
Casson, Alexander J., Vazquez Galvez, Arturo and Jarchi, Delaram (2016) 
Gyroscope vs. accelerometer measurements of motion from wrist PPG 
during physical exercise.  ICT Express, 2 (4). pp. 175-179. ISSN 2405-9595. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/69648/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/j.icte.2016.11.003

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/69648/
https://doi.org/10.1016/j.icte.2016.11.003
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Available online at www.sciencedirect.com

ScienceDirect
ICT Express 2 (2016) 175–179

www.elsevier.com/locate/icte

Gyroscope vs. accelerometer measurements of motion from wrist PPG
during physical exercise✩

Alexander J. Casson∗, Arturo Vazquez Galvez, Delaram Jarchi

School of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK

Received 26 September 2016; received in revised form 25 November 2016; accepted 28 November 2016
Available online 6 December 2016

Abstract

Many wearable devices include PPG (photoplethysmography) sensors for non-invasive heart rate monitoring. However, PPG signals are heavily
corrupted by motion interference, and rely on simultaneous motion measurements to remove the interference. Accelerometers are used commonly,
but cannot differentiate between acceleration due to movement and acceleration due to gravity. This paper compares measurements of motion using
accelerometers and gyroscopes to give a more complete estimate of wrist motion. Results show the two sensor signals are very different, with low
correlations present. When used in a wrist PPG heart rate algorithm gyroscope motion estimates obtain better performance in half of the cases.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Very long term portable heart rate monitoring is quickly
emerging as one of the leading uses of wearable technology.
Most smart watches, including the Apple Watch, Samsung Gear
S2, and Fitbit Surge include a heart rate monitor which can be
used for optimizing workouts [1] and potentially for automati-
cally detecting serious events such as atrial fibrillation [2]. As
such they are enabling the study of heart function in the gen-
eral population in a way not possible with traditional Holter
monitors and they are seen as an important part of future per-
sonalized and preventative healthcare. It is estimated that 80%
of heart diseases and 70% of strokes could be avoided with suit-
able preventative techniques [3].

These monitors are based upon Photoplethysmography
(PPG), which shines a light into the wrist and measures the
amount of light reflected back, which changes with blood flow.

∗ Corresponding author.
E-mail address: alex.casson@manchester.ac.uk (A.J. Casson).
Peer review under responsibility of The Korean Institute of Communica-

tions Information Sciences.
✩ This paper is part of a special issue titled Special Issue on Emerging

Technologies for Medical Diagnostics guest edited by Ki H. Chon, Sangho Ha,
Jinseok Lee, Yunyoung Nam, Jo Woon Chong and Marco DiRienzo.

http://dx.doi.org/10.1016/j.icte.2016.11.003
2405-9595/ c⃝ 2016 The Korean Institute of Communications Information Scienc
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Unlike the Electrocardiogram (ECG) the PPG does not require
a sticky conductive gel based electrode and so is highly suited to
wearable applications. However, PPG signals are significantly
corrupted by artifacts due to physical activity which have histor-
ically limited PPG to relatively motion free clinical settings [4].
Today, several different signal processing methods have been
proposed for removing the interference, allowing heart rate to
be extracted in the presence of motion. Nevertheless, in practi-
cal use the performance of these methods is still under investi-
gation [5].

Recently many different motion artifact removal algorithms
have been proposed based upon the 2015 ‘IEEE Signal Pro-
cessing cup’ [6,7]. This provided a database of: wrist PPG; co-
located 3-axis accelerometer measurements to give a reference
recording of wrist motion; and a chest ECG to give a gold stan-
dard comparison of the subject’s heart rate; for 23 subjects. As a
result, many algorithms are based upon using the accelerometer
signal as a reference of the motion present, and subtracting it in
some way from the PPG trace, for example by using an adaptive
filter [6]. While 3-axis accelerometers have been widely applied
in fitness trackers, as they measure acceleration they do not give
a complete picture of the movement of the wrist and PPG sen-
sor node. In particular, accelerometers alone cannot differenti-
ate between acceleration components due to movement of the
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Table 1
Summary of exercises performed by each subject. Green = Subject did that
activity, Red = Subject did not.

subject/sensor and acceleration components due to gravity. Us-
ing accelerometers in isolation thus gives only a partial estimate
of the true motion present.

We propose that this can be overcome by using co-
located gyroscopes in addition to the co-located accelerometers.
Results from fitness trackers have shown how this combination
of sensors can extract both the orientation and angular velocity
of the sensor node [8,9]. However, to our knowledge, gyroscope
information has not yet been used in algorithms for estimating
PPG based heart rate during physical activity. We have recorded
a new database of wrist based PPG measurements which
include both a 3-axis accelerometer and a 3-axis gyroscope
while participants walk, run and cycle. In this article we
characterize the gyroscope information and compare it to that
collected by the accelerometers, demonstrating the potential use
of gyroscopic data for improving the performance of future
algorithms.

2. Methods

2.1. Data collection

PPG recordings were collected from 8 subjects for approx-
imately 5 min each as they undertook a range of physical ex-
ercise activities on a treadmill and exercise bike, different for
each person as detailed in Table 1.

PPG and motion were recorded using a Shimmer 3
GSR+ [10], with 3-axis gyroscope, 3-axis low noise (±2 g)
accelerometer, 3-axis wide range (±16 g) accelerometer, and
PPG input. A green LED PPG sensor was glued to the main
Shimmer unit to give a rigid connection and allow the ac-
celerometers and gyroscopes inside the Shimmer unit to accu-
rately record the movement of the PPG sensor. The combined
unit was connected to the wrist using a continuously adjustable
strap (similar to the Scosche Rhythm+ [11]), see Fig. 1. All
of the signals (including a simultaneous ECG for gold stan-
dard heart rate) have been made public: https://physionet.org/
works/WristPPGduringexercise/. Note in Table 1 (and Table 3)
there is no subject 7 as this data was not shared publicly.
Fig. 1. PPG unit set up.

Fig. 2. PPG heart rate estimation algorithm. Accx is (accelerometer/gyroscope)
input on axis x .

2.2. Signal comparison

For comparing the accelerometer and gyroscope recordings
of motion we first present a range of example signals, showing
visually the different captures of motion provided. These are
considered in both the time and frequency domain, using a
standard FFT applied to the data sections. The results are
quantified by considering the correlations present between the
different motion signals (3-axes of accelerometer data and 3-
axes of gyroscope data), demonstrating that across all of the
records the accelerometer and gyroscope consistently collect
different information.

Finally we use the gyroscope data in a PPG heart rate ex-
traction algorithm, comparing the performance of the algorithm
when the recorded motion input comes from the accelerometers
and from the gyroscopes. Our algorithm is described in detail
in [12], and overviewed in Fig. 2 where the Acc input is ei-
ther the accelerometer or the gyroscope depending on the test
case. The method is similar to that in [13] using a normalized
least mean squared adaptive filter to remove motion interfer-
ence from the PPG before finding the heart beat frequency us-
ing the Short Time Fourier Transform (STFT).

3. Results and discussion

3.1. Qualitative comparisons

Figs. 3 and 4 show 70 s example sections of the motion
signals recorded during walking and high resistance biking
respectively. Readily apparent is the 1 g component due to
gravity in the accelerometer output which manifests mainly
in one axis (axis 2 in Fig. 3, axis 3 in Fig. 4), with this axis

https://physionet.org/works/WristPPGduringexercise/
https://physionet.org/works/WristPPGduringexercise/
https://physionet.org/works/WristPPGduringexercise/
https://physionet.org/works/WristPPGduringexercise/
https://physionet.org/works/WristPPGduringexercise/
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Fig. 3. PPG, gyroscope and accelerometers during walking.

changing as the subject moves from standing during walking
to a seated biking position. Such an offset is not seen in the
gyroscope data.

The walking data (Fig. 3) is generally free of large transients
in the accelerometer output, with this instead being a periodic
signal at the footfall frequency. The FFT of the gyroscope and
accelerometer data for axis 1 is shown in Fig. 5. This shows that
both sensors extract the dominant footfall frequency (1.27 Hz),
and a sub-harmonic at the full gait cycle (0.64 Hz). The
dominant frequency in the PPG trace is the footfall frequency
of 1.27 Hz. Beyond these, the precise estimation of motion is
very different from the two types of sensor. In particular the
accelerometer reports much more activity at both high and low
frequencies, with a peak in the 7–9 Hz range common across
many recordings.

In contrast in the biking condition many large amplitude
transients are seen, for example at 50 s in Fig. 4, occurring
when the subject repositions their hands on the handle bar, and
an artifact is seen in the time domain PPG at this point. While
both the accelerometer and gyroscope capture that a transient
occurs at this time, the precise shapes, Fig. 6, are very different.

3.2. Correlations of motion information

These differences in the motion recordings are quantified in
Table 2 which shows the correlations between the gyroscope
and low noise accelerometer data. (For compactness the
correlations with the wide range accelerometer are not shown.
Fig. 4. PPG, gyroscope and accelerometers during biking.

Fig. 5. Normalized FFT power during walking.

These are very highly correlated, >0.95, with the low noise
accelerometers.)

In Table 2 all of the correlation coefficients are low, with few
greater than 0.5. Although the accelerometers and gyroscopes
are sampled simultaneously and are rigidly connected together
inside the same package, the resulting signals have very
different morphologies, giving different representations of the
motion present.
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Fig. 6. Biking hand movement artifact from the two sensors.

3.3. Algorithm performance

The heart rate algorithm accuracy is given in Table 3. This
shows the mean absolute deviation of the heart rate measured in
each record, using the PPG signal and accelerometer/gyroscope
input, compared to a gold standard heart rate found from a
simultaneous chest ECG measurement. ECG heart rate was
derived via the R peak locations, identified using the Pan
Tompkins algorithm with incorrect/misplaced R peaks removed
by eye.

On our challenging PPG database which contains a range of
example motions, and many transient events which are known
to cause poor performance [6], the current adaptive filter does
not always converge (lines highlighted in gray in Table 3),
and further algorithm development is necessary to give usable
performances in all cases. Using the accelerometer signals the
absolute mean error across all records is 6.9 beats per minute.
Using the gyroscope data this increases to 9.9 beats per minute,
although this is highly variable. For half of the subjects the
error rate is improved by using the gyroscope information in
place of the accelerometer, for half of the subjects the error
rate is increased. This makes it apparent that useful motion
information is being provided by the gyroscopes, but making
optimal use of this requires a data fusion stage.

Such fusion techniques are common in activity tracking to
find the orientation and rotational velocity of the sensor [8,9]
and such a fused estimate of motion could be used to provide
a single, better, motion input to the heart rate algorithm.
Alternatively it may be possible to dynamically switch between
using accelerometer data or gyroscopic data at different points
in time. One of the key challenges in using gyroscope
information in a wearable is that gyroscopes use much more
power than accelerometers and thus a periodic sampling of
gyroscope data to augment the motion estimation provided by
the accelerometers might be highly desirable.

4. Conclusions

This article has, for the first time, investigated simultaneous
gyroscope data for removing motion artifacts from wrist PPG
to give improved heart rate estimates during motion compared
to using only accelerometer measures as used conventionally.
When used in a heart rate extraction algorithm gyroscope mo-
Table 2
Correlation coefficients between accelerometer (AX ) and gyroscope (G X ) data
on axis X .

Record G1 vs.
A1

G1 vs.
A2

G1vs.
A3

G2vs.
A2

G2vs.
A3

G3vs. A3

s1 walk 0.21 −0.20 0.55 −0.03 0.14 −0.46
s1 lrb 0.08 0.01 0.02 0.03 −0.03 0.00
s1 hrb 0.12 0.03 0.08 0.02 −0.04 0.08
s2 walk 0.11 0.00 0.43 0.16 0.25 −0.39
s2 lrb 0.05 0.02 0.04 0.07 −0.04 0.04
s2 hrb 0.03 0.02 0.04 0.01 −0.11 0.07
s3 walk 0.12 −0.20 0.53 0.28 0.10 −0.33
s3 run 0.28 0.02 0.63 0.23 0.15 −0.48
s3 lrb −0.02 0.04 0.02 −0.01 −0.01 −0.02
s3 hrb 0.01 0.13 0.02 −0.07 −0.02 −0.03
s4 run −0.26 0.04 −0.12 −0.29 0.05 −0.05
s5 run 0.43 −0.25 −0.37 0.40 −0.41 −0.49
s5 lrb 0.65 −0.51 −0.45 0.47 0.55 −0.49
s6 walk 0.01 0.01 −0.04 0.03 0.00 −0.02
s6 run 0.06 −0.04 0.06 0.09 0.05 −0.12
s6 lrb 0.06 −0.02 0.02 −0.07 0.06 0.03
s8 walk −0.08 0.15 −0.56 0.03 −0.39 0.53
s8 run −0.21 −0.06 −0.42 −0.01 −0.18 0.32
s9 walk −0.03 0.13 −0.55 −0.23 −0.25 0.43

Table 3
Heart rate extraction performance comparison using different measures of
motion as the adaptive filter input.

Subject Error rate (bpm)
Accelerometer Gyroscope

1 12.1 11.4
2 19.9 19.1
3 – –

4 – –
5 2.0 10.7
6 5.3 0.1
8 1.2 8.9
9 0.6 9.3

|Mean| 6.9 9.9

tion estimates obtained better performance in half of the cases.
The results have characterized the motion recordings obtained
from both types of sensor for the first time and demonstrated
that both may have a role in further decreasing the error rate in
wrist PPG.
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