofides and Eilon (1969).
Problems C4 to C7 are created by generating a random customers’ location from
a uniform distribution. Problems C8 to C11 are from Christofides, Mingozzi, and
Toth (1979). Problem C8 was composed by combining the customers in problems
Cbh and C7 with the depot and vehicle capacities as in problem C7. Problem C9
was composed by adding the first 49 customers from problem C6 to problem C8.
Customer locations are clustered in problems C10 and C11 to resemble problems

to those observed in practice.

The medium data set is from Golden et al. (1998) which have 20 test problems
with the number of customers varying between 200 and 483. The first eight in-
stances have restriction on route-length. The customers in problems G1 to G8 are
positioned in concentric circles around the depot. The location of customers in
problems G9 to G12 is set in concentric squares with the depot at one corner. In
problems G13 to G18, the customers are located in concentric squares around the

depot.
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TABLE 3.2: Data sets

Small Medium Large

# (n) VCAP RL # (n) VCAP RL # (n) VCAP RL
F1 (44) 2010 - G1 (240) 550 650 L1 (560) 1200 1800
F2 (71) 30000 - G2 (320) 700 900 L2 (600) 900 1000
F3 (134) 2210 - G3 (400) 900 1200 L3 (640) 1400 2200

G4 (480) 1000 1600 L4 (720) 1500 2400
C1 (21) 6000 - G5 (200) 900 1800 L5 (760) 900 900
C2 (22) 4500 - G6 (280) 900 1500 L6 (800) 1700 2500
C3 (29) 4500 - G7 (360) 900 1300 L7 (840) 900 900
C4 (32) 8000 -G8 (440) 900 1200 L8 (880) 1800 2800
C5 (50) 160 - G9 (255) 1000 - L9 (960) 2000 3000
C6 (75) 140 - G10 (323) 1000 - L10 (1040) 2100 3200
C7 (100) 200 - G11 (399) 1000 - L11 (1120) 2300 3500
C8 (150) 200 - G12 (483) 1000 - L12 (1200) 2500 3600
C9 (199) 200 - G13 (252) 1000 -
C10 (120) 200 - G14 (320) 1000 -
C11 (100) 200 - G15 (396) 1000 -

G16 (480) 1000 -

G17 (240) 200 -

G18 (300) 200 -

G19 (360) 200 -

G20 (420) 200 -

# Test problem number; n Number of customers;
VCAP Vehicle capacity constraint; RL Route-length constraint

The large data set from Li, Golden, and Wasil (2005) consists of 12 problems with
the number of customers ranging from 560 to 1200. All problems have a certain

route length restriction. For simplicity, these data sets can also be downloaded
from the website CHLO (2017).

3.3.1 Evaluation procedures for assessing the environmen-

tal impact

We discuss some of the evaluation procedures to assess the effect of load in the
new formulations. We first describe how we set up the objective function, followed

by the effect of the route direction on the solutions.
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Evaluation of the bi-objective function

Here, our aim is to minimise the sum of a weighted bi-objective function. The
weights, a or the decision maker’s preference is set at a step of 0.1 from 0.6 to 1.0.
In general, the aggregated objective function is calculated as a.f; + (1 — «) fo. We
consider the first function f; to reflect the monetary cost where it is composed of
the travelling cost measured by the Euclidean distance, d;;. The second function
f2 is considered as the social costs incurred by the choice of the decision maker by
placing a certain weights to it. This is measured by the fuel consumption, E;; to

capture the CO5 emission. Therefore, the objective function is given by

Z(z)=am Yy dij+ (1 —a)u Y _ Ey (3.7)

where p; is the unit travel cost which is the fuel price per unit distance and ps is

the unit social COy cost per litre of fuel.

The definition of the social cost of COs is given by Price, Thornton, and Nelson
(2007) as shown below;

The social cost of carbon measures the full global cost today of an incre-
mental unit of carbon (or equivalent amount of other greenhouse gases)
emitted now, summing the full global cost of the damage it imposes over

the whole of its time in the atmosphere.

According to them, the social cost of carbon is of importance as it indicates what
society should, in theory, be willing to compensate now to prevent the imminent
damage caused by incremental carbon emissions. For example, a social cost of,
say, £20 per tonne of CO, means that releasing an extra tonne of CO, at the
moment has the same influence on society’s expected welfare by way of reducing

a representative consumer’s consumption by £20 today.

The value for p; is set as £0.17, which is the average diesel fuel cost per km for 20
MPG vehicle. Based on 2007 social cost of COq which is approximately £29/tonne,
we convert this value to obtain py which is set to £0.7656 corresponding to the
amount of CO, in diesel which is 2.64 kg/litre. These values can obviously change

though the methodology remains unchanged.
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Evaluation of the reverse direction of the route

Usually, the optimal solution obtained from the distance-based methods can be
traversed in both ways without affecting the solution. For example, a case of
visiting A, B, C from the depot 0 can be either (a) 0-A-B-C-0 or (b) 0-C-B-A-
0, see Figure 3.5. Both (a) and (b) leading to the same total mileage cost (i.e.
Cy = 25). For simplicity in this example, we use the environmental cost C, as the
total weighted distance wherein each arc (i,7) the distance is multiplied by the
vehicle load. The values of C, for both cases appeared differently and we found

the percent deviation between the two is approximately 21%.
A[3] A[3]

7‘ \73.3[1] y. .B[l]

0I€7\.A OIX.K

@ i[D] Customer i with demand D

Ca=6+T+5+7

C[7] C[7] e
C,(0ABCO) C,(0CBAD)
=6(1+3+1+4+7) =7(1+7+1+3)
FTA+1+D) +50+7+7 +5(1+1+3)+7(1+3)+6
=182 =143

(b)

—
%)
N

F1cURE 3.5: An example route of visiting A, B, and C from the depot 0

Regardless of the route directions, the route cost in terms of the distance is always
the same. This is also true for both delivery and collection problems given that
the distance matrix is symmetric. On the contrary, this is not the case in view of
the environmental criteria such as the load factor in the problem. This is because
each customer requires a different amount of goods to be delivered (collected) to
(from) them. When considering the load that the vehicle carries while travelling
from a customer to another in obtaining the solutions, due to the problem struc-
ture, the road network becomes directed. Thus, we have the asymmetrical fuel
consumption cost. The decision models for delivery and collection cases are con-
structed differently. This is explained further in Kara, Kara, and Yetis (2007). In
this study, we are adapting the load factor in the decision models focusing on the

delivery case.

There are some cases or other VRP variants where the established routes cannot
be reversed. This includes VRP with Pickup and Delivery for both mixed and si-

multaneous cases where the simple version of it considers the delivery is performed
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before the pickup. This is also true for the Asymmetric VRP variant. Moreover,
there is a case of transportation of hazardous materials where the routing de-

pends on the vehicle load and the population exposed when an incident happens

(see Bula et al. (2017)).
Effect of the reverse route

The resulted route which can be assessed from two directions gives the same dis-
tance length, but different in the amount of fuel consumed given that the demand
of the customers in the route varies. When we apply the reverse route evalua-
tion procedure, two scenarios of the solutions which we refer to as the best and
the worst-case solutions are obtained. The best-case solution returns the set of
routes with the route direction that gives the minimum fuel consumption while
the worst-case is the set of routes with the other route direction. We can relate
to the former as the optimistic scenario whereas the latter reflects the pessimistic
case. If the load factor is not used, the decision maker could opt for either option

without knowing.

Mathematically, the objective function of the solution of the best and the worst-

case in general can be written as

NR NR
Zbest = Z Fb(Rk) and Zworst = Z Fw(Rk)
k=1 k=1
where Fy(Ry) and F,(Ry) refer to the best and the worst fuel consumption for

each route k.
Illustrative example

To illustrate the effect of the route direction, consider the following example con-
sisting of two routes made up of three nodes each as highlighted in Figure 3.6.
This is an extension to the problem in Figure 3.5. In this example, two extreme
cases of solutions are shown as (a) the best-case and (b) the worst-case. The per-
centage deviation of C, is found to be approximately 33% between these two cases
while the length cost C; remains unchanged. This is such an interesting discovery

and that the best-case solution appears to be very attractive.

If the solution is chosen at random, there are more possibilities of how the solution
can be. In this example, two additional combinations of routes can be obtained

to form the solutions. The first one would be R; and R, and the other would be
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® {[D] Customer { with demand D (a] Best-case
B
A w1 A, e Ry=0-A—-B-C—-0
L \ R,=0-D—-E—-F-0
R
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FI1GURE 3.6: An example of routing to show the effect of the reverse route

the opposite, R} and Ry. In Figure 3.7, we show the solutions for this example in
terms of C, in a range between the best and the worst-case. The solution at point

(i) is acquired when R} and R, formed the solution, and vice versa for point (ii).

231 245

[191 T T 285]

FIGURE 3.7: A range of solutions for example in Figure 3.6

Methodology

Without assessing both directions of routes while taking into account the load fac-
tor, the solution could be formed in 2* possibilities. This includes all possibilities
in between. In our case, we are showing only the two extreme cases; the best and
the worst. This is depicted in Figure 3.8. C} denotes the best-case solution and
(s is the nearest solution to it. Similar representation for Cyx which denotes the
worst-case solution with Cy:_; being the nearest solution to it. The solution also
could end up randomly in between the interval of k = [2,2* — 1]. For instance, in
the previous example k£ = 2. When using the non-load-based methods, we want to

assess both scenarios using the best and the worst routes direction. In this case,
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the solution with the best-case scenario will give a chance for the non-load-based
methods to be improved when the load factor is present. More importantly for

the load-based methods, we select the best-case scenario as its solution at each

| Best I T T I Worst I
Ci C, Cok

C

time.

2k—1

F1cURE 3.8: A range of solutions between two extreme cases

In Figure 3.9, we display how the solutions are recorded when performing the
savings method. Those solutions are also set as our initial solution before carrying
out the refinement methods (i.e. local searches) which will be presented in the

next two chapters.

Best-case
scenario
Worst-case
scenario

. Reverse
Regular _<evaluarion
Types of savings
method
Load-based Reverse
(Integrated, evaluation
Combined)

FIGURE 3.9: Way of recording the results of the savings method

Observation

To show the importance of evaluating the reverse direction of routes, we perform a
simple analysis to our savings solutions comparing with and without the evaluation
procedure. We calculate the percent deviation of the total objective function Z
as (Zwo — Zw)/Zwo x 100 where the subscripts w and wo represent the solution
with and without the evaluation of the reverse route direction respectively for
each method. The positive percentage of deviation gives us an improvement after

evaluating such a procedure.

We provide the sample result of the analysis in Figure 3.10 for regular, integrated
and combined savings with o = 0.6,0.7,0.8, and 0.9. We started with o = 0.6
as one expects the balance to start from midway onwards. A step of 0.1 is used

although some other values could also be used. Given the « values, almost all
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problems benefit from this evaluation in which the solutions are improved. The
highest average percent deviation reaches nearly 1% when using the combined

savings in the small data set for a = 0.6.

1.20% £0.50%
- .
. 1.00% % 0.60% Savings method
2 0.50% H
§ o P B Regular
Z os0% —— fo10% : .
£ 0% E B W Integrats
[ — 0-20% = Combined
0.00% 0.00%
Semall Medium Large Semall Medium Large
Data sets Data sets
(a) a=08 (b) a=07
0.50% 0.20%
£ B
- 0.20% L 0.15%
S os0% [ g
B g 0.10%
Z 0.20% 2
- = g
£ 0.10% g 0.03%
= =
0.00% 0.00%
Semall Medinm Large Small Medium Large
Data sets Data sets
(C) a=1038 (d) a=109

F1GURE 3.10: The average percentage of deviation after the evaluation of the reverse
direction of routes for savings methods

We also illustrate the effect of evaluating the reverse direction of routes as in Figure
3.11. Referring to the figure, the trend of the average percentage deviation seems
to be decreasing when « is increasing. This is somewhat obvious. This finding is
consistent with the fact that the higher the value of o, the lower the value of the
social cost of COy, i.e. the environmental criterion. Note that when o = 1, there
is no consideration of the environmental criterion. From here, we conclude that
it is important to have the reverse direction of each route being assessed to gain

some improvement when considering the load factor.

3.3.2 Computational results

To assess the behaviour of the proposed savings-based heuristics, we record the
solutions over five values of a ranging from 0.6 to 1 with an increment of 0.1. We
calculate the percentage deviation of the total objective function (3.7) between our
method and the best-case for the regular savings. The mathematical expression

to calculate percent deviation is:

Dev(%) = |Z — Z)/Z x 100 (3.8)

47



CHAPTER 3. The incorporation of the load factor in classical constructive
heuristics

# 1.00%
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_0.10% Regular Intezrated Combined
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Regular Integrated Combined

Types of savings for « = (W0.6,M0.7,80.5, 0.9, 01)

()

F1GURE 3.11: The average percentage of deviation after the evaluation of the reverse
direction of routes for (a) small, (b) medium and (c) large data sets

where Z is the total objective function for regular savings method and Z; for
integrated and combined savings represented by subscript k = i for the integrated
savings and k = ¢ for the combined savings respectively. The positive value of a
percentage deviation indicates that the solution of our modified method improved

with the reduction of the total objective function from the regular savings method.

Integrated savings results

For the integrated savings method, we present the average of percent deviation
for each small, medium and large data sets as in Table 3.3. The frequency of
instances, excluding ties, yielding a positive and negative deviation percentage are
recorded as #best and #worst, respectively. The highest and the lowest deviation

percentage are recorded as Best % and Worst %, respectively.

For small data set, at o = 0.7, the highest percentage of deviation is acquired at
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TABLE 3.3: Summary table for integrated savings against the best case of the
regular savings

Data set o}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%)  -1.22 0.18 0.13 -0.26 0.00
(14 instances) #best 1 7 8 6 0
#worst 4 6 5) ) 0
Best (%) 0.66 5.98 580 454 0.00
Worst (%) -13.45 -815 -7.38 -5.18 0.00
Medium AvgDev(%)  -0.79 -293 -1.41 -0.78 -0.01
(20 instances) #best 5 3 6 6 3
#worst 15 17 14 14 4
Best(%) 260 134 3.64 176 0.8
Worst (%) -0.29 -7.86 -5.58 -3.70 -1.60
Large AvgDev(%) 0.52 -1.06 0.39 049 -0.07
(12 instances) #best 8 5 7 8 4
#worst 4 7 ) 4 )
Best(%) 215 2.63 3.34 3.63 098
Worst (%) -0.74 -5.38 -4.36 -3.76 -1.12

5.98% whereas the lowest value could be found in the same data set at @ = 0.6
which is -13.45%. With the same « value, the average percent deviation is found
to be at the highest in the large set, although a 0.52% improvement is rather small.
Out of 12 instances, 8 or approximately 67% of instances, in the large data set for
both o = 0.6 and 0.9 produced positive improvement solutions. This result can
be considered a success among all other a values and in other data sets. On the
other hand, 17 of the 20, or 85% of instances in the medium data set on o = 0.7
yielded solutions with a negative percent deviation when compared to solutions

from the regular savings method.

0.00%

-1.00%

B .
g -200%
g

H
2 -3.00%

s8ublgyg

3 3

£ -200% & -1.00%
Data sets for each 0 = (80.6,00.7,80.5,80.3, 1) Data sets for each o = (m0.5,00.7, 805,005, 01)

(a) (b)

FIGURE 3.12: The average percentage of deviation of (a) the integrated savings
and (b) the combined savings against the regular savings (best-case scenario)
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Combined savings results

For the combined savings method, the small data set seems to produce much better
quality solution than the other two data sets. This can be depicted in Table 3.4.
The average percent deviation is found to be the highest at 2.46% when o = 0.7.
This corresponds to the highest frequency of positive percent deviation which
records 11 of the 14 instances or around 79% of the instances occurred both when
a is set to 0.6 and 0.7. The best percent deviation is also attained from the small
data set at 8.64% when a = 0.9. In spite of that, the worst percent deviation
could be seen from the medium data set with -6.11% when a = 0.6. Out of 20
instances, 12 of them gave negative percent deviation when the values of a are 0.6

and 0.8 resulting in a negative average percent deviation.

TABLE 3.4: Summary table for the combined savings against the best case of the
regular savings

Data set o}
06 07 08 09 1.0
Small AvgDev(%) 225 2.46 148 1.15 0.00
(14 instances) #best 11 11 9 7 0
#worst 3 3 4 4 0
Best (%) 8.30 842 852 8.64 0.00
Worst (%) -2.60 -1.51 -1.50 -3.90 0.00
Medium AvgDev(%) -0.46 0.01 -0.20 -0.48 0.00
(20 instances) #best 8 10 8 10 0
#worst 12 10 12 10 0
Best (%) 3.13 202 259 153 0.00
Worst(%)  -6.11 -3.34 -3.35 -4.34 0.00
Large AvgDev(%) 093 099 0.65 0.59 0.00
(12 instances) #best 9 8 7 9 0
#worst 3 4 ) 3 0
Best (%) 3.60 284 3.00 4.09 0.00

Worst(%)  -2.51 -1.59 -2.97 -1.65 0.00

CPU times

In terms of the computing time, we recorded the time beginning from the calcula-
tion of the savings matrix until the final solution is found. The average total time
when computed over 46 problems are 23, 34 and 30 milliseconds respectively for
regular, integrated and combined savings as shown in Table 3.5. In comparison

to the analysis made between the integrated and combined savings, we concluded
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that the solutions obtained from the combined savings method are more appropri-
ate in featuring the load factor in the initial stage. This is exemplified by generally
having a more positive percent deviation as in Figure 3.12 as well as slightly less

computing time than the integrated savings.

TABLE 3.5: Average computational time (seconds)

Data set Savings
Regular Integrated Combined

Small 0.001 0.003 0.005
Medium 0.014 0.018 0.017
Large 0.064 0.095 0.081
Overall 0.023 0.034 0.030

3.4 Summary

In this chapter, we present the classical Clarke and Wright savings method as the
constructive heuristic for the capacitated vehicle routing problem. To incorporate
the environmental criteria, we introduced two new mathematical formulations of
the savings namely, the integrated and the combined savings. These formulations
can easily be adapted to other constructive heuristics such as the nearest neigh-
bour or the insertion-based heuristics. In this study, fuel consumption is used to
measure the CO, emission while concentrating on the load factor. As the new
problem is assymetric, both directions of the established routes are evaluated to
see the effect of the load in the amount of fuel consumption. This leads to two
very different scenarios namely the best and the worst-case as the user, if not
aware of the load factor, could choose whichever option including the worst one.
This evaluation provides a range where the solution based on ‘regular’ measures
could be. Given our experiments, in the following chapters, the combined savings
method together with the regular savings will be used in generating the initial

solution.
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Chapter 4

Incorporation of a load factor in

basic local search operators

4.1 Introduction

In this chapter, we first briefly describe the first three operators, which consists of
(i) 2-opt, (ii) (1,0) relocate and (iii) (2,0) relocate. These operators are considered
as basic since they are simple and fast. We introduce the load factor into the for-
mulation of the operators and present the necessary mathematical formulations for
each operator with the attached vehicle load factor. The newly developed opera-
tors are firstly shown with an illustrative example and followed by full computation
results based on the known VRP instances. We also highlight the computational

comparison between brute-force and the new formula-based search.

4.2 Design of the new operators

For clarity of presentation, in this chapter, we define the Euclidean distance or the

length between vertex m and n as d(m,n) = dy, = \/(xm —2,)% + (Ym — yn)%
The demand of customer m is rewritten as q(m) = g,,. The k' customer in route

i is written as R;(k) and nc(R;) is the number of customers in route i.

In accommodating the load factor in the operators, the route cost is calculated
in terms of the amount of fuel consumed by a vehicle when travelling along the
route. The fuel consumption function adapted from (3.4) is also rewritten as

E(m,n) = Enn = (ag + a1 L(m,n))d(m,n). The parameter L(m,n) = Ly, is the
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vehicle load when travelling along the arc (m,n) and can be computed once the
route is established. By accumulating the demand from the n'* to the nc(R;)™

customer in route 4, this leads to L(R;(m), R;(n)) being defined as follows:

ne(R;)

L(Ri(m), Ri(n)) = ; q(Ri(a))

Strategy for selecting alternating solutions

In this study, we emphasise how the load factor can be incorporated in the routing
problem by transforming and modifying the necessary formulation and procedures.
Hence, we decide to carry out the best improvement strategy as this can lead to
a good local optimum although the procedure may be longer. Methods that are
known to be able to speed up the search process such as neighbourhood reduction
and data structure can also be explored along with the best improvement strategy

though they are not used in this research.
Effect of the reverse route

When the local search operator is applied, the procedure of evaluating the reverse
route takes place as in Figure 4.1. Both the best and the worst-case scenarios are
assessed when the solution is improved with the non-load-based which we refer
to as the classical operator. More importantly, we opt for the best-case solution
before commencing the load-based operator. This is adapted to gain the best

possible solution embedded with the load factor.

Initial solutions (regular,
integrated or combined
savings)

——

Classical local Reverse
search operator evaluation

< Reverse |_ Load-based local

evaluation search operator

Best-case
scenario
‘Worst-case
scenario

FIGURE 4.1: Way of recording the results with the local search operators
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4.2.1 The 2-opt method

For a given R;, consider customers k and [ with 0 < & <[ —1 and | < nc(R;), the
route is in the order of R;(0,1,2,... k,k+1,..., 1,1+ 1,...,nc(R;),0). Note that
the customer’s position of 0 and nc(R;)+1 in the route is the depot. Based on the
2-opt method, the arc of vertex k and k + 1 is exchanged with the arc of vertex
[ and [ 4+ 1. Therefore, we can try to reorder the customers to obtain a new tour
which is called R] with the order of R;(0,1,2,... k,l,... . k+1,14+1,...,nc(R;),0).
It can be observed that if there is a crossing, the procedure will eliminate it and
this will lead to a reduced cost of the tour. This procedure is computed formally

as follows.

Normally, the distance cost of the route can be obtained by the summation of the
distances when travelling from the depot to the customers in the route and back
to the depot. The initial total cost is denoted by

Cg(l) d(R;(0), R;(1)) + d(R;(1), Ri(2)) + - - - + d(Ri(k), Ri(k + 1))

+d(Ri(k+ 1), Ri(k+2))+ -+ d(R;(I — 1), Ri(1))
+d(Ri(1), Ri(l + 1)) + -+ + d(Ri(nc(R;)), Ri(0))
:i 3 d(A(a), RO + (R, Rk 1) + S Y d(Ri(a), Ri(b)

nc(R;) ne(R;)+1

+d(R;(1), R(1+1))+ > > d(Ri(a), Ri(b))

a=l+1 b=a+1
ne(Ry) i)+1
=2 Z d(Ri(a), Ri(b)).
a=0 b=a+1

Now, when we reorder the customers in the route according to the 2-opt move,

the total cost of the route has to be computed again and is obtained as follows:

+d(Ri(1), Ri(l = 1))+ - -+ d(Ri(k +2), Ri(k + 1))
+d(Ri(k+1),R(l+1))+ -+ d(R;(nc(R;)), R;(0))
k-1 k E+2 k41
— Z _Z d(Ri(a), Ri(b)) + d(Ri(k )+ Z Z a), R;(b))

ne(R;) ne(R;)+1

+d(Ri(k+1), Ri(l+ 1)) + Y Z d(Ri(a), Ri(b))

a=l+1 b=a+1
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ne(R;) ne(R;)+1

= > > d(Ri(a), Rj(D)),

a=0 b=a+1

where R is introduced as the new route i after the change.

Therefore, we can found the change in cost which is the difference between the
old and the new route cost. After basic mathematical manipulation this change

in cost A, (i) is reduced to

AR(i) = C(i) = Ca(i)
= d(R;(k), Ri(k + 1)) + d(R;(1), Ri(1 + 1)) — d(Ri(k), Ri(1)) (4.1)
—d(Ri(k+1),R;(l+1)).

We refer to A¢,(i) as the change in cost for the classical 2-opt operator. Note
that, if A% (i) > 0, there is a gain in implementing such a change. When applying
this move, for the customers which are in between vertices k + 1 and [, the cost or

distance between them remains the same although their order in the route is not.
Effect of the load factor

The change in cost based on the load factor is also calculated in the same manner
as the distance cost, where the cost of the new route is subtracted from the old
route cost but here the cost is expressed also in terms of fuel consumption. The

initial fuel consumption cost for route ¢ is given by

Cp(i) = E(Ri(0), Ri(1)) + E(Ri(1), Ry(2)) + - -+ + E(Ri(k), Ry(k + 1))
E+1),Ri(k+2))+ -+ E(R(l —1),Ri(l))
D,Ri(l+1)+ -+ E(Ri(nc(Ry)), Ri(0))

E(R;(
E(Ry(

E(Ri(a), R;(b)) + E(R;(k), Ri(k + 1))

()

k k

ML++

0 b=a

-1
+ 2 Z E(R;(a), Ri()) + E(Ry(1), Ri(l + 1))
a=k+1b=a+1
ne(R;) ne(R;)+1
+ 2 > E(Ri(a), Ri(b))
a=l+1 b=a+1
nc(R;) ne(R;)+1

a
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The fuel consumption cost for the new reordered route is denoted as

Cji) = ( i(0), Bi(1)) + E(Ri(1), Ri(2)) + - - - + E(Ri(k), Ri(l))
E(Ry(l), Ri(1 = 1)) + -+ - 4+ E(R;(k +2), Ri(k + 1))
E(Ri(k +1), Ri(l +1)) + - - + E(Ri(nc(R:)), Ri(0))

nc(R;) ne(R;)+1

= 2. X B(Ri(a) Bi(b).

a=0 b=a+1

From there, the outcome of the subtraction will give us the change in cost for the

load-based 2-opt operator, Af,(i) as follows:

Afy(i) = C - C}
= apld(Ri(k), Ri(k + 1)) + d(R;(1), Ri(1 + 1)) — d(R;(k), Ri(1))
—d(Ri(k+1), Ri(1 +1))]
+ aa[L(Ri(k), Ri(k + 1)) - (d(Ri(k), Ri(k + 1)) — d(Ri(k), Ri(1)))

P YOS AR~ Y a(Rd) - d(Rila), Ri(b))

a=k+1b=a+1 c=b d=k+1

+ L(R;(1), Ri(l + 1)) - (d(R;(1), Ri(l + 1)) — d(R;(k + 1), R;({ + 1)))].

Substituting the appropriate place with A¢,(i) as in (4.1) will reduce this formula

to

+ al[ (Ri(k)v Ri(k+1)) - (d(Ri(k), Bi(k + 1)) — d(Ri(k), /(1)) (4.2)

T YOS (CaR0) - S aRi(d) - d(Ri(a), Ri(D))

a=k+1b=a+1 c=b d=k+1

+ L(R;(1), Ri(l + 1)) - (d(R;(1), Ri(l + 1)) — d(R;(k + 1), R;({ + 1)))].
Note that if oy =1 and a; = 0, (4.2) becomes exactly (4.1).

Illustrative example

Consider a network of a tour (0, 1, 2, 3, 4, 5, 6, 7, 8, 0) of eight customers as
in Figure 4.2 where the total length and the total amount of fuel consumed are
64.48 and 11.12 units, respectively. With the use of the classical 2-opt operator,
the tour is reordered to obtain a new tour (0, 1, 7, 6, 5, 4, 3, 2, 8, 0) with the

56



CHAPTER 4. Incorporation of a load factor in basic local search operators

total length reduced to 61.28 unit. The percentage deviation of the new and old
route cost in terms of its length is approximately 5% with the gain of 3.2 units.

The amount of fuel consumed for this new tour is 11.08 unit.

st - 5[1] 4[1]

B Depot
@ I[D] Customer i with demand D

3[1] 6[1] 3[1]

Customer X-y coordinates
0 0
-4 6
2 15
6 18
=| 2 24
-2 24
—6 18
-2 15
4 6

(=)

=

8[55] 1[3] 8[55]

QDN U A WN =

FIGURE 4.2: Sample network of 2-opt move

Whereas, the load-based 2-opt move will reorder the customers on the route ac-
cording to the fuel consumption cost. As a result, this procedure returns the tour
as (0, 8,2, 3,4, 5,6, 7, 1, 0). This tour gives the same length as the classical
2-opt result but in the opposite course with 9.86 units of fuel consumption. Here,
although the length of the tour is unchanged, the fuel consumption for the tour is

found to be 11% less than the resulted tour of the classical 2-opt move.
Brute-force and formula-based computation

To show the importance of coming up with the new formulation containing the
load factor, we conducted a comparative empirical analysis between the brute-force
and the formula-based computations in terms of their computational time. The
brute force computation is executed based on the concept of finding the difference
between the initial and the new route cost after performing such an operator. The
computation is performed until the procedure could not improve the solution. Note
that there is a large number of redundant computations due to the calculation of
certain parts of the route that are unchanged. The formula-based computation is
referred to as the newly developed formulation based on the move, which can be

either the classical or the load based ones.

Consider this analogy when performing the 2-opt move on route ;. The number
of customers in R; is denoted as nc(Ry). If 0 is the computing cost of removing

two edges and reconnecting the remaining two segments using a full calculation,
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then the total computing effort is obtained by
d-ne(Ry)

Now, if ¢ is the computing cost of removing two edges and reconnecting the
remaining two segments using the formulae (either (4.2) or (4.1)) and ' < 4,
then

8" - ne(Ry) < 6 -ne(Ry)

We test the computations on a sample of five instances in each of the small,
medium, and large data sets. We record the computing time beginning from when
the initial solution from the savings method is acquired until the final solution
is formed. Both computations are based on the load-based move which consider
the fuel consumption (3.4) of the route to make the move. The formula-based
computation is referred to as the new formulation of the load-based 2-opt (4.2).
An illustration of the analysis with regard to its average computational time is
given in Figure 4.3 where a massive gap of CPU time between the brute-force and

the formula-based searches can be observed.

CPU time (miliseconds)

Small Medium Large
Data sets

=—DBrute-force Formula

FI1GURE 4.3: Average computational time of the load-based 2-opt using brute-force
and formula-based computation

Although the brute-force search is simple and uncomplicated to execute and will
constantly acquire a solution if it exists, its cost very much depends on the size of
the problems. Therefore, the brute-force search is more useful when the problem
size is very limited and the ease of implementation is more crucial than the speed.
In this study, we show the comparison in terms of computing time to see if it
is worth doing the formulae, in case some question its use and may believe it is

easier to calculate the full cost before and after the procedure. This fact is very
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misleading as the use of the formula is more than 2500 time faster (see Figure
4.3).

Analysis and computational results

In this section, we perform the calculation of percent deviation as in (3.8) where
Z is the total objective function obtained when the classical operator is applied to
regular savings solutions. While 7 is obtained when the load-based operator is
applied to the regular and the combined savings solutions in which the subscript
k = Ir for the regular savings and k£ = lc for the combined savings. The perfor-
mance of the load-based operators is compared to the best (i.e. LBR and LBC)
and the worst-case (i.e. LWR and LWC) scenarios of the solutions following the
evaluation schemes given in chapter 3. These two scenarios of solutions are ac-
quired from using the classical operators with the initial solution from the regular
savings. This can reflect whether the new load-based operators perform better
than the best-case of non-load-based operators or they are still acceptable if they
perform better than the worst-case. The analysis is tested on the well-known 46

benchmark VRP test instances given in Table 3.2.

The analysis for the 2-opt operator can be found in Table 4.1 where the average
percentage deviation is calculated across five values of @ = (0.6,0.7,0.8,0.9,1.0)
for each small, medium and large data sets. When applying the load-based 2-opt to
the initial solution obtained from the regular savings, in general, the solutions are
improved when compared to both cases of the classical 2-opt. This improvement
although is a minor with the highest one at 1.36%, is considered as a success
indicating that the incorporation of the load factor within the operator is needed.
In contrast, the lowest percent deviation is at -0.29% when o = 0.9 for small data
set of LBC.

It can therefore be shown that the solutions using the load-based 2-opt from the
combined savings are also improved. These are denoted by the positive percent
deviation even though we cannot claim the same for the small data set. Note
that, when o = 1 the same average percent deviation (for LBR and LWR; LBC
and LWC) can be seen as this may be because the consideration of the load factor

does not exist and the search is based on the distance only.

The analysis is also demonstrated in Figure 4.4. It can be seen in (a) the devia-
tion percentage for medium and large data sets seems to have levelled off but a

downward trend can be seen for small data set as well as in (c¢). Although in (b)
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TABLE 4.1: Average percent deviation (in %) of the load-based 2-opt against the
classical 2-opt

a Dataset LBR LWR LBC LWC

0.6 Small 024 1.36 -0.25 0.21
Medium 0.31 0.82 0.16 0.74
Large 0.25 093 028 1.08

0.7 Small 023 1.05 -0.24 0.10
Medium 0.30 0.68 0.16 0.56
Large 0.25 075 048 1.07

0.8 Small 0.22 0.75 -0.23 -0.06
Medium 0.30 0.5 0.26 0.54
Large 0.25 057 031 0.64

0.9 Small 0.20 046 -0.29 -0.23
Medium 0.30 0.42  0.26 0.38
Large 0.25 040 047 0.67

1.0  Small 0.19 0.19 -0.21 -0.21
Medium 0.30 0.30 0.26 0.26
Large 024 024 024 0.24

LBR Load-based operator against the best-case of
classical operator using regular savings

LWR Load-based operator against the worst-case
of classical operator using regular savings

LBC Load-based operator from combined savings
against the best-case of classical operator from reg-
ular savings

LWC Load-based operator from combined savings
against the worst-case of classical operator from
regular savings

and (d), there is no clear trend or similarities between the data sets, it is shown
that there are negative percentages in small data set and the fluctuations of the
average percent deviation across five values of o are shown for medium and large

data sets.

We also present a summary table for the LBC as in Table 4.2 to assess the perfor-
mance of incorporating the load factor from the initial solution. It can be observed
that the average percentage deviation for small data set is similar for all five values
of a, although the solutions are all worse than the classical one. This is in con-
trast with the solutions from medium and large data sets as they all have positive
improvement with the highest average percentage of 0.48%. About 75% (or 9 out
of 12) of the instances in large data set, which corresponds to the highest average
percent deviation, record the highest count of the positive percentage. With re-

gard to the solution that produced negative percent deviation, the small data set
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0.35% 0.60%

0.30%
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FIGURE 4.4: The average percent deviation of load-based 2-opt against the classical
2-opt; (a) LBR, (b) LBC, (¢) LWR, and (d) LWC

records the highest frequency (out of 14, 7 or 50% of the instances). Moreover,
the best and the worst percent deviation are 2.13% and -1.88%, respectively.

CPU times

During the improvement phase with the use of the operator, the computing time is
logged before commencing the procedure once the initial solution from the savings
method is obtained. The time is recorded until the final solution is found. For
simplicity, the operator OI(p) represents the classical (i.e. O = C) and the load-
based (i.e. O = L) operator p from the initial solution using the regular (i.e.
I = R) and the combined (i.e. I = C) savings. Table 4.3 shows the average
computational time for 2-opt. Overall, we can say that the load-based 2-opt took
almost five times longer than the classical 2-opt. This extra computational burden

is expected due to the additional calculations in (4.2).

4.2.2 The (1,0) operator

The (1,0) operator is carried out by taking out a customer from a route and putting
it back whether in the same or another route. Inserting back a removed customer
in the same route but in a different position is what we meant by intra-route case.
We refer to the case where a removed customer is inserted in another route as the

inter-route case. Although these two cases are normally combined together, we
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TABLE 4.2: Summary table for LBC case of 2-opt

Data set o
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) -0.25 -0.24 -0.23 -0.29 -0.21
(14 instances) #best 2 3 3 2 1
#worst 7 5 6 7 7
Best(%) 021 014 009 048 0.34
Worst(%)  -1.82 -1.84 -1.86 -1.88 -1.73
Medium AvgDev(%) 0.16 0.16 0.26 0.26 0.26
(20 instances) #best 10 12 11 10 10
#worst 4 4 3 6 4
Best(%) 118 083 127 1.08 1.07
Worst(%) 011 021 -0.11 -0.16 -0.40
Large AvgDev(%) 0.28 0.48 031 047 0.24
(12 instances) #best 8 9 5 8 8
#worst 2 2 3 1 2
Best (%) 144 193 170 2.13 102

Worst(%)  -0.31 -0.05 -0.05 -0.02 -0.05

TABLE 4.3: Average computational time for 2-opt (seconds)

Data set CR(2-opt) LR(2-opt) LC(2-opt)

Small 0.000 0.000 0.001
Medium 0.002 0.003 0.005
Large 0.012 0.072 0.080
Overall 0.004 0.020 0.024

CR(p) Classical operator p from regular savings
LR(p) Load-based operator p from regular savings
LC(p) Load-based operator p from combined savings

chose to do it separately to monitor the effect of each move within the route and

among the routes.

The first part of the procedure is to compute the cost of removing customer m from
route ¢. This is performed by deducting the new cost of the tour after removing
customer m from the old tour cost. Given the old tour as R;(0,1,2,...,m —
L,m,m+1,...,nc(R;),0) where customer m is within the route. The old cost of
the tour in terms of the distance is obtained by adding up the distance travelled

along the route from the depot to each customer and back to the depot. Note
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again that nc(R;) + 1 is the depot 0. This can be shown as

C%i) = d(R;(0), Ri(1)) + d(R;(1), Ri(2)) + - - - + d(Rs(m — 1), Ri(m))

m—2 m—1

= > " d(Ri(a), Ri(b)) + d(R;(m — 1), Ri(m))

a=0 b=a+1
nc(R;) i)+1 (43)

+d(Ri(m), Ry(m+ 1))+ > Z d(R;(a), Ri(b))
a=m+1 b=a+1
nc(R;) ne(R;)+1

= 2. > d(Ria) Ri(D)).

a=0 b=a+1

After removing customer m from route i, a new tour ¢ is created. This is called R;
where the route is given as R;(0,1,2,...,m—1,m+1,...,nc(R;),0). The number
of customers for R, (nc(R})) is one less than the number of customers in R;. The

distance cost of this tour is presented as

Cy(i) = d(R;(0), R;(1))
+ -+ d(R;
= d(R;(0), Ri(1))

nc(R;)—1 ne(R;)

= 2. > d(Ri(a), Ri(D)).

a=0 b=a+1

d(R;(1),Ri(2)) + -+ d(Ri(m — 1), Ri(m + 1))

_l’_
(ne(Ry)), 1:(0)) (4.4)
+d(Ri(1), Bi(2)) + - - + d(Rj(nc(R;) — 1), R;(0))

Hence, we subtract the new cost from the old cost to obtain the removal cost of

this move. This can be simplified as follows:

(i) = Cq(i) — Cy(0)
= d(Ri(m — 1), Ri(m)) + d(R;(m), Ri(m + 1)) (4.5)
— d(Ri(m — 1), Ri(m + 1)),

The second part of the procedure is to acquire the cost of inserting back the
removed customer m into a different position in the same route ¢ or in another
route j. The intra-route and inter-route cases for this operator will be explained
later. This procedure is then completed with the subtraction of the insertion cost

from the removal cost of the route.
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(i) The intra-route of (1,0)

One way to deal with this method is by renaming the revised route R, after removal
as a temporary route R} (R, = R!). Then, in R, the removed customer m is
inserted after the k™ customer. A new route R/ is introduced upon the insertion.
Subsequently, the number of customers for the route R becomes nc(R;) and the
depot 0 is placed at nc(R;) + 1. The cost of the route after inserting customer m

next to customer k in R! is denoted as

Ca(i) = d(R}(0), i (1)) + d(R} (1), B{ (2)) + - + d(R; (), Ri(m))
+d(Ri(m), B (k +1)) + - + (B} (ne(R;) — 1), B (0))
= d(R;(0), B/(1)) + d(R}(1), R{(2)) + - - - + d(B] (nc(R:)), B (0))

nc(R;) ne(R;)+1

= 2. > d(R(a), B (V).

a=0 b=a+1

The insertion cost is calculated by subtracting the route cost after removing cus-
tomer m from the new route cost of inserting it after the k' customer. This is

computed as

5 (0) = C3(0) - CA(0)
— d(RY (k), Ri(m)) + d(Ri(m), BF (k + 1)) (4.6)
— d(RY (k) R (k + 1)

(2

Thus, we can obtain the change in cost in terms of the distance for the procedure
within the route by removing the insertion cost (see (4.6)) from the removal cost
(see (4.5)).

Ao (i) = 0 (1) = 075, (0)
= d(Ri(m — 1), Ri(m)) + d(Ri(m), Ri(m + 1)) (4.7)
— d(Ri(m — 1), Ri(m + 1)) — d(E; (k), Ri(m))
— d(Ri(m), R} (k +1)) + d(R; (k), Ri (k + 1))

We refer A% (i) as the change in cost for the classical intra-route (1,0) operator.
A positive value of A%, (i) indicates that a gain of the route cost is achieved when

executing such a change.
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Effect of the load factor

When adapting the load factor in this operator with regard to the fuel consumption
E(m,n) as the route cost, the removal process of customer m from route 7 is given
as the subtraction of the new fuel consumption cost from the old cost of the route.

The initial fuel consumption cost of route ¢ is given as follows:

R;(1)) + E(Ri(1), Ri(2)) + -+ + E(Ri(m — 1), Ri(m))
i(m), Ri(m + 1)) + -+ + E(Ri(nc(Ry)), Ri(0))
)+

ne(R;) ne(R;)+1

a=0 b=a+1

Cy(i) = E(Ri(0),
R

+ £ (4.8)

Next, the fuel consumption cost for route ¢ is recalculated after the removal of

customer m which is presented below.

C(i) = ( i(0), (1)) + E(Ri(1), Ri(2)) + - - - + E(Ri(m — 1), Ri(m + 1))
-+ E(Ri(nc(R:) — 1), Ri(0)) (4.9)
= E(R/(O L Ri(1) + E(Ri(1), Ri(2)) + - -+ + E(Ri(ne(R:) — 1), Ri(0))
nce(R;)—1 ne(R;)
= 2 2 BU(a), 7))

Therefore, the removal cost in terms of fuel consumption can be found with the

outcome of the deduction.

0%(0) = C(i) = C}(3)
= agld(Ri(m — 1), Ri(m)) + d(Ri(m), Ri(m + 1))
— d(Ri(m — 1), Ri(m + 1))] (4.10)
+O€1 mz bmz b))
+ L(Ri(m — 1), Ri(m)) - d(Ri(m — 1), Ri(m))
+ L(Ri(m), Ri(m + 1)) - (d(Ri(m), Ri(m + 1))
— d(Ri(m — 1), Ri(m + 1)))]

To insert the removed customer m back in the same route ¢, a temporary route

is created where (R, = RT). The inserting point is next to the k' customer in
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the new temporary route. After the insertion, a new route is introduced and it
is denoted as R!. Note that, the number of customers for the route R! becomes
nc(R;) and the depot 0 is then located at ne(R;)+1. The following set of equations

shows the fuel consumption cost for the new route after the insertion.

C7(i) = BE(R{(0), B (1)) + E(R; (1), RT( )+ + E(R] (k), Ri(m))
+ BE(Ri(m), R} (k +1)) + -+ E(R] (nc(R;) — 1), R (0))
= E(R{(0), B (1)) + E(R{(1), R”( ) + -+ E(R] (nc(R:)), B{(0))

nc(R;) ne(R;)+1
= > E(R](a), R} (D))

a=0 b=a+1

The insertion cost for this procedure in terms of fuel consumption can be found
when we subtract the C7(i) from the C(i). This is simplified after mathematical

manipulations as follows:

Feala(Rim) 3 D dR @) B (9) (4.1)

+ (L(R] (k), By (k + 1)) + q(Ri(m))) - d(R; (k), Ri(m))
+ L(R] (k), R} (k + 1)) - (d(Ri(m), Ry (k + 1))
— d(R; (k), R{ (k +1)))]

Hence, the intra-route procedure of (1,0) operator based on the load factor is
completed when the change in cost Afkm(i) is obtained through the subtraction
of the insertion cost (4.11) from the removal cost (4.10). We refer A% (i) as the

change in cost for the load-based intra-route (1,0) operator.

Al () = 873(0) = 07, (3)
= ao[d(Ri(m — 1), Ry(m)) + d(Ri(m), Ri(m + 1))
) —

— d(R;(m — 1), Ri(m + 1)) — d(R] (k), Ri(m))
—d(Rz’(m)aRzT( +1)) + d(R; (k), Ri (k +1))]
+ aq[q(Ri(m bS d(R R;(b))
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— S S d(RT(c), BT (d))) (4.12)

=0 d=c+1
+ L(Ri(m = 1), Ri(m)) - d(Ri(m — 1), Ri(m))
+ L(R;(m), Ri(m + 1)) - (d(R;(m), R;(m + 1))
—d(R;(m —1),R;(m+1)))
— (L(RY (k), B{ (k + 1)) + q(Ri(m))) - d(R (k), Ri(m))
— L(R{ (k), Bj (k + 1)) - (d(R;(m), B} (k + 1))
— d(R; (k), Ri (k+1)))]

Note that when oy = 1 and a; = 0, (4.12) reduces to (4.7).
Illustrative example

We consider an example of a route consisting of ten customers as illustrated in Fig-
ure 4.5. The initial route R(0,1,2,3,4,5,6,7,8,9,10,0) has a route length Cy =
66.22 and fuel consumption C, = 11.53. The intra-route (1,0) operator shift cus-
tomer 5 in such a way that the resulted route becomes R'(0,1,2,3,4,6,7,8,9,5, 10,
0). This gives the route length and fuel consumption of Cy = 63.65 and C, = 11.08,
respectively. Both intra-route operators using the classical and the load-based
(1,0) produced similar result. Note that, these operators may begin with differ-
ent starting solutions (i.e. in the opposite direction) but eventually reach the
same final solution. This is because the reverse route evaluation gives the chance
for the classical operator to select the route with the direction of the least fuel

consumption.

® i[D] Customer  with demand D

1[6] 1[6]
Customer X-y coordinates
8 19
9 26
15 28
17 24
13 19
13 13
17 17
20 14
20 10
13 8
7 11

10[10] 8[6] 10[10]

NG EWN RO
1]

-
(=]

9[13] 9[13]

FIGURE 4.5: An example of (1,0) intra-route move

67



CHAPTER 4. Incorporation of a load factor in basic local search operators

(ii) The inter-route of (1,0)

The case of inter-route (1,0) operator is basically meant to remove a customer
from one route and place it into another route. Given that customer m from route
i is removed, the removal cost of this move is as shown in (4.5). The next step is
to insert R;(m) in route j next to customer [. Here, we consider route j from the
existing route that is established before and also an additional empty route. The
intra-route problem can also be combined with the inter-route problem in such a
way where the temporary route R! is considered as one of the route j. In this

research, we decided to do the intra-route and the inter-route cases separately.

Ith customer

The cost of inserting customer m from route i to route j after the
can be found by subtracting the initial route cost from the new route cost with
the insertion. Note that in every tour, the vehicle needs to return to the depot
at the end of the tour. The initial cost for the route j is denoted below with the

final point of the route is at nc(R;) + 1 which is the depot 0.

Ca(4) = d(R;(0), R; (1)) + d(R;(1), R;(2)) + -+ - + d(R; (1), B;(1 + 1))
+-+d(Rj(ne(R))), 1;(0))

(4.13)
nc(RJ) ne(R;)+1
Y. d(Rj(a), R;(b))
a=0 b=a+1
Then, the cost of the new route after the insertion is presented as follows:

Ca(j) = d(R;(0), R;(1)) + d(R;(1), R;(2)) + - - + d(R; (1), Ri(m))

+ d(Ri(m), R;j(I + 1)) + - -- + d(R;(nc(R;) + 1), R;(0))
= d(Rj(0), Rj(1)) + d(R}(1), R}'(Q)) + d(Rj(nc(R;) + 1), k5(0))

nc(R;j)+1nc(R;)+2

= 2 2. dRj(a),Rj()

a=0 b=a+1

where R7 is introduced as the new route j once the insertion takes place. The
depot is positioned at nc(R;) + 2 since the number of customers of the new route

RY is added with one to the origin.
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The change in cost of R; when inserting R;(m) which also refers to the insertion

cost is obtained through basic mathematical manipulation.

8'.(7) = Ci(j) — ()
=d(R;(1), Ri(m)) + d(R;(m), R;(l + 1)) — d(R;(l), R;(I + 1)) (4.14)

Subsequently, we subtract the insertion cost (4.14) from the removal cost (4.5) in
obtaining the change in cost for this procedure among the routes in terms of the

distance travelled. This is performed as follows:

A, (i5) = 8" (1) = 675,(7)
= d(Ri(m — 1), Ri(m)) + d(R;(m), R;(m + 1)) (4.15)
— d(Ri(m — 1), Ri(m + 1)) — d(R;(1), Ri(m))
— d(Ri(m), B;(I + 1)) + d(R;(1), R; (1 + 1))

Effect of the load factor

The inter-route (1,0) operator with the incorporation of the load factor has the
same procedure with the classical one but it is following the calculation of vehicle
fuel consumption rather than the vehicle distance travelled. The procedure in-
volved the calculation of the removal and the insertion cost. Given that customer
m from route 7 is removed, the removal cost in terms of the fuel consumption can
be obtained using (4.10). Afterward, this customer m is inserted in route j next
to customer [. The initial fuel consumption cost for route j before the insertion is

given by,

C7(j) = E(R;(0), R;(1)) + E(R;(1), B;(2)) + - - + E(R;(1), R; (1 + 1))

+ -+ E(R;(nc(Ry)), R;(0))
nc(R;) ne(Ry)+1

Z S E(Ry(a). Ry(b))

= b=a+1

(4.16)

Route j is reordered after the insertion and the fuel consumption cost of the new

route j is calculated as

Ci(j) = E(R;(0), R;(1)) + E(R;(1), R;(2)) + - - - + E(R;(1), Ri(m))
+ E(R;(m),R;(l+ 1))+ -+ E(R;(nc(R;) + 1), R;(0))
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= B(R}(0), Ri(1)) + E(R}(1), R}(2)) + - - - + E(R}(nc(R;) + 1), R(0))
nc(R;)+1 ne(R;)+2

= Z > E(Rj(a), Rj(D))

b=a+1

The insertion cost with regard to the fuel consumption is obtained by subtracting

the initial cost from the new cost of the route and this can be presented as follows:

57.() = C1(j) — C%j)
= aold(R;(1), Ri(m)) + d(R;(m), R;(I + 1)) — d(R;(1), R;(l +1))]

+ g Z Z d(R;(a), R;(b)) (4.17)

+ (LR, (1), B(L+ 1) + q(Ri(m))) - d(R; (1), Ri(m))
— L(R;(1), By (1 + 1)) - (d(R;(1), R;(I + 1))
— d(Ri(m), R;(1 +1)))]

Finally, we can find the change in fuel consumption cost using the (1,0) operator
move among the route by calculating the difference between the removal (4.10)

and the insertion (4.17) cost of the route. This is shown along these lines.

Al (i) = 004(0) = 67,(7)
= ao[d(Ri(m — 1), Ry(m)) + d(Ri(m), Ri(m
— d(Ri(m = 1), R;(m + 1)) — d(R;(1), Ri(m))
— d(Ri(m), R;(I + 1)) + d(R;(1), R;(I + 1))]

m—2 m—1 -1 1
+aalg(Ri(m)) - (D D d(Ri(a), Ri(b)) =Y > d(Rj(c), R;(d)))
a=0 b=a+1 c=0d=c+1

+ L(Ri(m — 1), Ri(m)) - d(Ri(m — 1), Ri(m))
+ L(Ri(m), Ri(m + 1)) - (d(R;(m), Ri(m + 1))
—d(Ri(m — 1), Ri(m + 1)))
— (L(R; (1), R; (I + 1)) + q(Ri(m))) - d(R;(1), Ri(m))
+ L(R;(1), Rj(L + 1)) - (d(R;(1), B; (I + 1)) — d(Ri(m), R;(l +1)))]
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Substituting the A% _(ij) (4.15) in the appropriate place will reduced this formula

to,

A, (i) = 671(6) = 6%, (7)

Fanla(Am) - (X X d(Ra), Rb)
X % R0, Byfa)
DR = 1), Bi(m) - d(Rilm ~ 1), Bifm)) (119

+ L(Ri(m), Ri(m + 1)) - (d(R;(m), Ri(m + 1))
—d(R;(m — 1), Ri(m +1)))
— (L(R;(1), R;(1 + 1)) + q(Ri(m))) - d(R;(1), Ri(m))
+ L(R;(1), R; (1 4 1)) - (d(R;(1), R;(l + 1))
— d(Ri(m), R;(l+1)))]

Illustrative example

Consider an example consisting of ten customers which are initially assigned to
two routes, R;(0,1,2,3,4,5,0) and R2(0,6,7,8,9,10,0) as depicted in Figure 4.6.
The total length Cy for Ry and Ry are 34.34 and 40.93, respectively. The total fuel
consumption C, for R; and Ry are 5.62 and 6.69, respectively. When the operator
(1,0) is implemented between the routes, it will try to relocate a customer in
another route and find the best gain of making the move. In this example, the

best move is to relocate customer 4 from R; to Ry, next to customer 6.

2[15] @ i[D] Customer i with demand D

1[6] 1(6]

2[15]

Customer X-y coordinates

0 8 19

10[10]

1
2
3
4
5 =113 19
6
7
8[6] 10[10] 8
9

9[13] 9[13] 10 7o

FIGURE 4.6: An example of (1,0) inter-route move
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Both the classical and the load-based (1,0) operator decide to make this move
which produced two updated routes R{(0,5,3,2,1,0) and R5(0,10,9,8,7,4,6,0).
This new configuration has Cy of 29.27 and 43.76 as well as C, of 4.71 and 7.16,
respectively of R} and Rj. However, the load-based (1,0) commencing the proce-
dure with different direction of the initial solution where R;(0,5,4,3,2,1,0) and
R5(0,10,9,8,7,6,0). This gives the same total length but different fuel consump-
tion (C.(Ry) = 5.57 and C.(Ry) = 6.65). Given that the reverse route evaluation
is applied on a different level (see Figure 4.1) for the classical and the load-based
operators, the initial solution before the operator is implemented may be differ-
ent. The resulted routes may or may not be the same depending on the customer’s
demand in the particular route. In this example, the resulted routes from using

both operators are similar.
Brute-force and formula-based computation

We also highlighted the comparison of brute-force and formula-based computation
using the inter-route (1,0) move. Consider an analogy of two routes R; and R».
If 9 is the cost of removing a customer from R; and replacing it in Ry using the

full calculation then, the computing effort can be acquired by
d-nc(Ry) - ne(Ry)

When using the formulae, the cost of removing a customer from R; and replacing
it in Ry is denoted by &' where ' < §. Hence, the computing effort using the

formulae can be written as

8" ne(Ry) - ne(Ry) < 0 - ne(Ry) - ne(Ry)

We have performed a computation comparison of the load-based inter-route (1,0)
using the brute-force and the formula-based searches. The computation was tested
on a sample of five instances in each small, medium and large data sets. The load-
based move is based on the fuel consumption function (3.4) and the formula-based
search is calculated using (4.18). In the same way as before (load-based 2-opt),
the computing time is recorded once the savings method established an initial
solution until the operator mechanism developed a final solution. The result of
this test is illustrated in Figure 4.7. It can be observed that the difference in terms
of computational time is roughly less than 3000 milliseconds (or 3 seconds). We

can also observe that the average CPU time for medium data set dropped slightly

72



CHAPTER 4. Incorporation of a load factor in basic local search operators

from the small data set and then soared up to the large data set.

3000
4500

—
-£ 4000

g
3500
3000
2500
2000
1500
8 1000

@]
500
0

U time (milisecor

Small Medium Large

Data sets

== Brute-force Formula

FIGURE 4.7: The average computational time of load-based inter-route (1,0) using
the brute-force and the formula-based computations

By using the formula, the search process prevent redundant calculations therefore
the time it took to complete the search is significantly reduced. From now on,
there is no need to show this comparison for other operators because the massive

gap between them is obvious.

Analysis and computational results

The performance of (1,0) relocate operator is demonstrated in Table 4.4 where we
show the average percent deviation of the load-based operator against the classical
one for intra-route and inter-route cases. Two sources of initial solution namely,
the regular and the combined savings are used for this analysis. By using the
combined savings as the initial solution along with the load-based operator enable

us to observe the effect of load factor from the beginning.

From the table, as a whole we can say that the load-based operator from the
combined savings performs better than the one from the regular savings. However,
the exception applies for medium data set. This can be seen more clearly in Figures
4.8 and 4.9. Note that, when o = 1 the horizontal average percent deviation are
all the same for intra-route and inter-route cases. This may be because the load

factor is not considered and the search is based on the distance only.

We also show a summary of the result of LBC for intra-route (1,0) operator in
Table 4.5. It can be noted that the highest average deviation percentage is at
2.21% for when ae = 0.7 in the small data set and about 79% (11 out of 14) of the

instances produced a positive percentage of improvement. When a = 0.9 the best
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TABLE 4.4: Average percent deviation (in %) of the load-based (1,0) relocate against
the classical (1,0) relocate

o Data set Intra-route Inter-route

LBR LWR LBC LWC LBR LWR LBC LWC

0.6 Small 0.02 128 2.06 3.28 -0.06 1.02 1.06 212
Medium  0.10 0.60 -0.49 0.01 0.22 0.73 -0.19 0.32
Large 0.08 077 089 157 0.09 077 169 2.36

0.7 Small 0.00 092 221 311 -0.06 0.73 181 2.8
Medium 0.10 046 0.00 0.37 0.20 0.57 0.02 040
Large 0.08 058 123 1.73 003 054 1.07 1.57

0.8 Small -0.02 058 1.19 1.78 -0.05 046 146 1.97
Medium  0.09 0.33 -0.11 0.13 0.19 043 -0.09 0.16
Large 0.08 041 080 1.12 -0.01 031 0.74 1.07

0.9 Small -0.04 026 095 124 -0.05 020 135 1.60
Medium 0.09 0.21 -042 -0.30 0.17 0.29 -0.11 0.01
Large 0.08 024 1.04 120 -0.06 0.10 049 0.65

1.0 Small -0.06 -0.06 -0.06 -0.06 -0.05 -0.05 -0.05 -0.05
Medium  0.09 0.09 0.09 0.09 0.16 0.16 0.16 0.16
Large 0.08 0.08 0.08 0.08 -0.11 -0.11 -0.11 -0.11

percent deviation recorded is at 8.24%. Conversely, the lowest average deviation
percentage of -0.49% can be found in medium data set when o = 0.6 alongside the
worst percent deviation of -6.49%. Out of 20, 13 instances (or 65%) give negative
percent deviation when o = 0.8 and this represents the highest count for the worst

improvement of the operator.

Similarly, a summary result of LBC for inter-route (1,0) relocate can be referred
to Table 4.6. In the small data set, the average percent deviation seems to be at
the highest (1.81%) when o = 0.7. This may correspond to the utmost percent
deviation of 7.16%. On the contrary, the load-based inter-route (1,0) from the
combined savings recorded the worst percent deviation of -5.36% in the medium
data set when compared to the classical operator from the regular savings. In the
large data set, the highest frequency (10 out of 12, or about 83% of the instances)
of positive and negative percent deviation could be found when o = 0.6 and 1.0,

respectively.
CPU times

We display the average computational time for small, medium and large data set
as well as the overall average when performing the (1,0) relocate operator in Table

4.7. The speed of performing the intra-route (1,0) operator is almost negligible
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TABLE 4.5: Summary table for LBC case of intra-route (1,0) relocate

Data set o}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) 2.06 2.21 1.19 0.95 -0.06
(14 instances) #best 10 11 8 5 1
#worst 3 2 3 6 3
Best (%) 8.11 816 822 8.24 0.03
Worst(%)  -1.31 -1.53 -1.53 -2.87 -0.82
Medium AvgDev(%) -0.49 0.00 -0.11 -0.42 0.09
(20 instances) #best 8 9 7 9 5
#worst 12 11 13 11 5t
Best (%) 3.76  3.32 4.09 421 1.03
Worst(%)  -6.49 -3.61 -3.61 -4.36 -0.02
Large AvgDev(%) 0.89 1.23 0.80 1.04 0.08
(12 instances) #best 8 8 8 8 6
#worst 4 4 4 4 2
Best (%) 350 398 327 511 027

Worst(%)  -1.69 -1.62 -2.90 -1.68 -0.25

TABLE 4.6: Summary table for LBC case of inter-route (1,0) relocate

Data set e}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) 1.06 1.81 146 1.35 -0.05
(14 instances) #best 8 10 10 9 2
H#worst 6 4 4 4 5
Best(%) 585 7.16 6.02 6.00 041
Worst(%)  -3.00 -2.97 224 -2.32 -0.52
Medium AvgDev(%) -0.19 0.02 -0.09 -0.11 0.16
(20 instances) #best 9 11 11 12 7
#worst 11 9 9 8 7
Best(%) 433 414 248 217 177
Worst(%)  -5.36 -2.84 -2.89 -4.27 -0.29
Large AvgDev(%) 1.69 1.07 0.74 049 -0.11
(12 instances) #best 10 9 7 8 2
#worst 2 3 5 4 10
Best (%) 488 410 3.14 3.68 0.18

Worst(%) ~ -0.78 -1.31 -3.93 -2.47 -0.51
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FIGURE 4.8: The average percent deviation of the load-based (1,0) relocate intra-
route against the classical (1,0) relocate intra-route; (a) LBR, (b) LBC, (c) LWR,
and (d) LWC

where the longest time it took on the overall average is only 8 milliseconds. For
the inter-route case, it can be observed that the average CPU time for large data

set rises drastically from the medium and small data set.

TABLE 4.7: Average computational time for (1,0) relocate (seconds)

Data set Intra-route Inter-route

CR(1,0) LR(1,0) LC(1,0) CR(1,0) LR(1,0) LC(1,0)
Small 0.000 0.000 0.000 0.000 0.001 0.002
Medium 0.002 0.003 0.004 0.011 0.039 0.045
Large 0.013 0.014 0.024 1.353 2.846 3.056
Overall 0.005 0.005 0.008 0.358 0.759 0.817

4.2.3 The (2,0) operator

This operator is executed by removing two consecutive customers from one route
and placing them back in the same route but in different order or in another route.
We can divide the procedure of this operator in two phases, the removal and
insertion phases. In the first phase, two consecutive customers, namely customers
m and m + 1 are removed from a particular route 7. The route cost before and
after the removal is recorded and from there we can find the removal cost of this

move. The following shows the formula of this move.
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FIGURE 4.9: The average percent deviation of the load-based (1,0) relocate inter-
route against the classical (1,0) relocate inter-route; (a) LBR, (b) LBC, (c¢) LWR,
and (d) LWC

We refer to (4.3) as the initial cost of route . After removing customers m and
m + 1 from route ¢, customers left in route ¢ are reordered and the new distance
cost of the route is expressed. The number of customers in the route is revised to

be two less than before.

Cali) = d(Rz’(O) i(1)) + d(Ri(1), Ri(2)) + - - + d(Ri(m — 1), Ry(m + 2))
+d(Ri(nc(R;) — 2), Ri(0) (4.19)
= d( i(0), Bi(1)) + d(Ri(1), Ri(2)) + - - + d(Ri(nc(R:) — 2), R;(0))

nce(R;)—2ne(R;)—

= 2 2 AR, R)

b=a+1

Hence, we subtract the new cost from the initial cost to obtain the removal cost

of this move and this can be simplified as follows:

8 (i) = Cq(i) — Cy(0)
= d(Ri(m — 1), R;(m)) + d(R;(m), R;(m + 1)) (4.20)
+d(R;(m+ 1), Ri(m +2)) — d(Ri(m — 1), Ri(m + 2))

The next phase is the process of inserting back the removed customers. Similarly
as what we did in the previous operators, the customers are to be inserted in
the same route (intra-route) or in another route (inter-route). Although the two

cases can be combined together, we chose to perform them separately for better
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CHAPTER 4. Incorporation of a load factor in basic local search operators

understanding their individual effect.

(ii) The intra-route (2,0)

A temporary route is created where (R, = RY) to insert the removed customers
m and m + 1 back in the same route 7. The inserting point is next to the &

customer in the new temporary route.

Ci(i) = d(R} (0), R (1)) + d(R{ (1), R} (2)) + - - - + d(R] (k), Rs(m))
+d(Ri(m), Ri(m + 1)) + d(R;(m + 1), RF (k + 1)) +
+d(R{ (ne(R;) — 2), R (0))
= d(R’-’(O) R’-’( )+ d(R{(1), B{(2)) + - - + d(R{ (nc(Ry)), k] (0))
Ri) ne(R;

S R, R0

a=0 b=a+1

The insertion cost 6% . (i) can be calculated as

8t (1) = C(i) — Cy (i)
= d(RT (k), Ry(m)) + d(R;(m), Ri(m + 1))
+d(Ri(m + 1), R (k+ 1)) — d(RI (k), RT (k + 1))

Thus, the change in cost for the classical intra-route (2,0) operator is formulated

as below.

A (1) = 8 (i) — 6%, (0)
=d(R;(m — 1), Ri(m)) + d(R;(m + 1), Riy(m + 2))
— d(Ri(m — 1), Ri(m + 2)) — d(R] (k), Ri(m))
—d(Ry(m + 1), RT (k 4+ 1)) + d(RF (k), RT (k + 1))

(4.21)

Effect of the load factor

Refer to (4.8) for initial fuel consumption cost for route i. After removing cus-
tomers m and m + 1, the fuel consumption cost for route i is revised as written in

the following lines.

Ci(i) = E(R;(0), Ri(1)) + E(R:(1), Ri(2)) + - - - + E(Ri(m — 1), Ri(m + 2))
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-+ E(Ri(ne(Ri) = 2), Ri(0)) (4.22)
—EWK,EU»+EWK)E@»+~+EWWM&%4%E®D
ne(R;)—2ne(R;)—1

= E(R;(a), Ri(b))

a=0 b=a+1

The removal cost 6"/, (i) for the load-based intra-route (2,0) relocate can be found

as follows.

o7 (i) = CY(i) — C}(3)
= agd(Ri(m — 1), Ri(m)) + d(R;(m), Ri(m + 1))
+d(Ri(m+ 1), Ri(m + 2)) — d(R;(m — 1), Riy(m + 2))]

T u[(g(Rim)) + q(Ri(m 3@

L(R(m — 1), R(m)) - d(Ry(m — 1), Ri(m))
L(R(m). R(m + 1)) - (d(R:(m), Rim + 1))
Ri(m

L(Ri(m +1), Ri(m +2)) - (d(Ri(m + 1), Ri(m + 2))
— d(Ri(m — 1), Ri(m + 2)))]

m—1

S d(Ri(a), Ri(b))  (4.23)

(2

(2

A temporary route is created (R, = RT) to insert the removed customers m
and m + 1 back in the same route i. The inserting point is next to the k"
customer in the new temporary route. The following set of equations shows the

fuel consumption cost for the new route after the insertion.

CH(i) = E(R- (0), RY (1)) + E(R{ (1), R (2)) + - + E(R] (k), Ri(m))

E(R;(m), Ri(m 4+ 1)) + E(R;(m + 1), RF (k + 1)) +
E(R] (nc(R;) — 2), R} (0))
= E(R"<0) R{(1)) + E(R{(1), R (2)) + - - - + E(R](nc(R;)), R} (0))
ne(Ry) i)+1
2% Z E(R](a), R (b))

The insertion cost for this procedure, in terms of fuel consumption, can be found

when we subtract the C}(7) from the C(i). After mathematical manipulations,
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this is simplified as follows:

0 (i) = C3(i) — C}(3)
= aold(R] (k), Ri(m)) + d(Ri(m), Ri(m + 1))
+d(R;(m +1),RF(k+1)) — d(RT(k) RI(k+1))]
+ o [(q(Ri(m)) + q(Ri(m + 1)) Z Z d(RY(a), R (b))  (4.24)

+ (L(R] (k), R (k +1)) + q(Ri(m)) + q(Ri(m + 1))
-d(R (k), Ri(m))
(R} (k), R (k + 1)) + q(Ri(m +1))) - d(R;(m), Ri(m + 1))
+ L(RT(k), RF(k + 1)) - (d(R;(m + 1), R (k + 1))
— d(R{ (k), R} (k +1)))]

Therefore, the change in cost for the load-based intra-route (2,0) operator which

is denoted as AJ; +(7) can be formulated as follows.

A];chr (1) = 5T7{L+ (i) — 5i]{m+ (1)
= old(Ri(m — 1), Ri(m)) + d(R;(m + 1), R;(m + 2))
— d(Ri(m — 1), Ri(m + 2)) — d(R; (), Ri(m))
— d(Ri(m +1), R} (k+ 1)) + d(R] (k), R] (k +1))]

FallatROm) + a(Rim 1)) - (X S d(Afa), A (0)

~ S S d(RT(c), BT (d))) (4.25)

c=0 d=c+1
+ L(Ri(m — 1), Ri(m)) - d(Ri(m — 1), Ri(m))
+ L(R;(m+ 1), Ri(m +2)) - (d(R;(m), Ri(m + 1))
+d(Ri(m + 1), Ri(m +2)) — d(R;(m — 1), Ri(m + 2)))
— (L(R] (k), Rf (k + 1)) + q(Ri(m)) + q(Ri(m + 1)))
Cd(R; (k), Ry(m))
— L(R] (k), R} (k + 1)) - (d(Ri(m), Ry(m + 1))
+d(Ri(m + 1), R (k + 1)) — d(R] (k), R} (k +1)))]
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Illustrative example

To show more clearly how the intra-route (2,0) operator works, we consider an ex-
ample of eight customers which are assigned to a route (0, A, B,C, D, E, F,G, H,0)
as in Figure 4.10. This route has a total length C,; of 104.87 units and would
consume the amount of fuel C, as 18.95 units. The idea is to move a pair of
consecutive customers to another location on the same route. In this example, a

chain of customers D and E is relocated next to customer G after performing the

operator.
D[8] ® i[D] Customer { with demand D
s cri8 D8]
A el - Customer X-y coordinates

‘\, E[5] 0 6  _15
A -3 -12
F[20] .\« B o e

G171 ! 123 c| |-12 3

B[15] D|=] 9 3

E 18 0

F 0 0

0 0 G 6 -3
H 15 -6

FIGURE 4.10: An example of (2,0) intra-route move

Both the classical and the load-based operators yield a new route (0, H, £, D, G,
F,C, B, A,0) with Cy = 82.17 and C, = 14.55. This (2,0) move looks attractive
where it returns a gain of 22.7 in length and 4.4 in fuel consumption. Note that,
the evaluation of the reverse route gives the other direction of the route as the

best one since the original direction has a higher fuel consumption of 14.68 units.

(ii) The inter-route (2,0)

For this operator, we consider the route for insertion including the additional
empty route. Refer to (4.13) for the initial cost of route j. The new distance

route cost C}(j) is given as

Cy(5) = d(R;(0), R;(1)) + d(R;(1), R;(2)) + - - - + d(R;(1), Rs(m))
+d(Ri(m),Ri(m+ 1))+ d(Ri(m+1),R;(l+1))+... (4.26)
+ d(R;(nc(R;) + 2), R;(0))
= d(R’-(O) R’,(l)) + d(R/.(l), R;(Q)) ot d(R;(nc(Rj) + 2), R;(O))

ne(Rj)+2 ne(R;)+3

— S 3 d(R\(a), R,(0))

a=0 b=a+1
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The insertion cost can then be found by

8t (7) = Ca(4) = C3(4)
= d(R;(1), Ri(m)) + d(R;(m), Ri(m + 1)) (4.27)
+d(Ri(m+1),R;(I1+1)) —d(R;(I), Rj(I + 1))

The change in cost for intra-route (2,0) A4 . (ij) can then be obtained by calcu-

lating the difference between the removal (see (4.20)) and the insertion cost.

Al (i) = 01 (i) = 0 ()
= d(Ri(m — 1), R;(m)) + d(Ri(m + 1), Ri(m + 2)) (4.28)
— d(Ri(m — 1), Ri(m + 2)) — d(R; (1), Ri(m))
— d(Ri(m +1), B;(1+ 1)) + d(R; (1), B; (I +1))

Effect of the load factor

The removal process in route i refers to (4.8), (4.22) and (4.23). The initial fuel
consumption cost for route j is given as in (4.16). The new route cost in terms of

fuel consumption after the insertion of customers m and m + 1 is given below.

CHi) = E(R,(0), By(1)) + B(R; (1), Ry(2))
E(R-( ), Ri(m + 1)) + E(R;(

+ oo B(Ry(ne(Ry) +2), By (0)
:Em%>ﬁm»+MH%>y®

nc(R;)+2 ne(Rj)+3

- Z S E(R!(a), R!(b))

b=a+1

The insertion cost is derived as follows:

87 (5) = C3(j) — CY)
= ap[d(R; (1), Ri(m)) + d(R;(m), Ri(m + 1))
+d(Ri(m +1),R;(1 +1)) — d(Rj(l) Rz(l +1))]
+ an[(q(Ri(m)) + q(Ri(m injd R;(b))  (4.30)

a=0b=a-+1

+ (LR, (1), Bi(L+ 1)) + q(Ri(m)) + g(Ri(m + 1))
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~d(R;(1), Ri(m))
+ (LR (1), Bj (1 +1)) + q(Ri(m + 1)) - d(R;(m), Bi(m + 1))
+ L(R;(1), R;(1 + 1)) - (d(Ri(m + 1), R;(1 + 1))
— d(B; (1), R;(1 +1)))]

Thus, we can find the change in cost for the load-based inter-route (2,0) operator

Aj;m+ (¢j) in the following formulation.

A (i) = 6"
= [d

i) =o' ()

Ri(m — 1), R;(m)) + d(R;(m + 1), R;(m + 2))
— d(Ri(m — 1), Ri(m + 2)) — d(R;(l), Ri(m))

— d(Ri(m + 1), R;(l+ 1)) + d(R;(1), R;(I + 1))]

m—2 m—1

+an[(q(Ri(m)) + q(Ri(m + 1)) - (3 d(Ri(a), Ri(D))

+(
(

a=0 b=a+1
-3 B AR, Ry(d)
+ L(R;(m — 1), R;(m)) - d(R;(m — 1), R;(m)) (4.31)

(R
+ L(R;(m+ 1), Ri(m +2)) - (d(R;(m), Ri(m + 1))
+d(Ri(m+ 1), Ri(m+2)) — d(R;(m — 1), Ri(m + 2)))
— (L(R;(1), B;(1 + 1)) + q(Ri(m)) + q(Ri(m + 1))
- d(R;(1), Ri(m))
— L(R;(1), Rj(1 + 1)) - (d(Ri(m), Ri(m + 1))
+d(Ri(m+1),R;(1+1)) —d(R;(I), R;(l + 1)))]

Illustrative example

Here we show an inter-route (2,0) move in an example made up of twelve customers
which are distributed in two routes R;(0,1,2,3,4,5,6,7,8,0) and R»(0,9, 10, 11,12,
0). This is illustrated in Figure 4.11. The length of R; and R, are 29.28 and 19.99
units, respectively while the fuel consumption are 5.11 and 3.26 units respectively
for Ry and Ry. The search will try to move two consecutive customers from one
route to another. In this example, a link of customer 1 and 2 from R; is chosen
to be relocated in Ry next to customer 9 as this move is considered as the best
with the reduction of 2.25 in length and 0.47 in fuel consumption. The new up-
dated routes are R}(0,3,4,5,6,7,8,0) and R5(0,9,1,2,10,11,12,0) which yielded
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a length of 22.67 and fuel consumption of 3.81 for R} and a length of 24.35 and

fuel consumption of 4.10 for R).

Customer X-y coordinates

6[4] 4[12] 6[4] 4[12]
5[7] 5[7

2[14]

3[15]
1[16] *~.10[12]

RN A WNEFEO

10
12[10] 11[6] 12[10] 11[6] 11

]

[
NoONW L L LSk wo
(I
NP PUO R TWE

FIGURE 4.11: An example of (2,0) inter-route move

Both the classical and the load-based (2,0) operators gave the same solution con-
figuration. If there are more routes involve in the problem, the configuration may
or may not be the same and the fact that we apply the reverse route evaluation
on both types of operators increase the chance of the classical operator solution

to be as much similar to the load-based ones.

Analysis and computational results

In Table 4.8 we exhibited the average percent deviation of the load-based (2,0)
relocate compared with the best and the worst-case of the classical (2,0) relocate
(from the regular savings). The load-based (2,0) operator is performed on two
initial solutions from the regular and the combined savings. The analysis is imple-
mented on five values of a using the same 46 well-known VRP instances following
a similar experiment as with the previous operators. Positive value of deviation
percentage means the newly developed load-based operators perform better than

the classical ones.

The observation when using this operator is quite similar to the one of (1,0)
operator. It can be noted that the percent deviation of the load-based intra-route
(2,0) from the combined savings is generally higher than the solution from the
regular savings. This is also true for the inter-route case. However, this claim is
invalid for the solution from medium data set as the solution using the operator
from the regular savings seems to perform better than the combined savings.
Additionally, the same percentage can be seen when o = 1 for intra-route and

inter-route cases. A further illustration of this analysis is shown in Figures 4.12
and 4.13.
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TABLE 4.8: Average percent deviation (in %) of the load-based (2,0) relocate against
the classical (2,0) relocate

o Data set Intra-route Inter-route

LBR LWR LBC LWC LBR LWR LBC LWC

0.6 Small -0.02 1.12 220 331 -0.76 051 055 1.81
Medium  0.05 0.56 -0.64 -0.13 -0.05 0.44 -0.53 -0.03
Large 0.00 071 082 152 0.00 070 1.15 184

0.7 Small -0.02 081 238 319 -0.75 0.18 0.69 1.61
Medium  0.05 042 -0.07 0.30 -0.07 030 -0.16 0.20
Large 0.00 052 099 150 -0.01 0,51 1.16 1.67

0.8 Small -0.03 052 140 194 -0.74 -0.14 0.63 1.22
Medium  0.05 0.29 -0.18 0.06 -0.08 0.16 -0.24 0.00
Large 0.00 034 070 103 -0.02 032 068 1.01

0.9 Small -0.04 023 1.02 129 -0.73 -044 1.06 1.35
Medium  0.05 0.17 -0.45 -0.33 -0.09 0.03 -0.52 -0.40
Large 0.00 016 0.70 0.87 -0.02 0.14 0.66 0.83

1.0 Small -0.04 -0.04 -0.04 -0.04 -0.73 -0.73 -0.73 -0.73
Medium  0.05 0.05 0.05 0.05 -0.10 -0.10 -0.10 -0.10
Large 0.00 0.00 0.00 0.00 -0.03 -0.03 -0.03 -0.03

We also provide a summary result of LBC for intra-route (2,0) in Table 4.9. The
average percent deviation is found to be the highest when o = 0.7 (2.38%) while
the lowest at -0.64% when o = 0.6. It can also be highlighted the extreme fre-
quencies when there are 11 out of 14 instances or about 79% of the instances in
small data set returned a positive percent deviation while 65% of the instances in
medium data set returned a negative percentage. The best percent deviation is
recorded at 8.70% and the worst one at -6.34%.

Furthermore, a summary table of LBC for inter-route (2,0) can be found in Table
4.10. When a = 0.6, it can be seen that the small data set produced the highest
count of instances with positive percent deviation (12 out of 14 or about 86% of
the instances). With the same value of «, the highest count of instances with
negative percent deviation is found in the medium data set (13 out of 20 or 65%
of the instances). There are a few observations that can be highlighted when
a = 0.7. Firstly, the worst percent deviation is recorded at -18.88% in small data
set. Secondly, the highest average percent deviation of 1.16% is found in the large
data set. In addition, the best percent deviation is obtained in the small data set
at 7.08%.

Overall we can say that almost all of the average percent deviation for small and
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TABLE 4.9: Summary table for LBC case of intra-route (2,0) relocate

Data set o
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) 2.20 2.38 140 1.02 -0.04
(14 instances) #best 11 11 9 7 1
#worst 3 3 4 4 3
Best (%) 870 825 829 838 0.18
Worst(%)  -2.19 -1.54 -1.54 -3.77 -0.66
Medium AvgDev(%) -0.64 -0.07 -0.18 -0.45 0.00
(20 instances) #best 7 10 9 10 5
#worst 13 10 11 10 2
Best (%) 3.16 280 344 316 0.34
Worst (%) -6.34 -3.48 -3.51 -446 -0.11
Large AvgDev(%) 0.82 0.99 0.70 0.70 0.00
(12 instances) #best 8 8 7 9 2
#worst 4 4 ) 3 3
Best (%) 322 3.08 324 430 0.03

Worst(%)  -2.52 -1.63 -2.73 -1.69 -0.05

TABLE 4.10: Summary table for LBC case of inter-route (2,0) relocate

Data set e}
0.6 0.7 0.8 0.9 1.0
Small AvgDev (%) 0.55 0.69 0.63 1.06 -0.73
(14 instances) #best 12 11 9 8 2
#worst 2 3 4 3 3
Best(%) 472 519 480 7.08 0.80
Worst(%)  -18.72 -18.88 -8.42 -4.34 -9.46
Medium AvgDev(%) -0.53  -0.16 -0.24 -0.52 -0.10
(20 instances) #best 7 9 8 10 5
#worst 13 11 12 10 6
Best(%) 334 202 250 163 028
Worst(%)  -6.35  -3.50 -3.20 -4.53 -1.64
Large AvgDev(%) 1.15 1.16 0.68 0.66 -0.03
(12 instances) #best 9 8 8 8 4
#worst 3 4 4 4 5
Best(%) 431 394 319 407 041

Worst(%) ~ -081  -0.59 -4.10 -1.61 -0.90
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0.06% a 3.00% a
0.08%
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00% 1.00%
P Medium Large
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1.00% —
0.00%
- 0.00%
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-0.50% -1.00%
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FIGURE 4.12: The average percent deviation of the load-based (2,0) relocate intra-
route against the classical (2,0) relocate intra-route; (a) LBR, (b) LBC, (c) LWR,
and (d) LWC

large data sets is positive, indicating an improvement of using the load-based (2,0).

This is unlikely true when tested on the medium data set.
CPU times

In terms of computing time, we display the result in Table 4.11 where the average
values for small, medium and large data sets as well as for the overall data sets are
produced. The average computation time in large data set is noticeably higher
than the other two sets. This may indicate the search is more complex when

performing this operator in the large data set.

TABLE 4.11: Average computational time for (2,0) relocate (seconds)

Data set Intra-route Inter-route

CR(2,0) LR(2,0) LC(2,0) CR(2,0) LR(2,0) LC(2,0)
Small 0.000 0.000 0.000 0.000 0.000 0.001
Medium 0.002 0.003 0.004 0.004 0.008 0.007
Large 0.012 0.052 0.045 0.412 0.565 0.625
Overall 0.004 0.015 0.013 0.109 0.151 0.166

4.3 Summary

In this chapter, we presented three commonly used local search operators, which

are 2-opt, (1,0) relocate and (2,0) relocate. The 2-opt operator is performed on
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FIGURE 4.13: The average percent deviation of the load-based (2,0) relocate inter-
route against the classical (2,0) relocate inter-route; (a) LBR, (b) LBC, (c¢) LWR,
and (d) LWC

intra-route while the other two are performed on both intra-route and inter-route.
We introduced the load factor into the formulation and showed it mathematically
for each operator. An illustrative example of the move is provided for each oper-
ator. The comparative analysis of the load-based operators against the classical
operators is tested on the well-known 46 VRP test problems. In addition, we
highlighted the differences of the brute-force and the formula-based computation
to show the importance of coming up with a new formulae embedded with the load
factor. In the next chapter, three other local search operators which we consider

to be advanced due to their complexity will be analysed.
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Chapter 5

Incorporation of load factor in

advanced local search operators

5.1 Introduction

In this chapter, we put forward three more local search operators namely, (1,1),
(2,1) and (2,2) interchanges. These advanced operators are considered to be rel-
atively more complicated to compute than those discussed in chapter 4. These
lead to spend more time to complete the search. These operators are adapted
with the load factor and performed for both intra-route and inter-route cases. We
present their formulations mathematically and show an illustrative example for
each case. This is followed by an extensive computational test experiment which

is undertaken using 46 well-known VRP instances.

5.2 Design of the new operators

One more type of local search operators namely (u,1) interchange is analysed
in this chapter. We examine the case of where p and 1 values are 1 and 2.
We consider two customers consecutively when p or (and) ¢ are 2. We have

investigated three variants of the (u, ) interchange operator. These include:

h customer from route i

(a) Swap or direct exchange: This is the case when m/!
and n'"* customer from route j are removed, and their exact positions are

exchanged. In other words, the position of customer m in route ¢ is replaced
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with the position of customer n from route j and the position of customer

n in route j is then replaced with the one of customer m from route 7.

(b) Best exchange: After customer m and n are removed from route ¢ and j,
respectively, customer m is allowed to be placed anywhere in route 5 and
the same for customer n in route 7. Here, the customer is placed in the
best position so that the maximum cost saving is found. The swap variant
that is explained in (a) is the special case where the insertion points refer to

k=m —1and [ =n — 1, respectively.

(c¢) Perturb case: This variant is extended when a customer m is removed from
route 4, and then inserted in route j. Afterward, route ¢ will receive a cus-
tomer n, which can be from route j or another route, say route k. Therefore,
instead of two routes, this procedure could involve three routes when cus-
tomer n is taken from route k£ to be inserted in route i. This was initially

given by Salhi and Rand (1987) and it is known as perturb.

In this chapter, each operator is implemented and evaluated separately. This is
performed within the route and among the routes. For the procedure within the
route or intra-route case, we thought that the swap or direct exchange technique
given in (a) is the best way to represent the operator as the other variants are
similar. For example, the intra-route of (1,1) interchange operator using the best
exchange move (b) is similar to the intra-route of (2,0) relocate operator whether
it involves two customers in a chain or individually. On the other hand, we follow
the best exchange technique as in (b) for the procedure amongst the routes or also
known as an inter-route case where the swap method is also included. It may also
be interesting to examine the extended version ‘perturb’ though in this research

only the first two variants are implemented.

5.3 The (1,1) interchange operator

The (1,1) operator is basically meant to carry out the process of removing a
customer from one route, say route 7, which will then receive a customer whether
from the same route ¢ or any other route. Now, the removed customer from route
1 needs to be inserted either back in route ¢ but in the different position or in the

best position in any other route.
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5.3.1 The intra-route (1,1)

Swap or direct exchange version is considered for the execution of this operator.
The classical version in carrying out the (1,1) move within the route is based on
the distance measure for the particular route. Consider the position of customer
m in route 7 is exchanged with customer n and the cost of the route before and

after the exchange process are expressed as follows:

The initial cost of route ¢ where customers m and n are, is

Cq(i) = d(R;(0), Ri(1)) + d(R(1), Ri(2)) + - - - + d(Rs(m — 1), Ri(m))
+d(Ri(m), Ri(m + 1)) + -+ + d(Ri(n — 1), Ri(n))
+ d(R;(n), Ri(n +1)) 4 - - - + d(R;(nc(Ry)), Ri(0)) (5.1)
ne(R;) ne(R;)+1
= > Y d(Ri(a),Ri(b))

a=0 b=a+1

Then, the new route cost after exchanging m and n is rewritten as C}(i).

Cq(i) = d(Ri(0), Ri(1)) + d(Ri(1), Ri(2)) + -+ + d(Ri(m — 1), Ri(n))
) R

+d(Ri(n), Bi(m +1)) + -+ + d(Ri(n — 1), Ry(m))
+d(Ri(m), Ri(n + 1)) + -+ - + d(Ri(nc(Ry)), Bi(0))
ne(R;) ne(R;)+1
=YY da, R

Thus, we can find the difference of the route cost which will produce the change
in cost when applying the (1,1) operator within the route is found. Let A4 (i)
be the change in cost for the classical intra-route (1,1) operator. This is expressed

as follows:

A9, (0) = Ch(i) = Cy )
= d(R;(m — 1), Ri(m)) + d(R;(m), R;(m + 1))
Ri(n — 1), Ri(n)) + d(Ri(n), Ri(n + 1)) (5.2)
Ri(m — 1), Ri(n)) — d(Ri(n), Ri(m + 1))
Ri(n — 1), Ri(m)) — d(R;(m), Ri(n + 1))

)

+d(
—d(
—d(
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For the special case if n = m + 1 where customer n is situated next to customer

m, the new route cost after the exchange will be rewritten in the following.

Ci(i) = d(Ri(0), Ry(1)) + d(R;(1), Ri(2)) + - -+ + d(Ri(m — 1), Ri(m + 1))
+d(Ri(m+1),R ( )) + d(Ri(m), Ri(m + 2))

(R:) ne(Ri)+1

_Y Y dR@. B

a=0 b=a+1

This will then result in a reduced formula of A? (i) as

A, (1) = Ca(i) — Cy4)
= d(Ri(m — 1), Ri(m)) + d(Ri(m + 1), Ri(m + 2))
— d(Ry(m — 1), Ry(m + 1)) — d(R;(m), Ry(m + 2))

Effect of the load factor

Instead of calculating the route cost in terms of distance travelled, we incorporate
the load factor in the routing problem by measuring the amount of fuel consumed
by the vehicle when travelling along the particular route. The same idea as the
distance cost is used to determine the cost of the route in terms of fuel consump-

tion.

The old fuel consumption cost of route 7 is given as

C(i) = E(R;(0), Ri(1)) + E(Ri(1), Ry(2)) + E(R;(m — 1), R;(m))
+ E(R;(m),Ri(m+1))+---+ E(R ( — 1), Ri(n))
+E(R-( ), Ri(n + 1)) + -+ + E(Ri(nc(R;)), R:i(0)) (5:3)
nec(R;) i)+1
Z% bZ E(R;(a), Ri(b))

The exchange between customers m and n will then produce the fuel consumption

cost in the following manner.

C}(Z) = E(R;(0), Ri(1)) + E(R;(1), Ri(2)) + -+ + E(Ri(m — 1), Ri(n))
+ E(Ri(n), Ri(m + 1)) + - + E(Ri(n — 1), Ri(m))
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+ E(R;(m),Ri(n+ 1))+ -+ E(R;(nc(R;)), R;(0))
nc(R;) ne(Ry)+1

= Y > E(Rj(a),Ri(b))

a=0 b=a+1

The difference between the previous fuel consumption cost will then give us the
change in cost for the load-based intra-route (1,1) operator. This is given below.
Note that the expression in the bracket that is multiplied with aq is equivalent to
A (i) given in (5.2).

Al (6) = C3(i) = C3(1)
= ag[d(R;(m — 1), Ri(m)) + d(R;(m), Ri(m + 1))
+d(Ri(n — 1), Ri(n)) + d(R;(n), Ri(n+ 1))
—d(R;(m — 1), R;(n)) — d(R;(n), Ri(m + 1))
— d(Ri(n — 1), Ri(m)) — d(Ri(m), Ri(n + 1))]

+ L(R;(n—1),R;(n)) - d(R;(n — 1), R;(n))
— (L(Ri(n), Ri(n + 1)) + q(Ri(m))) - (d(Ri(n — 1), Ri(m))
+ L(Ri(n), Ri(n + 1)) - (d(R;(n), Ri(n + 1))

— d(Ri(m), Ri(n +1)))]

For the case if n = m + 1, the change in cost for the load-based intra-route (1,1),

AJ (i) will reduce to the formula as described below.

AT (1) = aold(Ri(m — 1), Ry(m)) + d(Ri(m + 1), Ry(m + 2))
—d(R;(m — 1), Ri(m + 1)) — d(Ri(m + 1), R;(m + 2))]
+ o [L(Ri(m — 1), Ri(m)) - (d(Ri(m — 1), Ri(m))
—d(R;i(m — 1), Ri(m + 1)))
+ (q(Ri(m + 1)) — q(Ri(m))) - d(R;(m), Ri(m + 1))
+ L(R;(m+1),Ri(m+2)) - (d(R;(m + 1), R;(m + 2))
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— d(Ri(m), Ri(m + 2)))]

Illustrative example

To show the intra-route move of the (1,1) interchange operator, a small example
made up of six customers is displayed in Figure 5.1. Initially, the route is estab-
lished as R(0,1,2,3,4,5,6,0) with a length of 81.10 units and fuel consumption of
14.23 units. The procedure will search a profitable move to swap two customers in
the route. Following the implementation of the classical as well as the load-based
(1,1) intra-route operators, the same final solution R'(0,1,2,5,4,3,6,0) is formed.
This move of swapping the position of customers 3 and 5 results in a reduced total

length and fuel consumption of 73.93 and 13.03 units, respectively.

5[35]

Customer X-y coordinates
20 4
8 8
8 20
16

2[28]  4[15]

16 20
20 28
28 12

Sundhwnr o
I
N
=]

1[30]

FIGURE 5.1: An example of (1,1) intra-route move

5.3.2 The inter-route (1,1)

The (1,1) operator for the procedure among the routes is executed according to
the best exchange variant. The procedure as mentioned before takes place when
two customers are removed, one from route ¢ and the other from route 5 which
are then inserted back in route j and route ¢, respectively. When customer m is
removed from route ¢, the initial and the new cost of the route after the removal
of these two customers are shown as in (4.3) and (4.4). A similar calculation for
the initial and the new route cost in terms of the distance when customer n is

removed from route j are presented below.

—_

Ca(j) = d(R;(0), B;(1)) + d(R;(1), Bj(2)) + - -+ + d(R;(n — 1), B;(n))
+d(R;(n), Rj(n+1)) + -+ + d(R;(nc(R))), R;(0)) (5.4)
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ne(Rj) ne(Rj)+1
2:0 bZ d(R;(a), R;(b))

Ca(4) = d(R;(0), B;(1)) + d(R;(1), R;(2)) + - + d(R;(n — 1), Rj(n + 1))
+ A d(Ry(ne(R;) — 1), R;(0))

nc(Rj)—1nc(Ry)

= > > dR(a) R(D))

a=0 b=a+1

(5.5)

The removal cost of the routes is then calculated by deducting the new cost from

the initial cost. This is shown in the following lines.

0 (i) = C3(i) — Ca(i) + Ca(j) — Ca(y)

= d(Ri(m = 1), Ri(m)) + d(Ry(m), Ry(m + 1))
— d(R;(m — 1), Ry(m + 1)) + d(R;(n — 1), R;(n))
(R;(n), Rj(n +1)) = d(R;(n — 1), R;(n + 1))

(5.6)

Q.

+d

The next part of the procedure is the insertion process where R;(m) is inserted in
R’ after I'" customer and R;(n) is inserted in R} after k" customer. The cost of
the route for both routes ¢ and j when the insertion is carried out can be found as
follows. This is performed in the same way as we calculate the distance cost of the
route. This is achieved by accumulating the travelling distance from the depot to
the first customer and to the next customer in the established order for the route
and lastly back to the depot. For route 4, the new cost with the insertion of R;(n)

is as below.

Cali) = d(R}(0), Ri(1)) + d(R;(1), R{(2)) + -+ - + d(Ri(k), R;(n))
+d(R;(n), Ri(k+1)) + -+ + d(Ri(nc(Ry)), Bi(0))

nc(R;) ne(R;)+1 (57)
=Y Y d(R(a). RI()
a=0 b=a+1

A similar expression for route j when R;(m) is inserted next to customer [ is

presented as follows:

Ca(4) Zd(R}(O%R}(l)Hd(R’(l), 3(2) + -+ d(Rj (1), Ri(m))
+ d(Ri(m), R;(1 4 1)) + - -- + d(R};(nc(Ry)), R;(0))
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ne(Rj) ne(Rj)+1

Z > d(R(a), R}(D))

a=0 b=a+1

The route R” is introduced as the new route after the insertion.

The insertion cost for this procedure in terms of distance is the difference between

C? and C] for both routes i and j. This is shown in the following manner.

5Zgnlm( ) (Z

) — Cali) + C3(j) — Ca(5)
= d(Ri(k), R;(n)) + d(R;(n), Ri(k + 1))

— d(Ri(k), Ri(k + 1)) + d(R}(1), Ri(m))
+d(R;(m), R(1 + 1)) — d(R}(1), Rj(1 + 1))
Subsequently, we can acquire the change in cost when the inter-route (1,1) oper-
ator is applied by subtracting the insertion cost from the removal cost. This is

performed along these lines.

Adknlm(lj) = 57;(2 ( ) 6Zgnlm(l])

= d(Ri(m — 1), Ri(m)) + d(Ri(m), Ri(m + 1))
— d(Ri(m = 1), Ri(m + 1)) + d(R;(n — 1), R;(n))
+d(R;(n), R;(n + 1)) = d(R;(n — 1), Rj(n + 1)) (5.9)
— d(Ri(k), R;(n)) — d(R;(n), By(k +1))
+d(Ri(k), Ri(k + 1)) — d(R;(1), Ri(m))
— d(Ri(m), Ry(1 4 1)) +d(R}(1), R5(1 + 1))

Effect of the load factor

We refer to (4.8) and (4.9) of chapter 4 for the initial and the new cost of fuel
consumption for route 7 after removing customer m. The same manner is applied
to route j to find the initial (C}) and the new fuel consumption cost (C}) once

customer n is removed and this is given below as

C7(7) = E(R;(0), B;(1)) + E(R;(1), Bj(2)) + - -+ + E(R;(n — 1), B;(n))
n), Rj(n+1)) + -+ E(R;(nc(Ry)), R;(0)) (5.10)

= E(R;(a), R; (D))

a=0 b=a+1
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CH) = B(R,(0), R(1)) + B(R,(1), Ry(2)) + ...
+ E(Rj(n—1),Rj(n+ 1)) +---+ E(Rj(nc(R;) — 1), R;(0)) (5.11)
nc(Rj)—1 ne(R;)
= Z: 2 E(R)(a), R}(D))

Next, the reduction of the new cost from the initial cost of both routes ¢ and j
will give us the removal cost of fuel consumption for the (1,1) move among the
routes. This is denoted as 0"/ (ij).

(i) = C3(i) — C1(i) + C3(5) — C}())

= agld(R;(m — 1), Ri(m)) + d(R;(m), Ri(m + 1))
— d(Ri(m — 1), Ri(m + 1)) + d(R;(n — 1), R;(n))
+d(Rj(n),Rj(n+1)) —d(Rj(n — 1), Rj(n + 1))]

+ anq(Ri(m)) d(Ri(a), Ri(b))
a=0 b=a+1
+ L(R;(m — 1), Ri(m)) - d(R;(m — 1), R;(m))
+ L(Ri(m), Ri(m + 1)) - (d(R;(m), Ri(m + 1)) (5.12)
d(Ri(m — 1), Ri(m + 1)))

+a(Ri(n) > > d(Rj(a), R;(b))

+ L(Rj(n — 1), Rj(n)) - d(R;(n — 1), R;(n))
+ L(Rj(n), R;(n+1)) - (d(R;(n), Rj(n+ 1))
—d(Rj(n — 1), Rj(n+1)))]

Another part of the procedure is to exchange the route for customer m and n
and place them in such a way that customer m is inserted next to customer [ in
R} and customer n is inserted next to customer k in R;. After the insertion, the
fuel consumption cost for both routes is revised and they are conveyed as follows.
Hence, the new fuel consumption cost for route ¢ with the insertion of R;(n) is

given by

C7(i) = E(R}(0), Ri(1)) + E(R{(1), Ri(2)) + - + E(Ri(k), R;(n))

+ E(R;(n), Ri(k + 1)) + - - + E(Rj(nc(R;)), Ri(0))
nc(R;) ne(Ry)+1

=3 Y E(R(a), R/®)

a=0 b=a+1

(5.13)
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A similar expression for route j when R;(m) is inserted next to customer [ is shown

as

Ci5) = (R’(0)7R}(1))+E(R§(1) R;(2)) + -+ + E(R;(1), Ri(m))

+ E(Ri(m), Ri(1 + 1)) 4 - - + E(R}(nc(R;)), R;(0))
nc(R;) ne(Rj)+1

z > E(RI(a),R}(D))

a=0 b=a+1

We can now find the cost of insertion for the (1,1) move amongst routes ¢ and j
by reducing the fuel consumption cost before and after the insertion. It is denoted

as 0" (i) and is expressed in the following.

0 um(if) = C3(i) — C}(i) + CF(j) — C}())

agld(R;(k), Rj(n)) + d(R;(n), Ri(k + 1))
— d(Rj(k), Ri(k + 1)) + d(R}(l), R;(m))
d(R;(m

+d(Ri(m), R’»(Hl)) — d(R; (D), Bl +1))]
—|—Oé1 R] Z Z dR/ b))

+ (L(R;(k), Ri(k + 1)) + q(R;(n))) - d(Ri(k), R;(n))  (5.14)
+ L(R;(k), Ri(k +1)) - (d(R;(n), Ri(k + 1))
— d(Rj(k), Ri(k + 1)))

)Y Y d(R(a), B(b))

a=0b=a+1
+ (L(R;(1), Bi(L+ 1)) + q(Ri(m))) - d(R5(1), Ri(m))
+ L(R}(1), R5(I + 1)) - (d(Ri(m), Rj(1+ 1))
— d(R;(1), Rj(l +1)))]

Upon completion of this procedure, we subtract the insertion cost from the removal
cost to obtain the change in cost for the load-based inter-route (1,1) operator,

A’ (i5) which is presented in the subsequent lines.

— d(Ri(m — 1), Ri(m + 1)) + d(R;(n — 1), R;(n))
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1)) = d(R;(1), Rs(m))
1)) + d(R(1), Ri(1 + 1))]

l

~ Y 3 d(R(a), R,()))

+ L(Ri(m — 1), Ry(m)) - d(Ry(m — 1), Ri(m))
+ L(Ri(m), Ry(m + 1)) - (d(Ri(m), R;(m + 1)) (5.15)
— d(Ry(m — 1), Ry(m + 1)))

n—2 n—1

+aq(Ri(n) - (32 > d(Rj(a), R;(b))

a=0 b=a+1

k=1 k&
-2 2 d(Ri(a), Bi(D)))

+ L(Rj(n — 1), Rj(n)) - d(R;(n — 1), R;(n))
+ L(Rj(n), Rj(n + 1)) - (d(R;(n), Rj(n+1))
—d(Rj(n —1), Rj(n+1)))
— (L(Ri(k), Ri(k + 1)) + q(R;(n))) - d(Ri(k), R;(n))
— L(Ri(k), Ri(k + 1)) - (d(R;(n), Ri(k + 1))
— d(Ri(k), Ri(k +1)))
— (L(R(1), Ry(1 + 1)) + q(Ri(m))) - d(R}(1), Ri(m))
— L(R(1), Rj(1 + 1)) - (d(Ri(m), R}(1 + 1))
— d(Rj(1), Ri(1 +1)))]

Illustrative example

Consider an example of ten customers which are assigned to two routes R;(0, 1,2, 3,
4,5,0) and R5(0,6,7,8,9,10,0). This is illustrated in Figure 5.2. These two routes
Ry and R, have a length of 75.52 and 84.17 units and consume 12.64 and 13.88
units of fuel respectively. The search of exchanging a customer between these
two routes resulted in exchanging customer 4 from R; and customer 7 from R,.
This move leads to two new updated routes which are R{(0,5,7,3,2,1,0) and
R,(0,6,4,8,9,10,0). These two routes have a total length of 79.92 and 77.36
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units and consume 13.11 and 12.65 units of fuel, respectively. Additionally, this

move yields a reduction of 2.41 units in length and 0.76 units of fuel.

Similar to the classical (1,1) inter-route operator, the load-based operator pro-
duced the same configuration of the resulted routes. However, it begin the search
with the opposite direction for route 1 where R;(0,5,4,3,2,1,0) and the fuel con-
sumption of 12.27 units.

1[10]  2[20] 1[10]  2[20]

Customer X-J coordinates

0 0 0
(Rl) 3[30] 1 0 18

5[20] 4101 / 7120] e S B \ 7120] é - 198

0 0 A _4[10] 4 18 0
N 5|=|9 3

, \s\ 6 1 _3

(R'2) 7 27 3

8[20] 10[20] 8[20] g ig _—198

10 3 -12

9[10] 9[10]

FIGURE 5.2: An example of (1,1) inter-route move

5.3.3 Analysis and computational results

A similar analysis to the one conducted in the previous chapter is also performed
here for these operators. The performance of the load-based operators is measured
through the comparison of the performance of the classical operators. This is
achieved by the calculation of the percentage deviation as in (3.8). The criterion is
used to see how much the solution of the load-based operators differs from a known
solution of the classical operators using an initial solution from the regular savings.
We compare the load-based operator solution to two cases of the classical operator
solution. These include the best and the worst-case following the reverse route
evaluation as highlighted in section 4.2. The load-based operator is performed on
two sets of the initial solution. One is from the regular savings and the other from

the combined savings. The analysis is summarised using the following measures.
LBR: The load-based operator compared to the best-case of the classical operator.
Both use the initial solution from the reqular savings

LBC: The load-based operator from the combined savings compared to the best-

case of the classical operator from the regular savings
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LWR: The load-based operator compared to the worst-case of the classical oper-

ator. Both use the initial solution from the regular savings

LWC: The load-based operator from the combined savings compared to the worst-

case of the classical operator from the regular savings.

Table 5.1 demonstrates the average percent deviation for the load-based (1,1)
interchange against the best and the worst case of the classical (1,1) interchange
operator. The data showed the result for both intra-route and inter-route cases

using o = (0.6,0.7,0.8,0.9,1.0) in small, medium and large data sets.

It can be observed in the first column (i.e. LBR for intra-route), the average
percent deviation using small, medium and large data sets remained constant for
different values of a. In addition, the average percent deviation in small data set
for all a values is 0%. This may indicate that while using the regular savings
to obtain the initial solutions, the load-based and the best-case of classical (1,1)
intra-route operators produced an identical solution. It can also be seen a negative
percentage for some values of « in the medium data set for intra-route case when
the combined savings is used as their initial solution. An illustration of the analysis

for the intra-route case is shown in Figure 5.3.

TABLE 5.1: Average percent deviation (in %) of the load-based against the classical
(1,1) interchange operator

a Data set Intra-route Inter-route
LBR [WR LBC LWC LBR L[LWR LBC LWC

0.6 Small 0.00 112 216 325 -0.30 -0.34 -0.04 1.04
Medium 0.27 0.78 -0.36 0.16 -0.16 0.41 -0.33 0.25
Large 0.10 079 081 149 -0.16 048 140 2.02

0.7 Small 0.00 082 235 3.15 -030 -0.34 1.14 1.92
Medium 0.27 0.64 0.11 049 -0.17 0.25 0.06 0.48
Large 0.10 060 097 147 -020 027 068 1.14

0.8 Small 0.00 054 128 181 -0.30 -0.34 051 1.02
Medium  0.27 0.51 -0.05 0.20 -0.18 0.09 -0.16 0.11
Large 0.10 043 068 1.01 -0.24 006 044 0.73

0.9 Small 0.00 026 1.02 1.28 -0.31 -0.33 0.35 0.59
Medium  0.27 039 -0.24 -0.12 -0.19 -0.05 -0.54 -0.41
Large 0.10 026 078 094 -0.28 -0.13 0.13 0.28

1.0 Small 0.00 0.00 0.00 0.00 -0.31 -0.33 -0.33 -0.33
Medium 0.27  0.27 0.27 027 -0.20 -0.20 -0.20 -0.20
Large 0.10  0.10 0.10 0.10 -0.31 -0.31 -0.31 -0.31
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0.30% a 2.30% a
0.25% uos 2.00% "0
0.20% 1 w0 1.50% uo.7
0.15% 1
=05 1.00% - mOos
0.10% -
0.05% mos 0.50% | wos
0.00% - i 0.00% - w1
_0.05% Srnall Medim Lary _0.50% Smmall B Mediont Large
(a) (b)
1.50% £.00%
1.00% 3.00% -
2.00% -
0.50% |
1.00% -
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-0.50% -1.00%

FIGURE 5.3: Average percent deviation of the load-based against the classical (1,1)
interchange intra-route operator; (a) LBR, (b) LBC, (c) LWR, and (d) LWC

In terms of the inter-route case, the load-based (1,1) operator from the regular
savings seems to perform worst than the best-case of the classical one. This is
indicated by the negative percentage in LBR column for all values of a.. Looking
at the LBC column, most negative percentages resulted from the medium data
set even though we can observe some improvement in small and large data sets.

Further illustration of the inter-route analysis is shown in Figure 5.4.
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FIGURE 5.4: Average percent deviation of the load-based against the classical (1,1)
interchange inter-route operator; (a) LBR, (b) LBC, (¢) LWR, and (d) LWC

To observe more thoroughly the performance of (1,1) operator by incorporating
the load factor from the beginning, we summarize the result of LBC for both the
intra-route and the inter-route cases which can be found in Tables 5.2 and 5.3.
There are five aspects in the small, medium and large data sets for each value of a.

First, the average percent deviation (AvgDev) followed by the count of positives
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(#best) and negatives (#worst) percent deviation. Next, the highest and the
lowest percent deviation which is denoted as Best(%) and Worst(%).

With regard to the intra-route, the highest average percent deviation can be found
in the small data set when o = 0.7. This corresponds to the highest count of
positive percent deviation in a data set where about 79% of the instances (or 11
out of 14) in the small data set record a positive percent deviation. While at
a = 0.9 we can see the best percent deviation of 8.30% in the same data set. On
the contrary, the worst deviation percentage can be found in the medium data
set at -6.28% when o = 0.6 alongside the lowest average percent deviation which
is recorded at -0.36%. Out of 20, 11 of the instances (or 55%) have a negative

percentage and this is the largest #worst in a data set.

TABLE 5.2: Summary table for LBC case of intra-route (1,1)

Data set o}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%)  2.16 2.35 1.28 1.02 0.00
(14 instances) #best 11 11 9 7 0
#worst 3 3 3 ) 1
Best (%) 796 809 819 8.30 0.00
Worst(%)  -2.00 -1.50 -1.49 -3.22 -0.05
Medium AvgDev(%) -0.36 0.11 -0.05 -0.24 027
(20 instances) #best 9 10 9 10 11
#worst 11 10 11 10 0
Best (%) 3.58 239 257 3.7 090
Worst(%)  -6.28 -3.41 -3.41 -4.25 0.00
Large AvgDev(%) 081 097 068 0.78 0.10
(12 instances) #best 8 7 8 9 6
#worst 4 5 4 2 2
Best (%) 3.90 284 278 403 0.25

Worst(%) ~ -2.15 -1.50 -2.83 -1.57 -0.12

We refer to the summary table for LBC of inter-route (1,1) interchange in Table
5.3. In the small data set, the best and the worst deviation percentages of 9.34%
and -13.46%, respectively are obtained when o = 0.9 and 0.6. When o = 0.8, 10
of 14 or about 71% of the instances have a negative percent deviation and this
is the highest frequency recorded. In the medium data set, we can observe the
lowest average percent deviation at -0.54% when a = 0.9. Finally in the large
data set, it can be noted that the highest average deviation percentage of 1.40%
corresponds to the highest count of positive percent deviation where 11 out of 12

(or about 92%) instances have a positive percentage.
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TABLE 5.3: Summary table for LBC case of inter-route (1,1)

Data set o
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%)  -0.04 1.14 0.51 035 -0.33
(14 instances) #best 5 5 4 6 1
H#worst 9 9 10 7 8
Best(%) 001 912 922 9.34 0.19
Worst(%)  -13.46 -2.38 -234 -2.30 -3.26
Medium AvgDev(%)  -0.33 0.06 -0.16 -0.54 -0.20
(20 instances) #best 10 9 9 9 7
#worst 10 11 11 11 12
Best(%) 2.15  2.01 213 1.42  0.49
Worst (%) -4.85 -3.76 -3.84 -5.06 -3.09
Large AvgDev(%) 1.40 0.68 044 0.13 -0.31
(12 instances) #best 11 9 8 5 3
#worst 1 3 4 7 9
Best (%) 285 258 246 401 0.75
Worst(%) ~ -1.74 -242 -350 -2.33 -1.38

CPU times

The computational time recorded when using the local search operators in this

chapter is similar to the one in the previous chapter. We record the time once the

initial solution from the savings method is formed before starting the refinement

procedure using the operator. The end time is logged when the final solution is

established. The average computational time for the small, medium and large data

sets are presented in Table 5.4. The average computational time inclusive for all

46 instances is also given in the table. For simplicity, the operator is rewritten as
OI(p) which represents the classical (O=C) and the load-based (O=L) operator p

from the initial solution using the regular (I=R) and the combined (I=C) savings.

TABLE 5.4: Average computational time for (1,1) (seconds)

Data set Intra-route Inter-route

CR(1,1) LR(1,1) LC(1,1) CR(1,1) LR(1,1) LC(1,1)
Small 0.000 0.000 0.000 0.050 0.298 0.559
Medium 0.002 0.003 0.004 13.654  152.152  145.853
Large 0.013 0.057 0.082 2308.223 2358.126 2636.024
Overall 0.004 0.016 0.023 608.097 681.407 751.243

It can be shown the overall average computational time for intra-route case records
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4, 16 and 23 milliseconds respectively for CR(1,1), LR(1,1) and LC(1,1). For
inter-route case, the overall average computing time for CR(1,1), LR(1,1) and
LC(1,1) is logged at 608, 681 and 751 seconds, respectively. It can be noted that
the average CPU times for inter-route procedure in the large data set seems to
shoot up drastically. This may indicate a more difficult search for the large data
set compared to the other two. This also show that the new formula are more

complex than their counterparts that do not include the load factor.

5.4 The (2,1) interchange operator

For this operator, two consecutive customers from one route is exchanged with a
customer from another route. The insertion position after the exchange could be
the same as before or in a new location which will yield the least cost. In this
study, we perform the move based on the swap variant for the intra-route and the
best exchange variant for the inter-route case. The formulations involved in the

procedure is described below.

5.4.1 The intra-route (2,1)

The initial route cost for where customers m, m + 1 and n are in route 7 can be
referred to (5.1). Then, the position of customers m and m + 1 is exchanged with
the position of customer n. The cost of the route is revised and this is presented

as follows.

Ci(i) = d(R;(0), Ri(1)) + d(R;(1), Ri(2)) + - - - + d(R;(m — 1), Ri(n))
+ d(R;(n), Ri(m+2)) + -+ d(Ri(n — 1), R;(m))
+d(Ri(m), Ri(m + 1)) + d(R;(m), Ri(n + 1))

+ -+ d(R;(nc(R;)), R:(0))
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The change in cost for the classical intra-route (2,1) operator, which is denoted as

Ad

o +n(1), is expressed as follows:

A% (1) = C4i) — Cai)
= d(Ri(m — 1), Ri(m)) + d(Ri(m + 1), Ri(m + 2))
d(

+d(Ri(n — 1), Ri(n)) + d(Ri(n), Ri(n + 1)) (5.16)
— d(Ri(m = 1), Ri(n)) — d(Ri(n), Ri(m + 2))
— d(Ri(n = 1), Ri(m)) — d(R;(m + 1), Ry(n + 1))

There are two conditions related to where m and n are situated which could reduce

the change in cost A? . (7).

(a) Case 1: n > m, if n = m + 2 then

A%+, (i) = d(Ri(m — 1), Ri(m)) + d(Ry(m + 1), Ri(m + 2))
+d(Ri(m+2), Ri(m +3)) — d(R;(m — 1), Ri(m + 2))
—d(R;(m+2),R;(m)) —d(R;(m+ 1), R;(m + 3))

(b) Case 2: n < m, if n =m — 1 then

A? L (i) = d(Ri(m — 2), Ri(m — 1)) + d(Ri(m — 1), Ri(m)
+ d(R;(m + 1), Ri(m + 2)) — d(R;(m — 2), R;(m))
—d(Ri(m+1),R;(m —1)) —d(R;(m — 1), R;(m + 2))

<
—~

Effect of the load factor

The route cost is expressed in terms of fuel consumption rather than in distance
only. The initial fuel consumption cost for route i can be referred to (5.3). The
revised fuel consumption cost of route ¢ after removing customers m, m + 1 and

n is given as follows:

Ch(i) = ( i(0), Ri(1)) + E(Ri(1), Ri(2)) + - -+ + E(Ri(m — 1), Ri(n))
E(Ri(n), Ri(m +2)) + - + E(Ri(n — 1), R;(m))
E(R;(m), Ri(m + 1)) + E(R;(m), R;(n + 1))
+ -+ E(Ri(nc(R;)), Ri(0))

(2
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ne(R;) ne(R;)+1

= > > E(Ri(a), R()))

a=0 b=a+1

We subtract the revised cost (C}(i)) from the initial cost (5.3) to acquire the
change in cost for the load-based intra-route (2,1) operator (A’ . (i)). The for-

mulation is then simplified in the following way.

A (i) = C3(i) = O} (i)
— - [AL ()] +ar - [T ()]

where [ J:n +, (@) is the load-based component in the formula which is expressed in

two conditions as follows:

(a) Case 1: n > m,

I (i) = L(Ri(m — 1), Ri(m)) - (d(R;(m — 1), Ri(m))
— d(Ri(m — 1), Ri(n)))
+ L(R;(m+1), Ri(m +2)) - (d
+d(R;(m+ 1), Ri(m+ 2)))
— (L(Ri(m — 1), Ri(m)) — q(Ri(n))) - d(Ri(n), Ri(m + 2)))
+ (q(RBi(n)) — q(Ri(m)) — q(Ri(m +1)))

S S d(Ri(a), R

a=m+2 b=a+1
+ L(R;(n—1), Ri(n)
— (L(Ri(n), Ri(n + 1

(Ri(m), Ri(m + 1))

) - d(Ri(n — 1), Ri(n))

) + q(Ri(m)) + q(Ri(m + 1))
- (d(Ri(n — 1), Ri(m))

+ L(Ri(n), Ri(n + 1)) - (d(Ri(n), Bi(n + 1))
—d(R;(m), Ri(m + 1)) —d(R;(m + 1), Ri(n+ 1)))

Ifn=m+2, I/ (i) will be reduced to

I (D) = L(Ri(m — 1), Ry(m)) - (d(R;(m — 1), Ri(m))
—d(R;(m — 1), Ri(m + 2)))
+ L(R;(m+ 1), Ri(m+2)) - (d(R;(m), Riy(m + 1))
+d(R;(m + 1), R;(m + 2)))
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— (L(Ri(m +2), Ri(m + 3)) + q(Ri(m)) + q(Ri(m + 1))
- (d(Ri(m +2), Ri(m))

+ L(Ri(m +2), Ri(m + 3)) - (d(R;(m + 2), R;(m + 3))
— d(Ri(m), Ri(m + 1)) — d(R;(m + 1), Ri(m + 3)))

(b) Case 2: n < m,

., (6) = L(Ri(n — 1), Ry(n)) - (d(
—d(Ri(n — 1), Ry(m))
+ L(R;(n), Ri(n+ 1)) - d(R;(n), Ri(n + 1))
— (L(Ri(n — 1), Ri(n)) — q(Rs(m)) — q(Ry(m + 1))
S (d(Ry(m), Ri(m + 1)) + d(Ri(m + 1), Ri(n + 1))
(

+ (q(Ri(m)) + q(Ri(m + 1)) — q(Ri(n)))

Ri(n —1), Ri(n))
)

m—2 m—1

) Z Z d(Ri(a), Ri(b))

a=n+1b=a-+1

+ L(Ri(m — 1), Ri(m)) - d(Ri(m — 1), Ri(m))

— (L(Ri(m + 1), Ri(m + 2)) + q(Ri(n))) - d(Ri(m — 1), Ri(n))
+ L(Ri(m + 1), Ri(m + 2)) - (d(Ri(m), Ri(m + 1))

+d(Ri(m + 1), Ri(m +2)) — d(Ri(n), Ri(m + 2)))
Ifn=m~—1, 1 . (i) will be reduced to

I7,4,(i) = L(Ri(m = 2), Ry(m — 1)) - (d(Ri(m — 2), Ry(m — 1))
— d(Ri(m —2), Ri(m)))
+ L(R;(m — 1), Ry(m)) - d(Ri(m — 1), R;(m))
— (L(R;(m +1), Ry(m + 2)
+d(R;(m+ 1), Ri(m —1)))
+ L(Ri(m + 1), Ri(m + 2)) - (d(R;(m), Ri(m + 1))
+d(R;(m + 1), Ri(m + 2)) — d(R;(m — 1), R;(m + 2)))

Illustrative example

Consider an example of a route R(0, 1,2,3,4,5,6,7,8,9,0) comprising of nine cus-
tomers as illustrated in Figure 5.5. This route has a length of 39.66 units and

would consume as much fuel as 6.79 units. By executing the intra-route (2,1)
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interchange move, it seems to be useful to swap a link of customers 3 and 4 with
customer 7. The route would then become R'(0,1,2,7,5,6,3,4,8,9,0) which has
a total length of 37.93 units and uses a fuel consumption of 6.41 units. This in-
terchange manages to reduce the route length by 1.73 units and fuel consumption
by 0.38 units. Both the classical and the load-based (2,1) operators produced the

same solution.

8[4] )
Customer X-y coordinates
0 10 -1
1 8 -3
5[9 9[4 2 5 -2
4[5] [9] [4] 3 o o
af_11 2
5 4 2
6 4 0
3[6] 7 7 -1
8 6 6
9 12 2

1[18] 1[18]

FIGURE 5.5: An example of (2,1) intra-route move

5.4.2 The inter-route (2,1)

For the procedure among the routes, the removal process in route i is referred
o (4.3), (4.19) and (4.20). The cost of route j before and after the removal of
customer n can be referred to (5.4) and (5.5). Thus, we can acquire the total

removal cost (6", (ij)) as follows:

Omen(i) = Cqi) — Ca(i) + C3(5) — Ca (i)
= d(Ri(m — 1), Ri(m)) + d(Ri(m), Bi(m + 1))
d(Ri(m + 1), Ri(m + 2)) — d(Ri(m — 1), Ri(m + 2))
d(R;j(n — 1), R;(n)) + d(R;(n), R;(n + 1))
d(R;j(n — 1), R;(n + 1))

The updated route cost after inserting customer n in route ¢ is already given in
(5.7). The updated route cost after inserting customers m and m + 1 in route j
is also referred to (4.26). Therefore, the insertion cost (6% . (ij)) is obtained as

follows:
i (1) = C3(i) — C(i) + C(5) — Ci(j)
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= d(Ri(k), R;j(n)) + d(R;(n), Ri(k + 1))
d(Ri(k), Ri(k + 1)) + d(R}(1), Ri(m))
d(R;(m), Ri(m + 1)) + d(R;(m + 1), R;(l + 1))
d(R;(1), Rj(1+1))

+

The difference between the removal and the insertion cost will produce the change
in cost for the classical inter-route (2,1) operator which is denoted by A%, . (ij).

The formulation is expressed as

At (15) = 8 (1) — 5‘gnlm+(ij)
= d(Ri(m — 1), Ri(m )) m+ 1), Ri(m + 2))
d(Rj(n — 1), R;(n))

~1),Ri(n+1)  (5.17)

J(H—l))

Effect of the load factor

The initial and the new cost for route ¢ after removing a pair of customers m and
m+ 1 in terms of fuel consumption can be referred to (4.8) and (4.22). Whilst the
initial and the new cost for route j after removing customer n can be referred to
(5.10) and (5.11). The removal cost (5rrﬁ+n(ij)) with regard to fuel consumption

is obtained as follows:

0 (i) = CJ(0) = C(0) + CY(j) — C}(5)
= aold(Ri(m — 1), Ri(m)) + d(Ri(m), Ri(m + 1))
+d(Ri(m + 1), Ry(m +2)) — d(R;(m — 1), Ry(m + 2))
+d(Rj(n = 1), R;(n)) + d(R;(n), B;(n + 1))
( ]

—d(R;(n = 1), Rj(n +1))

+ aif(q(Ri(m)) + q(Ri(m + 1)) - d(Ri(a), Ri(b))
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— d(Ri(m — 1), Ri(m + 2)))

n)-> > d(R;(a), B;(b))

+ L(R;(n — 1), R;j(n)) - d(R;(n — 1), R;(n))
+ L(R;j(n), Rj(n+1)) - (d(R;(n), R;j(n + 1))
—d(R;(n—1), Rj(n+1)))]

Once customers m and m+1 are inserted in route j and customer n in route 7, the
fuel consumption cost for routes i and j are revised based on (5.13) and (4.29).

The insertion cost (& ,{nlm+ (1j)) with regard to fuel consumption is calculated as

follows:

634;%() C}(i) — C}(i) + C}(5) — C}(5)

aold(Ri(k), R;(n)) + d(R;(n), Ri(k + 1))

(k), Ri(k+1)) + d(R;(l), R;(m))

(m), Ri(m + 1)) + d(Ri(m + 1), Rj(I + 1))
Rj(1), R’<Z+ 1))]

(R;(

)Y Y diFa), R)

a=0b=a+1
+ (L(Ri(k), Ri(k + 1)) + q(R;(n))) - d(Ri(k), R;(n))
+ L(Rj(k), Ri(k + 1)) - (d(R;(n), Ri(k + 1))
— d(Ri(k), Ri(k +1)))

—d(R!
+d(R;
—d(

+Oél

-1 l

+(g(Ri(m)) + q(Ri(m +1))) - 3 3 d(Rj(a), Rj(D))

a=0 b=a+1

+ (L(R; (D), Bj(1+ 1)) + q(Ri(m)) + q(Ri(m + 1))
-d(R;(1), Ri(m))

+ (L(R(1), R5(1+ 1)) + q(Ri(m + 1)) - d(R;(m), Ri(m + 1))
+ L(R(1), R5(I + 1)) - (d(Rs(m + 1), R5(I + 1))

)
— d(R;(1), Ry(1 + 1)))]

The change in cost for the load-based inter-route (2,1) operator can be expressed

as follows:
Afknlm+ (ZJ) = 57{1+n< ) — 5zfnlm+< j)
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aold(R z(m 1), Ri(m)) + d(Ri(m + 1), Ri(m + 2))
m —1), Ri(m + 2)) + d(R;(n — 1), R;(n))
Rj(n), Rj(n + 1)) = d(R;(n — 1), Rj(n + 1))
Rj(n)) — d(R;(n), Bi(k +1))
 Ri(k + 1)) — d(Rj(1), Bi(m))
Ri(m+1), R’-(l +1))+ d(R’.(l), R’-

J

-+ 1)

m—1

+ ail(q(Ri(m)) + q(Ri(m + 1)) 2: d(Ri(a), Ri(b))
l

_Y S ARy (o), By(d)

L(Ri(m — 1), Ri(m)) - d(R;(m — 1), Ri(m))

L(R;(m+1),Ri(m+2)) - (d(R;(m), Riy(m + 1))

+d(Ri(m + 1), Ri(m +2)) — d(R;(m — 1), R;(m + 2)))
(5.18)

+ L(R
+L(R

n—2 n—1

Ri(n)) - (32 > d(R;(a), R; (b))

a=0 b=a+1

S S d(R(e), RY()))

+ L(R;(n = 1), R;(n)) - d(R;(n — 1), B;(n))
+ L(R;(n), Rj(n +1)) - (d(R;(n), B;j(n + 1))
—d(Rj(n—1),R;(n+1)))
— (L(Rj(k), Ri(k + 1)) + q(R;(n))) - d(R;(k), R;(n))
— L(R;(k), Ri(k + 1)) - (d(R;(n), Ry(k + 1))
— d(Ri(k), Ri(k +1)))

— (L(R;(1), R5(1 + 1)) + q(Ri(m)) + q(Ri(m + 1))
- d(Rj(1), Ri(m))

= L(R;(D), R(1+ 1)) - (d(Rs(m), Rs(m + 1))
+d(Ri(m+ 1), Ri(1 + 1)) — d(R;(1), R;(l + 1)))]

Illustrative example

Consider an example of a network consisting of nine customers which are initially
assigned to two routes R;(0,1,2,3,4,0) and Ry(0,5,6,7,8,9,0) as depicted in
Figure 5.6. R; and R, have a length of 24.26 and 23.07 units and consume 3.93
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and 3.84 units of fuel, respectively. Interesting outcomes when implementing the

(2,1) inter-route operator are observed.

4[10]
/\\‘\‘ o
3[12~]\“--~\ -

R 1
() 5[5] 7[25]
[ 2[28] .-
®) )
1151y ____Lo[15] 8[16]
4[10]

9[15]

e 613]

3[12]

Customer X-y coordinates

0 0 0

1 -2 —4

2 -3 -1

3 -6 4 (b)

4 -2 6 I:: S

51710 2

6 1 5

7 5 1

8 4 -3

9 0 -4

9[15]

FIGURE 5.6: Sample network to show the move of inter-route (2,1) using (a) the
classical and (b) the load-based operators

The classical (2,1) inter-route operator yields a set of solutions as in Figure 5.6(a).
The best move from the operator is to choose the pair of customers 3 and 4 from
Ry to be exchanged with customer 9 from Ry. The pair of customers 3 and 4 is
inserted next to customer 5 in Ry while customer 9 is inserted in the first position
after the departure from depot in R;. After the reverse route evaluation, two
renewed routes R} (0,2,1,9,0) and R,(0,8,7,6,4,3,5,0) are formed with a length
of 12.32 and 30.74 units and a fuel consumption of 1.99 and 5.09 units, respectively.
This solution yields about 9% improvement in both the total length and the total

amount fuel consumption.

On the other hand, the load-based (2,1) inter-route operator yields a different set
of solutions. This can be illustrated in Figure 5.6(b). The search procedure has
finalised to exchange customer 1 in Ry with a pair of customers 5 and 6 in R,. This
leads to two updated routes which are R7(0,2,3,4,6,5,0) and R5(0,1,9,8,7,0).
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This solution has a total length of 21.79 and 19.82 units together with 3.56 and
3.28 units of fuel consumption for R} and R}, respectively. Moreover, the solution
gains about 12% improvement in both the total length and fuel consumption. Note
that, the reverse route evaluation is conducted before commencing the operator.
Thus, the initial solution for R»(0,9,8,7,6,5,0) was in the opposite route direction

which has a fuel consumption of 3.82 units.

5.4.3 Analysis and computational results

We present the computational results for the (2,1) interchange operator in Table
5.5 for intra-route and inter-route cases. The average percent deviation is calcu-
lated to compare the solution obtained from using the load-based operators with
the best and the worst case of the classical ones. The load-based operator is im-
plemented on two initial solutions namely, the regular and the combined savings.
In case the solution of the load-based operator is worst than the best-case of the
classical one, a comparison with the worst-case is also performed to see the per-
formance of the load-based with respect to this measure. The results could be
reflect the upper and the lower bound when measuring the performance of the

newly developed load-based operator.

For the intra-route case, all data sets seem to have remained constant when the
load-based from the regular savings is compared with the best-case of the classical
operator. The load-based operator from the combined savings performs better
than the classical operator in general, except for the medium data set. Further

illustration is shown in Figure 5.7.

For the inter-route case, it can be seen that the load-based (2,1) operator from
the regular savings perform better than the classical one in the medium data set
only. However, this operator when applied from the combined savings perform
better mostly in the large data set only. This is indicated by the positive value of
the average percent deviation. An illustration for the inter-route analysis of (2,1)

interchange operator is given in Figure 5.8.

We also summarize the result of the load-based (2,1) interchange operator from
the combined savings to examine the effect of the load factor in the formulation
from the beginning. Table 5.6 reviews the results of LBC for the intra-route case.
It can be observed that the small data set records the highest average percent
deviation (2.30%) when o = 0.7 while the lowest (-0.67%) could be found in the
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TABLE 5.5: Average percent deviation (in %) of the load-based (2,1) against the
classical (2,1) interchange operator

o Data set Intra-route Inter-route

LBR LWR LBC LWC LBR LWR LBC LWC

0.6 Small 0.00 113 215 326 -0.10 087 -0.31 0.66
Medium  0.02 0.53 -0.67 -0.16 0.25 0.76 -0.79 -0.28
Large 0.05 073 09 164 -0.17 051 098 1.65

0.7 Small 0.00 083 230 3.11 -0.10 0.61 -0.08 0.63
Medium 0.02 039 -0.14 024 0.23 0.60 -0.53 -0.16
Large 0.05 055 098 148 -0.20 030 042 0091

0.8 Small 0.00 054 132 186 -0.09 037 -0.57 -0.10
Medium  0.02 0.26 -0.31 -0.07 0.21 046 -0.55 -0.31
Large 0.04 037 060 093 -023 0.10 0.01 0.33

0.9 Small 0.00 026 09 1.22 -0.09 0.13 -0.13 0.10
Medium 0.02 0.14 -047 -0.35 0.20 0.32 -1.00 -0.88
Large 0.04 021 059 075 -0.25 -0.10 0.00 0.16

1.0 Small -0.01 -0.01 -0.01 -0.01 -0.09 -0.09 -0.09 -0.09
Medium  0.02 0.02 0.02 0.02 0.18 0.18 0.18 0.18
Large 0.04 004 004 0.04 -028 -0.28 -0.28 -0.28

medium data set when o = 0.6. Out of 14, 11 instances in the small data set
generate a positive percent deviation which accounts for the highest frequency
of #best in each data set. Overall, the highest #best is when a = 0.6 where
63% of all instances produce a positive percent deviation. On the contrary, the
highest number of instances in the data set that has a negative percent deviation
is obtained in the medium data set when av = 0.8 (i.e. 12 out of 20 or 60% of the
instances). The highest #worst (i.e. 21 out of 46 instances) for all instances could
also be found at the same « value. Furthermore, the overall best percent deviation
is acquired at 8.70% in the small data set and the worst percent deviation is at

-6.21% in the medium data set. Both results are observed when o = 0.6.

Table 5.7 reviews the results of LBC for the inter-route case. The average percent
deviation is the highest at 0.98% although this is rather a small value. This
corresponds to the highest count of positive percent deviation where it is produced
by 10 of 12 instances in the large data set when v = 0.6. On the other hand, the
lowest average percent deviation is at -1.00% in the medium data set where 15
of 20 or 75% of the instances have a negative percent deviation when o = 0.9.
Additionally, the highest and the lowest percent deviations across all instances are
found to be 12.25% and -8.79%, respectively.
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TABLE 5.6: Summary table for LBC case of intra-route (2,1)

Data set o}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) 2.15 2.30 1.32 0.96 -0.01
(14 instances) #best 11 11 9 7 0
#worst 3 3 4 4 2
Best (%) 870 825 828 836 0.00
Worst(%)  -2.19 -1.54 -154 -3.92 -0.05
Medium AvgDev(%) -0.67 -0.14 -0.31 -047 0.02
(20 instances) #best 9 10 8 10 4
#worst 11 10 12 10 1
Best (%) 298 1.7 1.7 346 0.16
Worst(%)  -6.21 -3.65 -3.66 -4.60 -0.02
Large AvgDev(%) 096 098 0.60 0.59 0.04
(12 instances) #best 9 7 7 9 3
#worst 3 5 ) 3 1
Best (%) 335 296 294 408 0.37

Worst(%)  -1.96 -1.60 -2.72 -1.66 -0.01

TABLE 5.7: Summary table for LBC case of inter-route (2,1)

Data set e}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) -0.31 -0.08 -0.57 -0.13 -0.09
(14 instances) #best 5 7 6 7 4
#worst 9 7 8 6 8

Best (%) 11.69 11.88 12.07 12.25 10.68
Worst(%)  -8.79 -8.78 -8.78 -8.77 -6.12

Medium AvgDev(%) -0.79 -0.53 -0.55 -1.00 0.18
(20 instances) #best 7 7 8 5 11
#worst 13 13 12 15 9
Best(%) 3.05 303 213 375 291
Worst(%) 522 -420 -3.81 -4.55 -3.37
Large AvgDev(%) 0.98 0.42 0.01  0.00 -0.28
(12 instances) #best 10 8 7 5 5
#worst 2 4 5 7 7
Best(%) 488 283 232 510 122

Worst(%)  -1.32 -1.90 -2.19 -2.59 -1.92
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FIGURE 5.7: The average percent deviation of the load-based (2,1) exchange intra-
route against the classical (2,1) exchange intra-route; (a) LBR, (b) LBC, (c) LWR,
and (d) LWC

CPU times

The results in terms of the computational times of performing the (2,1) interchange
operator is demonstrated in Table 5.8. The speed of processing the intra-route is
almost negligible. All instances are completed roughly under 2 seconds. However,
it can be seen for the inter-route, the average computational time for the large
data set is drastically high compared to the small and medium data set. It can
took almost up to 2 hours. This is recorded for an instance in the large data set.
Thus, the overall average computational time for the inter-route is recorded at
1756, 1070 and 970 seconds for CR(2,1), LR(2,1) and LC(2,1) respectively.

TABLE 5.8: Average computational time for (2,1) (seconds)

Data set Intra-route Inter-route

CR(2,1) LR(2,1) LC(2,1) CR(2,1) LR(2,1) LC(2,1)
Small 0.001 0.001 0.001 0.080 0.805 0.462
Medium 0.002 0.005 0.012 9.588 76.396 49.152
Large 0.016 0.086 0.082 6750.434 3975.881 3636.864
Overall 0.005 0.025 0.027 1765.176 1070.647  970.258

5.5 The (2,2) interchange operator

This operator searches two customers from one route to be exchanged with two

customers from another route. In this study, we analyse the move involving two
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FIGURE 5.8: The average percent deviation of the load-based (2,1) exchange inter-
route against the classical (2,1) exchange inter-route; (a) LBR, (b) LBC, (c) LWR,

and (d) LWC

consecutive customers although the search can easily be extended to cater for

any two customers. As in the previous operators, we divide the procedure of (2,2)

interchange into two phases namely, the removal and the insertion process. This is

done to explore the mathematical formulation when incorporating the load factor.

These are based on the intra-route and the inter-route cases as presented below.

5.5.1 The intra-route (2,2)

The initial cost for route 7 is given in (5.1) and the updated cost of exchanging a

pair of customers m and m + 1 and a pair of customers n and n + 1 is expressed

as follows:

Cali) =

d(R:(0), 1i(1)) + d(Ri(1), Ri(2)) +

m+1), R
nc(R;) ne(R;)+1
S St
a=0 b=a+1

n),Ri(n+1))+d(Ri(n+ 1), Ri(m+2)) +
i(m)) + d(Ri(m), Ri(m + 1))

+d(Ri(
+d(Ri(n —1), R
+d(Ri(

i(n+2)) +

R; (b))
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Therefore, we can find the change in cost for the classical intra-route (2,2) operator

(A, . (i)) which is based on the swap or direct exchange move, as follows:

= d(Ri(m — 1), Ri(m)) + d(R;(m + 1), Ri(m + 2))
+d(Ri(n—1),Ri(n)) +d(R;(n+ 1), Ri(n +2)) (5.19)
—d(R;(m — 1), Riy(n)) — d(Ri(n + 1), R;(m + 2))

—d(Ri(n —1),R;(m)) — d(Ri(m + 1), Ri(n + 2))

If n = m + 2, after basic mathematical manipulation the A¢ , . (i) is marginally

reduced to

A%+ (1) = d(R;(m — 1), Ry(m)) + d(R;(m + 1), Ry(m + 2))
+d(R;(m +3), Ri(m +4)) — d(R;(m — 1), R;(m + 2))
—d(Ri(m+3),Ri(m)) — d(R;(m + 1), R;(m + 4))

Effect of the load factor

Instead of expressing the route cost in distance measurement, we introduced a new
formulation to incorporate the load factor with the fuel consumption expressed in
measuring the route cost. The initial cost C9() is given in (5.3) and the new cost
C}(z) after exchanging a pair of customers m and m + 1 and a pair of customers

n and n 4+ 1 in terms of fuel consumption is shown below.

Ci(i) = ( i(0), RBi(1)) + E(Ri(1), Ri(2)) + -+ - + E(Ry(m — 1), Ri(n))
E(R;(n),Ri(n+ 1))+ E(R;(n), Ri(m+2)) + ...
E(R;(n — 1), Ri(m)) + E(Ri(m), R;(m + 1))
+ E(Ri(m +1), Ri(n+2)) + - + E(R;(nc(Ry)), Ri(0))

ne(R;) ne(R;)+1

= > 2 E(Ri(a),Ri(b)

a=0 b=a+1
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Hence, the change in cost for the load-based intra-route (2,2) operator, which is

denoted as A .+ (%), is obtained as follows:
A1:n+n+( ) = <Z> 1( )
aold(R;(m — 1), Ri(m)) + d(R;(m + 1), Ri(m + 2))
+ d(Ri(n — 1), Ri(n)) + d(Ri(n+ 1), Ri(n + 2))
— d(Ri(m — 1), Ri(n)) — d(R;(n + 1), Ri(m + 2))
— d(Ri(n — 1), Ri(m)) — d(R;(m + 1), Ri(n + 2))]
+ ar[L(Ri(m — 1), Ri(m)) - (d(Ri(m — 1), Ri(m))

-m—1)7Rz( ))—q(Ri n)) —q(Ri(n +1)))
- (d(Ri(n), Ri(n + 1)) + d(Ri(n + 1), Ri(m + 2)))
(a(Fi(n)) + q(Ri(n + 1)) = q(f}-(m»

n

+ —q(Ri(m+1)) Z > d(Ri(a), Ri(b))

a=m+2 b=a+1

ifn—m > 3,

0 otherwise
+ L(Ri(n — 1), Ri(n)) - d(Ri(n — 1), Ri(n))
— (L(Ri(n + 1), Ri(n + 2)) + q(Ri(m)) + q(Ri(m + 1)))
-(d(Ri(n = 1), Ri(m))
+ L(R;(n+ 1), Ri(n+2)) - (
+d(Ri(n+1),R;(n+2
—d(Ri(m +1), Ri(n +2

d(Ry(n), Ri(n + 1))
— d(Ri(m), Ri(m + 1))

For the special case when n = m + 2, the A7 (1), after mathematical manipu-

mtnt

lation, is reduced and this is displayed as follows:

A (i) = aold(Ri(m — 1), Ry(m)) + d(Ri(m + 1), Ry(m + 2))
+d(Ry(m +3), Ry(m + 4)) — d(R;(m — 1), Ry(m + 2))
—d(R;(m+ 3), Ri(m)) — d(R;(m + 1), R;(m + 4))]
+ai[L(Ri(m — 1), Ri(m)) - (d(Ri(m — 1), Ri(m))
— d(Ri(m — 1), Ry(m + 2)))
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+ L(R;(m+ 1), Ri(m+2)) - (d(R;(m), Ri(m + 1))
+ d(R;(m+ 1), Ri(m + 2)))

— (L(Ri(m — 1), Ry(m)) — q(Ri(m +2)) — q(R;(m + 3)))

(d(R;(m+2),Ri(m+3)) +d(R;(m +3

), Ri(m)))
+L(Ri(m+3),R(m+4)) (d(R;(m + 2), Ri(m + 3))
—d(R;(m), R;(m + 1))

— d(Ri(m + 1) ( 4)))]

Illustrative example

Consider an example consisting of eleven customers which are assigned to a route
as illustrated in Figure 5.9. The initial route R(0,1,2,3,4,5,6,7,8,9,10,11,0) has
a length C); of 61.52 units and fuel consumption C, of 10.47 units. We implement

the (2,2) interchange within the route. The best move is to swap a chain of

customers 5 and 6 with a chain of customers 9 and 10. This would result in a
renewed route R'(0,1,2,3,4,9,10,7,8,5,6,11,0) with Cy = 46.25 and C, = 8.00.

The cost of the new route in terms of both total length and total fuel consumption

is reduced about 24% from the initial cost. The intra-route classical and the load-

based (2,2) interchange operators both produce the same route configuration of

the solution.

3[10] 3[10]
2[17]

2[17]

af12] 99 4[12]  9[9] Customer X-y coordinates

0 0 o0
w71 /S  e----- \ 1 -1 3
P 2 2 7
3 5 7
8[11] 10[7] 4 8 5
— s|_|s o
> o 7[10] g 150 *12
8 g 1
9 11 5
10 14 4
11 4 -7

FIGURE 5.9: An example of (2,2) intra-route move
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5.5.2 The inter-route (2,2)

The initial and the new cost of route 7 after removing customers m and m + 1
may be referred to (4.3) and (4.19). The initial cost for route j is given in (5.4)

and the new cost after the removal of customers n and n + 1 is shown as follows:

Ca(7) = d(R;(0), R;(1)) + d(R;(1), R;(2)) + - + d(R;(n — 1), Rj(n + 2))

+ -4 d(Rj(nc(R;) — 1), R;(0))
nc(R;j)—1 ne(Rj)

= > > dRj(a) R(D))

a=0 b=a+1

The total removal cost 6"¢, . (ij) is then calculated in the following.

5m+n+(w) Cg(i) - Cé (4)

+ d(R;(m + 1), R;(
+d(Rj(n—1),Rj(n)) + d(Rj(n), Rj(n+ 1))
+d(Rj(n+1),Rj(n+2)) —d(Rj(n—1),R;j(n+2))

After inserting customers n and n + 1 in route 7, the route cost is revised to be

Ci(i) = d(R;j(0), R(1)) + d(R;(1), Ri(2)) + - - - + d(R;(k), R;(n))
+d(R;(n), Rj(n+1)) +d(R;j(n+1),Rj(k+ 1)) +

+ d(Rj(nc(R;)), R;(0))
nc(R;) ne(Ry)+1

= 2. > dR/(a), R/(D))

a=0 b=a+1

The new route cost for route j after the insertion of customers m and m + 1 is
given in (4.26). Thus, the total insertion cost 6% ., . (ij) is acquired as displayed

below.

et (1) = C(6) — C(d) + C1(5) — Ca(4)
= d(Rj(k), Rj(n)) + d(R;(n), R;(n + 1))
+d(Rj(n+1),R;(k +1)) — d(R;(k), Ri(k + 1))
+d(R(I), Ri(m)) + d(R;(m), R;(m + 1))

J
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+d(Ri(m + 1), Rj(I + 1)) — d(R}(I), Rj(I + 1))

By subtracting the total insertion cost from the total removal cost, we can acquire
the change in cost for the classical inter-route (2,2) operator which is denoted as

A% . (ij). The formulation is expressed as follows:

Adk;rﬁlmﬂf (Zj) 6m+n+ (Zj) - 6il(c]ln+lm+ (Z])
— d(Ri(m — 1), Ry(m)) + d(Ri(m + 1), Ri(m + 2))

— d(Ri(m — 1), Ri(m + 2)) + d(R;(n — 1), R;(n))
+d(Rj(n+1),Rj(n+2)) —d(R;j(n — 1), R;(n+2)) (5.20)
— d(Ri(k), Rj(n)) — d(R;(n+ 1), Ri(k + 1))

+ d(Ri(k), Ri(k + 1)) — d(R;(1), Ri(m))

—d(Ri(m + 1), Rj(I + 1)) + d(R}(1), Rj(1 + 1))

Effect of the load factor

In terms of fuel consumption, the initial cost for routes i and j are given in (4.8)
and (5.10). The updated cost of route ¢ after removing customers m and m + 1
can be referred to (4.22). For route j, the updated cost after removing customers

n and n + 1 is presented as follows:

C1(5) = E(R;(0), R;(1) + E(R;(1), R;(2)) + -+ + E(R;(n — 1), Rj(n + 2))

+ -+ E(R;j(nc(R;) — 1), R;(0))
ne(

R;)—1 nc(Rj)
= Z Z E(Rj(a), Rj(D))
b=a+1

The total removal cost with regard to fuel consumption, which is represented by

(52];7# (1j), can be calculated as shown below.

07 e i) = CR(i) — C1) + CF(5) — C}(j)
= agld(R;(m — 1), Ri(m)) + d(R;(m), Ri(m + 1))
+d(Ri(m+ 1), Ri(m +2)) —d(R;(m — 1), Ri(m + 2))
+d(Rj(n — 1), Rj(n)) + d(R;(n), R;(n + 1))
+d(R;(n+1), Rj(n +2)) — d(R;(n — 1), R;(n +2))]
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gl m) + g(R(m+ D)+ (5 d (o), ()
+ L(R;(m — 1), R;(m)) - d(R;(m — 1), R;(m))
+ L(Ri(m), Ri(m + 1)) - d(R;(m), R;(m + 1))
+ L(Ri(m + 1), Ri(m + 2)) - (d(Ri(m + 1), R;(m + 2))

The insertion of customers n and n + 1 in route 7 leads to a revised route cost

which is expressed as

C7(i) = E(R)(0), Ri(1)) + E(Ri(1), Ri(2)) + - - + E(Ri(k), R;(n))
+ E(Rj(n),Rj(n+ 1))+ E(Rj(n+1),Rj(k+1)) +
+ E(Rj(nc(Ry)), Ri(0))

ne(R;) ne(R;)+1

= > > E(R(a) R/1)

a=0 b=a+1

The revised cost for route j after inserting customers m and m + 1 is given in
(4.29). Subsequently, we can calculate the total insertion cost in terms of fuel

consumption ((52',fn+lm+ (17)) as follows:

0 i (i5) = CF(0) — C}(i) + C3(j) — C}(4)
= agld(R}(k), Rj(n)) + d(R;(n), R;(n + 1))
+d(Rj(n+1),R;(k +1)) — d(R;(k), Ri(k + 1))
+ d(Rj(1), Ri(m)) 4 d(R;(m), Ri(m + 1))
+d(

Ri(m+ 1), Ri(1+1)) — d(R/ (l) R’(l 1))]

+ a1[(q(R;(n)) + q(R;(n + 1)) Z Z d(Ri(a), Ri(b)))

a=0 b=a+1
+ (L(Ri(k), Bi(k + 1)) + q(R;(n)) + q(R;(n + 1)))
- d(R;(k), R;(n))
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+ (LR (R), Ry(k + 1)) + q(R;(n + 1)) - d(R;(n), B;(n + 1))
+ L(R(k), Ri(k + 1)) - (d(R;(n + 1), Ri(k + 1))
— d(Rj(k), Ri(k +1)))
+(a(Bi(m)) + q(Ri(m + 1)) Z Z d(Rj(c), Rj(d)))

(L4 1) + q(Ri(m)) + q(Ri(m + 1))
(m)

m))

);
(

+ (L(R; (), R
- d(R;(0), By
+ (L(B;(1), B;(1 1)) + q(Ri(m + 1)) - d(Ri(m), Ri(m + 1))
+ L(RL(1), Ri(1+ 1)) - (d(Ri(m + 1), Ry(1 + 1))

— d(R;(1), By(1 +1)))]

The difference between the total removal cost ((5% +,+(t7)) and the total inser-
tion cost (0 ,{n+lm+ (1)) leads to the change in cost for the load-based inter-route
(2,2) operator which is represented by Afkn+lm+ (27). This is demonstrated in the

following lines.

A (13) = 670 (i) = 0 (i)
= ao[d(R;(m — 1), Ri(m)) + d(Ri(m + 1), Ri(m + 2))
—d(R;(m —1),Ri(m+2)) +d(R;(n — 1), R;(n))
+ d(R;j(n+1), Rj(n+2)) — d(R;(n — 1), Rj(n + 2))
— d(Rj(k), R;(n)) — d(R;(n + 1), Ri(k + 1))
+ d(Ri(k), Ri(k + 1)) — d(R}(1), Ri(m))
d(R;(m + 1), Ri(1 + 1)) + d(R3(1), R (1 4 1))]

/
)
/
)

m—1

T onl(g(Ri(m) + q(Ri(m + 1)) - (X Y d(Ri(a). Ri(b)

a=0 b=a+1
l

—Y S d(R)(c), Ry(d))

c=0 d=c+1
+ L(R;(m — 1), Ri(m)) - d(R;(m — 1), R;(m))
+ L(R;(m + 1), Ri(m + 2)) - (d(Ri(m), B;(m + 1))
+d(Ri(m + 1), Ri(m +2)) — d(Ri(m — 1), Ry(m + 2)))
(5.21)

n—2 n—1

+(q(R;(n)) + q(R;(n (22 2 d(R;(a), Ry (b))

a=0 b=a+1
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~ S d(RY(a), R1)

a=0 b=a+1

+ L(Rj(n — 1), Rj(n)) - d(R;(n — 1), R;(n))

+ L(Rj(n + 1), Rj(n +2)) - (d(R;(n), Rj(n + 1))
+d(Rj(n+ 1), Rj(n+2)) — d(R;(n — 1), Rj(n +2)))

— (L(R;(K), Bi(k + 1)) + q(R;(n)) + q(R;(n + 1))
~d(Ri(k), B;(n))

= L(R;(k), Ri(k +1)) - (d(R;(n), R;(n + 1))
+d(Rj(n+ 1), Ri(k + 1)) — d(R}(k), Rj(k + 1))

— (L(R5(1), Bj(1 4+ 1)) + q(Ri(m)) + ¢(Ri(m +1)))

d(Rj(1), Ri(m))

= L(B;(1), B5(1 + 1)) - (d(Ry(m), Ri(m + 1))
+d(Ri(m + 1), Ri(1+ 1)) — d(R}(1), Rj(1 + 1)))]

Illustrative example

We present an example in Figure 5.10 to show the interchange of the (2,2) operator
among the routes. Here we have two routes of which five customers are allocated
in each route. Initially, the first route R;(0,1,2,3,4,5,0) has a length C,; of
24.78 units alongside the fuel consumption C, of 4.17 units. The second route
R5(0,6,7,8,9,10,0) has a length and fuel consumption of 25.28 and 4.29 units,
respectively. The operator will search to move two consecutive customers from R
to Ry and vice versa. This led to the interchange between a link of customers 1 and
2 with customers 6 and 7 which yielded two updated routes R} (0,3,4,5,6,7,0)
and R5(0,8,9,10,1,2,0). The R} and R} each has Cy equal to 21.61 and 20.87
units and C, of 3.71 and 3.53 units, respectively. This interchange gains 7.57 units
in Cy and 1.22 units in C,.

The same solution is obtained when we apply both the classical and the load-based
(2,2) interchange operator. This means that the move is considered as appropriate

in view of the length as well as the fuel consumption.
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FIGURE 5.10: An example of (2,2) inter-route move

5.5.3 Analysis and computational results

The analysis for the (2,2) interchange operator is conducted similarly as the previ-
ous local search operators. We present the results in terms of the average percent
deviation of the load-based operator against the classical operator for each data
sets as in Table 5.9. Positive value of the percentage signifies an improvement
of the solution using the newly developed load-based operator compared to the
classical ones. The data is shown for five values of o which represent the weights
applied to each objective as in (3.7). This table is customised to be in three dec-
imals while others are all in two decimals point. This is especially because in
the first column (i.e. intra-route LBR) all percentages are almost zero but in the
chart it appears to be different values of ‘zero’ (see Figure 5.11(a)). The reason
for this is because the solution from the load-based intra-route operator from the
regular savings is as good as the solution from the best-case of the classical one.

Therefore, the percent deviation between them is mostly zero.

Moreover, the load-based (2,2) intra-route operator from the combined savings
generates mainly a better solution than the classical one. However, for some «
values in the medium data set, this yields a negative average percent deviation.

Figure 5.11 gives an illustration of the results for the intra-route (2,2) operator.

For the inter-route case, the best-case of the classical (2,2) operator seems to
produce better solution than the load-based operator from the regular savings in
the small and medium data sets, but not in the large data set. Compared to that,
the load-based operator from the combined savings has a much better solution
although some negative percentages could still be found, especially in the medium
data set. This can be further illustrated in Figure 5.12. Note that the horizontal
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TABLE 5.9: Average percent deviation (in %) of the load-based against the classical
(2,2) interchange operator

a Data set Intra-route Inter-route
LBR IWR LBC LWC LBR LWR LBC LWC

0.6 Small 0.002 1.142 2149 3.263 -0.144 0.998 1.709 2.828
Medium  0.000 0.512 -0.622 -0.105 -0.203 0.337 -1.031 -0.484
Large 0.000 0.692 0932 1.617 0.210 0.875 1.043 1.701

0.7 Small 0.001 0.840 2335 3.153 -0.156 0.683 1.887 2.707
Medium  0.000 0.376 -0.133 0.243 -0.201 0.196 -0.638 -0.239
Large 0.00 0.507 0979 1481 0.196 0.684 1.040 1.523

0.8 Small 0.000 0.547 1.347 1.886 -0.165 0.384 1.374 1.914
Medium  0.000 0.246 -0.349 -0.102 -0.198 0.061 -0.727 -0.466
Large 0.000 0.330 0.619 0.947 0.183 0.501 0.621 0.937

0.9 Small -0.001  0.267 1.076 1.340 -0.173 0.096 0.768 1.034
Medium  0.000 0.120 -0.514 -0.393 -0.196 -0.069 -0.772 -0.645
Large 0.000 0.162 0.594 0.754 0.170 0.326 0.436 0.591

1.0 Small -0.002 -0.002 -0.002 -0.002 -0.183 -0.183 -0.183 -0.183
Medium  0.000 0.000 0.000 0.000 -0.194 -0.194 -0.194 -0.194
Large 0.000 0.000 0.000 0.000 0.158 0.158 0.158 0.158

values seem to be the same when a = 1.0 as this implies that the load factor is

not relevant in the search process.

Table 5.10 summarizes the result of LBC for the case of intra-route. It can be
shown in the small data set there are a few observations that is worth highlighted.
First, at o = 0.7 the highest average percent deviation is found to be 2.34%.
Second, there are 11 of 14 (or about 79%) instances that has a positive percent
deviation and this accounts for the highest #best. Third, the highest percent
deviation over all instances is recorded at 8.64% when o = 0.9. Apart from that,
we can also observe the lowest average deviation percentage at -0.62% as well as
the lowest value at -6.11% in the medium data set when o = 0.6. The count of
negative percent deviation is found to be the highest in the same data set in which

12 of 20 instances are found when o = 0.6 and 0.8.

Furthermore, a summary result of LBC for the inter-route case is presented in
Table 5.11. It is shown that the average percent deviation is at the highest of only
1.89% and the lowest at -1.03%. The largest #best for each data set is obtained
in the large data set when o = 0.6. For the overall result, the largest #best is
obtained when o = 0.7 where 50% of all instances produced a positive percentage.
Whilst for #worst, the largest count for each data set is acquired when o = 0.6

in the medium data set (16 out of 20 instances). Here, for the overall result, the
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FI1GURE 5.11: The average percent deviation of the load-based against the classical
(2,2) interchange for the intra-route case; (a) LBR, (b) LBC, (c¢) LWR, and (d)
LWC

largest count is acquired when o = 0.9 where 29 out of 46 instances have a negative
percent deviation. In addition, the best and the worst percent deviations for all

instances are 8.64% and -5.89% in the small and medium data sets, respectively.
CPU times

The average computational time to find the solution using the (2,2) interchange
operator is shown in Table 5.12. The data is shown for the small, medium and
large data set as well as overall inclusive of 46 instances for CR(2,2), LR(2,2) and
LC(2,2) for the intra-route and the inter-route cases. The average computational
time for all instances of the intra-route case is found to be 5, 7 and 8 milliseconds
together with the inter-route case which is 148, 182 and 229 seconds, respectively
for CR(2,2), LR(2,2) and LC(2,2). It can be noted that the average computational
time for the large data set is noticeably higher than in the medium and small data
sets. This signifies that the search process is more difficult and complex in those

instances from the large data set compared to the other two sets.

5.6 Summary

In this chapter, we examine three advanced local search operators namely, (1,1),
(2,1) and (2,2) interchange operators. These operators are executed for both the

intra-route and the inter-route cases. We adopted a swap move for the intra-route
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TABLE 5.10: Summary table for LBC case of intra-route (2,2)

Data set o}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) 2.15 2.34 135 1.08 0.00
(14 instances) #best 11 11 9 6 0
#worst 3 3 4 6 1
Best (%) 8.30 842 852 8.64 0.00
Worst(%)  -246 -1.51 -1.50 -3.90 -0.02
Medium AvgDev(%) -0.62 -0.13 -0.35 -0.51 0.00
(20 instances) #best 8 10 8 10 0
#worst 12 10 12 10 0
Best (%) 2.85 169 1.63 3.03 0.00
Worst(%)  -6.11 -3.34 -3.35 -4.34  0.00
Large AvgDev(%) 093 0.98 0.62 0.59 0.00
(12 instances) #best 9 7 7 9 0
#worst 3 5 ) 3 0
Best(%) 340 258 3.04 430 0.00

Worst(%) ~ -2.27 -1.61 -2.97 -1.67 0.00

TABLE 5.11: Summary table for LBC case of inter-route (2,2)

Data set e}
0.6 0.7 0.8 0.9 1.0
Small AvgDev(%) 1.71 1.89 1.37 0.77 -0.18
(14 instances) #best 9 9 6 5 4
H#worst 5 5 8 8 6
Best(%) 830 842 852 8.64 081
Worst(%)  -1.76 -2.41 -241 -2.41 -2.55
Medium AvgDev(%) -1.03 -0.64 -0.73 -0.77 -0.19
(20 instances) #best 4 6 6 5 8
#worst 16 14 14 15 11
Best(%) 324 225 210 3.88 0.50
Worst(%)  -5.89 -3.95 -3.67 -5.18 -1.73
Large AvgDev(%) 1.04 1.04 0.62 044 0.16
(12 instances) #best 9 8 8 6 7
#worst 3 4 4 6 4
Best(%) 297 3.86 390 3.02 1.96

Worst(%) ~ -2.17 -2.21 -2.88 -2.29 -0.91
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FIGURE 5.12: The average percent deviation of the load-based (2,2) exchange inter-
route against the classical (2,2) exchange inter-route; (a) LBR, (b) LBC, (c) LWR,
and
(d) LWC

TABLE 5.12: Average computational time for (2,2) (seconds)

Data set Intra-route Inter-route

CR(2,2) LR(2,2) LC(2,2) CR(2,2) LR(2,2) LC(2,2)
Small 0.000 0.000 0.001 0.015 0.129 0.101
Medium 0.002 0.002 0.003 4.094 46.632 34.387
Large 0.013 0.022 0.024 561.048 622.481 820.804

Overall 0.005 0.007 0.008 148.145 182.700 229.105

case and the best exchange move for the inter-route case. We proposed new mathe-
matical formulations that embed the load factor. We also presented an illustrative
example for each case of the intra-route and the inter-route of the operators. To
observe the performance of these newly developed operators, we conducted an ex-
tensive computational test using the 46 well-known VRP instances. We compared
the solution of the load-based operators to the solution of the standard operators.
Interesting results relating to its solution quality and computational time are ob-
tained. In the next chapter, we assess the performance of all operators when used

together. This is called out as part of the composite and multi-level heuristics.

131



Chapter 6

Incorporation of the load factor
in composite and multi-level

heuristics

6.1 Introduction

In this chapter, we examine the whole performance of the operators described
in the previous chapters, 4 and 5. We perform the analysis using two powerful
heuristics namely, the composite and the multi-level heuristics. We first provide a
brief description of each of the two methods followed by the overall experimental
design. The data sets used in the previous chapters are also used here to asses
the performance of these methods where the load factor is attached. Additionally,
we conduct a learning mechanism within the search for both heuristics. Our

computational experiments over five runs reveal interesting results.

6.2 Integrated heurictics

Based on the computational results in the previous chapters, it can be noted that
it may be inadequate to use just one single local search operator in generating
better quality solutions. The solution could be enhanced by integrating the use of
multiple operators in the search. This is performed by the composite and multi-

level heuristics which will be explained in the next two subsections.
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For clarity of the presentation, we denote the heuristic methods h as OI(h) which
represents the use of the classical (O=C) and the load-based (O=L) operators

from the initial solution using the regular (I=R) and the combined (I=C) savings.
Effect of the reverse route

In this integrated search, the evaluation of the reverse route direction schemes, as
given in Chapter 3, is performed differently for the classical and the load-based
operators. While using the classical operators, the evaluation scheme is applied
just before the final solution is recorded. The scheme is used in the beginning
once the initial solution is obtained from the savings method with the presence of

the load-based operators.

6.2.1 Composite heuristic

Like the local search techniques, the composite heuristic starts with an initial
solution. This sort of method is performed using a given improvement scheme
also known as local search, to improve the solution. The search stops when no
further improvement can be found. Such a solution is considered to be a local
minimum with regards to the chosen scheme. To avoid getting trapped in this local
minimum, the composite method directs the search by continuing the procedure
sequentially with one or more other local searches. The idea is to create preferably
as much alteration to the solution as possible so long as the total computing time

is within a reasonable amount.

We adapt the load factor to the composite heuristic by applying the load-based
techniques provided in the previous chapters. The heuristic we put forward con-
sists of two parts. In the first part, a starting solution for CVRP is found. This
is conducted as follows: Initially, the CVRP is solved using the savings method
as described in Chapter 3. The regular savings method and our modified savings,
namely the combined savings are chosen in obtaining the starting solution. Then,
the 2-opt is applied to each route from the savings solution leading to our initial

solution.

In the second part, a composite heuristic which attempts to improve on the so-
lution found by applying a certain improvement scheme is introduced. The im-
provement schemes or formally known as the local search operators in the previous

chapter are utilised here. The sequential order in which the operators are used
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can be critical. As a rule, simple ones are adopted first. In our case the order is
as follows: Starting with the (1,0) operator, followed by the (1,1) operator, (2,0)
operator, (2,1) operator and lastly the (2,2) operator. Within each operator, both

the intra-route and the inter-route cases are implemented one after another.

In addition to the above practice, we introduced two ways of carrying out this
heuristic to include the 2-opt operator within the procedure besides using it to
improve our starting solution.

(i) Firstly, we apply the 2-opt at the termination step before recording the final
solution.

(ii) Secondly, we apply the 2-opt within the refinement scheme whenever an im-
provement is recorded.

It is worth noting that it would be good if the 2-opt could be applied only to
the route(s) that underwent the modification after the refinement module is im-
plemented. This can lead to a reduced computing time. Though this is not

implemented here, it is interesting to pursue this issue in the future.

For simplicity, the first variant is represented by C1 and the latter by C2. The
main steps of this algorithm are presented in Figures 6.1 and 6.2. The algorithm
for C2 is similar to C1 with the exception of some of the steps as illustrated in the
figure. It can be noted in the algorithm that the evaluation of the reverse route
direction is employed differently when the classical and the load-based operators
are used in the method. Also note, as all operators are finite therefore both C1

and C2 will systematically halt.

6.2.2 Multi-level heuristic

The multi-level heuristic is similar in principle with the composite heuristic. Yet,
there are two plain distinctions between them. Firstly, in simple composite heuris-
tic, during each step, an improvement scheme or the local search is applied in a
small number, whereas here, in each level, a set of the local searches or a compos-
ite heuristic itself can be applied. Secondly, the composite heuristic continues to
the next improvement scheme in sequence irrespective whether an improvement
is found. However, for the multi-level heuristic, once the solution structure is
altered, it is appropriate to direct the search and return back to the first level
where it is usually calibrated with the simplest and a relatively faster scheme.

Otherwise, the search will continue to the next level in sequence until there is no
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further improvement. This approach is similar to variable neighbourhood descent
(VND) as described in Salhi (2017).

In this study, we also adapt the load factor to the multi-level heuristic by in-
corporating the load-based techniques, as given in the previous chapters. The
sequential order of the improvement schemes is similar to the one used in the
composite method. From Level 1 to 5, the implementation of the operators is in
the order as follows: the (1,0), (1,1), (2,0), (2,1) and (2,2) operators. Both the

intra-route and the inter-route cases are activated consecutively in each level.

Besides improving the initial solution, we carry out two ways of featuring the 2-opt
operator within the procedure. This is also similar to the one in the composite
heuristic. Here, the first variant which is applied at the termination stage is
represented by M1. The second one which is applied within each level once the
solution is improved is called M2. The main steps of the algorithm for the multi-
level heuristic is demonstrated in Figures 6.3 and 6.4. The algorithm for M2 is
similar to M1 except for some of the steps in Level 1, 2, 5 and 6. Note that, here
the reverse route evaluation scheme is applied at different levels when we use the
classical or the load-based operators. Similar to C1 and C2, all operators used

here are finite, hence M1 and M2 will systematically stop.

6.2.3 Analysis and computational result for the composite

and multi-level heuristics

The experiments are designed as previewed in Figure 6.5. Two variants of incor-
porating the 2-opt operator in the search process are created for the composite
and multi-level methods. The initial solution is obtained from the regular and the
combined savings with the 2-opt applied afterwards. A set of the classical and the
load-based operators are utilised to improve the solution using the composite and
multi-level methods. This rises to twelve methods indexed by £ = 1,2,...,12.
The computational tests are undertaken using the 46 well-known VRP instances
as described in Figure 3.2 from Chapter 3. Five values of the weights, o are used

in the tests. The « is set from 0.6 to 1.0 with an increment of 0.1.

For a given «, the objective function of the solution, Z (3.7) from one method is
compared to the other method for a particular instance. The minimum Z value

among twelve methods is recorded as the best Z. To show how much the solution
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differs from each method with the best Z, we calculate the percent deviation as
given in (3.8). Here, Z refers to the best Z and Zj is the Z value obtained from
method, k with k£ € {1,2,...,12}.

Solution quality

We present a sample of the computational results of the composite and multi-level
heuristics when a = 0.6. Table 6.1 summarizes the result where it shows the
average percent deviation for the small, medium and large data sets as well as for
the overall instances. It also shows the count of when the method k recorded the
best Z. This is referred to as the total best Z. It can be observed that LC(C2) in
the large data set produced the solution with the least average percent deviation
which is at 0.24%. This would mean that most of the instances in the large data
set produced a solution with the best Z or near to it. It can also be noted that
LC(M2) recorded the highest count where 12 out of 46 or 26% of the instances
are denoted as the best Z. Based on these observations, both methods LC(C2)
and LC(M2) are considered for further exploration when the learning mechanism
is introduced. This is described later in the next section.

TABLE 6.1: Summary table for the average percent deviation against the best Z (in
%) and the total best Z of the composite and multi-level heuristics for o = 0.6

Data set CR(C1) LR(C1) LC(C1) CR(C2) LR(C2) LC(C2) CR(MI1) LR(MI1) LC(MI1) CR(M2) LR(M2) LC(M2)
Small 2.36 172 1.58 210  1.53 1.97 2.06 1.68 1.65 2.05 1.53 2.00
Medium 084 076 1.28 087  0.75 1.21 0.96 0.91 1.23 0.93 0.98 1.22
Large 2.43 156 0.34 2.28 118 0.24 2.02 1.41 0.51 1.95 1.58 0.25
Overall 172 1.26 112 161 1.10 1.19 1.57 1.28 117 1.54 1.30 1.20
Total Best Z 7 6 9 7 8 9 6 9 5 6 4 12
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Composite heuristic (C1)
Step 0: (a) Generate an initial solution from the savings method and apply
2-opt.
(b) Optional: Evaluate the reverse route direction if using the load-
based operators.
(c) Set the initial cost as Cy, cycle < 0, #operators p < 5, opmaz <
p.
Step 1: (a) Apply the (1,0) operator, begin with the intra-route method and
followed by the inter-route.
(b) Calculate the cost Cy and the change 6, = Cy — C}.
(c) If 6; > 0, then
(i) set cycle < 0
(11) C() +—
(d) Else (no change),
(i) cycle < cycle + 1.
(ii) If cycle = opmaz, then go to Step 6.
Step 2: Apply the (1,1) operator, repeat the procedure as in Step 1(b) - 1(d).
Step 3: Apply the (2,0) operator, repeat the procedure as in Step 1(b) - 1(d).
Step 4: Apply the (2,1) operator, repeat the procedure as in Step 1(b) - 1(d).
Step 5: Apply the (2,2) operator, repeat the procedure as in Step 1(b) - 1(d).
Step 6: (a) Optional: Evaluate reverse route direction if using the classical

operators.

(b) Apply 2-opt when finishing with the operators in the previous
step.

(¢) Record the final solution and stop

FI1GURE 6.1: Algorithm of the composite heuristic for C1
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Composite heuristic (C2)
Step 0: Same as Step 0 in C1.
Step 1: Same as Step 1 in C1, except for, in (c)(ii) the procedure is exchanged
as follows:
(c¢) (ii) Apply 2-opt and recalculate the cost Cy
and the change 9, = C — Cs.
If 65 > 0, then set Cy + Cy,
else
C(] — Cl
opmaz < p — 1
Step 2: Unchanged as in C1.
Step 3: Unchanged as in C1.
Step 4: Unchanged as in C1.
Step 5: Unchanged as in C1.
Step 6: Same as Step 6 in C1, except for (b) which does not applies in this

variant

FIGURE 6.2: Algorithm of the composite heuristic for C2
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Level 0:

Level 1:

Level 2:

Level 3:
Level 4:

Level 5:

Level 6:

Multi-level heuristic (M1)

(a) Generate an initial solution from the savings method and apply
2-opt.

(b) Optional: Evaluate the reverse route direction if using the load-
based operators.

(c) Set the initial cost as Cy, #operators p = 5, opcount is number
of p that has been used.

(a) Set opcount < 0.
(b) Apply the (1,0) operator, begin with the intra-route method and
followed by the inter-route.
(c) Calculate the cost C and the change 6; = Cy — Ch.
(d) If 67 > 0, then
(l) set O() + (.
(e) Set opcount <+ 1.

(a) Apply the (1,1) operator, begin with the intra-route method and
followed by the inter-route.
(b) Calculate the cost C and the change 6; = Cy — (.
(c) If 6y > 0, then
(i) set Cy «— Ch.
(ii) Go back to Level 1.
(d) Else (no change),
(i) set opcount < opcount + 1.

Apply the (2,0) operator, repeat the procedure as in Level 2(b) - 2(d).
Apply the (2,1) operator, repeat the procedure as in Level 2(b) - 2(d).

(a) Apply the (2,2) operator, begin with the intra-route method and
followed by the inter-route method.
(b) Calculate the cost Cy and the change 6; = Cy — C4.
(c) If 6; > 0, then
(1) set C() + (.
(ii)) Go back to Level 1.
(d) Else (no change),
(i) if opcount = op — 1, then go to Level 6.

(a) Optional: Evaluate reverse route direction if using the classical
operator.

(b) Apply 2-opt when finishing with the operators in the previous
level.

(¢) Record the final solution.

FIGURE 6.3: Algorithm of the multi-level heuristic for M1
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Multi-level heuristic (M2)
Level 0: Same as Level 0 in MI.
Level 1: Same as Level 1 in M1, except for, in (d)(i) the step is replaced with
(d) (i) Apply 2-opt and recalculate the cost Cy
and the change 6, = C — (.
If 65 > 0, then set Cy +— Oy,
else Cy + (.
Level 2: Same as Level 2 in M1, except for, in (c)(i) the step is replaced with
(c) (i) Apply 2-opt and recalculate the cost Cs
and the change 5 = C; — ().
If (52 > 0, then set O() — CQ,
else Cy «+ (.
Level 3: Unchanged as in M1.
Level 4: Unchanged as in M]1.
Level 5: Same as Level 5 in M1, except for, in (c)(i) the step is replaced with
(c) (i) Apply 2-opt and recalculate the cost Cs
and the change 6, = C — Cs.
If (52 > 0, then set C() — Cg,
else Cy < (.
Level 6: Same as Level 6 in M1, except for (b) which does not applies in this

variant.

FIGURE 6.4: Algorithm of the multi-level heuristic for M2
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TABLE 6.2: Detailed percent deviation (in %) against the best Z of the composite and multi-level heuristics for a = 0.6

# (n) Best Z CR(C1) LR(C1) LC(Cl) CR(C2) LR(C2) LC(C2) R(M1) LR(M1) LC(M1) CR(M2) LR(M2) LC(M2)
Small

F1 (44) 112.14 3.44 0.47 7.08 0.00 2.03 7.45 0.00 0.47 7.08 0.00 2.03 7.45
F2 (71) 41.62 5.33 2.69 0.26 5.33 2.69 0.00 5.33 2.69 0.26 5.33 2.69 0.00
F3 (134) 190.96 0.21 0.00 0.67 0.06 0.20 0.67 0.21 0.00 0.67 0.06 0.20 0.67
1(21) 58.23 0.00 2.70 2.70 0.00 0.00 0.00 0.00 2.70 2.70 0.00 0.00 0.00

2 (22) 99.71 1.52 0.00 3.19 1.52 0.00 1.93 1.52 0.00 3.19 1.52 0.00 1.93

3 (29) 78.54 0.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00 0.00

4 (32) 179.16 0.11 0.81 0.00 0.11 0.81 0.00 0.11 0.81 0.00 0.11 0.81 0.00

5 (50) 87.06 5.81 2.02 0.22 5.81 0.00 2.77 5.44 1.99 0.22 5.44 0.92 2.77

6 (75) 135.82 0.47 0.00 1.74 0.47 0.62 1.74 0.47 0.62 1.74 0.47 0.62 1.74

7 (100) 138.27 4.12 6.62 0.00 4.12 6.62 8.20 6.49 6.62 3.72 6.49 6.62 8.20

8 (150) 172.99 7.09 6.23 3.27 7.09 5.88 0.00 6.20 5.94 0.38 6.20 5.86 0.21

9 (199) 229.99 2.93 0.89 1.96 2.93 0.89 1.76 1.17 0.00 2.34 1.17 0.00 2.33
C10 (120) 180.09 1.64 1.65 0.16 1.64 1.65 0.50 1.64 1.65 0.01 1.64 1.65 0.00
C11 (100) 131.63 0.00 0.01 0.81 0.00 0.01 2.62 0.00 0.01 0.81 0.00 0.01 2.62

Medium

(240) 912.50 0.00 0.01 5.49 0.00 0.01 5.49 0.00 0.01 5.49 0.00 0.01 5.49

2 (320) 1406.52 0.00 0.35 3.98 0.07 0.35 3.98 0.07 0.35 3.20 0.07 0.35 3.20
3 (400) 1970.04 0.00 0.60 1.26 0.39 0.55 1.05 0.39 0.63 1.26 0.39 0.63 1.26
G4 (480) 2438.69 0.00 1.74 1.46 0.31 2.10 2.84 2.13 4.79 1.52 2.13 4.76 3.12
G5 (200) 1114.95 3.71 3.19 2.44 3.66 2.40 0.00 3.62 2.82 0.64 3.62 2.73 0.64
G6 (280) 1452.90 0.69 0.50 1.66 0.69 0.30 1.69 0.81 0.00 1.59 0.81 0.46 1.59
G7 (360) 1821.87 1.77 2.37 0.00 1.77 1.28 1.02 1.71 2.24 1.22 1.71 1.24 1.22
G8 (440) 2035.12 0.25 0.86 1.74 0.00 0.72 1.74 0.57 0.56 1.74 0.37 0.58 1.74
G9 (255) 98.91 1.42 0.00 0.42 1.42 0.65 0.06 1.42 0.95 0.29 1.42 0.02 0.06
G10 (323) 127.23 1.70 0.20 0.00 1.70 0.44 0.10 1.00 0.65 0.00 1.00 1.23 0.10
G11 (399) 158.56 1.82 0.52 0.16 1.82 0.52 0.01 1.82 0.52 0.16 1.82 0.52 0.00
G12 (483) 191.11 0.74 0.71 0.66 0.74 0.00 1.15 1.02 0.67 1.03 1.02 0.33 1.15
G13 (252) 142.51 0.00 0.41 0.82 0.00 0.93 0.53 0.00 0.41 0.79 0.00 0.93 0.43
G14 (320) 181.10 0.36 0.00 0.52 0.36 0.22 0.86 0.36 0.00 0.87 0.36 0.27 0.67
G15 (396) 224.56 0.29 0.17 0.85 0.29 0.39 0.84 0.29 0.00 0.85 0.29 0.30 0.82

Continued on mext page
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TABLE 6.2: — Continued from previous page

# (n) Best Z CR(C1) LR(C1) LC(Cl) CR(C2) LR(C2) LC(C2) CR(M1) LR(M1) LC(M1) CR(M2) LR(M2) LC(M2)
G16 (480) 270.61 1.30 0.08 1.31 1.30 0.30 1.25 1.30 0.00 1.31 1.30 0.74 1.28
G17 (240) 119.27 1.95 1.43 0.52 1.95 2.11 0.13 1.93 1.64 0.52 1.66 2.11 0.00
G18 (300) 168.60 0.07 0.68 0.86 0.00 0.61 0.06 0.00 0.68 0.75 0.00 0.61 0.15
G19 (360) 230.61 0.22 0.90 0.02 0.49 1.12 0.04 0.52 0.61 0.00 0.49 1.28 0.17
G20 (420) 308.77 0.48 0.40 1.45 0.43 0.00 1.35 0.20 0.72 1.45 0.15 0.47 1.35
Large
L1 (560) 2943.60 2.74 0.27 0.19 2.79 0.00 0.03 2.79 0.10 0.52 2.79 0.98 0.49
L2 (600) 2442.73 0.75 0.69 0.00 0.75 0.71 0.00 0.75 0.69 0.00 0.75 0.71 0.00
L3 (640) 3428.77 1.12 0.75 0.33 0.12 0.60 0.05 0.70 0.00 0.36 0.70 0.27 0.35
L4 (720) 3934.17 3.82 3.14 0.27 3.82 2.37 0.16 4.29 3.14 0.12 4.29 3.04 0.00
L5 (760) 2819.38 0.75 0.13 1.11 0.75 0.00 1.28 0.75 0.06 1.23 0.75 0.04 1.21
L6 (800) 4288.95 4.04 2.97 0.00 4.12 1.53 0.00 3.67 2.64 0.15 3.67 2.34 0.14
L7 (840) 2890.58 1.26 1.06 0.00 1.26 0.89 0.01 1.40 1.30 0.05 1.40 1.95 0.08
L8 (880) 4817.04 2.52 1.62 0.02 2.40 0.67 0.71 2.29 0.83 0.36 1.75 0.59 0.00
L9 (960) 5199.08 4.76 2.75 1.16 4.88 3.62 0.00 4.27 4.14 1.82 4.26 4.00 0.44
L10 (1040) 5802.05 2.20 0.71 0.05 1.71 0.37 0.01 0.14 0.05 0.04 0.21 0.66 0.00
L11 (1120) 6189.79 3.97 3.48 0.00 3.64 3.25 0.34 2.93 2.57 0.60 2.60 2.90 0.32
L12 (1200) 6756.20 1.29 1.15 0.91 1.08 0.16 0.34 0.30 1.42 0.92 0.22 1.44 0.00
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CHAPTER 6. Incorporation of the load factor in composite and multi-level
heuristics

Details of the computational results when o = 0.6 are also exhibited in Table 6.2.
It shows the percent deviation against the best Z for each instance in the small,
medium and large data sets using twelve methods of the composite and multi-level

heuristics. Other details can be found in Appendix B.

The summary result for the average percent deviation against the best Z from
Table 6.1 is illustrated in Figure 6.6. It shows the average percent deviation of
using six of each the composite and the multi-level heuristics in the small, medium
and large data sets. The average of all instances is also recorded. It seems that the
pattern in Figure 6.6(a) is roughly the same compared to Figure 6.6(b) although
the percentage scale in (a) is a little bit higher. In other words, we can say that, on
average, the solution using the multi-level heuristic is proportional to the solution
from the composite heuristic given that the same mechanism (e.g. variant, initial
solution, type of operator) is used. The ratio between them is reflected to be very

small.
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LC(C1)y BLC(ML)
u CR(C2) 1.00% ECR(M2)
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0.50%
LC(C2) I mLCMV2)
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Large Large
\

2.00°

%
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%
1350%
1.00%
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0.00%

Small Medium

=

Overall Small Medium Overall

(a) (b)

FIGURE 6.6: Average percent deviation against the best Z for the (a) composite
and (b) multi-level heuristics for a = 0.6

CPU times

In terms of the computational times, this is recorded at the start of the integrated
search procedure until the final solution is developed. That means, once the sav-
ings method produced a solution, we applied the 2-opt operator and then record it
as the initial solution. The start time is logged afterwards just before commencing
the composite or the multi-level heuristics procedure. We displayed the average
computational time for the composite and multi-level heuristics in Tables 6.3 and

6.4, respectively.

Overall, it can be observed that the average computational time of all instances
is increasing when the heuristic uses CR, LR and LC. Furthermore, the speed of

processing the heuristic of type 2 (i.e. C2 and M2) is higher than the one of type
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CHAPTER 6. Incorporation of the load factor in composite and multi-level
heuristics

TABLE 6.3: Average computational time for the composite heuristic (seconds)

Data set CR(Cl) LR(C1l) LC(Cl) CR(C2) LR(C2) LC(C2)

Small 0.069 0.820 0.814 0.085 0.871 0.709
Medium 30.014  161.117  156.839 27.587  183.588  158.295
Large 2602.323 3279.026 3524.390 2572.292 3619.995 3768.731
Overall 691.937  925.699  987.845  683.053 1024.433 1052.187

1 (i.e. C1 and M1). This suggests that the search is more challenging when the
2-opt is applied within whenever there is an improvement of the solution in each
step (or level). A similar observation to the one in the previous chapters, is also
found for the large data set when the search spends a much longer time than in
the case of the medium and the small data sets. This implies that the complexity

of the search in the large data set is noticeably higher than the other two.

TABLE 6.4: Average computational time for the multi-level heuristic (seconds)

Data set CR(M1) LR(M1) LC(M1) CR(M2) LR(M2) LC(M2)

Small 0.068 0.847 0.868 0.072 0.784 0.926
Medium 17.500  149.407  143.448 18915 165.899  165.691
Large 1889.771 2350.574 2628.766 1979.201 2452.274 3055.670
Overall 500.613  678.410  748.398  524.559  712.092  869.452

More importantly, on overall, we can observe that the multi-level heuristic is
relatively faster than the composite one. This may be because of their differences
in the refinement structure especially in the way the search is directed out of local

optima.

6.3 The incorporation of learning mechanism in

the integrated search

In this section, we present the learning as part of the search followed by some

computational results.
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heuristics

6.3.1 Overview of the approach

Once a new better solution is found from the selected improvement scheme, it is not
necessary to choose the next scheme in sequence or go back to the first level. It is
possible that such solution is most apt to be with a certain improvement scheme.
However, this can be a difficult task to pair up the solution with its matching
scheme as we need to reflect on the solution construction and the improvement
schemes attributes. The idea is to incorporate some degree of guidance in the
search. In other words, a local search that shows to be promising ought to be used

more than the one with little effect.

For that reason, we decided to integrate a learning stage to guide the search to be
more adaptive and relatively more effective. Here, we set up a random choice to

select the next local search based on a certain probability test.
How a local search is selected

This is based on the inverse method. Given v € [0,1] which is a randomly
generated variable, we can choose the local search by Locj = ArgF~'(v) with
F' being the cumulative probability. Figure 6.7 illustrates the selection of a lo-
cal search operator using the cumulative probability with respect to a randomly
generated v. For example, if v = x then the selected local search is Loc; =

Locs. In our experiments, we have hp,q, = 5 and (Locy, Locs, Locs, Locy, Locy) =
((1,0),(1,1),(2,0),(2,1),(2,2)).

F(Locp)
1 _______________________ b —
|
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|
1
1
[
vV s X 4|
> —:-—):
1
|
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- |
|
|
|
0 Lolc1 Lolc2 iLolc3 o I Locy,,,..
v
Locy,

FIGURE 6.7: Selection of local search using the cumulative probability
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Various test probability sets

We introduced three variants of the learning mechanism with respect to the dif-

ferent set of test probability. This is explained briefly as follows:

(a) L1:

(b) L2:

This learning method uses test probability generated by using a uniform
distribution. For instance, in the proposed composite heuristic, we have
five improvement schemes, therefore the probability (p € {0,1}) is di-
vided uniformly between five of them. As for the multi-level method, the
probability is spread out between four levels of improvement excluding
the first level as the search is set to revert back to Level 1 if the solution

is improved, due to the characteristics of this metaheuristic.

The second learning method calibrates the test probability based on the
performance from a set of instances. This set of instances is called the
training set. We selected 10 out of 46 instances in proportion from the
small, medium and large data sets. We run the experiments using these
instances and make note of which improvement schemes that provide
an improvement to the solution. We referred to this as the score of
improvement. We exhibited the score of improvement for LC(C2) and
LC(M2) in Tables 6.5 and 6.6. From these outcomes, we acquired the

test probability and the whole experiment was run again.

TABLE 6.5: Score of improvement for LC(C2)

# (n) Score 1 Score 2 Score 3 Score 4 Score 5
F1 (44) 13 5 5 0 0
6 (75) 8 5 1 0 0
C11 (100) 7 5 0 0 0
G2 (320) 10 8 3 2 2
G8 (440) 15 11 3 7 4
G12 (483) 14 13 4 5 5
G17 (240) 8 9 1 7 1
L3 (640) 17 11 11 7 7
L7 (840) 16 14 6 5 2
L11 (1120) 26 21 20 9 4
> 134 102 o4 42 25
Prob. 0.38 0.29 0.15 0.12 0.07

Cum. Prob. (F) 038 066 081 093  1.00
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(c¢) L3: The third learning method is implemented by adapting an adjusted prob-
ability within the search. This method is composed of two phases; the
first phase is conducted using the probability as in (a) for k - m times
with k being the number of improvement schemes used in the procedure
and m the number of times the scheme is repeated. In our experiments,
we set £ = 5 and m = 1. The score of improvement is recorded by setting
score = score+ 1 and the test probability is adjusted accordingly. Next,
in the second phase, the procedure continues to select the improvement
scheme based on the updated probability. While doing that, the score
of improvement is also recorded. The search goes on until it reaches an-
other k& - m. Then the test probability is updated once again with the
latest score of improvement. The search continues with the renewed test
probability and this method stops when no further improvement can be

found after all schemes have been applied.

TABLE 6.6: Score of improvement for LC(M2)

# (n) Score 2 Score 3 Score 4 Score 5
F1 (44) 033 050 000 0.0
C6 (75) 0.50 0.00 0.00 0.00
C11 (100) 0.50 0.00 0.00 0.00
G2 (320) 0.57 0.00 0.22 0.29
G8 (440) 040 017 040 0.4
G12 (483) 061 000 022 029
G17 (240) 046 013 054 017
L3 (640) 043 054 025 044
L7 (840) 0.60 0.00 0.38 0.00
L11 (1120) 053 055 033 0.7
> 4.93 1.89 2.34 1.80
Prob. 0.45 0.17 0.21 0.16

Cum. Prob. (F) 0.45 0.62 0.84 1.00

6.3.2 Analysis and computational result

The computational experiments to test the proposed learning mechanism are con-
ducted using the composite and multi-level heuristics of the variants LC(C2) and
LC(M2). These variants are selected because they show promising resuts in the

previous section. This will support the ‘guided’ search to produce a better quality
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solution. Three types of learning schemes (i.e. L1, L2 and L3) are incorporated
within the search leading to eight methods in total including the LC(C2) and
LC(M2).

The computational tests were accomplished using the same 46 instances of the
well-known VRP test problems which are categorised in the small, medium and
large data sets. In this test, the value of « is set at 0.6 and the search using each
method is run for five times. Statistically, five runs of the test are considered as
small and would produce limited outcomes, but due to the time constraint, we

thought it is sufficient to get interesting information based on this smaller search.

To evaluate the performance of the learning mechanism, we assessed the solu-
tion through the measure of the percent deviation compared to the best solution
obtained from among the methods. The lower the percent deviation, the more at-
tractive the solution becomes. This reflects the solution being nearer to the best
one. For a given instance, the percent deviation of an average and the best (i.e.
the minimum value) solution are calculated with respect to the five experimental
runs of each method. Table 6.7 provides the detailed computational results for

each of the eight methods and for each instance.

Subsequently, the results are summarised as presented in Table 6.8. The data
shown the average percent deviation for the small, medium, and large data sets as
well as for the overall instances. The frequency of the instances using each method
that produced the best Z is recorded as the total best Z. It is worth observing the
lowest average percent deviation as this implies that there are more instances in
the data set with the best Z or the solution near it. For the small data set, the
best solution of LC(C2L3) recorded the lowest average percent deviation which
is at 0.20%. The same method also produced the lowest overall average percent
deviation (0.44%). In addition, it is found to have the largest count (which is
14) of the solution with the best Z. For the medium and the large data sets, the
average percent deviation is found to be the lowest when the methods LC(M2L2)
and LC(C2L2) are implemented, respectively.
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TABLE 6.7: Detailed percent deviation (in %) against the best Z of the learning mechanism using the composite and multi-level heuristics CE %
for a = 0.6 i %
# (n) Best Z LC(C2) LC(C2L1) LC(C2L2) LC(C2L3) LC(M2) LC(M2L1) LC(M2L2) LC(M2L3) Z 5
Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best >
Small =3
F1 (44) 113.28 6.37 4.14 090 4.20 0.94 247 0.00 6.37 4.17 087 298 0.85 4.17 0.87 §
F2 (71) 41.59 0.07 1.04 0.05 1.03 0.00 1.11 0.07 0.07 0.63 0.00 0.63 0.05 0.63 0.05 93
F3 (134) 186.84 289 221 1.70 234 180 1.33 0.00 2.89 263 217 245 169 2.53 1.86 §‘
C1 (21) 58.20 0.05 3.41 0.02 497 0.05 2.59 0.00 0.05 3.26 0.00 3.26 0.00 3.26 0.00 2,
C2 (22) 95.20 6.75 5.38 0.00 548 0.09 5.27 0.08 6.75 T7.67 6.75 7.67 6.75 7.67 6.75 %
C3 (29) 74.85 493 452 131 453 131 3.61 0.00 493 453 131 453 131 453 1.31 g
C4 (32) 178.47 0.39 0.75 0.01 1.05 0.03 0.74 0.00 0.39 1.05 0.03 1.05 0.03 1.05 0.03 Ty
C5 (50) 86.82 3.06 425 3.05 3.75 0.00 2.38 0.09 3.06 4.68 3.05 4.68 3.05 4.68 3.05 g:
C6 (75) 134.84 248 3.76 3.34 3.60 3.34 3.56 0.00 248 3.07 248 3.38 248 3.07 248 =)
C7 (100) 138.03 839 287 043 3.84 238 298 0.00 8.39 431 299 4.01 1.61 4.59 347 §
C8 (150) 168.77 250 6.056 1.68 5.14 3.48 3.42 0.00 2.72 348 283 497 331 5.34 286 E
C9 (199) 224.52 424 3.63 000 274 1.74 198 0.51 4.83 4.57 317 466 290 4.66 2.51 53
C10 (120) 165.15 9.59 999 8.03 850 3.54 6.06 1.80 9.05 4.73 0.03 2.74 0.00 3.08 0.03 ggi
C11 (100) 132.33 2.08 142 068 151 0.26 094 0.17 2.08 116 0.00 1.16 0.00 1.16 0.00 5
Medium ::»
G1 (240) 962.42 0.02 0.22 0.19 0.20 0.00 0.23 0.19 0.02 0.21 0.02 0.21 0.02 0.21 0.02 g
G2 (320) 1451.04 0.79 1.30 0.84 1.30 1.07 1.25 0.71 0.04 124 0.63 096 0.00 0.87 0.00 =
Continued on next page
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161

Best Z LC(C2) LC(C2L1) LC(C2L2) LC(C2L3) LC(M2) LC(M2L1) LC(M2L2) LC(M2L3)
Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best
054 0.19 046 0.39 0.51 0.38 0.52 0.38 0.26 0.36 0.00 0.41 0.31
2.10 0.60 3.76 2.53 2.15 0.73 3.22 1.08 0.00 1.71 041 2.03 0.23
3.04 0.05 4.09 3.07 3.56 2.83 1.11 2.77 0.51 3.09 0.00 3.42 0.51
2.00 0.70 1.75 0.75 225 1.64 0.00 1.60 1.14 1.36 0.70 1.64 1.14
0.52 040 0.72 0.05 0.65 0.44 0.89 0.57 0.00 0.61 0.27 0.61 0.14
1.71 150 1.51 0.82 1.87 1.42 2.16 1.69 0.00 1.52 0.00 1.64 0.00
0.72 025 192 0.16 1.59 0.00 0.18 1.17 0.18 1.11 0.18 1.03 0.18
225 0.09 1.70 1.04 2.39 0.00 1.78 1.65 0.97 2.08 0.68 217 1.51
1.58 0.72 1.55 -0.15 1.58 0.06 0.81 1.13 0.00 1.83 1.25 1.90 0.00
1.12 0.00 1.32 0.28 1.18 0.00 0.81 1.34 0.81 1.85 0.81 1.30 0.58
1.03 0.00 098 041 1.08 0.23 0.41 147 041 1.10 041 1.24 041
1.32 047 1.42 0.00 1.27 0.60 0.54 151 044 154 044 1.36 0.44
1.08 0.11 1.28 0.19 1.02 0.00 039 1.11 029 074 0.12 1.32 0.29
1.52 0.15 142 0.64 1.40 0.11 0.40 2.10 0.23 1.52 0.00 1.66 0.29
326 269 3.01 177 223 042 1.37 178 0.89 1.18 0.00 1.82 0.89
0.33 0.00 0.63 0.28 0.43 0.00 0.70 0.44 0.23 0.78 0.48 0.41 0.14
1.18 0.72 130 0.79 1.08 0.72 1.05 1.16 0.00 1.00 0.87 1.22 0.77
042 0.00 0.54 0.13 0.59 0.20 0.76 0.51 0.09 043 0.14 0.38 0.17

Continued on next page
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Best Z LC(C2) LC(C2L1) LC(C2L2) LC(C2L3)  LC(M2) LC(M2L1) LC(M2L2) LC(M2L3)

45!

Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best
Large

2890.65 1.87 2,02 1.09 159 0.00 1.71 1.09 233 217 148 199 1.50 221 1.95
2431.94 044 0.66 0.00 0.60 0.06 0.70 0.00 044 0.79 058 0.80 0.59 0.79 0.58
3402.99 0.81 1.13 0.57 1.09 0.74 1.12 0.72 1.11 0.88 0.10 0.56 0.00 0.75 0.18
3922.84 045 1.21 0.53 1.22 0.00 1.27 0.19 029 1.67 031 169 0.36 1.62 0.31
2841.06 0.50 0.81 0.59 0.68 0.00 0.91 0.59 044 0.72 023 065 0.23 0.71 0.23
4276.60 0.29 1.23 0.35 0.93 0.00 0.79 0.28 043 0.35 030 0.37 0.29 0.35 0.30
2870.96 0.69 0.87 0.00 0.97 045 0.87 0.45 0.76 1.14 0.70 120 0.70 1.12 0.70
4799.90 1.07 2.64 208 1.47 064 1.70 1.21 0.36 0.53 -0.11 0.59 0.00 0.78 0.19
5199.08 0.00 1.31 0.80 1.09 0.53 1.34 0.53 044 1.74 053 148 0.51 1.43 0.53
5759.24 0.75 1.14 0.71 0.95 0.00 0.90 0.02 0.74 0.77 0.68 0.70 0.64 0.73 0.49
6161.86 0.80 1.45 0.52 1.62 0.00 1.56 0.55 0.78 1.79 1.10 1.67 1.01 1.73 1.10
L12 (1200) 6756.20 0.34 2.09 1.34 187 0.62 215 1.35 0.00 2.07 0.61 195 0.05 2.03 0.48
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CHAPTER 6. Incorporation of the load factor in composite and multi-level
heuristics

TABLE 6.8: Summary table for the average percent deviation (in %) and the total
best Z of the learning mechanism using the composite and multi-level heuristics

Data set LC(C2) LO(C2L1) LO(C2L2) LC(C2L3)  LC(M2) LC(M2L1) LC(M2L2) LC(M2L3)

Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best
Small 3.84 3.82 151 3.76 1.36 275 0.20 3.86 3.57 184 344 1.72 3.60 1.81
Medium 0.84 1.36 048 154 0.71 142 0.53 0.86 1.24 036 125 0.34 133 0.40
Large 0.67 138 0.71 1.17 0.25 1.25 0.58 0.68 122 054 1.14 049 1.19 0.59
Overall 1.71 211 0.86 212 0.79 1.78 0.44 1.72 194 0.85 1.89 0.80 1.99 0.88
Total Best Z 1 0 8 0 10 0 14 2 0 8 0 11 0 4

Further illustration can be viewed in Figure 6.8. It can be observed that the
average solution among the five test runs always produced a higher solution than
the best one, in terms of the percent deviation compared to the best Z found in
among the methods. This may be because the test probability of choosing the
next refinement module is selected randomly. Therefore, among the test runs,

some of them have a good solution and some have not.
CPU times

The computing time for the learning mechanism is recorded when the procedure
of the integrated search starts. The end time is logged when the final solution is
formed. The computing time is also recorded over five test runs. The result is
demonstrated in Table 6.9. It can be observed that the overall average time for an
instance to complete the search is very long, with the lowest one is about 1.5 hour
(5270.697 seconds). Furthermore, the learning mechanisms using the multi-level

heuristic (M2) is found to be faster than using the composite heuristic (C2).

TABLE 6.9: Average computational time for learning mechanism over five runs
(seconds)

Data set LC(C2L1) LC(C2L2) LC(C2L3) LC(M2L1) LC(M2L2) LC(M2L3)

Small 7.203 5.734 6.562 3.652 3.669 3.455
Medium 323.398 445.392 379.510 381.420 348.556 350.634
Large 29857.556  23123.971 36871.987  21229.485 19619.133 20231.396
Overall 7931.727  6227.734  9785.780 5705.073  5270.697 5431.257

6.4 Summary

In this chapter, we investigated the performance of the integrated search consisting
of the combination of the local search operators using the composite and multi-

level heuristics. Two variants of the heuristics are performed in including the
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FIGURE 6.8: Average percent deviation against the best Z for the learning mecha-
nism using the composite and multi-level heuristics for (a) small, (b) medium, and
(c) large data sets, as well as the (d) overall instances

2-opt operator within the search. Extensive computational tests were undertaken
using the 46 well-known VRP instances. Interesting results of both heuristics
are obtained. This test inspired us to incorporate the learning mechanism in the

search to encourage the solution to be relatively more efficient. We highlighted
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three types of the learning mechanisms with respect to the test probability in
choosing the successive improvement scheme. These result in some interesting
findings. In the next chapter, we draw the conclusion of this study and provide

some suggestions to improve and expand this research.
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Chapter 7

Conclusions and Suggestions

7.1 Introduction

This chapter provides an overall summary of the research and accentuates some

research prospects that might be worth exploring in the future.

7.2 Conclusions

This study examines the impact of the load factor in heuristic search for the case
of the environmental routing problem. In other words, the classical vehicle routing
problem (VRP) namely the capacitated VRP (CVRP) with the incorporation of
the load factor is analysed. Three types of heuristic searches are explored which
include the constructive heuristic, the local search and the integrated heuristic.
New formulations for the selected constructive method and the local searches with
the attachment of the load factor are introduced. In the integrated heuristic, a
set of the local search operators is utilised altogether as it gives a better alter-
ation to the solution rather than using a single operator. A learning mechanism
is then introduced to guide the search to be comparatively more efficient. The
effectiveness and flexibility of the new load-based formulations are shown to be a
useful addition to the local searches as demonstrated by the interesting solutions
obtained when tested on the 46 well-known VRP data sets.

This thesis is organised into seven chapters. Each chapter is briefly described
in the following. Starting with the first chapter, here we provided an overview

of the routing problems focusing on the transportation planning. As the recent
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transportation activities rise to a greater concern of the environmental impact,
we highlighted issues associated with COy emissions and its relationship with the
load factor. In addition, we gave a brief description of the common research

methodology to solve the routing problems.

In Chapter 2, we investigated some of the literature related to this research. This
includes an overview of VRP especially the capacitated one and its basic optimi-
sation model. Some review of researches from the area of VRP are also embraced,
especially the ones associated with sustainable transportation activities. This cor-
responds to another class of VRP named the green VRP, which includes pollution
routing problem and VRP with reverse logistic. We also explored some related
literature to the estimation of vehicle fuel consumption and emission. This esti-
mation method is essential in this research as we adopted it to approximate the

routing cost in the subsequent chapters.

Thereafter in Chapter 3, one of the most studied constructive heuristics namely,
Clarke and Wright savings is analysed. We introduced two new savings formu-
lations to incorporate the load factor known as the integrated and the combined
savings. The emission model known as the Comprehensive Modal Emission Model
(CMEM) is adapted to be the cost function to calculate the fuel consumption in
measuring the CO, emission. Some adjustments to the model are also discussed.
We also highlighted the evaluation of the reverse route to put more weight on the
load factor that is being investigated. This scheme remained to be of the essence
throughout this research. Computational experiments performed using the 46 of
the well-known VRP instances generated stimulating results. It is found that the
combined savings performed better than the integrated one. Therefore, the solu-
tion obtained from the combined savings along with the non-load-based regular

savings is used as the initial solution in the rest of the thesis.

Subsequently, Chapter 4 studies the first three basic local search operators that are
the 2-opt, (1,0) relocate and (2,0) relocate. The computation of these operators is
generally simple and relatively quick. The 2-opt is performed only for the intra-
route case, but all other operators are performed for both the intra-route and the
inter-route cases. We presented new mathematical formulations which take into
account the load factor for the first time. An illustrative example is then provided
followed by full computational results obtained using the same VRP instances. In
addition, we also highlighted the computational comparison between the brute-

force and the formula-based searches. It is found that a large gap between the
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two in terms of computing time exists. This finding encourages us to develop new

formulations with the attached load factor for the search process.

In Chapter 5, three more intensive local search operators namely, the (1,1), (2,1)
and (2,2) interchange are analysed. These operators are considered as advanced as
they require relatively much more computing effort. Both the intra-route and the
inter-route cases are implemented separately for a single operator. Similar to what
was done in Chapter 4, the load factor is adapted to obtain new mathematical
formulations. An illustrative example to illustrate the operator is also given.
This is followed by an extensive computational experiment conducted using the
renowned 46 VRP instances. Interesting outcomes are observed. Among the

operators, there is no clear supremacy with respect to their solution quality.

Chapter 6 analyses the performance when all these local search operators are put
altogether in the search. The method, which is referred to as the integrated search,
comprised of two powerful mechanisms namely; the composite and the multi-level
heuristics. These two metaheuristics refine the solution by using improvement
schemes, also known as the local searches operators. These are arranged in a
certain order which can be critical. For simplicity, we ranked them according
to their time complexity leading to the following order: (1,0), (1,1), (2,0), (2,1),
and (2,2). These two methods are quite similar to each other, apart from the
way it directed the search once a particular improvement scheme is implemented.
In this study, we provided a brief description of the two methods as well as the
algorithms which led to twelve variants. This is followed by the computational
results acquired with the use of 46 well-known VRP instances over all the variants.
Two of these variants are found to be prominent and they are selected for the next
stage where the learning mechanism is then introduced. We established a random
choice based on a certain test probability to select the next local search, and we
came out with three sets of test probability to be incorporated in the integrated
search. Computational tests based on the 46 known data sets are performed over
five runs with interesting outcomes. It was found that in general, for small and
large data sets, the learning search within the composite method yielded a better
solution. However, for the medium data set, the learning search within the multi-
level heuristic performed better. It was also noted that in terms of computational
time, the learning search within the multi-level heuristics is mostly faster than the

composite one.
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7.3 Future research directions

In this section, we point out some research avenues that we think will be worth-
while to pursue in the future. We would also like to emphasise that some of these
points have already been briefly expressed in their respective chapters. These
avenues are classified under two categories; the first being based on the possible
enhancements that can be made on the proposed methods, whereas the second is

focused on the general problem.

7.3.1 Improvement of the proposed method

In this study, we concentrate on the classical VRP which restricts the search to
its vehicle capacity. However, the effect of the load factor could also be applied to
other routing problems with additional characteristics and constraints. For exam-
ple, the CVRP can be expanded to perform both tasks of delivery and collection

simultaneously with the incorporation of the load factor in its algorithm.

Another issue that would be useful to explore is the adaptation of other construc-
tive heuristics in obtaining the initial solution while introduces the load factor.
For instance, the formulation of the nearest neighbourhood search could be easily
modified to include the load factor with the measure of fuel consumption function.
By manipulating several methods to obtain the initial solution, this can create a

wide selection of neighbourhoods to be used for further improvement.

While using the same model to estimate the fuel consumption, it is also worthwhile
to explore the effect of other factors such as the vehicle speed, acceleration and
road gradient to gain more accuracy on the calculation. For example, instead of
defining the speed as the average along the network, one could create a predefined
speed matrix that may reflect on different types of the road travelled by the vehicle.
Additionally, a positive road gradient results in an increase in fuel consumption
and it should be carefully considered in impending route planning. The latest GIS

software is able to cater for the road gradient data.

Moreover, it may be worthy to employ another model to estimate the fuel con-
sumption or the CO, emission to calculate the cost of the route. From the liter-

ature, there are quite a few more emission models that can be explored such as
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the Computer programme to calculate emissions from road transportation (COP-
ERT). It can be noted that the success of employing such model might depend on
the availability of data.

Another aspect that might be worth delving into is the application of other local
search operators. The load factor or even other factors that affecting the fuel
consumption measure could be integrated into their formulation with the same
principle as what we have done here. The A-opt, u-relocate, and p-1 interchange
operators can be benefited by using a different value of A, p and ¢. To begin with,
we would likely to suggest applying A = 3 as it is found to be suitable for many
applications in the literature. A more complex local search procedure might also
be worthwhile so long as there is a close monitor to ensure the search remains

computationally acceptable.

Other than that, it might be interesting to have a powerful metaheuristic imple-
mented in the search process. One possible method is to apply variable neigh-
bourhood search (VNS) which is not far from the multi-level method. A genetic
algorithm could also be attempted as we can expand the local searches to learn the
operation of this method by applying the crossover, mutation and reproduction
procedure. Extra care needs to be taken as these population type methods can

consume more time.

Moreover, in this study, we applied the 2-opt operator within the integrated search
whenever an improvement is found. It would be useful and possibly can reduce a
little bit of time if the 2-opt is applied only to the affected route(s). Note that,
it can be challenging as it is difficult to identify such route(s) as one route may

experience many times of change in one procedure.

Furthermore, in the learning stage, we conducted a small test runs but this can
easily be expanded to have a larger experiment with say, 30 reps to have better
statistical results. Also, other a values could also be experimented to see the effect

of the weight applied to the distance and fuel consumption costs.

In this study, we made adjustments to the well-known VRP instances in terms of
the vehicle capacity and customers’ demand to have a meaningful effect when using
the selected fuel consumption function. Thus, it would be interesting to attempt
this kind of problem in a real case study. Companies and business organisations
can benefit from the findings to provide more efficient transportation services to

their clients.
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We would also like to emphasise that in our research, the vehicle load impact
very much depends on the distance measure. The effect of the load can then
be distorted or misleading as the distance also influences the decision. Having
a measurement which specifically caters for the load function and which is not
restricted to the distance only, is a worthwhile task to pursue as its effect of the

load may be practically more significant.

7.3.2 General improvement

Further exploration could be attempted by transforming the problem into a multi-
objective problem with more than two objective functions. More objectives with
regards to different criteria could be added so as to have a comprehensive solution
closer to the nature of the problem. This problem then can be tackled with multi-
objective optimisation techniques such as the evolutionary algorithm to approach

the Pareto frontier.

For a given method, it is also important to understand each and every step in the
procedure as this will allow us to design a new data structure that can minimise
and avoid redundant calculations. This can lead to a saving in computational time
without affecting the solution quality. Another time-saving approach that can be
endeavoured is by constructing some neighbourhood reduction schemes as these
help to avoid performing unnecessary calculations. These schemes would even be
devised in a dynamic way with the aim to prioritise each type of neighbourhood
and each type of local search. This deep learning is a very contemporary topic

that is worth examining.
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Appendix A

Contributions to knowledge

In this appendix, the main contributions that stem from this research are high-

lighted. These include conference items and potential academic papers.

Conference Items

1. Ahmad, N.,; Salhi, S., Acquaye, A. (2017) Adapting Constructive Heuristics
and Local Search Operators in Green Vehicle Routing Problem. In OR59
Annual Conference, 12-14 September 2017. United Kingdom: Loughbor-
ough. [Part of chapters 3 and 4]

2. Ahmad, N., Salhi, S., Acquaye, A. (2018) Introduction of Load Factor in Lo-
cal Search Operators. In OR60 Annual Conference, 11-13 September 2018.
United Kingdom: Lancaster. [Part of chapters 4 and 5]

Academic Papers (in preparation)

1. Incorporation of the load factor in constructive VRP heuristics [Part of chap-
ters 2 and 3]

2. The introduction of the load factor in local searches for combinatorial opti-

misation [Part of chapters 4, 5 and 6]
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Detailed computational results of
the composite and multi-level

heuristics

In this appendix, a detailed computational results of the composite and multi-level
heuristics are presented. It is shown in Table B.1, the objective function solution

Z obtained with different values o = 0.6,0.7,0.8,0.9,1.0.
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TABLE B.1: Detailed computational results for the composite and multi-level heuristics

# (n) a C1 C2 M1 M2

CR LR LC CR LR LC CR LR LC CR LR LC
Small

F1 (44) 0.6 116 112.67 120.08 112.14 114.42 120.5 112.14  112.67  120.08 112.14 114.42 120.5
0.7 118.82 115.64 123.2  115.03 117.64 123.66 115.03  115.64 123.2  115.03 117.64 123.66
0.8 121.63 118.62 120.76 11793 120.86 120.86 11793  118.62 120.76 11793 120.86  120.86
0.9 12445 121.59 121.59  120.82 124.07 121.71 120.82  121.59  121.59  120.82  124.07 121.71
1 127.27 12456 12456  123.72  127.29  127.29 123.72 12456  124.56  123.72  127.29  127.29
F2 (71) 0.6 43.84 42.74 41.73 43.84 42.74 41.62 43.84 42.74 41.73 43.84 42.74 41.62
0.7 44.91 43.79 42.79 44.91 43.79 42.64 44.91 43.79 42.79 44.91 43.79 42.64
0.8 45.97 44.84 43.84 45.97 44.84 43.65 45.97 44.84 43.84 45.97 44.84 43.65
0.9 47.03 45.89 44.9 47.03 45.89 44.66 47.03 45.89 44.9 47.03 45.89 44.66
1 48.09 46.93 46.93 48.09 46.93 46.93 48.09 46.93 46.93 48.09 46.93 46.93
F3 (134) 0.6 191.36 190.96 192.24 191.07 191.35 192.24 191.36  190.96 192.24 191.07 191.35 192.24
0.7 19558 195.21 196.6  195.28  195.62  196.19 195.58  195.21 196.6  195.28  195.62  196.19
0.8 199.8  199.46  199.92  199.49  199.89  199.53 199.8  199.46  199.84 199.49  199.89  199.09
0.9 204.02 203.71 201.52  203.69 204.16  205.01 204.02  203.71 199.79  203.69 204.16  204.95
1 20824 207.97  207.97 2079  208.43  208.43 208.24 20797  207.97 207.9  208.43  208.43
C1 (21) 0.6 58.23 59.8 59.8 58.23 58.23 58.23 58.23 59.8 59.8 58.23 58.23 58.23
0.7 59.62 61.17 61.17 59.62 59.62 59.62 59.62 61.17 61.17 59.62 59.62 59.62
0.8 61.02 62.54 62.54 61.02 61.02 61.02 61.02 62.54 62.54 61.02 61.02 61.02
0.9 62.41 63.92 63.92 62.41 62.41 62.41 62.41 63.92 63.92 62.41 62.41 62.41

Continued on next page
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
1 63.8 65.29 65.29 63.8 63.8 63.8 63.8 65.29 65.29 63.8 63.8 63.8
C2 (22) 0.6 101.23 99.71 102.89  101.23 99.71 101.63 101.23 99.71 102.89  101.23 99.71 101.63
0.7 104.18 102.69 10594 104.18 102.69 104.62 104.18  102.69 105.94 104.18 102.69 104.62
0.8 107.14 105.66 10899 107.14 105.66  107.62 107.14  105.66  108.99  107.14 105.66  107.62
0.9 110.1  108.64  112.03 110.1  108.64  110.61 110.1  108.64  112.03 110.1  108.64  110.61
1 113.05 111.61 111.61 113.05 111.61 111.61 113.05 111.61 111.61 113.05 111.61 111.61
C3 (29) 0.6 78.8 78.54 78.54 78.8 78.54 78.54 78.8 78.54 78.54 78.8 78.54 78.54
0.7 80.69 80.49 80.49 80.69 80.49 80.49 80.69 80.49 80.49 80.69 80.49 80.49
0.8 82.59 82.44 82.44 82.59 82.44 82.44 82.59 82.44 82.44 82.59 82.44 82.44
0.9 84.49 84.39 84.39 84.49 84.39 84.39 84.49 84.39 84.39 84.49 84.39 84.39
1 86.38 86.34 86.34 86.38 86.34 86.34 86.38 86.34 86.34 86.38 86.34 86.34
C4 (32) 0.6 179.35 180.62 179.16 179.35  180.62 179.16 179.35  180.62 179.16 179.35 180.62  179.16
0.7 183.99 185.32 183.96 183.99 185.32 183.96 183.99  185.32 183.96 183.99 185.32  183.96
0.8 188.64 190.03 188.76 188.64 190.03  188.76 188.64  190.03  188.76  188.64 190.03  188.76
0.9 193.28 194.73 193.56 193.28 194.73  193.56 193.28  194.73  193.56  193.28 194.73  193.56
1 19793 199.43 199.43 19793 199.43 199.43 19793  199.43 199.43 19793 199.43  199.43
C5 (50) 0.6 92.12 88.82 87.25 92.12 87.06 89.47 91.8 88.79 87.25 91.8 87.86 89.47
0.7 94.13 90.75 89.22 94.13 88.96 91.47 93.87 90.73 89.22 93.87 89.81 91.47
0.8 96.15 92.67 92.67 96.15 90.86 90.86 95.93 92.66 92.66 95.93 91.75 91.75
0.9 98.16 94.6 94.6 98.16 92.76 92.76 98 94.6 94.6 98 93.69 93.69
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
1 100.18 96.53 96.53  100.18 94.66 94.66 100.07 96.54 96.54  100.07 95.63 95.63
C6 (75) 0.6 136.46 135.82 138.19 13646 136.66 138.19 136.46  136.66  138.19 136.46 136.66  138.19
0.7 13939 138.74 141.24 13939 139.64 141.24 139.39  139.64  141.24 139.39 139.64 141.24
0.8 14233 141.67 144.29 14233 142.61 144.29 142.33  142.61  144.29 14233 142.61  144.29
0.9 145.27 144.6  151.36 14527  145.59  151.36 145.27  145.59  151.36  145.27  145.59  151.36
1 148.21  147.53  147.53 14821  148.56  148.56 148.21  148.56  148.56  148.21  148.56  148.56
C7 (100) 0.6 143.96 147.42 138.27 143.96 147.42 149.61 14724 14742  143.41 14724 14742  149.61
0.7 14719  150.71  149.92  147.19  150.71  148.23 150.55  150.71  149.92  150.55  150.71  145.25
0.8 150.43 1564 153.22  150.43 154 151.54 153.86 154 153.22  153.86 1564 148.48
0.9 153.67 157.29 156.53 153.67  157.29  154.85 157.17  157.29  156.53  157.17  157.29 151.7
1 15691 160.58 160.58 156.91  160.58  160.58 160.48  160.58  160.58  160.48  160.58  160.58
C8 (150) 0.6 185.25 183.76  178.64 185.25  183.17 172.99 183.71  183.26 173.64 183.71 183.12 173.36
0.7 189.38 187.92 182,72 189.38 187.27 176.93 18779  187.36  177.59  187.79  187.18 177.31
0.8 193.51 192.08 192.08 193.51 191.38  191.38 191.86  191.46 191.46 191.86 191.25  191.25
0.9 197.65 196.24 196.24 197.65 19549  195.49 19594  195.56  195.56 19594  195.32  195.32
1 201.78 200.4 200.4  201.78 199.6 199.6 200.02  199.66 199.66  200.02  199.39  199.39
C9 (199) 0.6 236.72  232.03 234.5  236.72  232.03 234.04 232.67  229.99 23537  232.67  229.99 235.36
0.7 241.88  237.14 225,57  241.88  237.14  227.76 23779  235.08 228.2  237.79  235.08  227.76
0.8 247.04 242.26 251.5  247.04 24226  251.66 24291  240.16 251.5 24291  240.16  251.66
0.9 252.2 24737  238.06 252.2 24737  239.64 248.04 24525 24296  248.04  245.25  239.02
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
1 25736 25249  252.49 257.36 25249  252.49 253.16  250.33  250.33  253.16  250.33  250.33
C10 (120) 0.6 183.04 183.07 180.37 183.04 183.07  180.09 183.04  183.07 180.11  183.04 183.07  180.09
0.7 187.11 187.17 176.02  187.11  187.17 176.02 187.11  187.17  176.02  187.11  187.17  176.02
0.8 191.19 191.27 179.81 191.19 191.27 179.81 191.19 191.27 179.81  191.19 191.27 179.81
0.9 19527 19537 19537 19527 195.37  195.37 195.27  195.37  195.37  195.27  195.37  195.37
1 19935 19947  199.47  199.35  199.47  199.47 199.35  199.47 19947  199.35 199.47  199.47
C11 (100) 0.6 131.63 131.64 132.69 131.63 131.64 135.08 131.63  131.64 132.69 131.63 131.64 135.08
0.7 134.6  134.62 135.62 134.6  134.62 138.09 134.6  134.62 135.62 134.6  134.62  138.09
0.8 137.57 137.6 137.6  137.57 137.6 137.6 137.57 137.6 137.6  137.57 137.6 137.6
0.9 140.53  140.58 140.58  140.53  140.58  140.58 140.53  140.58  140.58  140.53  140.58  140.58
1 143.5 143.57  143.57 143.5 143.57 143.57 143.5 143.57  143.57 143.5 143.57  143.57

Medium

G1 (240) 0.6 912.5  912.59  962.59 912.5 912.59  962.59 912.5  912.59  962.59 912.5 912,59  962.59
0.7 93436 93498 953.83 934.36  934.98  953.83 934.36  934.98  953.83 934.36  934.98  954.92
0.8 956.21 957.36 976.81 956.21  957.36  977.04 956.21  957.36  976.81  956.21  957.36  977.04
0.9 978.07 979.75  999.25  978.07  979.75  999.56 978.07  979.75  999.25  978.07  979.75  999.56
1 999.92 1002.13 1002.13 999.92 1002.13 1002.13 999.92 1002.13 1002.13  999.92 1002.13 1002.13
G2 (320) 0.6 1406.52 1411.44  1462.5 1407.53 1411.44  1462.5 1407.53 1411.44 1451.58 1407.53 1411.44 1451.58
0.7 1440.3 1446.63 1498.86 1441.21 1446.63 1498.86 1441.21 1446.63 1487.93 1441.21 1446.63 1487.93
0.8 1474.08 1481.81 1519.03 1474.88 1481.81 1519.03 1474.88 1481.81 1527.16 1474.88 1481.81 1527.16
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.9 1507.86 1516.99 1585.91 1508.56 1516.99 1585.91 1508.56 1516.99 1585.91 1508.56 1516.99 1585.91
1 1541.64 1552.17 155217 1542.23 1552.17 1552.17 1542.23 1552.17 1552.17 1542.23 1552.17 1552.17
G3 (400) 0.6 1970.04 1981.8 1994.77 1977.75 1980.82 1990.78 19777 1982.52 1994.77  1977.7 1982.52 1994.77
0.7 2018.54 2032.47 2045.46 2026.23 2031.5 2041.31 2026.2 2033.17 204546  2026.2 2033.17 2045.46
0.8 2067.04 2083.14 2101.92 2074.72 2082.18 2101.92 2074.7  2083.82 2099.93  2074.7 2083.82 2100.32
0.9 2115.54 2133.81 215248 2123.21 2132.85 2151.26 2123.19 2134.47 2151.22 2123.19 2134.47 2151.17
1 2164.05 2184.48 2184.48 2171.69 2183.53 2183.53 2171.69 2185.12 2185.12 2171.69 2185.12 2185.12
G4 (480) 0.6 2438.69 2481.12 2474.28 2446.14 2489.85 2508.03 2490.6  2555.52 2475.77 2490.75 2554.85 2514.68
0.7 2496.03 2542.48 2475.64  2503.7 2551.34 2479.45 2549.23 2617.74 2486.52 2549.34 2616.91 2504.11
0.8 2553.37 2603.84 2537.74 2561.25 2612.83 2562.48 2607.85 2679.96 2530.78 2607.92 2678.96 2578.19
0.9 2610.71 2665.21 2666.88 2618.81 2674.33 2694.33 2666.47 2742.18 2696.01 2666.51 2741.01 2698.33
1 2668.04 2726.57 2726.57 2676.36 2735.82 2735.82 2725.1  2804.4  2804.4  2725.1 2803.07 2803.07
G5 (200) 0.6 1156.26 1150.52  1142.2 1155.75 1141.73 1114.95 1155.3 1146.34 1122.07  1155.3 1145.39 1122.14
0.7 1182.69 1177.6 1133.57 1181.99 1168.64 1123.05 1181.7 1173.27 112291 1181.7 1172.39 112291
0.8 1209.13 1204.68 1160.31 1208.22 1195.54 1149.46 1208.11 1200.21 1149.36 1208.11 1199.39 1149.36
0.9 1235.57 1231.76 1200.95 1234.45 1222.45 1209.63 1234.51 1227.14 1197.78 1234.51 1226.39 1201.95
1 1262.01 1258.84 1258.84 1260.69 1249.36 1249.36 1260.92 1254.08 1254.08 1260.92 1253.38 1253.38
G6 (280) 0.6 1462.92 1460.17 1477.05 1462.92 1457.25 1477.45 1464.65 14529 1476.03 1464.65 1459.56 1476.03
0.7 1497.34 1496.54 1506.04 1497.34 1493.52 1501.04 1499.48 1488.87 1530.85 1499.48 1495.76 1501.69
0.8 1531.76 1532.92 1542.43 1531.76 1529.79 1537.16 1534.31 1524.85 1567.56 1534.31 1531.96 1537.46
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.9 1566.18 1569.29 1578.83 1566.18 1566.06 1573.28 1569.13 1560.82 1604.28 1569.13 1568.16 1573.23
1 1600.61 1605.67 1605.67 1600.61 1602.33 1602.33 1603.96 1596.79 1596.79 1603.96 1604.36  1593.7
G7 (360) 0.6 1854.07 1865.03 1821.87 1854.07 1845.17 1840.48 1852.99 1862.69 1844.12 1852.99 1844.45 1844.12
0.7 1899.35 1911.83 1868.39 1899.35 1892.04 1887.72 1898.02 1909.34 1891.53 1898.02 1891.28 1891.53
0.8 1944.62 1958.64 1919.03 1944.62 1938.91 1927.22 1943.04 1955.99 1934.51 1943.04 1938.11 1934.51
0.9 1989.9 2005.45 1980.64 1989.9 1985.78 1982.25 1988.06 2002.64 1975.91 1988.06 1984.94 1975.91
1 2035.18 2052.26 2052.26 2035.18 2032.65 2032.65 2033.08 2049.29 2049.29 2033.08 2031.77 2031.77
G8 (440) 0.6 2040.19 2052.59 2070.47 2035.12  2049.8 2070.47 2046.8 2046.51 2070.47 2042.71 2046.85 2070.47
0.7 2089.68 2103.56 2121.37 2084.46 2100.78 2120.86 2096.2 2097.41 2121.37 2092.37 2098.07 2120.86
0.8 2139.18 2154.54  2146.7 2133.79 2151.76  2146.7 2145.61 2148.31 2143.54 2142.02 2149.29 2143.54
0.9 2188.67 2205.51 2198.45 2183.12 2202.75 2198.45 2195.01 2199.21 2195.03 2191.68  2200.5 2195.03
1 2238.17 2256.49 2256.49 2232.46 2253.73 2253.73 2244.42  2250.11 2250.11 2241.33 2251.72 2251.72
G9 (255) 0.6 100.31 98.91 99.33  100.31 99.55 98.97 100.31 99.85 99.2  100.31 98.93 98.97
0.7 102.47 101.03 101.55 102.47 101.68  101.55 102.47  101.99 101.55 102.47 101.05 101.55
0.8 104.62 103.14 103.68 104.62 103.82  103.68 104.62  104.12  103.68 104.62 103.17  103.68
0.9 106.78 105.26 106.04 106.78  105.95 106.04 106.78  106.26  106.04  106.78  105.29  106.04
1 108.93 107.38 107.38 108.93 108.09  108.09 108.93  108.39  108.39 108.93 107.41 107.41
G10 (323) 0.6 129.39 12749 12723 129.39 127.79  127.36 128.5  128.06  127.23 128.5  128.79  127.36
0.7 132.16 130.21 130.04 132.16 130.53  130.08 131.26  130.81 130.04 131.26 131.55  130.08
0.8 13493 13294 131.73 13493 133.27v 131.82 134.01  133.55 131.73 134.01 13431 131.82
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.9 137.7  135.66  135.97 137.7  136.01  136.01 136.76 136.3 136.39 136.76  137.07 137.07
1 14047 138.38 138.38 14047 138.75  138.75 139.52  139.06 139.05  139.52  139.83  139.83
GI11(399) 0.6 161.45 159.39 158.82 161.45 159.39  158.57 161.45  159.39  158.82 16145 159.39  158.56
0.7 16491 162.81 162.2  164.91 162.8  161.97 164.91  162.81 162.2  164.91 162.8  161.97
0.8 168.37 166.22 166.93 168.37  166.22  168.54 168.37  166.22  166.93  168.37  166.22  168.54
09 171.83 169.63 169.61 171.83 169.63  168.54 171.83  169.63 169.61  171.83  169.63 168.6
1 17529 173.05 173.05 17529 173.05 173.05 175.29  173.05 173.05 175.29 173.05  173.05
G12 (483) 0.6 192,53 19246 19238 192,53  191.11 193.3 193.05 192.39 193.08 193.06  191.75 193.3
0.7 196.62 196.58 196.24 196.62  195.22  196.89 197.15 196.5 196.24 197.15 195.84  196.89
0.8  200.72 200.7  202.68  200.72  199.34  200.77 201.25 200.61  202.68 201.25 199.93  202.68
0.9 204.81 204.83 204.82 204.81 203.45 205.21 205.35  204.72  206.37  205.35 204.02  206.25
1 20891 208.95 208.95 208.91 207.56  207.56 209.45  208.83  208.83  209.45 208.11  208.11
G13 (252) 0.6  142.51 143.09  143.68  142.51 143.83  143.27 142.51 143.09  143.64  142.51 143.83  143.12
0.7 145.63 146.21 148.32  145.63  146.95 148.9 145.63  146.21 149.08  145.63  146.95 148.4
0.8 148.75 149.33 151.06  148.75  150.07 149.34 14875  149.33  151.06  148.75  150.07  149.72
0.9 151.87 152.46 152.4  151.87  153.18 153.2 151.87  152.46 152.4  151.87  153.18 153.2
1 15499 155.58  155.58  154.99 156.3 156.3 154.99  155.58 155.58  154.99 156.3 156.3
G14 (320) 0.6  181.75 181.1 182.04  181.75 181.5  182.65 181.75 181.1 182.68  181.75  181.58 182.31
0.7 185.71 185.05  187.21  185.71 185.47  187.46 185.71  185.06  187.21  185.71  185.56  187.49
0.8 189.66 189  189.63  189.66  189.45  188.55 189.66 189  189.63  189.66  189.53  189.78
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.9 193.62 19295 193.06 193.62 193.42 193.62 193.62 19295 193.06 193.62 193.51 193.71
1 197.58 196.9 196.9  197.58 197.4 197.4 197.58 196.9 196.9  197.58 197.48  197.48
G15 (396) 0.6 22521 22495 22646 225.21 225.44  226.44 225.21 22456  226.46  225.21  225.23 226.4
0.7 230.07 229.81 230.62 230.07 230.33 230.81 230.07  229.41  230.62  230.07 230.09 230.81
0.8 23494 234.67 236.77 23494  235.22  237.26 234.94 23427  236.66  234.94 234.96  237.26
0.9 239.8  239.54  241.96 239.8  240.12  240.52 239.8  239.12 241.84 239.8  239.82  240.52
1 244.66 244.4 2444 24466  245.01  245.01 244.66  243.98 24398  244.66 244.68  244.68
G16 (480) 0.6 274.14 270.82 274.16  274.14  271.41  273.98 274.14  270.61  274.16  274.14 272.6  274.07
0.7  280.05 276.69 280.5  280.05  277.29 @ 279.32 280.06  276.48 280.5  280.05 278.5  278.92
0.8 285.96 282.57 286.26 285.96  283.18  284.39 285.96 28234  286.26  285.96  284.39  284.52
0.9 291.87 288.45 291.32 291.87  289.07 289.4 291.87  288.21 291.82  291.87 290.29  288.86
1 29778 29433 29433 297.78  294.96  294.96 297.78  294.08 294.08 297.78  296.18  296.18
G17 (240) 0.6 121.59 12098 119.89  121.59 121.79  119.42 121.57  121.23 119.89 121.25  121.79  119.27
0.7 124.25 123.65 122.64 124.25  124.47 123.33 124.23  123.92 122.64 12391 12447 123.12
0.8 126.91 126.31 126.44  126.91 127.15 126.1 126.88 126.6  126.44  126.57 127.15 126.1
0.9 129.57 128.98 129.1 129.57  129.83  128.76 129.54  129.28 129.1 129.24  129.83  128.76
1 132.23  131.65 131.65 132.23  132.51 132.51 132.19 13197  131.97 131.9 132,51 132.51
G18 (300) 0.6 168.72 169.74  170.05 168.6  169.63 168.7 168.6  169.74  169.86 168.6  169.63  168.86
0.7 17235 173.42 173.42 172.23 173.3 172.5 172.23  173.42 17342  172.23 173.3  172.76
0.8 17598 177.09 179.66  175.86  176.98  179.02 175.86  177.09  179.66  175.86  176.98  179.02
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.9 179.61  180.77 183.4 17949  180.66  182.75 179.49  180.77 183.4  179.49  180.66  182.75
1 183.23 184.45 184.45 183.12 184.34 184.34 183.12  184.45 184.45 183.12 184.34 184.34
G19 (360) 0.6 231.11 232.68 230.66 231.74  233.19 230.7 231.81  232.02 230.61 231.75 233.56 231.01
0.7 236.14 237.79 23855  236.79  238.31  238.91 236.87  237.11  239.09 236.81 238.69 23941
0.8 241.18 2429  243.61 241.85 24342  244.02 241.93 2422 24417 24186  243.82  244.54
0.9 246.21  248.01  248.37 246.9  248.54  249.68 246.99 24729 24859  246.92  248.94  249.77
1 251.24  253.12  253.12 25195  253.65  253.65 252.06 25238 25238  251.98  254.07  254.07
G20 (420) 0.6 31024 309.99 313.25 310.1  308.77  312.95 309.4 31099 313.25 309.24 310.23  312.95
0.7 316.93 316.72 315.66  316.78 315.5 315.2 316.06  317.73 31546 31591  316.98 315
0.8 323.62 323.44 32233 32347  322.23  321.89 322.73 32446  322.12  322.57  323.73  321.68
0.9 330.32  330.17 329 330.16  328.96  328.57 329.39 331.2  328.79  329.24 33048  328.36
1 337.01 336.9 336.9  336.85  335.68  335.68 336.06  337.94  337.94 335.9  337.23  337.23

Large

L1 (560) 0.6 3024.11 2951.63 2949.28 3025.58  2943.6 2944.62 3025.58  2946.6 2958.86 3025.58 2972.52 2957.97
0.7 3097.93 3027.37 3075 3099.64 3019.59 3075 3099.64 3021.94 3074.22 3099.64 3048.85 3074.22
0.8 3171.75 3103.11 3150.88 3173.69 3095.59 3150.88 3173.69 3097.27  3150.3 3173.69 3125.18  3150.3
0.9 3245.58 3178.84 3220.68 3247.74 3171.58 3220.68 324774 3172.6 32179 3247.74 3201.51 3217.94
1 3319.4 3254.58 3254.58 3321.79 3247.57 3247.57 3321.79 3247.93 3247.93 3321.79 3277.84 3277.84
L2 (600) 0.6 2461.01 2459.66 2442.73 2461.01 2460 2442.73 2461.01 2459.66 2442.73 2461.01 2460 2442.73
0.7 2521.07 2521.01  2506.3 2521.07 2521.54 2505.59 2521.07 2521.01 2507.47 2521.07 2521.54 2505.81
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.8 2581.13 2582.36 2568.29 2581.13 2583.08 2567.61 2581.13 2582.36 2569.52 2581.13 2583.08 2567.91
0.9 2641.18 2643.71 2631.81 2641.18 2644.63 2632.35 2641.18 2643.71 26319 2641.18 2644.63 2630.68
1 2701.24 2705.06 2705.06 2701.24 2706.17 2706.17 2701.24 2705.06 2705.06 2701.24 2706.17 2706.17
L3 (640) 0.6 3467.07 3454.51 3440.15 3432.77 3449.48 3430.64 3452.68 3428.77 3441.04 3452.68 3437.95 3440.93
0.7 3551.5 3544.44 3594.61 3516.96 3539.21 3596.71 3537.25 3517.46 3569.69 3537.25 3527.46 3569.69
0.8 3635.94 3634.37 3605.88 3601.16 3628.93 3605.88 3621.82 3606.15 3614.77 3621.82 3616.97 3616.48
0.9 3720.38 3724.3 3674.26 3685.35 3718.65 3674.44 3706.39 3694.84  3667.9 3706.39 3706.48 3670.43
1 3804.81 3814.23 3814.23 3769.55 3808.38 3808.38 3790.96 3783.53 3783.53 3790.96 3795.99 3795.99
L4 (720) 0.6 4084.52 4057.59 3944.82 4084.49 4027.34 3940.57 4102.88 4057.66 3939.06 4102.88 4053.58 3934.17
0.7 41844 4160.96 4010.64 4184.38 4130.1 4012.03 4202.81 4160.94 4018.45 4202.81  4156.8 4018.45
0.8 4284.29 4264.33 4131.83 4284.27 4232.86 4131.71 4302.75 4264.21  4146.9 4302.75 4260.01  4146.9
0.9 4384.17 4367.71 4278.51 4384.16 4335.62 4265.23 4402.68 4367.49 4279.41 4402.68 4363.23 4272.73
1 4484.05 4471.08 4471.08 4484.05 4438.38 4438.38 4502.62 4470.76 4470.76 4502.62 4466.45 4466.45
L5 (760) 0.6 2840.4 2822.97 2850.6  2840.4 2819.38 2855.34 2840.4 2821.03 2853.99  2840.4 2820.48 2853.42
0.7 2910.57  2895.2  2924.2 2910.57 2891.64 2929.4 2910.57 2893.17 2927.78 2910.57 2892.79 2927.13
0.8 2980.74 2967.43 2991.87 2980.74 2963.91 2991.68 2980.74 2965.32 2997.46 2980.74  2965.1 299291
0.9 3050.91 3039.66 3065.22 3050.91 3036.17 3065 3050.91 3037.46 3070.88 3050.91 30374  3066.5
1 3121.08 3111.88 3111.88 3121.08 3108.44 3108.44 3121.08  3109.6 3109.6 3121.08 3109.71 3109.71
L6 (800) 0.6 4462.22 4416.28 4288.95 4465.53 4354.48 4288.95 4446.27 4402.39 4295.44 4446.29 4389.15 4295.03
0.7 4571.75 4527.95  4355.8 4575.35 4466.17  4353.1 4555.81 4514.39 4355.64 4555.75 4502.11 4355.64
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.8 4681.28 4639.63 4687.58 4685.17 4577.87 4686.53 4665.36  4626.4 4660.47 4665.22 4615.06  4662.2
0.9 4790.81 4751.31 4714.54 4794.99 4689.56 4711.66 477491  4738.4 4677.26 4774.68 4728.02 4677.26
1 4900.33 4862.99 4862.99 4904.8 4801.26 4801.26 4884.46 4850.41 4850.41 4884.15 4840.97 4840.97
L7 (840) 0.6 2927.1 2921.21 2890.58  2927.1 2916.29 2890.74 2930.96 2928.05 2892.12 2930.96 2947.07 2892.89
0.7 2998.12 2995.15  2984.9 2998.12  2990.4  2984.9 3002.08 3002.52 2984.98 3002.08 3021.55 2984.98
0.8 3069.15 3069.09 3046.94 3069.15 3064.52 3047.26 3073.19 3076.99 3046.94 3073.19 3096.02 3047.26
0.9 3140.17 3143.03 3146.04 3140.17 3138.63 3146.04 3144.31 3151.46 3146.04 3144.31 3170.5 3146.04
1 3211.2 3216.97 3216.97 3211.2 3212.74 3212.74 321543 3225.93 3225.93 321543 3244.98 323291
L8 (880) 0.6 4938.67 4895.1 4818.13  4932.8 4849.37 4851.19 492741 4857.05 4834.17 4901.12 4845.42 4817.04
0.7 5061.56 5020.03 5028.53 5055.53  4973.3 5022.92 5050.31 4981.05 5041.79 5023.45 4969.29 5030.43
0.8 5184.46 5144.95 5135.57 5178.27 5097.23 5094.57 5173.21 5105.05 5138.42 5145.77 5093.17 5095.59
0.9 5307.35 5269.87 5282.59 5301.01 5221.17 5206.63 5296.11 5229.04 5257.62  5268.1 5217.04 5159.83
1 5430.24 5394.8 5394.8 5423.75  5345.1  5345.1 5419.01 5353.04 5353.04 5390.43 5340.91 5332.07
L9 (960) 0.6 5411.76 5342.26 5259.56 5422.37 5387.37 5199.08 5421.2 5414.54 5293.46 5420.69 5H407.05 5221.87
0.7 5547.23 5482.86 5232.23 5557.11 5529.15 5254.06 5556.32 5557.48 5256.89 5556.34 5549.84 5293.34
0.8 5682.69 5623.46 5627.95 5691.86 5670.92 5634.14 5691.45 5700.41 5659.11 5691.99 5692.62 5659.11
0.9 5818.16 5764.05 5808.44 5826.61 5812.7 5743.91 5826.57 5843.35 5797.38 5827.65 5H835.41 5750.07
1 5953.62 5904.65 5904.65 5961.36 5954.48 5954.48 5961.7 5986.29 5986.29  5963.3 5978.19 5963.47
L10 (1040) 0.6 5887.38 5843.19 5805.12 5862.39 5823.42 5802.38 5810.07 5H804.71 5804.37 5814.09 5840.19 5802.05
0.7 6035.44 5994.96 5962.82 6009.24 5975 5962.82 5955.99 5955.44 5969.23 5960.42 5991.92 5969.23
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TABLE B.1: — Continued from previous page

# (n) a C1 C2 M1 M2
CR LR LC CR LR LC CR LR LC CR LR LC
0.8 6183.5 6146.72 6141.56 6156.09 6126.58 6131.24 6101.91 6106.17 6142.2 6106.74 6143.64 6133.17
0.9 6331.56 6298.48 6401.81 6302.93 6278.16 6401.81 6247.84 6256.89 6363.14 6253.06 6295.37 6363.14
1 6479.62 6450.24 6450.24 6449.78 6429.74 6429.74 6393.76 6407.62 6407.62 6399.39 6447.09 6447.09
L11 (1120) 0.6 6368.44 6404.92 6189.79 6350.83  6390.7 6211.04 6371.27 6349.16 6226.97 6350.77 6369.27 6209.62
0.7 6532.41 6574.61 6372.01 6513.87 6559.88 6376.87 6535.62 6517.43 6391.33 6513.93 6538.23 6391.33
0.8 6696.38 6744.3 6775.63 6676.91 6729.06 6737.45 6699.96  6685.7 6776.74 6677.09 6707.19 6736.32
0.9 6860.35 6913.99 6854.67 6839.96 6898.24 6850.42 6864.31 6853.96 6827.69 6840.26 6876.15 6848.68
1 7024.32 7083.68 7083.68 7003 7067.41 7067.41 7028.66 7022.23 7022.23 7003.42 7045.11 7045.11
L12 (1200) 0.6 6784.51 6833.95 6817.91 6768.88 6766.9 6779.03 6776.41 6851.92 6818.36 6770.91 6853.55  6756.2
0.7 6960.36 7019.03 7026.38  6944.5 6950.31 7007.33 6952.27 7037.73  7017.8 6946.59 7039.4 6993.25
0.8 7136.2 7204.12 7187.39 7120.12 7133.71 7183.64 7128.12 7223.55 7227.73 7122.27 7225.25 7195.64
0.9 7312.05 7389.2 7428.14 7295.74 7317.12 7438.96 7303.98 7409.36 7486.63 7297.94  7411.1 7476.21
1 74879 7574.29 7574.29 7471.36 7500.53 7500.53 7479.84 7595.17 7595.17 7473.62 7596.95 7596.95
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