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Recovering distance information in 
spectral domain interferometry
Adrian Bradu   1, Niels Møller Israelsen2, Michael Maria2, Manuel J. Marques1, Sylvain Rivet3, 
Thomas Feuchter4, Ole Bang2,4 & Adrian Podoleanu1

This work evaluates the performance of the Complex Master Slave (CMS) method, that processes the 
spectra at the interferometer output of a spectral domain interferometry device without involving 
Fourier transforms (FT) after data acquisition. Reliability and performance of CMS are compared side 
by side with the conventional method based on FT, phase calibration with dispersion compensation 
(PCDC). We demonstrate that both methods provide similar results in terms of resolution and sensitivity 
drop-off. The mathematical operations required to produce CMS results are highly parallelizable, 
allowing real-time, simultaneous delivery of data from several points of different optical path 
differences in the interferometer, not possible via PCDC.

The key value of spectral (Fourier) domain interferometry (SDI) is its ability to encode spatial or temporal data 
into the spectrum at the interferometer output. The applications of SDI are wide-spread, encompassing spec-
troscopy1, astronomy2 and medical studies3 such as ophthalmology, where the latter is benefiting from the tech-
nique known as optical coherence tomography (OCT)4. Common to all techniques is the fact that the wider the 
spectrum the better the spatial/temporal resolution but the higher are the demands for the control of hardware 
dispersion effects. There are two modalities on transducing this information from the optical domain into elec-
trical: spectrometer based interferometry where a broadband optical source is employed together with a spec-
trometer and swept source based interferometry, where a tunable (swept) laser is used and signal is delivered by 
a photo-detector. Both methods are characterized by nonlinearities in transferring the modulation of the optical 
spectrum into an electrical signal. Such nonlinearities lead to an irregular modulation (chirp) of the electrical 
signal read out by the spectrometer or the photo-detector while tuning the laser respectively. These nonlinearities 
can have two origins: the readout specificities5 (nonlinearities in the spectrometer or in the tuning of the swept 
source) and unbalanced dispersion in the interferometer and sample6,7. Unless this chirp is compensated for, after 
sophisticated linearisation procedures, a Fast Fourier Transform (FFT), applied to the electrical signal propor-
tional to the spectra, leads to a wider and at the same time, reduced amplitude of the reflectivity profile peaks. 
Imperfections in these procedures become more obvious at larger optical path differences (OPDs) between the 
arms of the interferometer, and more pronounced as the spectral bandwidth of the optical source employed is 
increased.

In spectrometer based SDI instruments, the nonlinear distribution of optical frequencies over the linear array 
of the camera employed by the spectrometer is corrected by hardware solutions using either a prism after the dif-
fraction grating5 or using a nonlinear electronic reading8. In swept source based instruments, nonlinearities in the 
tuning are due to the specific tuning element used. A hardware solution consists in using a k-clock. This requires 
a separate interferometer and a photo-detector faster than that needed in the measurement channel in sensing or 
imaging instrument in optical coherence tomography. However, especially when used for ultra-high resolution 
(UHR) instruments, these solutions complicate the hardware, require very careful adjustment, introduce losses 
and the linearity is not fully re-established. Due to their apparent simpler implementation, a software solution 
is often the method of choice to compensate for these nonlinearities9,10. The cost to be paid is the increased 
computational resources required by advanced resampling and linearisation algorithms that demand complex 
procedures involving the use of Graphic Processing Units (GPU)11, Field Programmable Gate Arrays (FPGAs)12 
or optical computing13. Software solutions not involving resampling of data after acquisition were also proposed, 
namely, non-uniform discrete Fourier transform (NUDFT)14,15. A comparison of NUDFT vs FFT based methods 
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has already been reported15 and demonstrated that the NUDFT methods can provide similar performance in 
terms of signal-to-noise ratio and axial resolution as the FFT based ones but are slower in terms of computational 
speeds. For this reason, these methods, based on building a Vandermonde matrix are often implemented by har-
nessing the computing capabilities of GPUs16.

In this paper we evaluate the performance of a newly introduced method to process the spectra at the inter-
ferometer output of a SDI device, that does not involve FFTs, Complex Master Slave (CMS). This method is com-
pared with the conventional, widely used method based on FFT. Because the FFT method requires organisation 
of data in equal frequency slots, correcting algorithms have been devised. The method, proposed by Makita et 
al. in9, modified here and referred to as phase calibration with dispersion compensation (PCDC) is one of the 
most extensively used technique in OCT to linearise spectra, equally applicable to sensing and measurement of 
distances. This method is based on cancelling chirps in recorded interferograms based on the interferogram phase 
information, followed by resampling and correction for the unbalanced dispersion in the interferometer. After 
inferring the phase nonlinearities, data is resampled and then Fast Fourier transformed.

To avoid the disadvantages mentioned above, stemming from the use of FFT, the master/slave method was 
proposed by Podoleanu et al.17. This method is based on comparing raw acquired spectra with experimentally 
measured spectra (experimental masks) using a mirror, placed in the interferometer to create the OPD values 
where information from the sample is needed. This method was further improved to Complex Master Slave 
(CMS)18,19 wherefrom a reduced number of experimentally acquired spectra using a mirror, any number of masks 
are theoretically inferred.

By not performing FFTs, a radical change in data processing is established. A FFT simultaneously delivers 
amplitudes of back-reflections from all the points along the axial range investigated. This is especially useful in 
producing reflectivity profiles in depth (A-scans) in OCT. The development of long coherence length fast swept 
sources20 has allowed extension of OCT technology to topography of large objects and measurement of distances 
than can exceed several meters, with micrometer axial resolution21. In this case, the A-scan presents a single 
peak only, as in measurement of distances, useful in robotics, alignment, orientation and many other examples 
in industry. Such a method, with further development may become a competitor to more traditional methods of 
measuring large distances based on interferometry, achieving sub-micrometer axial resolution. Such a technique 
that allows large distance to be measured with sub-micrometer resolution is the frequency scanning interferom-
etry (FSI)22. FSI measures the lengths of two interferometers at the same time and requires strict calibration of 
the wavelength using a gas absorption cell. By further extension of the tuning bandwidth of swept sources with 
long coherence length, one can achieve sub-micrometer resolution and can replace the complex FSI set-ups in the 
near future. What is radical as a difference between the FFT based PCDC and the comparison with masks based 
CMS is the fact that in the FFT, all resolved axial points are provided while CMS requires a processor for each 
such point. This may be initially seen as a disadvantage, but it is exactly this aspect that makes CMS more suitable 
to some applications than PCDC method. When only some points along the axial range are needed, CMS can 
deliver them directly, while when using PCDC, the calculation is executed over points that are not of any interest. 
Computation power has evolved tremendously in the last decade and parallel processing can be executed over 
the CPUs, to some extent with no need to recur to specialized means such as FPGAs and GPUs. From a different 
perspective, CMS is easier to implement than FSI. As detailed above, in FSI two cavities are measured at the 
same time, one as a reference and the other of unknown length. In CMS, comparison is also made between the 
unknown cavity and masks, put it differently, as virtual reference cavities.

In this paper, the theoretical background of both methods, CMS and PCDC is presented, followed by experi-
mental assessment of their axial resolutions, sensitivity and processing time. To experimentally illustrate the capa-
bilities of the two modalities, a UHR spectrometer based instrument equipped with a supercontinuum source was 
used. For such an instrument, correct OPD measurements are paramount to accurately produce depth resolved 
information.

All findings here have general validity. They are immediately applicable to any SDI system, employed for 
either accurate sensing of distances or for OCT. In continuation, reference to an A-scan should be understood in 
its general sense, either useful for extracting sample axial structure in OCT, or consisting in a single peak when 
measuring distance using reflection from a single mirror.

Results
Computation of the functions g and h.  As detailed in the Methods section, the information on the non-
linear dependence of the phase (ϕ) of the acquired signal at the interferometer’s output on the wavenumber (k), 
which in practice is the sampling coordinate, and on the dispersion left unbalanced in the interferometer can be 
described by using two functions g and h respectively. These functions, are related to the phase of the acquired 
signal via:

ϕ ϕ= + +z k g k z h k( , ) ( ) ( ) , (1)rand

where ϕrand takes into account possible random phase shifts between measurements, while z is the difference 
between the lengths of the interferometer’s arms. Computing these two functions, with high accuracy is para-
mount for both CMS and PCDC methods as they determine the performances of any SDI instrument. To this 
goal, for both methods, a flat mirror, MS identical to MR, is used as sample, being placed in the focal plane of the 
telecentric lens SL (Fig. 13, in Methods, Experimental set-up subsection). This simulates a layer in the tissue 
sample in case of OCT or a corner cube in measuring of distances. Experimental spectra, E(z1, k) and E(z2, k), 
corresponding to two positions of MR, z1 and z2, are initially recorded for calibration purposes (z1 and z2 represent 
axial positions of a translation stage carrying MR, measured relative to the position where OPD = 0). Examples of 
spectra experimentally collected for z1 = 150 μm and z2 = 850 μm, are presented in Fig. 1(a,b).
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As illustrated in Fig. 1(c), the FFTs of these spectra display wide peaks, respectively spanning from hundreds 
of microns to nearly 1 mm due to the distribution of the wavenumbers along the pixels of the camera and unbal-
anced dispersion in the interferometer. Using the spectra collected for z1 = 150 μm and z2 = 850 μm, parameters 
for the two methods, PCDC and CMS, according to the procedures presented in the Methods can be computed. 
These parameters represent the nonlinear coefficient g and unbalanced dispersion h for the PCDC and CMS 
respectively: gPCDC, hPCDC, gCMS and hCMS.

In PCDC, the effect of the random phase shift is neglected (ϕrand = 0). As a result, for a given set the two exper-
imental spectra, the values of the parameters g and h differ slightly from those obtained using CMS. This is illus-
trated in Fig. 2, where the two parameters are computed for each pixel position of the camera using the two 
methods. To distinguish between the red (CMS) and blue (PCDC) curves, the plots were intentionally shifted 
slightly in the vertical direction. Numerically, we found out that the difference between the h-values computed 
using the two methods can be quantified as | − | = . × −RMS h h( ) 2 57 10PCDC CMS

14 rad, while the difference 
between the two g-values as RMS g g( ) 1 64 10PCDC CMS

15| − | = . × −  rad/mm.
Irrespective of the moment in time the calibration was performed, approximately the same RMS value 

between each of the functions g or h computed with PCDC and CMS respectively was found. When compar-
ing the parameters g(t = 0) to g(t = 5 weeks), and h(t = 0) to h(t = 5 weeks) we found out that the variations 
δgCMS = gCMS(5weeks) − gCMS(0) and δgCMS = gCMS(5weeks) − gCMS(0) are very small. Typical examples of such var-
iations are shown in Fig. 2(c). For the case of PCDC, the amplitude of these variations is larger by a factor of 2–3 
than for the CMS. As the parameters g and h produced by the 2 methods (at a given time) do not differ too much, 
it is expected that the axial resolutions computed just after calibration do not differ substantially.

The deviation from a linear dependence of the parameter g with the pixel position can in fact be used to quan-
tify the nonlinearity of the system, while the deviation of h from a constant indicates that there is a certain amount 
of dispersion left unbalanced in the system. Ideally, g should be proportional to the wavenumber. An increase with 
pixel number discloses the geometry of the spectrometer, with red edge towards the low pixel number and blue 
edge towards high pixel number. A rotation of the grating may lead to g decreasing with pixel number.

The plots presented in Fig. 2 were produced using the experimental spectra presented in Fig. 1(a,b). Using 
other pairs of experimental spectra, recorded at various other axial positions of the reference mirror than those 
shown in Fig. 1, similar shapes for the parameters g and h result. Small differences in g and h obtained for different 
sets of experimental spectra obtained at various OPDs together with the fact that the reflectivity profiles are calcu-
lated differently (interpolation vs. multiplication), can potentially lead to differences between the axial resolutions 
obtained with the two methods. To investigate this issue, pairs of experimental spectra were recorded and used to 
produce A-scans according to Eqs 4 and 8 and the full-width-at-half-maximum (FWHM) of the peaks obtained 
was evaluated.

The values of the axial resolutions hence obtained are summarized in Fig. 3. A sequence of i = 1…11 experi-
mental spectra were recorded for zi = 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 μm and then pairs 
of these spectra were used to calculate the parameters g and h according to the two methods. For each case, the 
axial resolution was evaluated by calculating the FWHM (Gaussian fit) of the peak of an A-scan generated for the 
experimental spectrum recorded at z = 1.0 mm. For representation of axial resolution variation, circular symbols 

Figure 1.  Examples of experimental spectra and their corresponding FFTs. (a) and (b): Experimental spectra 
collected for z1 = 150 μm and z2 = 850 μm used for calibration purposes. (c): FFTs of the spectra shown in (a) 
and (b).
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of different diameters are shown in Fig. 3, where for better illustration their size is nonlinearly dependent on the 
actual computed axial resolution. The size of the red symbols represent values of the axial resolutions obtained 
using Eq. 4 (PCDC), and the yellow ones values of the axial resolutions using Eq. 8 (CMS).

A first observation resulting from analysing Fig. 3, is that the choice of the two experimental spectra has some 
influence on the axial resolution obtained. However, the spread of resolution values is narrower for CMS, where 
they vary between 2.3 and 2.6 μm, with most of results around 2.5–2.6 μm. In most of the cases, PCDC produces 
values of the resolution in the same range, 2.3 to 2.6 μm with most of the values around 2.5–2.6 μm as in the CMS 
case. However, in some cases (12.7% of the points presented here), PCDC fails to produce a good axial resolution. 
The combination of experimental spectra producing large values of the resolution intervals seems to involve spec-
tra recorded for large, not very different values of z. On one occasion (z1 = 50 μm and z2 = 100 μm), PCDC also 
provides a resolution larger than 2.6 μm. As the span of the resolutions’ values does not typically exceed 0.3 μm, 
it seems that in most of the situations the choice of the two experimental spectra used for calibration purposes 
is not particularly important. Irrespective of the choice, successful compensation is achieved for the effects of 

Figure 2.  Functions g and h. (a) Function g, (b) function h. The two functions were calculated for both PCDC 
(red) and CMS (blue) cases, using the procedures presented in Methods (the two experimental spectra presented 
in Fig. 1(a,b) were used). (c) δg and δh: differences between the parameters g and respectively h measured at t = 0 
and t = 5 weeks using CMS only (normalised with respect to their corresponding first pixel value).

Figure 3.  Axial resolutions obtained using various pairs of spectra produced using Eqs 4 (PCDC) and 8 (CMS). 
The values obtained using PCDC are represented by red circles, while those obtained with CMS by yellow 
circles. The size of the circular symbols indicates the resolution obtained.
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nonlinearities and reading the spectra and of the unbalanced dispersion. Yet, for the PCDC case, some attention 
needs to be paid, as some combinations can lead to a wavenumber distribution for which the cubic spline inter-
polation fails.

To investigate the effect of the random phase shift, pairs of experimental spectra were recorded for calibration 
purposes over a period of five weeks and used to compute the axial resolutions. In Fig. 4, along the vertical axis 
we display the time when calibration spectra were recorded, while along the horizontal axis the time when the 
spectrum is recorded and axial resolution computed. Along both axes, one unit represents one week. All calcula-
tions are performed for z = 1.0 mm and color coded, from yellow to brown, where yellow corresponds to an axial 
resolution of around 2.4 μm, while brown to 3.9 μm (right side of Fig. 4).

As expected, when the moments for experimental spectra acquisition and calibration are close to each other, 
the best values of the axial resolutions are obtained. These are shown along the diagonal of the images in Fig. 4, 
from the top left to the bottom right, of around 2.4 μm, for both cases, PCDC and CMS. However, when the time 
interval between the calibration and the imaging steps increases, both methods suffer. As an example, when the 
calibration and the imaging steps are both done at t = 0, the axial resolution is around 2.4 μm, whilst when the 
same experimental calibration spectra are used to produce images at t = 5 weeks, the values of the resolution 
deteriorate to around 3.8 μm for the PCDC and 3.0 μm for CMS. Random fluctuations, of small amplitude, in 
the axial resolution are observable in Fig. 4 during the 5 weeks period, which could be attributable for example, 
to the fluctuations in the phase of the light emitted by the supercontinuum optical source, changes in the shape 
of spectra recorded by the linear camera, micrometric mechanical shifts, etc. However, the CMS method seems 
to be slightly more tolerant to these temporal fluctuations. For our particular instrument, these random phase 
fluctuations seem to lead to failures of the interpolation procedure.

Even small differences between the parameters g and h produced by the two methods are sufficient to alter 
the axial resolution. To illustrate this effect, we have used parameters gPCDC and hPCDC to produce both a PCDC 
and a CMS axial reflectivity profile, and parameters gCMS and hCMS to produce both a PCDC and a CMS profile as 
shown in Fig. 5, where:

	(a)	 CMS profiles were produced using parameters: gCMS and hCMS as computed by the CMS method (blue) and 
gPCDC and hPCDC as computed by PCDC (red).

	(b)	 PCDC profiles were produced using parameters: gPCDC and hPCDC as computed by the OCDC method (red) 
and gCMS and hCMS as computed by CMS (blue).

It is quite obvious that swapping the g and h parameters between procedures can lead to a significant dete-
rioration of axial resolution. The use of theoretical inferred spectra not corrected for the random phase (i.e. the 
PCDC spectra) leads to worse axial resolution in CMS (Fig. 5(a) - red curve), while the elimination of the random 
phase when the calibration vector is produced leads to a slight improvement of the axial profile shape in PCDC 
(Fig. 5(b) - blue curve).

Sensitivity drop-off and axial resolution.  An important parameter in measuring distances using both spec-
trometer and swept source based SDI methods is the axial range possible to be targeted, i.e. how far away the corner 
cube can be placed from the beam-splitter to still be able to generate a sufficient strength interference signal. This 
parameter is also important in OCT, determining the imaging range in the tissue. Such a measurement is described 

Figure 4.  Axial resolutions produced using calibration spectra recorded over time. Vertical axis: time when the 
calibration spectra were recorded. Horizontal axis: time when resolutions were computed. Each color encodes a 
certain axial resolution according to the colormap displayed on the right.
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by the sensitivity drop-off, that shows reduction in the interference strength with OPD. The cause for reduction is the 
“dynamic coherence length” of the two interference waves23. In a spectrometer based instrument, this is determined 
by the coherence length of waves after diffraction on the grating combined with the spectral capability of the camera 
in sampling the spectrum24 while in a swept source based one by the inverse of dynamic line-width21.

Sensitivity drop-off is measured by placing the mirror Ms at increased distances z. Normalized sensitivity 
drop-offs (with respect to the first A-scan, recorded at z = 50 μm), are produced using PCDC in Fig. 6(a) and 
using CMS in Fig. 6(b) respectively. To produce these graphs, for calibration purposes, experimental spectra 
recorded at z1 = 150 μm and z2 = 850 μm were used. Although the decaying slopes in Fig. 6(a) and Fig. 6(b) are 
similar, some sensitivity advantage is seen for the CMS at large OPD values. To illustrate this slight improvement, 
the ratio of graph amplitudes in Fig. 6(b) and (a) is represented in Fig. 6(c), where for instance at 2 mm, CMS is 
12% better than PCDC. For this particular instrument, for both methods, the sensitivity drops by around 5.5 dB 
at z = 1 mm and 11.5 dB at z = 2 mm in respect to the sensitivity measured at z = 50 μm.

Figure 7 shows the FWHM axial resolution measured using a Gaussian fit for each A-scan peak in Fig. 6(a) 
and (b). No data apodization was used to produce Fig. 7. In both cases, the resolution worsens with depth. This 
is due to the limited number of pixels available for the camera utilized by our spectrometer (2048). A large band-
width per each camera pixel translates into equivalent reduction of the dynamic coherence length of the interfer-
ing waves. A poor sampling of spectrum with a reduced number of camera pixels leads to a spline interpolation 
failure of the high frequency spectra, as documented by Yun et al.25. This affects both PCDC procedure and the 
multiple signal comparison operations practised by the CMS.

Up to around z = 1.2 mm, both methods show similar values of the axial resolution in the region of 2.4–2.6 μm 
for PCDC and 2.3–2.5 μm for CMS. Beyond this point, the axial resolution deteriorates faster when using PCDC. 
At z = 2 mm, the axial resolution as measured using the CMS method is around 1 μm better than that provided by 
PCDC. This could be explained by the fact that the mathematical operations used to compute the axial reflectivity 
profiles, spline interpolation and FFT for PCDC are less tolerant to amplitude reduction with OPD than the com-
parison operation of spectra via multiplications of 1D arrays for CMS. Possibly, the significantly degraded signal 
strength for the higher frequency modulation band edge of the chirped spectrum at large OPDs (Fig. 1(b)), can 
further introduce an error in the step of data interpolation. Therefore, Fig. 7 quantifies the information loss in the 
act of interpolating spectra, when approaching the Nyquist frequency in combination with inconsistent signal 
strength across the band resulting in a resolution loss of 1 μm.

To produce Figs 6 and 7, which show a slight benefit of using the CMS over PCDC in terms of signal-to-noise 
ratio and axial resolution, data was oversampled by a factor α = 4. The oversampling was produced either by 
zero padding the spectrum before FFT (PCDC case) or by generating a higher number of theoretically inferred 
spectra (CMS case). Vergnole et al.15 reported that both the NUDFT and FFT based method using a cubic spline 
interpolation with data oversampled by a factor α = 3 lead to similar results in terms of signal-to-noise ratio 
and axial resolution for any axial depth (in this case(Vergnole et al.), the oversampling was performed on the 
spectra). Methods of improving the sensitivity at depth were reported26,27, however, for the present study no 
digital technique has been used to improve the sensitivity at depth for neither of the techniques. The fact that 
CMS behaves slightly better at depth than PCDC may be considered as due to imperfections in the interpolation 
technique employed here for PCDC (cubic B-scan interpolation). Vergnole et al.15 have showed that, for up to 

Figure 5.  Normalized axial reflectivity profiles using: (a) CMS and the (b) PCDC methods. The red curves were 
produced using the gPCDC and hPCDC as obtained by PCDC, while the blue curves were produced using gCMS and 
hCMS as obtained by CMS.
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2 mm depth, when using a spline cubic interpolation (PCDC), sensitivities as good as those provided by NUDFT 
can be achieved, irrespective of the oversampling factor. Therefore, within the axial range achievable with our 
instrument, we can assume that a comparison of CMS with NUDFT can be made. The reason why CMS should 
perform better at larger depth than NUDFT is that NUDFT does not take into account the dispersion effects in 
the interferometer. This is particularly important as our findings are on a ultra-high resolution instrument using 
a supercontinuum optical source whose spectrum spans over 400 nm, providing axial resolutions 8 times better 
than those of Vergnole et al.’s instrument.

Axial reflectivity profiles from multiple scattering centres.  So far we referred to a single mirror 
reflector, such as used in sensing of distances or in calibration of OCT signals. We illustrate further the behav-
iour of the two methods faced with a succession of scattering centres in tissue, typical for OCT investigations. 
Using the instrument shown in Fig. 13, equipped with a galvanometer scanner, various samples were imaged, and 
cross-section images (B-scans) were produced.

Figure 8 shows, side by side, a typical example of cross-sectional images of the human thumb, produced 
using PCDC and CMS, respectively. Another pair of images showing the junction nail/skin is also provided 
(Supplemental Figure S1) as well as pairs of A-scans extracted from these images at positions labelled A1, B1, 
A2 and B2). To reduce spectral leakage, the acquired experimental spectra (PCDC) or the theoretical inferred 
ones incorporated in matrix M (CMS) were both subject to apodization via a Gaussian window, as detailed in 
the Methods. This minimises the amplitude of the aliasing side lobes. In addition, the experimental spectra were 
oversampled again, by a factor α = 4 when using PCDC, so the number of axial points in each A-scan was 4096. 
To obtain the same number of axial points when using CMS, a number of 4096 theoretical spectra were inferred.

Figure 6.  Normalized sensitivity drop-offs produced using the (a) PCDC (a) and (b) CMS methods. (c) Ratio 
between the amplitudes in (a) and (b).

Figure 7.  Axial resolutions computed using PCDC and CMS.



www.nature.com/scientificreports/

8ScienTiFic REPOrTS |  (2018) 8:15445  | DOI:10.1038/s41598-018-33821-0

As expected, both images are of similar quality in terms of resolution and sensitivity. In Fig. 8, the left vertical 
axis is z, while the right vertical axis is the axial resolution as measured in air using CMS and PCDC respectively 
using the values in the graphs in Fig. 7. As the values of the resolutions obtained with CMS are typically only 
0.1–0.2 μm better than those obtained using PCDC it is not possible to clearly distinguish differences between 
the two images.

From Fig. 8, A-scans were extracted from the CMS image (position A) and PCDC image (position B) respec-
tively. Both A-scans were extracted from the middle of the two images (blue and red lines respectively in Fig. 8). 
The two A-scans are presented over the whole axial range available (2 mm, Fig. 9(a)), over a shorter range of 
1 mm (Fig. 9(b)) and also over a 65 μm axial range (Fig. 9(c)). As expected, both profiles are similar in terms of 
resolution and strength.

Benchmarking.  A last element of comparison between the two methods that we looked at was the capability 
of the two methods to produce sequences of A-scans (B-scan) in real-time. For this purpose, the time to produce 
a B-scan was computed using a LabVIEW 2017 (National Instruments, Austin, Texas) program installed on a PC 
equipped with an Intel i7-7800X @ 3.5 GHz (6 cores, 12 threads of execution) CPU and 16 GB RAM.

A simplified flowchart detailing only the benchmarked mathematical operations performed after data acqui-
sition is shown in Fig. 10. A detailed presentation of the mathematical operations performed before and after data 
acquisition can be found in the Methods section. When using PCDC, at the calibration step, a calibration vector 
k̂ is produced. This vector is then used to resample the data using a cubic spline interpolation. The resampled data 
is then sequentially subject to apodization, correction for unbalanced dispersion, zero-padding and finally FFT. 
When using CMS, the only operation required is the multiplication of the matrix T containing theoretically 
inferred spectra provided by the calibration step by the acquired data vector. In this case, the apodization of the 
inferred spectra is done at the calibration step. Zero-padding is also not required at this stage as the number of 
axial points is determined by the size of matrix T generated at the calibration step.

Let us consider a number P = 1024 of spectral collections. As the linear camera delivers spectra at a frequency 
of 76 kHz, the acquisition time of P spectra is 13.4 ms. This corresponds to a distance measurement using an 
average of P spectra or to the production of a cross section B-scan image in OCT consisting in P lateral adjacent 

Figure 8.  Cross-section images of a thumb obtained using CMS (a) and PCDC (b). The left vertical axis is 
depth z, the right vertical axes are the axial resolutions evaluated in air using both methods.

Figure 9.  A-scans produced using PCDC and CMS when the sample is the human thumb over: (a) the entire 
axial range from 0 to 2 mm; (b) 0–1 mm; (c) narrower range (0.22–0.30 mm). Data were extracted from the 
images shown in Fig. 8 at the positions marked by a blue dashed line (CMS) and red dashed line (PCDC).
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A-scans. The instrument will operate in real-time when the time to process data is shorter than the data acquisi-
tion time. In Fig. 11, the time to produce P A-scans vs. the number of points Q targeted axially is presented. For 
PCDC, Q is adjusted by zero padding each signal, after data resampling, before FFT. When employing CMS, Q 
is equal to the number of masks produced at the calibration step. Using FFT, PCDC delivers all Q points over the 
whole available depth range (i.e. in our case over 2 mm).

As PCDC is based on data resampling, followed by FFT, while CMS on matrix multiplication, the number of 
operations involved by the two techniques are different, so it is expected that one of them to be faster than the 
other as illustrated in Fig. 11 depending on the number N of points the spectra is sampled into and the number Q 
of points targeted in the axial reflectivity profile. The PCDC based strategy is obviously faster in terms of produc-
ing a reflectivity profile, when no data preparation is required before FFT. Indeed, in principle, if each spectrum 
is sampled into N points, PCDC requires Nlog2N operations to produce an axial reflectivity profile, while CMS 
Q(2N − 1) operations, where Q is the number of points to be computed for each axial profile. For PCDC, this 
number is N/2. However, as mentioned above, CMS offers the freedom to provide reflectivity profiles over subin-
tervals of the axial range, using a lower number of points than N/2, hence for values of Q sufficiently small, CMS 
may perform faster. To produce Fig. 11, we considered the situation where N = 2048 (number of pixels on the 
camera). By oversampling data by a factor α = 3, for example, A-scans containing a number of 3072 axial points 
were produced using PCDC. With PCDC, the same number of axial points is generated at the calibration step 
by theoretical inferring the corresponding number of spectra. According to our benchmarking, both methods, 
produce 1024 axial profiles, each of 3072 points, in around 60 ms.

When data is resampled using a cubic B-spline interpolation, Vergnole et al.15, found that for an oversampling 
factor α = 3 of the experimental spectra, the FFT procedure is around 7 times faster than the matrix multipli-
cation based NUDFT. The oversampling of the spectrum is performed after data acquisition, for both methods, 
PCDC and CMS. After oversampling, to produce an A-scan, a FFT of the oversampled experimental spectrum 

Figure 10.  Simplified flowchart illustrating the benchmarked mathematical operations performed after data 
acquisition.

Figure 11.  Time to acquire and process P = 1024 spectral acquisitions using PCDC (blue) and CMS (red) vs. 
the number of axial points targeted axially.
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(PCDC) or a multiplication between the oversampled experimental spectrum and the theoretical inferred ones, 
also oversampled (CMS) needs to be executed. As in both cases, data must be resampled, the PCDC method is a 
clear winner in terms of processing time. CMS can compete with PCDC only when a low number of axial points 
Q is required. Our benchmarking indicates that CMS can be faster than PCDC only when Q is less than 128.

As recognised in the same paper, comparing computational times from different publications is a daunt-
ing task. The benchmarking provided in15 was produced on a computer equipped with an old processor, while 
no optimisation technique of matrix multiplication was employed. In the current manuscript, the full capabil-
ities of LabVIEW of parallelising the data flow were used in both cases. The most time expensive operation in 
PCDC is the cubic spline interpolation. This was implemented using the LabVIEW’s Spline Interpolation Virtual 
Instrument. To perform the matrix multiplication, we took advantage of the LabVIEW’s Multicore Analysis and 
Sparse Matrix Toolkit.

As it can be observed in Fig. 11, it is impossible for our hardware configuration to produce real-time meas-
urements of distances or cross-sectional images using PCDC. The whole sequential process of operations 
involving apodization, spline interpolation, zero padding and FFT applied to each of the P spectra acquired, 
takes around 50 ms, while data is acquired in 13.4 ms. With CMS, the real-time operation is possible for a lim-
ited number of points Q. The apodization is done at the calibration stage, by altering the shape of the masks, 
while after data acquisition only a multiplication of matrices is required. Thus, if less than Q = 700 axial points 
are required, the system can operate in real-time. With PCDC, there is no way to define an axial region of 
interest (AROI) where the reflectivity profile is produced exclusively from. For CMS, such an AROI can be 
defined hence, if necessary a lower number of axial points in the A-scan can be computed. This makes real-time 
operation of the instrument possible. For our given set-up, the achievable axial resolution is around 2.5 μm. If 
we assign the 2.5 μm to each pixel along depth in the A-scan, a maximum AROI of 1.75 mm can be produced 
in real-time using CMS.

Let us now restrict the AROI to the range within which the resolution is that theoretically inferred. If we 
suppose a Gaussian shape of the spectrum emitted by the supercontinuum source centred at 1270 nm, FWHM of 
400 nm, the theoretical optical axial resolution is ≈1.8 μm. With the same evaluation as above, then we are limited 
at processing an AROI of 1.26 mm in real-time. For such an AROI, the P A-scans are either averaged for distance 
measurements or assembled in a B-scan for OCT.

To produce Fig. 11, the number of axial points was adjusted by zero padding in the Fourier domain (PCDC) 
or generating different numbers of theoretically inferred spectra (CMS). Here, we used the zero padding method 
due to its popularity. Other faster methods of interpolation exist. However, it must be noted that when no inter-
polation is performed, the CMS is faster than PCDC by at least a factor of 2, so the choice of the interpolation 
method for PCDC is not relevant. This is illustrated in Fig. 11 (Q = 1024). For the CMS case, the execution time 
increases faster with Q than in the PCDC case, for which reason, for high Q values, CMS does not bring benefits 
in terms of execution time over PCDC, not even when PCDC uses zero padding for interpolation.

Conclusions
Two approaches of decoding spectra in spectral domain interferometry are compared, delivering reflectivity pro-
files useful for distance measurements and OCT: a novel method, involving a calculation for each distance (depth 
of interest) (CMS), and the FFT based conventional method (PCDC). The mathematical apparatus behind each 
technique was presented, and experiments were conducted to compare the accuracy in distance measurement in 
sensing and depth representation in OCT using both methods implemented in a spectrometer based instrument 
equipped with a supercontinuum optical source. According to the theory, both methods should converge to 
similar conclusions. However, when dealing with experimental data, although the results obtained with the two 
methods are in most cases similar, subtle differences were noticed. The PCDC relies on interpolation of data and 
FFT whilst the CMS relies on multiplying electrical signals proportional to the spectra acquired.

With both techniques we were able to produce high axial resolution distance measurements and A-scans with 
better than 2.5 μm and of similar sensitivity. However, when considering the stability of the calibration and the rate 
at which UHR axial measurements are produced, CMS came as the technique of choice for the following reasons:

•	 Tolerance to choice of OPD values for calibration. CMS’ axial resolutions are not as dependent on the choice 
of the experimental spectra employed at the calibration stage as PCDC.

•	 Calibration stability over time. CMS copes better with phase fluctuations. The same spectra used for calibra-
tion purposes can be used over a longer period of time.

•	 Time required for an AROI shorter. For a reduced number of pixels along the axial range, CMS can operate 
in real-time. For OCT, 1 mm axial range may be sufficient while maintaining the axial resolution theoretically 
expected. Even more, a sparse OCT image can be quickly produced, let us say for 10 mm. A sparse measure-
ment of distances can also be produced fast if speed is more important than axial resolution.

•	 Flexibility. The demands on the computational resources can be adjusted in accordance with the axial range 
and resolution targeted, rendering the whole process of distance measurements and OCT imaging more 
efficient.

•	 Constant distance/depth measurement. Using a single mask, CMS can preferentially identify reflectors at a 
desired distance or produce constant depth OCT images (en-face), corresponding to points at the distance 
or respectively depth matching the OPD used to produce that mask. This may impact procedures of seek-
ing reflectors positioned around a point, or producing topography of a single layer objects, or en-face OCT 
images.

Despite the advantages that the CMS approach offer, some drawbacks of the method still exist:
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•	 At the calibration step, the mathematical complexity of inferring theoretical spectra to build matrix T is 
apparently higher as it involves the use of low level computational routines. When using the NUDFT, the con-
struction of the Vandermonde matrix is a simpler task as it is provided by LabVIEW as a virtual instrument 
while MATLAB provides it as an inbuilt function, etc. However, through simple steps, clearly described in our 
papers18,19 a ready to use toolkit can potentially by developed.

•	 After data acquisition, parallelisation of data processing is a must. This has to be done using optimised low-
level routines for performing common linear algebra such as BLAS (Basic Linear Algebra Subprograms) or 
other tools which take advantage of the multicore processors such as LabVIEW’s Multicore Analysis and 
Sparse Matrix Toolkit that we used in this report.

•	 Although CMS can operate in real-time for a low number of axial points Q, for large dimension of matrix M, 
CMS not only incapable of real-time operation but performs slower than its PCDC counterpart. This may be the 
case in some particular situations as for example in (i) spectrometer-based interferometry when cameras using 
large number of pixels aimed at increasing the axial imaging range, (ii) swept-source interferometry when the 
combination between the digitizer’s sampling rate and the tuning speed of the laser leads to an increased number 
of points each spectrum is digitized into, (iii) there is need of large number of axial points Q in the A-scan.

Essential in comparing the two methods presented here is the peculiarity of CMS of not relying on FFTs. 
Replacement of a single FFT operation in PCDC with multiple comparison operations in CMS determines a radi-
cal difference between the two methods. CMS was initially motivated by the need to directly deliver, en-face OCT 
images, with no need to assemble the volume of A-scans. Soon it was realised that other advantages exist, such as 
tolerance to the spectrum chirp. This study focuses into another direction opened by CMS, that of metrology of 
measuring distances. There are however other related potential avenues that are worth being investigated, such as 
customised processes for specifically targeted AROIs and sparse delivery of data that cannot be approached using 
a Fourier transform.

For the current study, no digital technique was used to enhance the sensitivity at depth. While popular inter-
polation methods such as zero-order (nearest neighbour), first-order (linear) and third order (spline) can boost 
sensitivity at large depth on the expense of the calculation speed of producing reflectivity profiles (by using a large 
oversampling factor α), other methods exist where small values of α are required to achieve a good sensitivity 
at depth. Such an example is the method suggested in Vergnole et al.15, who demonstrated that by resampling 
through convolution using an optimized Kaiser-Bessel function, the sensitivity at depth is enhanced when an 
oversampling factor α as small as 1.2 is used. Here, when using CMS, the oversampling is achieved by increasing 
the number of OPD values used to calculate the theoretically inferred spectra. This involves matrix multiplica-
tions that demand less resources than spline interpolation, hence practically less penalty on the computing time. 
This is also accompanied by an increase in the sensitivity decay with depth. This leads to an enhancement of the 
sensitivity at depth over PCDC without any obvious penalty on the computation time.

An application that would tremendously benefit from the capability of CMS to provide real-time imaging is 
that of high resolution Optical Coherence Microscopy (OCM)28. This uses a high numerical aperture interface 
optics that leads to very narrow confocal profile, hence a very limited axial range. In order to adapt spectral 
domain OCT to high numerical aperture OCM, a technique was reported based on Gabor filtering29,30 where 
acquisition is repeated for several focus positions, that shifts the confocal gating profile incrementally through 
the sample depths. If PCDC was used, large portions of the OCT axial range within each A-scan are discarded, 
as outside the narrow confocal profile. Put it differently, PCDC is highly inefficient when combined with Gabor 
filtering that requires repetition of acquisition for each new position. With CMS, data processing is faster, as we 
can limit the computation to points from within the depth of focus31.

If information from a single depth is needed, this requires a single multiplication operation. Q = 1 is the 
extreme case of a range of Q values where CMS is faster, as shown in Fig. 11. This can refer to the detection of 
axial position, if a mirror crosses the depth of interest, as determined by one of the theoretically inferred spectra, 
used as calibration. There are various other applications where a single peak is needed, as for instance in tracking 
the position of a moving mirror (such as cornea in an axially moving eye). In this case, the relative position of the 
cornea from an initial reference position is needed. This can be manually identified and optical path difference 
zeroed, leaving the tracker to monitor the axial position from this reference position, normally within a frac-
tion of the axial range. In practice, if the tracking range of axial positions of the moving mirror (cornea) can be 
restricted to within the range of Q values where CMS is faster, according to Fig. 11, then CMS is the method of 
choice. If the initial position of the mirror is not known, or if the tracking interval reaches the extension of the 
axial range, then this would require engaging all N reference spectra, to cover the whole axial range, in which case 
the FT based method may be faster.

In terms of parallel processing, we have shown here that current CPUs are capable of processing CMS signals 
with no need to resort to FPGA or GPUs. However, the CMS potential is there, where the numerous comparison 
operations needed can be performed on FPGAs and GPUs, to improve the real-time processing making the CMS 
efficient even in those cases where CMS was deemed slower than PCDC (according to discussion around Fig. 11) 
where CPU only was used. A spectrometer based SDI instrument was employed here, but all results are immedi-
ately applicable to any spectral domain interferometry system.

Methods
Methods for obtaining axial reflectivity profiles.  To produce an A-scan, A(z)chirped, of the sample under 
investigation, the integral of the product between an experimentally acquired spectrum E[ϕ(z, k)], obtained by 
interfering light from the sample and reference arm of the interferometer and the kernel function e−jkz, is calcu-
lated. Here, ϕ(z, k) is the phase of the measured spectrum while k is the distribution of the wavenumbers along 
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the pixels of the camera when using a spectrometer or along the time coordinate when using a swept source. To 
theoretically describe how axial reflectivity profiles are obtained, we are using continuous variables. However, 
the reader should be aware that practical implementations involve data digitization, hence variables such as the 
wavenumber k has to be seen as a 1D array containing a number of components equal to the number of sampling 
points each spectrum is digitized into, in which case k is the sampling coordinate (pixel position in spectrometer 
based interferometry or time in swept-source interferometry). Using a continuous representation of the variables, 
an axial reflectivity profile A(z) can be produced by computing:

∫ ϕ= ⋅
−∞

+∞ −A z E z k e dk( ) [ ( , )] (2)
chirped jkz

where the phase ϕ(z, k) is expressed as:

ϕ ϕ= + +z k g k z h k( , ) ( ) ( ) (3)rand

The functions g(k) and h(k), present in Eq. 3, contain information on the nonlinear dependence of the phase 
on the wavenumber and on the dispersion left unbalanced in the interferometer, respectively9. ϕrand takes into 
account random phase shifts introduced between the moment that the system is calibrated and the acquisition 
moment when the sample is under investigation and the A-scan is produced. In practice, exact values of the wave-
numbers k do not need to be known, so in the equation above, g and h can be seen as depending on the position of 
the pixels on the camera or along time coordinate depending on the SDI method used for spectrum integration. 
To eliminate the chirping due to nonlinear wavelength mapping and due to unbalanced dispersion, each of the 
two methods presented here act on different variables. The conventional method widely applied, PCDC operates 
on experimental spectra while CMS operates on the kernel function. The way in which the two methods are 
mathematically implemented is described in the following sections.

Phase calibration with dispersion compensation (PCDC).  When using PCDC, each experimental acquired spec-
trum is modified: first resampled then multiplied by a function that cancels the effect of the dispersion. Thus, a 
linear relationship between the phase of the modified non-chirped spectrum E k( )ˆ , and a new wavenumber distri-
bution k̂ is obtained. An A-scan compensated for broadening is produced by calculating the FFT of the product 
between ˆE k( ) and an apodization function ˆW k( ):

A z W k E k e e dk FFT W k E k e( ) ( ) ( ) [ ( ) ( ) ] (4)
non chirped jh k jkz jh k( ) ( )ˆ ˆ ˆ ˆˆ ˆ

∫= ⋅ ⋅ ⋅ = ⋅ ⋅−

−∞

+∞ − − −

The unknown in Eq. 4 is k̂. To find it, in PCDC, the effect of the random phase is normally neglected (ϕrand = 0), 
and a new wavenumber distribution k̂ is obtained by polynomial interpolation of the function g(k) defined as:

ϕ
=

−g k z k h k
z

( ) ( , ) ( )
(5)

To obtain g(k), two spectra are experimentally recorded for two OPD values between the arms of the interfer-
ometer, E(z1, k) and E(z2, k), and their corresponding phases ϕ(z1, k) and ϕ(z2, k) computed. Thus, information 
on the nonlinearity of the phase:

g k z k z k
z z

( ) ( , ) ( , )
(6)

2 1

2 1

ϕ ϕ
=

−
−

and on the unbalanced dispersion:

h k z k g k z( ) ( , ) ( ) (7)1 1ϕ= −

is inferred. By using Eq. 5, a new distribution of the wavenumbers k̂ and a new function h k( )ˆ  are determined. The 
process of calibration (computing k̂ and ˆh k( )) is performed before measurements are carried out. To produce accu-
rate information on the reflectivity from within the sample, each acquired experimental spectrum is resampled 
according to k̂, typically via a cubic B-spline interpolation25, to produce ˆh k( ), then multiplied by 

ˆ
e jh k( )−  to correct for 

the unbalanced dispersion (Eq. 4). The resampling operation is applied to each acquired experimental spectrum.
Alternatively, the PCDC method can be implemented in a slightly different way. Instead of multiplying resam-

pled spectra E k( )ˆ  by the phase factor versus the new coordinate k̂, − ˆ
e jh k( ), we can first compute the product 

E(k) ⋅ e−jh(k), then resample the result. The first solution is more time efficient than the second one. In the first 
scenario, after data acquisition, only resampling of E(k) is required, while e jh k( )− ˆ

 is that computed before data 
acquisition, at the calibration step. The second scenario requires manipulation of a complex form, hence resam-
pling of the real and imaginary parts of E(k) ⋅ e−jh(k). The FFT results should be the same, if there are no errors due 
to resampling. No significant differences were noticed between each of the values of the axial resolution or sensi-
tivity when using these two approaches, while the processing time is longer by a factor around 2 when the resam-
pling of the whole product E(k) ⋅ e−jh(k) is performed. Therefore we opted for the procedure where resampling is 
needed for E(k) only.
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Complex Master Slave (CMS).  In contrast to the PCDC method, the process of obtaining an axial reflectivity 
profile utilizing the CMS method consists in modifying the kernel function e−jkz in Eq. 2. As demonstrated in 
Rivet et al.18, an accurate reflectivity profile can be produced by computing:

⁎∫ ∫ϕ ϕ ϕ= ⋅ ⋅
∂
∂

⋅ = ⋅ϕ−

−∞

+∞

−∞

+∞
A z E z k W k g

k
e dk E z k T z k dk( ) [ ( , )] ( ) [ ( , )] [ ( , )] (8)

non chirped j z k( , )

At the calibration step (Master), functions T*, referred to from now on as (complex) masks or theoretically 
inferred spectra,

ϕ = ⋅
∂
∂

ϕ⁎T z k W k g
k

e[ ( , )] ( ) (9)
j z k( , )

are evaluated for the desired sequence of axial points along z. In contrast to the PCDC method, the random phase 
shift ϕrand is now taken into account. However, if the derivative of the phase with respect to k is calculated, it is 
reasonable to suppose that ∂ϕrand/∂k = 0 so that Eq. 3 can be re-written as:
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To compute T *, calculations of the phase ϕ(z, k) as well as of the derivative of g with respect to k are required. 
To this goal, as for the PCDC method, two experimental spectra recorded for two different OPD values, E(z1, k) 
and E(z2, k) are collected. Then, using Eq. 10, the derivative of g and h with respect to k can be calculated:
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The functions g(k) and h(k) are then computed by integrating Eqs 11 and 12. In this way, a set of complex 
masks T *(zq) is produced, where q = 1…Q, with Q the number of axial points targeted in the A-scan. To produce 
an A-scan from a sample, after acquiring a spectrum, according to Eq. 8, Q dot products between E[ϕ(z, k)] (con-
taining the sample information) and the complex masks T *(zq) are calculated. The calibration step involves some 
mathematical calculations that are not time expensive, and need to be executed once for a given experimental 
set-up. Let us consider that the goal is to produce an A-scan of Q axial points. The PCDC method involves at least 
three sequential operations to produce each A-scan:

	 1.	 Cubic B-spline interpolation of each spectrum.
	 2.	 Multiplication of the result by − ˆ

e jh k( ).
	 3.	 FFT of the result obtained at step 2.

Apart from these three operations, apodization of data, before interpolation, is commonly needed as well. All 
these operations are performed sequentially. In contrast to PCDC, the Q dot product operations in the CMS can 
be executed in parallel.

A summary of the mathematical operations required to produce an A-scan using both approaches is shown in 
Fig. 12. After data acquisition, to produce an A-scan, the PCDC method requires resampling of each experimen-
tally acquired spectrum, its multiplication by − ˆ

e jh k( ) and FFT of the result. The CMS requires, for each depth, a dot 
product between the corresponding complex mask and the experimental spectrum. According to the above, the 
PCDC leads to a full A-scan while the CMS leads to a single point of the A-scan. This may look as disadvanta-
geous for the CMS, but it is exactly this property that allows direct production of en-face images in OCT, as the 
PCDC requires the extra step of decomposing all the A-scans to reach the depth of each en-face map. Also, as 
reported in19, matrix multiplications allow production of CMS operations in parallel. In sensing, using CMS it 
may be possible when tracking a moving mirror to perform dot products with a reduced set of masks around the 
previous position of the mirror. This simplifies the calculations and reduces the time needed. Using the PCDC, 
A-scans along the whole axial range are produced each time, where clearly the only significant values are those 
around a single peak. All values outside the region of the peak are not needed.

The sequential mathematical operations required by PCDC (resampling operations followed by FFT) cannot 
be summarised within a single matrix which eventually is multiplied with a spectrum vector. In contrast, in 
CMS, the complex matrix T contains theoretically inferred spectra (produced at the calibration step). Using this 
matrix, as explained in18, to obtain an axial reflectivity profile, this complex matrix is multiplied with the acquired 
spectrum, E:
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where each acquired spectrum is sampled into N points and each A-scan contains Q axial points. The matrix T, 
is produced using two experimental calibration spectra, and incorporates all the effects determining their chirp-
ing (non-linearities and unbalanced dispersion). Each row of the matrix T is a theoretically inferred spectrum 
corresponding to a specific optical path difference between the arms of the interferometer. The number of the 
rows in T determines the number of axial points to be computed along a specific axial range not determined by 
the sampling depth of the digitizer as it is the case with the FFT based methods. If a single row from the matrix 
T is multiplied with a matrix containing experimental spectral collected at P lateral positions while the light is 
scanned over the sample, then a transversal reflectivity profile (R-scan) from a constant depth zi is obtained:
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where T(zi)′ represents the transpose of T. To a certain extent, in terms of mathematical operations per-
formed after data acquisition, the CMS method has similarities with the NUDFT based methods, where for a 
Vandermonde matrix, D needs to be computed at the calibration step. However, there is a fundamental difference 
between D and T, hence between the NUDFT and CMS. The Vandermonde matrix, also constructed at the cali-
bration step, requires an accurate calibration pixel/wavenumber (i.e. the distribution of the wavelengths along the 
pixels of the line camera or along time has to be known). D does not include any information on the unbalanced 
dispersion in the interferometer, hence the NUDFT technique is only applicable to interferometers with perfect 
dispersion compensation. To obtain an axial reflectivity profile in NUDFT, according to15, matrix D is multiplied 
with the acquired experimental spectrum vector, E:
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Figure 12.  Flowchart showing the steps required by each method at the calibration stage and the mathematical 
operations to be performed on each spectrum once acquired using the PCDC (left) and CMS (right) methods.

Figure 13.  Schematic diagram of the system employed for this study. LR, LS: achromatic lenses; SL: telecentric 
lens; MR: flat reference mirror. For calibration purposes, the sample is replaced with a flat sample mirror 
identical to MR (MS).
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where, the complex parameters Pi are described by:

π=





⋅
−

−




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P j k k
k k

exp 2
(16)

i
i min

max min

In the equation above, i = 1…N, while kmin and kmax are the limits of the spectral range employed. NUDTF 
needs information on the distribution of wavelengths along pixels which has to accurately be provided, while 
CMS infers this distribution as well as the dispersion in the interferometer from a single calibration procedure. 
A similar procedure to generate the distribution of wavelengths along pixels can complement the NUDFT based 
method, in which case, each ki can be replaced by g(k = i), where kmin = g(1) and kmax = g(N).

Experimental set-up.  A schematic diagram of the UHR spectrometer based SDI instrument used for our 
experiments is depicted in Fig. 13. Light from a supercontinuum broadband light source (SuperK Extreme, NKT 
Photonics, repetition rate 320 MHz)32 is directed towards the sample (S) and the reference (R) arms of an inter-
ferometer by a 50/50 directional coupler DC. In the sample arm, S, light is conveyed towards the sample via 
an achromatic lens LS, and an achromatic telecentric scan lens SL. When the instrument was used for imaging 
purposes, a galvanometer mirror was placed between LS and the sample. At the calibration step, as sample, a flat 
mirror MS was employed.

Light back-scattered by the sample and reflected by the reference mirror MR interferes at DC where it is con-
veyed towards a commercial spectrometer (Cobra 1300, Wasatch Photonics) that covers a large spectral range, 
from 1070 to 1470 nm. The spectrometer is equipped with a Sensors Unlimited GL2048 linear InGaAs camera, of 
2048 pixels and runs at 76 kHz. The difference between the two arms is required by either the OCT practice, or by 
sensing, where the telecentric lens and sample mirror in OCT are replaced by a corner cube for measurement of 
distances (sensing applications). Using the elements normally employed by OCT does not reduce the generality 
of the study. The spectrometer allows for an axial range of maximum 2 mm to be covered.

The imaging instrument has been previously used in clinical studies (Mogensen et al.33). The in-house devel-
oped OCT imaging instrument described above was used to collect data from optical phantoms as well as for 
in-vivo imaging of the healthy human thumb of one volunteer (co-author, Niels Møller Israelsen). Informed 
consent was obtained from the volunteer. This instrument was used for a larger clinical study including healthy 
volunteers from the Department of Dermatology at Bispebjerg Hospital, University of Copenhagen, study estab-
lished in accordance with Helsinki II Declarations. All methods employed for imaging were performed in accord-
ance with guidelines and regulations as described in the research protocol approved by the Ethics Committee of 
The Capital Region of Denmark, no. H-16039077.

Data Availability
The datasets generated and/or analysed in the current paper are available from the corresponding author on 
reasonable request.
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