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Just like any other branch of mathematics, denotational semantics of programming
languages should be formalised in type theory, but adapting traditional domain theoretic
semantics, as originally formulated in classical set theory to type theory has proven
challenging. This paper is part of a project on formulating denotational semantics in
type theories with guarded recursion. This should have the benefit of not only giving
simpler semantics and proofs of properties such as adequacy, but also hopefully in the
future to scale to languages with advanced features, such as general references, outside
the reach of traditional domain theoretic techniques.

Working in Guarded Dependent Type Theory (GDTT), we develop denotational semantics
for FPC, the simply typed lambda calculus extended with recursive types, modelling the
recursive types of FPC using the guarded recursive types of GDTT. We prove soundness
and computational adequacy of the model in GDTT using a logical relation between
syntax and semantics constructed also using guarded recursive types. The denotational
semantics is intensional in the sense that it counts the number of unfold-fold reductions
needed to compute the value of a term, but we construct a relation relating the
denotations of extensionally equal terms, i.e., pairs of terms that compute the same
value in a different number of steps. Finally we show how the denotational semantics of
terms can be executed inside type theory and prove that executing the denotation of a
boolean term computes the same value as the operational semantics of FPC.

Contents

I Tnireductionl
1.1 Synthetic guarded domain theory]
> o
(.3 Related workl

U = W N

T This research was supported by The Danish Council for Independent Research for the Natural Sciences
(FNU), Grant no. 4002-00442.
¥ Marco Paviotti was funded in part by EPSRC grant EP/M017176/1.



R. E. Mggelberg and M.Paviotti 2

[2__Guarded recursionl 7
2.1 'The topos of trees model 8
2.2 Universal quantification over clocks| 10

B—FPd 12
3.1  Operational semantics| 12
15

4__Denotational Semantics| 15
4.1 Interpretation of types| 16
4.2 Interpretation of terms| 18

1o Computational Adequacy| 23
.1 Delayed substitutions| 24
P.2 A logical relation between syntax and semantics| 25
9.3 Prootf of computational adequacy| 26

|6 Extensional Computational Adequacy]| 32
6.1  Global interpretation of types and terms| 33
6.2 A weak bisimulation relation for the lifting monad| 34
6.3 Relating terms up to extensional equivalence| 36
6.4 Extensional computational adequacy] 41

|7 Executing the denotational semantics| 43

I8 _Conclusions and Future Work] 46

[Referenced 46

1. Introduction

Recent years have seen great advances in formalisation of mathematics in type theory, in
particular with the development of homotopy type theory . Such formalisations
are an important step towards machine assisted verification of mathematical proofs.
Rather than adapting classical set theory-based mathematics to type theory, new syn-
thetic approaches sometimes offer simpler and clearer presentations in type theory. As an
example of the synthetic approach, consider synthetic homotopy theory , which
formalises homotopy theory in type theory, not by formalising a topological space as a
type with structure, but rather by thinking of types as topological spaces directly. Par-
ticular spaces such as the circle can then be constructed as types using higher inductive
types. Synthetic homotopy theory can be formally related to classical homotopy theory
via the simplicial sets interpretation of homotopy type theory [KL12|, interpreting types
essentially as topological spaces.

Just like any other branch of mathematics, domain theory and denotational semantics
for programming languages with recursion should be formalised in type theory and, as was
the case of homotopy theory, synthetic approaches can provide clearer and more abstract
proofs. In the case of domain theory, the synthetic approach means treating types as
domains, rather than constructing domains internally in type theory as types with an
order relation. The result of this should be a considerable simplification of denotational
semantics when expressed in type theory. For example, function types of a higher-order
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object language can be modelled simply as the function types of type theory, rather than
as some type of Scott continuous maps. To model recursion, some form of fixed point
construction must be added to type theory, but, as is well known, an unrestricted fixed
point combinator makes the logical reading of type theory inconsistent.

1.1. Synthetic guarded domain theory

In this paper we follow the approach of guarded recursion [Nak00], which introduces a
new type constructor >, pronounced “later”. Elements of >A are to be thought of as
elements of type A available only one time step from now, and the introduction form
next: A — A makes anything available now, also available later. The fixed point operator
has type

fix: PA—A) = A

and maps an f to a fixed point of f o next. Guarded recursion also assumes solutions
to all guarded recursive type equations, i.e., equations where all occurences of the type
variable are under a 1>, as for example in the equation

LA~ A+vLA (1)

used to define the lifting monad L below, but guarded recursive equations can also have
negative or even non-functorial occurences.

One application of guarded recursion is for programming with coinductive types. This
requires a notion of clocks used to index delays. For example, if k is a clock and A is a
type then >, A is a type. If  is a clock variable not free in A and LA = A+p>,LA, then
k can be universally quantified in LA to give the type Vk.LA which can be shown to be
a coinductive solution to Vk.LA =2 A 4+ Vk.LA. Almost everything we do in this paper
uses a single implicit clock variable and all uses of > should be thought of as indexed by
this clock. More details can be found in Section Pl

Recent work has shown how guarded recursion can be used to construct syntactic
models and operational reasoning principles for (also combinations of) advanced pro-
gramming language features including general references, recursive types, countable non-
determinism and concurrency [Bir+12; BBM14; |SB14]. These models often require solv-
ing recursive domain equations which are beyond the reach of domain theoretic meth-
ods. When viewing these syntactic models through the topos of trees model of guarded
recursion |[Bir+12] one recovers step-indexing |[AMO1], a technique for sidestepping re-
cursive domain equations by indexing the interpretation of types by numbers, counting
the number of unfoldings of the equation. Thus guarded recursion can be more accu-
rately described as synthetic step-indexing. Indeed, guarded recursion provides a type
system for constructing step-indexed models, in which the type equations sidestepped by
step-indexing can be solved using guarded recursive types.

This work is part of a programme of developing denotational semantics using guarded
recursion with the expectation that this will not only be simpler to formalise in type
theory than the classical domain theoretic semantics, but also generalise to languages
with advanced features for which step-indexing has been used for operational reasoning.
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This programme was initiated in previous work [PMB15], in which a model of PCF
(simply typed lambda calculus with fixed points) was developed in Guarded Dependent
Type Theory (GDTT) [Biz+16] an extensional type theory with guarded recursive types
and terms. By aligning the fixpoint unfoldings of PCF with the steps of the metalanguage
(represented by ), we proved a computational adequacy result for the model inside type
theory. Guarded recursive types were used both in the denotational semantics (to define
a lifting monad) and in the proof of computational adequacy. Likewise, the fixed point
operator fix of GDTT was used both to model fixed points of PCF and as a proof principle.

1.2. Contributions

Here we extend our previous work in two ways. First we extend the denotational semantics
and adequacy proof to languages with recursive types. Secondly, we define a relation
capturing extensionally equal elements in the model.

More precisely, we consider the language FPC (simply typed lambda calculus extended
with general recursive types) with a call-by-name operational semantics. Working inter-
nally in GDTT this language can be given a denotational semantics in the synthetic
style discussed above. In particular, function types of FPC are interpreted simply as the
function types of GDTT. Base types are interpreted using the lifting monad L satisfying
the isomorphism . In particular the unit type of FPC is interpreted as L1 isomorphic
to 1 4+ >L1, so that denotationally, a program of this type is either a value now, or a
delayed computation. Recursive types are modelled as guarded recursive types satisfying
the isomorphism

[pa.o] = v [olpa.o/al]

(in the case of closed types). This means that the introduction rule for recursive types
(folding a term) can be interpreted as next. To interpret unfolding of terms of recursive
types we construct, for every FPC type o a map 0, : >[o] — o, and interpret unfolding
as Os[ua.0/a)- As a consequence, folding followed by unfolding is interpreted as the map
dolpa.c/a) defined as O,(,q.0/q) © next. This composition is not the identity, rather the
denotational semantics counts the number of fold-unfold reductions needed to evaluate
a term to a value.

Thus, to state a precise soundness theorem, the operational semantics also needs to
count the fold-unfold reductions. To do this, we define a judgement M —* N to mean that
M reduces to N in a sequence of reductions containing exactly k fold-unfold reductions,
and an equivalent big-step semantics M |* v. One might hope to formulate an adequacy
theorem stating that for M of type 1, M |}* () (where () is the introduction form for
1) if and only if [M] = 6* [()]. Unfortunately this is not true. For example, if M |2 ()
the type M ||! () is empty, but the identity type [M] = 6 [()] is equivalent to >0, a
non-standard truth value different from 0. To state an exact correspondence between
the operational and denotational semantics we use the guarded transitive closure of the
small-step semantics which synchronises the steps of FPC with those of GDTT. This is
defined as M =*+*1 N if M —% M/, M" —! M" and >(M" =% N), where M’ —! M" is
a fold-unfold reduction in an evaluation context.
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The adequacy theorem states that M =% () if and only if [M] = §* [()]. We prove
this working inside GDTT, and the proof shows an interesting aspect of guarded domain
theory: It uses a logical relation between syntax and semantics defined by induction over
the structure of types. The case of recursive types requires a solution to a recursive type
equation. In the setting of classical domain theory, the existence of this solution requires
a separate argument [Pit96], but here it is simply a guarded recursive type.

The second contribution is a relation capturing extensionally equal elements in the
model. As mentioned above, the denotational semantics distinguishes between computa-
tions computing the same value in a different number of steps. In this paper we construct
a relation on the denotational semantics of each type relating elements extensionally equal
elements, i.e., elements that compute the same value in a different number of steps. This
relation is defined on the global interpretation of types [o]8' defined from [o] by quanti-
fying over the implicit clock variable (see Section above). This is necessary, because,
as can be seen from the denotational semantics of guarded recursion, any relation on [[1]
relating [()] to 6™ [{)] for any n will also necessarily relate non-termination to [{)]. On
the other hand, it is possible to define such a relation on [1]# which is the coinductive
solution to [1]8' = 1 + [1]&". This is then lifted to function types in the usual way for
logical relations: Two functions are related it they map related elements to related ele-
ments, and to recursive types using a solution to a guarded recursive type equation. We
prove a soundness result for this relation stating that if the (global) denotation of two
terms are related, then the terms are contextually equivalent.

Finally we show that it is possible to execute the denotational semantics. Of course,
FPC is a non-total programming language, so to run FPC programs in type theory, these
must be given a time-out to ensure termination. We demonstrate the technique in the
case of boolean typed programs and show that the denotation of a program executes to
true with a time-out of n steps if and only if the program evaluates to true in less than
n steps in the operational semantics.

All constructions and proofs are carried out working informally in GDTT. This work
illustrates the strength of GDTT , and indeed influenced the design of the type theory.

1.3. Related work

Escardé constructs a model of PCF using a category of ultrametric spaces [Esc99]. Since
this category can be seen as a subcategory of the topos of trees [Bir+12], our previous
work on PCF is a synthetic version of Escardé’s model. Escardé’s model also distinguishes
between computations computing the same value in a different number of steps, and
captures extensional behaviour using a logical relation similar to the one constructed
here. Escardé however, does not consider recursive types. Although Escardd’s model
was useful for intuitions, the synthetic construction in type theory presented here is
very different, in particular the proof of adequacy, which here is formulated in guarded
dependent type theory.

Synthetic approaches to domain theory have been developed based on a wide range of
models dating back to [Hyl91; [Ros86]. Indeed, the internal languages of these models can
be used to construct models of FPC and prove computational adequacy [Sim02]. A more
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axiomatic approach was developed in Reus’s work [Reu96] where an axiomatisation of
domain theory is postulated a priori inside the Extended Calculus of Constructions.

There has also been work on (non-synthetic) adaptations of domain theory to type
theory [BKV09; [Ben+10; Docl4]. However, due to the mistmatch between set-theory
and type theory “some of the proofs and constructions are much more complex than they
would classically and one does sometimes have to pay attention to which of two classically-
equivalent forms of definition one works with” |[BKV09]. More recently Altenkirch et
al. [ADK17] have shown how to encode the free pointed w-cpo as a quotient inductive-
inductive types (QIIT). This looks like a more promising direction for domain theory in
type theory, but this has not yet been developed to models of programming languages.

The lifting monad used in this paper is a guarded recursive variant of Capretta’s delay
monad |Cap05] considered by among others [BKV09; [Ben+10; Dan12; |(CUV15; |ADK17;
Vell7]. The monad D(A) is coinductively generated by the constructors now : A —
D(A) and later : D(A) — D(A). As reported by Danielsson [Danl2|, working with
the partiality monad requires convincing Agda of productivity of coinductive definitions
using workarounds. In this paper productivity is ensured by the type system for guarded
recursion.

In the delay monad, two computations of type D(A) can be distinguished by their
number of steps. To address this issue, Capretta also defines a weak bisimulation on this
monad, similar to the one defined in Definition [6.2] and proves the combination of the de-
lay monad with the weak bisimulation is a monad using setoids. Chapman et al.[CUV15;
Vell7| avoid using setoids, but they crucially rely on proposition extensionality and the
axiom of countable choice. Altenkirch et al. [ADK17] show that under the assumption of
countable choice, their free pointed w-cpo construction is equivalent to quotiented delay
monad of Chapman et al. We work crucially with the non-quotiented delay monad when
defining the denotational semantics, since the steps are necessary for guarded recursion.

This is an extended version of a conference publication [MP16]. A number of proofs
that were omitted from the previous version due to space restrictions have been included
in this version. There is also a slight difference in approach: the conference version defined
a big-step operational semantics equivalent to the guarded transitive closure of the small-
step operational semantics of Figure 2|below. This operational semantics synchronises the
steps of FPC with those of the meta-language, and capturing this in a big-step semantics
was quite tricky. Here, instead, we define a simpler big-step operational semantics and
prove this equivalent to the “global” small-step semantics (Lemma . The results on
executing the denotational semantics presented in Section [7] are also new.

Since this work was carried out, the extensional type theory GDTT that we work
in in this paper has been extended in two directions towards intensionality and imple-
mentation. The first direction is Guarded Cubical Type Theory [Bir+16], extending the
fragment of GDTT without universal quantification over clocks with constructions from
Cubical Type Theory |[Coh+16]. Guarded Cubical Type Theory even has a prototype
implementation. The other direction is Clocked Type Theory |[BGM17], a variant of the
fragment of GDTT without identity types in which delayed substitutions (Section
are encoded using a new notion of ticks on a clock. Clocked Type Theory has a strongly
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normalising reduction semantics. Since neither theory is complete, we stick to GDTT as
our type theory for this paper.

The paper is organized as follows. Section [2|gives a brief introduction to the most impor-
tant concepts of GDTT. More advanced constructions of the type theory are introduced
as needed. Section [3|defines the encoding of FPC and its operational semantics in GDTT.
The denotational semantics is defined and soundness is proved in Section [} Computa-
tional adequacy is proved in Section[5] and the relation capturing extensional equivalence
is defined in Section [6l Section [[ shows how to execute the denotational semantics of
boolean programs. We conclude and discuss future work in Section

Acknowledgements. We thank Nick Benton, Lars Birkedal, Ales Bizjak, and Alex Simp-
son for helpful discussions and suggestions.

2. Guarded recursion

In this paper we work informally within a type theory with dependent types, inductive
types and guarded recursion. Although inductive types are not mentioned in [Biz+16] the
ones used here can be safely added — as they can be modelled in the topos of trees model
— and so the arguments of this paper can be formalised in Guarded Dependent Type
Theory (GDTT) [Biz+16]. We start by recalling some core features of this theory, but
postpone delayed substitutions to Section [5.1]since these are not needed for the moment.

When working in type theory, we use = for judgemental equality of types and terms
and = for propositional equality (sometimes =4 when we want to be explicit about the
type). We also use = for (external) set theoretical equality.

The core of guarded recursion consists of the type constructor > and the fixed point
operator fix: (>A — A) — A satisfying

fix f = f(next(fix(f)) (2)

both introduced in Section Elements of type >A are intuitively elements of type A
available one time step from now. To illustrate the power of the fixed point operator,
consider a type of guarded streams Str, satisfying

Stry =2 N x> Str, (3)

This is a guarded recursive type in the sense that the recursion variable appears under a
>, and its elements are to be thought of as streams, whose head is immediately available
and whose tails take one time step to compute. The fixed point operator can be used
to define guarded streams by recursion. For example, the constant stream of a number
n can be defined as fix(Az. (n,z)), where the type isomorphism is left implicit. Note
that the type of the fixed point operator prevents us from defining elements like fix(\z.x),
which are not productive, in the sense that any element of the stream can be computed in
finite time. In fact, the type >Str, — Str, precisely captures productive recursive stream
definitions.
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The type constructor > is an applicative functor in the sense of [MPO08|], which means
that there is a “later application” ®: >(A — B) — >A — >B written infix, satisfying

next(f) ® next(t) = next(f(t)) (4)

among other axioms (see also [BM13]). In particular, > extends to a functor mapping
f: A— Bto A\x:>A. next(f) ® x. Moreover, the > operator distributes over the identity
type as follows

>(t =4 u) = (nextt =, 4 nextu) (5)

Guarded dependent type theory comes with universes in the style of Tarski. In this
paper, we will just use a single universe Y. Readers familiar with [Biz+16] should think
of this as U, but since we work with a unique clock x, we will omit the subscript. The
universe comes with codes for type operations, including +: U x U — U for binary sum
types, codes for dependent sums and products, and 5: bU — U satisfying

El(®(next(A))) = > EI(A) (6)

where we use EI(A) for the type corresponding to an element A: U. The type of > allows
us to solve recursive type equations using the fixed point combinator. For example, if A
is small, i.e., has a code A in U, the type equation can be solved by computing a code
of LA as

LA =fix(AX: pU. T(A,5X)) (7)

and then by taking the elements using El. More precisely, defining LA as EI(E A), LA
unfolds to EI(F(A,B(next(L A)))) which is equal to A + El(S(next(L A))) which is equal
to A+ >LA. In this paper, we will only apply the monad L to small types A.

To ease presentation, we will usually not distinguish between types and type operations
on the one hand, and their codes on the other. We will still refer use the notation
&: bl — U, but write > for the composition 5 o next. We generally leave El implicit.

2.1. The topos of trees model

The topos S of trees is the category of presheaves over w, the first infinite ordinal. The
category & models guarded recursion [Bir+12] and provides useful intuitions, and so we
briefly recall it.

A closed type is modelled as an object of the topos of trees, i.e., as a family of sets
X (n) indexed by natural numbers together with restriction maps 72X : X(n+1) — X(n)
as in the following diagram

X(1) X(2) X(3) X(4) . 8)

A term of type Y in context x : X, for X,Y closed types, is modelled as a morphism
in S, i.e., as a family of functions f; : X (i) — Y (i) obeying the naturality condition
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fiorX =r¥ o fii1 as in the following diagram

X(i) ¢—— X(i+1)

T 7

fi fim 9)

Y (i) ¢ Y(i+1)

T

The > type operator is modelled as an endofunctor in S such that >X (1) =1, X (n +
1) = X(n). Intuitively, X (n) is the nth approximation for computations of type X, thus
X (n) describes the type X as it looks if we have n computational steps to reason about
it.

Using the proposition-as-types principle, types like >30 are non-standard truth values.
Following the intuition that >30(n) is the type >30 as it looks, if we have n steps to reason
about it, >30 is the truth value of propositions that appear true for 3 computation steps,
but then are falsified after 4. In fact, in the model, (>30)(3) equals 1, but (>30)(4) equals
0 zero as depicted by the following diagram

1 1 1 0 0 (10)

The global elements of a closed type X is the set of morphisms from the constant object
1 to X in S. This can be thought of as the limit of the sequence of as a diagram in
Set. This construction gives us the global view of a type as it allows us to observe all the
computation at once. For example, the global elements of >X correspond to those of X
simply by discarding the first component. Note that objects can have equal sets of global
elements without being isomorphic. In particular 0 and >™0 are not isomorphic.

For guarded recursive type equations, X (n) describes the nth unfolding of the type
equation. For example, fixing an object A, the unique solution to is

LA(n) =1+ A1) + -+ A(n)

with restriction maps defined using the restriction maps of A. In particular, if A is

a constant presheaf, i.e., A(n) = X for some fixed X and r2 identities, then we can
think of LA(n) as {0,...,n — 1} x X + {L} with restriction map given by r,(L) = L,
rn(n,x) = L and r,(i,x) = (i,z) for i < n. The set of global elements of LA is then
isomorphic to N x X + {L}. In particular, if X = 1, the set of global elements is @, the
natural numbers extended with a point at infinity.

The global elements of LA, correspond to the elements of Capretta’s partiality monad |Cap05]

L8 defined as the coinductive solution to the type equation

LHA= A+ 184 (11)

Similarly, the type of Str, can be modelled as Str;(n) = N" x 1. Note that if these
products associate to the right, we can even model as an identity. The restriction
maps of this type are projections, and the global elements of this type correspond to
streams in the usual sense.
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2.2. Universal quantification over clocks

The type of guarded streams Str, mentioned above, is not the usual coinductive type of
streams. For example, a term ¢ : Str in context x : Str, is a causal function of streams,
i.e., one where the n first elements of the output depend only on the n first elements of
the input. This can be seen e.g. in the topos of trees model, where such a term is modelled
by a family of maps f, : N* x 1 — N™ x 1 commuting with projections. Causality is
crucial to the encoding of productivity in types mentioned above.

On the other hand, a closed term ¢ : Str, is modelled by a global element of Str,
and thus corresponds to a real stream of numbers. Likewise, if ¢ : Str, only depends
on a variable z : N, then ¢ denotes a map from the set of natural numbers to that of
streams, because the context is modelled as the constant topos of trees object N, with
restriction maps being identities. More generally, say a context is independent of time if
it is modelled as a constant object, i.e, one where all restriction maps are isomorphisms.
The denotation of a term ¢t : Strg in a context I' independent of time, corresponds to a
map from I'(1) to the set of streams.

The idea of independence of time can be captured syntactically using a notion of clocks,
and universal quantification over these [AM13]. We now briefly recall this as implemented
in GDTT, referring to [Biz+16] for details.

In GDTT all types and terms are typed in a clock context, i.e., a finite set of names of
clocks. For each clock k, there is a type constructor >, a fixed point combinator, and so
on. Each clock carries its own notion of time, and the idea of a context being independent
of time mentioned above, can be captured as a clock not appearing in a context.

If Ais a type in a context where x does not appear, one can form the type Vk.A, binding
k. This construction behaves in many ways similarly to polymorphic quantification over
types in System F. There is an associated binding introduction form Ax.(—) (applicable
to terms where k does not appear free in the context), and elimination form ¢[«'] having
type A[x’/k] whenever t: V. A.

Semantically, a closed type in the empty clock variable context is modelled by a set,
and a type in a context of a single clock is modelled as an object in the topos of trees.
In the latter case, universal quantification over the single clock is modelled by taking the
set of global elements. As we saw above, these sets correspond to coinductive types, and
this also holds in the type theory: If Str, is the type of streams guarded on clock &, i.e.,
satisfies Str, = N x >, Str , then one can prove [AM13; Mggl4] that the type Vk.Str,
behaves as a coinductive type of streams. Similarly, if LA =2 A +p>,LA, and k is not free
in A, then Vk.LA is a coinductive solution to X = A 4+ X. This isomorphism arises as a
composite of isomorphisms

Vk.LA 2 VK. (A+>,LA)

= (Vk.A) + (Vr.>,LA) (12)
> A 4 Voo LA (13)
> A+ VLA (14)

the components of which we recall below. Using these encodings one can use guarded
recursion to program with coinductive types in such a way that typing guarantees produc-
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tivity. We refer to [BM15] for a full model of guarded recursion with clocks, in particular
for how to model types with more than one free clock variable.

The isomorphism arises from a general type isomorphism Vk.>, A = Vk.A holding
for all A. The direction from right to left is induced by next® : A — > A. For the
direction from left to right, a form of elimination for >, is needed, but note that an
unrestricted such of type >b,A — A in combination with fixed points makes the type
system inconsistent. Instead GDTT allows for a restricted elimination rule for >,: If ¢ is
of type >, A in a context where k does not appear free, then prev k.t has type Vk.A. Using
prev k. we can define a term force:

force : (V> A) = Vk.A
(15)

force 2 \z. prev K.x[k]

The term force can be proved to be an isomorphism by the axioms
prev k. next™(t) = Ax.t next™ ((prev k.t)[k]) =t (16)

If k is not free in A, the type Vk.A is isomorphic to A, justifying the isomorphism .
The map A — Vk.A is simply Ax: A.Ax.x. The other direction is given by application
to a clock constant kg, which we assume exists. These can be proved to be inverses of
each other using the clock irrelevance axiom, which states that if ¢ : Vk.A and k does not
appear free in A, then t[x’] = t[”] for all ¥’ and ”. Using force and the isomorphism
V.0 =2 0, one can prove that Vk.>70 is isomorphic to 0, reflecting the fact that there are
no global elements of >0 in the model, as mentioned earlier. We refer to |Biz+16] for
details.

The isomorphism is a special case of an isomorphism

Vi.(B + C) = (V&.B) + (Vk.C) (17)

distributing Vk over sums for all small types B and C. To describe this isomorphism,

encode sum types as B + C LR (1 +1).[B,C](x) where [B, (] is defined by cases

by [B,C](inl(x)) = B and [B,C|(inr(x)) = C. The result of applying the left to right
direction d of the isomorphism to z : Vk.(B + C') is defined by cases of 1 (z[ro]) : 1 + 1.
If 71 (z[ko]) = inl(x), note that for any k, using the clock irrelevance axiom

m(ali]) = (Awmy (2li])) 6] = (A (o)) o] = 1 (o) = inl(x)
and so Ak.ma(z[k]) has type
Vk.[B, Cl(m(z[k])) = Vk.[B, C](inl(x)) = V&.C

and so we can define in this case d(z) = Ak.inl(m2(z[x])). The case of 71 (z[ko]) = inr(%)
is similar. In fact, this construction generalises to an isomorphism

Ve.X(x: A).B2X(x: A)Vk.B (18)

valid whenever k is not free in A.
Finally we note the following extensionality rule for quantification over clocks.

(t =vk.a u) = VE.(t[k] =4 ulk]) (19)
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In most of this paper we will work in a setting of a unique implicit clock x, and simply
write > for >, to avoid cluttering all definitions and calculations with clocks.

For the proof of computational adequacy we will need one more construction from
GDTT: The delayed substitutions. These will be recalled in Section [5.1]

3. FPC

This section defines the syntax, typing judgements and operational semantics of FPC.
These are inductive types in guarded type theory, but, as mentioned earlier, we work
informally in type theory, and in particular remain agnostic with respect to choice of
representation of syntax with binding.

The typing judgements of FPC are defined in an entirely standard way. The grammar
for terms of FPC

L,M,N ::=() |z |inl M | inr M | case L of 1. M;x2.N | (M, N)
| fst M |snd M | Az : 7.M | MN | fold M | unfold N

should be read as an inductive type of terms in the standard way. Likewise the grammars
for types and contexts and the typing judgements defined in Figure [1| should be read as
defining inductive types in type theory, allowing us to do proofs by induction over e.g.
typing judgements.

We denote by Type,, ,
and values of FPC and by 0Term,, the type of all (also open) terms. By a value we mean
a closed term matching the grammar

Termg, and Valueg, the types of closed FPC types and terms,

vu=()|inl M |int M | (M,N) | Az : .M | fold M

3.1. Operational semantics

Figure |2 defines a big-step and a small-step operational semantics for FPC, as well as
two transitive closures of the latter. All these definitions should be read as inductive
types. Since the denotational semantics of FPC is intensional, counting reduction steps,
it is necessary to also count the steps in the operational semantics in order to state
the soundness and adequacy theorems precisely. More precisely, the semantics counts
the number of unfold-fold reductions in the same fashion in which Escardé counted
fix-point reduction for PCF.
The statement

M kv (20)
where M is a term, k a natural number, and v a value, should be read as "M evaluates

in k steps to a value v. We can define more standard big-step evaluation predicates as

follows

Mo e ko

We note that the semantics is trivially deterministic.
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Well formed types

© € Type Contexts <= () 1(©,a)

O
0 Fo.a"%°9
o e
<3< [
ore si=lfl g

O, a7 OFT1 OFT
O+ pa.t OF Top T

for op € {+, x,—}

Typing rules
z:o€el T

'z:o 'E(:1
e:ocFM: 7 I'-M:0-7 I'EN:o
'r(Az:oM):o—T I'MN:T
I'kFe:m I'kFe:m

I'tFinle:m+7m I'Finre:m +7
I'FL:mm+7m Doy mbEM:o Dixe:mbEN:o
I'tcase L of x1.M;xz2.N : o
I'EM:71 X1 I'M:m1x72 T'FEM:mm TFHEN:m
I'Hfst M :7 I'snde:m 'E(M,N):71 X7

't M: pot ' M :7lpot/d]
' unfold M : 7[pa.7/a] Tk fold M : pa.7

Fig. 1. Syntax of FPC

Lemma 3.1. The small-step semantics is deterministic: if M —F N and M Sk N/,
then k = k' and N = N'.

Of the two transitive closures of the small-step semantics defined in Figure [2] the
first is a standard one, equivalent to the big-step operational semantics. The second is
a guarded version which synchronises the steps of FPC with those of the metalogic.
This is needed for the statement of the soundness and adequacy theorems, and also
allows for guarded recursion to be used in the proofs of these. The next lemma states
the relationship between the big-step semantics and the two transitive closures of the
small-step semantics

Lemma 3.2. Let M and N be FPC terms, v a value and k a natural number. Then
1 My*viff M =k
2 M —F Niff ve.M =+ N

Note that in particular M —* N implies M =* N. The opposite implication does not
hold, as we shall see in the examples below.

Proof. The first statement is a essentially a textbook result on operational semantics,
and we omit the proof.

For the second statement the proof from left to right is by induction on M —* N. The
case of M = N is trivial, so consider the case when M —* M’ and M’ —™ N. When
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Big-step semantics

v{%v
LIFinl I/ M[L'Jz:) 4™ v  LIFinr I’ N[L'/a2] §™ v
case L of x1.M;x3.N ™tk v case L of x1.M;x2.N ™tk v
LU* (M,N) M}'v LU~ (M,N) Ny v

fst L |kt oy snd L {Jk+l v
M * Ae.L L[N/z] ' v M {F fold N N |™v
MN |kt o unfold M (Jktm+1 gy

Small-step semantics
(A\z: 0.M)(N) —=° M[N/x] unfold (fold M) —»' M
case (inl L) of x1.M;x2.N —0 MI[L/z1]
case (inr L) of @1.M;x2.N —° N[L/x2)]
fst (M,N) —° M snd (M,N) »° N
My ="My k=0,1
E[M,] =" E[M>)]

E:=[]| EM | case FE of x1.M;z2.N | fst F | snd E | unfold E

M—="M M SN
M—-9M M —ktm N

Guarded transitive closure of the small-step semantics
M=) N M=)M M =sPM »(M7 =FN)
M="N M =N

Fig. 2. Operational semantics for FPC.

k = 0, by definition M —9 M’, and by induction hypothesis we know that V&.M’ =™ N.
Thus, M =" N holds for any k, and so also Vk.M =™ N, since k is not free in
the assumption M —* N. When k£ = 1 by induction hypothesis Vx.M’ =™ N and
thus, for any k, M —! M’ and b.(M’ =™ N). As before, this allows us to conclude
V.M =™t N.

The right to left implication is proved by induction on k. When k£ = 0 the clock « is not
free in M =* N and so Vx.M =" N is isomorphic to M =* N, which implies M —* N.
When k = k' + 1 the assumption Vx.M =* N implies that M —? N’, N’ =1 N” and
Vi (N = N). By the type isomorphism the latter implies Vk.(N"” = N),
which by the induction hypothesis implies N/ %f' N. Thus we conclude M —* N. [
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3.2. Examples

As an example of a recursive FPC type, one can encode the natural numbers as
nat 2 pol 4+«
zero 2% £01d (inl (()))
succ M 2L £01d (inr (M)

Using this definition we can define the term ifz of PCF. If L is a term of type nat and
M ,N are terms of type o define ifz as

ifz L M N 2L case (unfold L) of x1.M;x9.N

where x1, 25 are fresh. It is easy to see that ifz zero M N =F+1 ¢ iff >(M =k v) and
that ifz (succ L) M N =F+1 v iff (N = v) for any L term of type nat. For example,
ifz 101 =242 is 0. On the other hand, ifz 1 0 1 —2 42 is equivalent to 0, showing that
= and —, are not equivalent.

Recursive types introduce divergent terms. For example, given a type A, the Turing
fixed point combinator on A can be encoded as follows:

B ha(a— (A— A) — A)
f:B—>(A—-A)— A

g 2L AzAy.y(unfold z x y)
Ya 2L g(f01d 0)
An easy induction shows that (Y, (Az.z) =% v) = *0, where 0 is the empty type.
If M —* v with v a value and M a term, then

— M =F v is true

— M =" v is logically equivalent to p™2("k)( if n # k, where 0 is the empty type

If, on the other hand, M is divergent in the sense that for any k there exists an N such
that M —* N, then M =" v is equivalent to >"0.

4. Denotational Semantics

We now define the denotational semantics of FPC. First we recall the definition of the
guarded recursive version of the lifting monad on types from [PMB15|. This is defined
as the unique solution to the guarded recursive type equation

LAZ A+>LA

which exists because the recursive variable is guarded by a >. Recall (Section [2)) that
guarded recursive types are defined as fixed points of endomaps on the universe, so LA
is only defined for small types A. We will only apply L to small types in this paper.
The isomorphism induces a map 0y 4 : >LA — LA and amap n: A — LA. An element
of LA is either of the form n(a) or 6(r). We think of these cases as values “now” or
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[0 F a] (p) <£ p()

(
eF1]p

[0+ 7 x 7] (p) Z= [0 F 7] (p) x [©F 72] (p)

(p) == L([® F 1] (p) + [O F 72] ()

(

(

o
o

e

[©F 1 + 7] (p
Z[eFnl(p) = [OF ] (p)
>([©,a k7] (p,[© F pe.7] (p)))

)
)
) =
) def
[©F 71— 72] (p)
)

[©F pa.](p Lty

Fig. 3. Interpretation of FPC types

computations that “tick”. Moreover, given f : A — B with B a >-algebra (i.e., equipped
with a map 0p: >B — B), we can lift f to a homomorphism of >-algebras f: LA — B
as follows

A def
f(n(a)) = f(a)
F(0(r) Z£ 0p(next(f) ® 1)
Formally f is defined as a fixed point of a term of type >(LA — B) — LA — B. Recall

that Ar. next(f) ® r is the application of the functor > to the map f, thus f is an algebra
homomorphism.

(21)

Intuitively LA is the type of computations possibly returning an element of A, record-

ing the number of steps used in the computation. We can define the divergent com-
putation as L Qef fix(#) and a “delay” map dp4 of type LA — LA for any A as

Sra def 01,4 o next. The latter can be thought of as adding a step to a computation.
The lifting L extends to a functor. For a map f : A — B the action on morphisms can

be defined using the unique extension as L(f) def 77/o\f .

4.1. Interpretation of types

A type judgement © F 7 is interpreted as a map of type U/l — U, where |©] is the car-
dinality of the set of variables in ©. This interpretation map is defined by a combination
of induction and guarded recursion for the case of recursive types as in Figure

More precisely, the case of recursive types is defined to be the fixed point of a map
from >(U!®1 — 1) to U!®! — U defined as follows:

AX M B(next(AY : U.[0,a 7] (p,Y)) ® (X ® next(p))) (22)
ensuring

S(next(AY : U. [O,a 7] (p,Y)) ® (next([O© F pa.7]) ® next(p)))
=b(next(A\Y : U. [0, F 7] (p,Y)) ® (next([O - pa.7] (p))))

S(next([0, o+ 7] (5, [0 F 7] (9))))
>([©,a k7] (p, [© F pe.7] (p)))
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The first equation is the application of rule for the guarded fix-point combinator,
whereas the second equation is derived by distributivity over the later application op-
erator described by rule ({4)). Finally, the last equation is derived by the fact that the
elements of the code of the later operator is the later operator on types (rule (6)).

We prove now the substitution lemma for types which states that substitution behaves
as expected, namely that substituting type variables in the syntax with syntactic types
corresponds to applying a dependent type U — U to a type U. This can be proved using
guarded recursion in the case of recursive types.

Lemma 4.1 (Substitution Lemma for Types). Let o be a well-formed type with
variables in © and let p be of type U!®!. If ©, 3 F 7 then

[©F7la/Bll(p) =68+ 7] (p, [OF o] (p))

Proof. The proof is by induction on ©, 8 F 7. Most cases are straightforward, and we
just show the case of ©,8 F pa.7. The proof of this case is by guarded recursion, and
thus we assume that

>([© F (par)lo/B]] (p) = [8, B F pee] (p, [© F o] (p))) (23)

Assuming (without loss of generality) that « is not 8 we get the following series of
equalities
[0+ (uacr) o /811 (o)
= [©F pa.(rle/B]] (p)
=>([0,ak7[o/Bl] (o, [© F pa.(rlo/B])] (p)))
=>([0,a,8F 7] (p, [© F pa.(rlo/BD] (p), [0, a F o] (p, [ne.(r]o/B])] (p))))
=>([0,a,8F 7] (p, [© F pa(rlo/BN] (p), [O F o] (p)))

The latter equals
B(next(AXAY. [0, o, B+ 7] (p, X,Y)) ® (next([© k- pev.(7[o/B])] (p))) ® next [© = o] (p))
By (), implies

next([© F pav.(7[o/B])] (p)) = next([©, B - pa.7] (p, [O F o] (p)))

and so

[©F parlo/Bll (p) =>(10, 0, BF 7] (p, [0, B+ peet] (p, [OF o] (p)), [O F o] (p)))
=>([6,8,akF 1] (p, [0 F o] (p),[0, 5 F par](p,[0©F o] (p))))
=[6,8F par] (p,[© F o] (p)
U

By direct use of the Substitution Lemma we can prove that the interpretation of the
recursive type equals the interpretation of the unfolding of the recursive type itself, only
one step later. Intuitively, this means that we need to consume one computational step
to look at the data.
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def

01— Az : > [[1]] .GLM (CC)

def

Orixry = AT 1 B> [[Tl X 7-2]] '<97'1 (D(ﬂ-l)(x))?HTz(D(ﬂ-Q)(‘T)))
97—1+7—2 def Az D> [[Tl + TQ]] .9L|I.,.1+.,.2]](x)
A (o] = [7])- Az : [o] -0-(f ® (next(z)))
def

Opa.r = Ax: > [pa.t] . next(0r(ua.r /o)) ® ()

def

00—)7

Fig. 4. Definition of 8, : > [o] — [o]

Lemma 4.2. For all types 7 and environments p of type U!©!,

[©F pee] (p) = > [O F Tluc.7/al] (p)

The interpretation of every closed type 7 carries a >-algebra structure, i.e., a map
0;: >[r] — [r], defined by guarded recursion and structural induction on 7 as in Figure[d]
The case of recursive types is welltyped by Lemma and can be formally constructed
as a fixed point of a term of type

G:>(lo: Type,, -(>[o] — [o¢])) — Ho.(>[o] — [o])

FPC

as follows. Suppose F': >(Ilo: Type,,, .(>[o] — [o])), and define G(F') essentially as in
Figure 4] but with the clause G(F),q.- for recursive types being defined as

Az b [poet] (Fripa.r/a) ® T) (24)

Here F, is defined as F' ® next(o) using a generalisation of ® to dependent products to
be defined in Section Define 6 as the fixed point of G. Then

ey,a.r(w) = G(neXt (9))N0‘T($) (25)
= next (0) r[pa.r/a) ® ()
Using the 6 we define the delay operation which, intuitively, takes a computation and
adds one step.

def
0y, — 0, o next.

4.2. Interpretation of terms

Figure [5| defines the interpretation of judgements I' - M : ¢ as functions from [I'] to
[o] where [x1 : 01, , @y : 04] Qef [o1] % -+ x [on]. In the case of case, the function
fis the extension of f to a homomorphism defined as in above, using the fact that
all types carry a >-algebra structure. The interpretation of fold is welltyped because
next([M] (7)) has type > [r[uc.7/a]] which by Lemma[4.2]is equal to [uc.7]. In the case
of unfold, since [M] (v) has type [pa.7], which by Lemma[4.2]is equal to > [7[ua.7/a]],

the type of 070 /o) (IM] (7)) 1s [r[pa.T/a]].
Lemma 4.3. If I' = M : 7[pa.7/a] then [unfold (fold M)] (v) = drjpa.r/a)] [M] (7)-
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[[Fl—t'aﬂ'[[lﬂ}]%[[a}]

[T+ 2] (7) == y(x)
[0+ (T () == n(+)
[T+ (M, N)] (7) == ([M] (7), [N ()
[0+ £st M] (v) <= m ([M] (+))
[[rmndMu(w)g 2([M] (7))
[0 Az.M] (v) <= Az [M] (v, 7)
[[NMNMC‘:H M] (+) [N] (7)
[1+ in1 E] (v) == n(inl [£] ()
[T+ inr E] (v) == n(inl [E] (7))
[T F case L of z1.M;z2.N] (7) 2£ f([L] ()

where f(inl(x1)) Lot [M] (v, z1)
F(inl(z2)) 2= [N] (v, z2)

[T F fold M] (7) 2£ next([M] (7))

[T+ unfold M] (v) def Ortpa.r o) ([M] (7))

Fig. 5. Interpretation of FPC terms

19

Proof. Straightforward by definition of the interpretation and by the type equality

from Lemma (4.2

U

Next lemma proves substitution is well-behaved for terms. The proof is standard text-

book result from domain theory (e.g. [Win93; [Str06]).

Lemma 4.4 (Substitution Lemma). Let I' =z : 01, -+ , 2% : 0 be a context such
that '+ M : 7, and let A F N; : 0; be a term for each i = 1,...k. If further v € [A],
then
[arymiN/a)r| () =0 Mo ([ar N3] ()
Proof.

By induction on the typing judgement I' = M : 7.

The cases for T+ () : 1, Tz :7, TFM N:7, T Ffst M : 7, T F snd M : 7o,

'k (M,N): 71 X 7y are standard.
For the case I' - inl M : 7y + 75 we start from

[[A F (inl M)[N/:E’] (T 7'2]] (7)

By substitution (inl M)[N/Z] equals inl (M [N /Z]). We also know that its denotation
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equals n(inl [[(M[]\_f/i"])]] (7)) by induction hypothesis this is equal to

n(inl [T - (M) : 71 + 7] (4, [[A N 5]] "))

which is now by definition what we wanted. The case for I' F inr N : 7 + 75 is similar.
Now the case for I' + case L of z1.M;x5.N : o. By definition we know that

[[A F (case L of x1.M;x9.N)[N /7] : T]] (7) is equal
[[A - case L[N/ of 1. M[N /i]; z5.N[N /2] : T]] (7)

which is by definition of the interpretation equal to

~

Fo. [MIN/@] (7, 20), 2. [NIN/2] () ([EIN /] ()

where ]?is as in Figure [5| By induction hypothesis we know that this is equal to

~

FOwr IM] (o, [A N 2 6] (1), O [N (3,2, [A N 2 5] (1)

(L1 (o, A+ N =53] ()

which is equal by definition to
[T case L of z1.M;x2.N : 7] (v, HA FN: 6’]] )
Now the fixed point cases. For the case I' F unfold M : 7[ua.7/a] we know that
[[F F (unfold M)[]\_f/f]]] (7) is equal by definition of the substitution function to

[[r - unfold (M[N/f])]l ()

which by definition of interpretation is GT[MQ.T/Q]([[F F (M[ﬁ/f])ﬂ (7). By induction
hypothesis this is equal to

Orfuer o) (I0 - M (A F N] (7))

which by definition is [I" - unfold (M)] ([[A = ]\7]] (7)). For the case T' - fold M : pa.t
we know that [[1" F (fold M)[N/f]]] (7) is equal by defintion to [[F F fold (M[ﬁ/f])]] ()
which is by definition of the interpretation equal to next( [[F - (M[N/ ;E’])]] (7). By in-
duction hypothesis we get fold([T" F M] ([[@ F ]\7]] (7)) which is by definition

[T+ fold (M)] [[@ - 1\7]] )
|

We now aim to show a soundness theorem for the interpretation of FPC. We do this
by first showing soundness of the single step reduction as in the next lemma. As usual in
denotational semantics, this proves that the model is agnostic to operational reductions.
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Lemma 4.5. Let M be a closed term of type 7. If M —* N then [M] (x) = 6* [N] (x)

Proof. The proof goes by induction on M —* N. The cases when k = 0 follow straight-
forwardly from the structure of the denotational model.

The case unfold (fold M) —! M follows directly from Lemma

The case for (A\z : 0.M)(N) —° M[N/z] is straightforward from by Substitution
Lemma [£4

The case for case (inl L) of z;.2.M;z9.2.N —° M|[L/z] and the case for

case (inr L) of 21.2.M;x2.2.N —° N[L/7]

follow directly by definition.

Also the elimination for the product, namely fst (M, N) =% M and snd (M, N) —=° N
follow directly from the definition of the interpretation.

Now we prove the inductive cases. For the case M1 N —* M,N we know that by defi-
nition [M1N] (x) = [M1] (%) [N] (%). By induction hypothesis we know that [M;] (x) =
6%, ([Ma] (), thus [Mi] () [N] (x) = (3, (IMa] (+))) [N] (x) By definition of & and
6 this is equal to 6% ([M2] (x) [N] (x)).

Now the case for

case L of x1.M;xzo.N —F case L' of x1.M;29.N

The induction hypothesis gives [L] = §,, 4+, o [L'], and so Lemma applies proving
the case.

The case for fst M —* £st M’ and for snd M —* snd M’ are similar to the previous
case.

Finally, the case for unfold M; —* unfold M,. By definition we know that

[unfold M;] (x) = 6([M] (%))

By induction hypothesis this is equal to 9(5ﬁa.T([[M2ﬂ (%))) which by Lemma is equal
to oF 1(0([M2] (+))) thus concluding.

Tlpo.T/a

The two most complicated cases of the proof of Lemma [4.5] namely the unfold-fold
reductions and case, are captured in the following two lemmas. In particular, the first
of these states that the interpretation of case is a >-algebra homomorphism. In other
words, case analysing over a computation that perform n ticks and then produces a result
v is equal to a computation that produces n ticks and then performs case analysis over
a terminating computation producing a value v.

Lemma 4.6.

1 The interpretation of case is a homomorphism of >-algebras in the first variable, i.e.,
[ Ax: 71 + T2.case x of x1.M;x5.N] (7)(0(r))
=0 (next([ Ax: 71 + To.case z of x1.M;22.N] (y)) ®r)
2 I[L](7) = 6([L] (7)), then
[case L of x1.M;x5.N] (7) = [case L' of z1.M;22.N] (7)
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Proof. For the proof of the first part, we use the notation fas in Figure |5} Since fis
a homomorphism of >-algebras we get

o~

f( 71+T2(T))
0, (next(f) @)
= 0, (next [Az.case x of z1.M;z5.N] () ® 1)

[Mz.case z of z1.M;x2. N| (7)(0r,4m, (1)) =

For the second part, note that fis [Mx.case x of x1.M;x2.N] (7), so

FILI ()
= f(0r, 4 (IL'T (7))
F(Or, 47 (next([L'] (7))

F (8747, (nexct(
0 (next(f) ® (next([L'] (7))
O (next(F([L']

0o

[case L of x1.M;xz9.N] ()

FALT (M)

([case L' of z1.M;x5.N] (7))

(next

O

We now prove the same for the interpretation of unfold. The key point here is to
observe that the tick operation for a folded recursive type , namely 0,,,.-, is precisely the
tick of the unfolded recursive type after one step of computation, namely >(0-(ua.7/a])-

Lemma 4.7. If pa.7 is a closed FPC type then

1 [ Az: pa.runfold x] (Oua.r (1)) = Orjua.r/a] (NeXt(Orua.r/a]) @ 1)
2 1 [M] (7) = by (IM'] (), then

[[unfOld M]] (7) = 57’[#(1.7’/(1] ([[unfO]-d MIH (7))

Proof. The interpretation for [ Az: pa.7.unfold @] (0.~ (7)) yields 0 ua.7 /) (Oua.r (7))
This type checks as r has type > [ua.7], thus (6,,.-(r)) has type [pa.7] which — by
Lemma — is equal to > [7[ua.7/a]]. Thus the term 0(,4.r/a](@ua.~(r)) has type
[7[pa.7/a]]. Now by definition of 6, - this is equal to 0 (.7 /] (NeXt(Or[ua.r/a]) @ (7))
which is what we wanted.

For the second statement, we compute

[unfold M] (v) = Orjua.r/a) (IM] (7))

pev.r /o] (Opar (IM'] (7))

per /o) (Qua.r (next([M'] ())))

evr /o] (N€X(Or .7 /1) @ ® (next([M'] (7)))) (statement 1)
(
(
(

po.T /) neXt( 7o T/a]([[M ]]( )))) (mﬂe “
pa.r/a] (next([unfold M'] ()

po.T/al [[unfO:Ld M’ ]] ( ))

— l — — —
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We can now prove Lemma As stated above, this is soundness of the model w.r.t.
the small-step operational semantics. For the proof, it is crucial that the interpretation of
every term is an homomorphism of tickf-algebras. This falls out in many cases. For the
cases of the interpretation of unfold and the inductive case of case we use the lemmas
we just proved above.

Proof of Lemma @ The proof is by induction on M —* N. Most of the cases are
straightforward, some (S-reductions for function and sum types) using the substitution
lemma (Lemma. The case unfold (fold M) —! M follows directly from Lemma

Now we prove the inductive cases. For the case M1 N —* M>N we know that by defi-
nition [M1N] (x) = [Mi] (%) [N] (x). By induction hypothesis we know that [M;] (x) =
6%, ([Ma] (+)), thus [My] () [N] (+) = (8%, ([Ma] (+))) [N] (x) By definition of & and
6 this is equal to 6% ([Mz] (¥) [N] (x)).

In the case of

case L of z1.M;x5.N —F case L' of x1.M;29.N

the induction hypothesis gives [L] () = 6-,+r, [L'] (*), and so Lemma[4.6|applies proving
the case.

Finally, the case for unfold M —* unfold M’. If k = 0 the case follows trivially from
the induction hypothesis. If £ = 1, the step from the induction hypothesis to the case is
exactly the second statement of Lemma ]

We now state and prove soundness of our model w.r.t. the operational semantics. We
use the transitive closure over —*, namely =¥, which is synchronised with the > operator
in the type theory. Using = (rather than —,) is not essential to prove soundness, but it
is crucial to prove computational adequacy, which will be presented in the next section.
On the other hand, the explicit step-indexing k in =" is necessary to relate the number
of operational steps with the number of delays (or ticks) in the denotational semantics.

Proposition 4.8 (Soundness). Let M be a closed term of type 7. If M =* N then
[M] () = 0% [NT (+).

Proof. By induction on k. When k = 0 Lemma applies concluding the case. When
k = n+ 1 by definition we have M —9 M’, M’ —* M" and >(M" =" N) . By repeated
application of Lemma we get [M] (%) = [M'] (%) and [M'] (x) = 6([M"] (x)). By
induction hypothesis we get >([M"] (x) = 6™ [N] (%)) which implies next([M"] (%)) =
next(6" [N] (x))) and since § = @ o next, this implies J([M"] (x)) = §*([N] (x)). By
putting together the equations we get finally [M] (x) = 6% [N] (x). U

5. Computational Adequacy

Computational adequacy is the opposite implication of Proposition [4.8] in the case of
terms of unit type. It is proved by constructing a (proof relevant) logical relation be-
tween syntax and semantics. The relation cannot be constructed just by induction on
the structure of types, since in the case of recursive types, the unfolding can be bigger
than the recursive type. Instead, the relation is constructed by guarded recursion: we
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next& [z < next&.t] .u = next&.(ult/z]) (26)
nexté [z « tj.x =t (27)

next{ [x < t] .u = next&.u (28)
nexté[r « t,y « ul& v=next[y « u,z«t]& u (29)
next £. next &’ .u = next&’. next£.u (30)
(next&.t =pe.a next€.s) =p€.(t =4 s) (31)
EI(®(next£.A)) = €. EI(A) (32)

Fig. 6. The notation ¢ [x « t] means the extension of the delayed substitution &
with [z < ¢]. Rule requires x not free in u. Rule requires that none of the
variables in the codomains of £ and & appear in the type of u, and that the
codomains of £ and ¢’ are independent.

assume the relation exists later, and from that assumption construct the relation now by
structural induction on types. Thus the well-definedness of the logical relation is ensured
by the type system of GDTT, more specifically by the rules for guarded recursion. This
is in contrast to the classical proof in domain theory |Pit96], where existence requires a
separate argument.

The logical relation uses a lifting of relations on values available now, to relations on
values available later. To define this lifting, we need delayed substitutions, an advanced
feature of GDTT.

5.1. Delayed substitutions

In GDTT, if I',x: AF B type is a well formed type and ¢ has type >A in context I', one
can form the type > [x < t].B. Intuitively, one time step from now, ¢ delivers an element in
A, and > [z « t] .B is the type of elements that one time step from now delivers something
in B with z substituted by the element delivered at that time by ¢. One motivation for
this construction is to generalise ® (described in Section [2]) to a dependent version: if
fio(II(xz : A).B), then f ®t: >[x « t].B. The idea is that ¢ will eventually reduce to a
term of the form nextwu, and then > [z < t].B will be equal to >B[u/z]. But if ¢ is open,
we may not be able to do this reduction yet.

More generally, we define the notion of delayed substitution as follows. Suppose I', TV I
is a wellformed context, and suppose I'V is on the form IV = z1: Ay ...x,: A, with all 4;
independent, i.e., no x; appears in an A;. A delayed substitution : I' — I' is a vector
of terms & = [x1 « t1,...,%, < t,] such that T' - ¢; : A; for each 7. |Biz+16| gives a more
general definition of delayed substitution allowing dependencies between the A;’s, but
for this paper we just need the definition above.

If £&: T — I is a delayed substitution and I', T + B type is a wellformed type, then
the type >£.B is wellformed in context I'. The introduction form states next£.u: >€.B if
I,V wu: B.

In Figure |§| we recall some rules from [Biz+16] needed below. Of these, and
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can be considered 8 and n laws, and is a weakening principle. Rules , and
also have obvious versions for types, e.g.,

b€ [z < next.t].B = »€.(B[t/x]) (33)

Rather than be taken as primitive, later application ® can be defined using delayed
substitutions as

def

g®y =next[f < g,z < y|.f(z) (34)
Note that if g : >(A — B) and y : >A, the type of g®y is >[f < g,z « y|.B which reduces
to B since f and x do not appear in B. With this definition, the rule next(f(t)) =
next f ® nextt from Section [2| generalises to

next£.(ft) = (next&.f) ® (next&.t) (35)
which follows from . In fact, later application generalises to the setting of delayed
substitutions: if g : .1z : A.B and y : >£. A define

def
g® Yy =next{[f « g,z «y|.f(x): >z < y].B (36)

Note that in the special case where y = next£.u we get

g ® next .u: bE.Blu/x]
Rules , and imply

next& [x « t].nextx = next(next& [z « t].x)
= next(t)
=nexté [z« t].t
which by gives an inhabitant of
> [x < t] .(nextz = t) (37)

5.2. A logical relation between syntax and semantics

Our strategy to prove computational adequacy is by logical relation argument. We con-
struct a logical relation R as in Figure [7] between syntax and semantics. This is done
using first guarded recursion and then induction on the FPC types.

Figure [7] uses an operation lifting relations R from A to B to relations >R from >A
to >B defined as

tDRud:efb[xet,yeu].(mRy) (38)
As a consequence of the following statement holds:
(next£.t) bR (next&u) =v€.(t R u) (39)

The lifting on relations is used, e.g., in the second case of R; where z is assumed to
have type >L1. In that case 6;(x) is a semantic computation that takes a step, and so
should only be related to M, if M can also reduce in one step to an M", that should be
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n(x) R M 2L M =0 ()

def

61(z) Ri M == SM',M": Termpe. M —2 M’ —' M” and 2 >Ry next(M")

T R xry M 2L 71y (2) Ry, £5t (M) and m2(z) Ry, snd (M)

nGnl(2)) Ry irg M 2L LM = inl L and z R+, L

def

n(inr(x)) Reyyry M ==¥L.M = inr L and z R,, L

Ory s (T) Roryiry M 2L SM' M": Termpe. M —% M’ —' M" and z 5Ry, 1+, next(M")

def

f Rrse M =Tlz: [7],N: Termmc.z R+ N — f(z) Ro (MN)

& Ryar M 2L SM'M” untold M —0 M’ —' M” and @ bRy ja.r/a) next(M”)

Fig. 7. The logical relation R, : [7] x Termgp. — U.

later related to x. Note that = is not necessarily of the form next(y) for some y, but we
can still related 2 to next(M") using delayed substitutions as in the definition of >Ry .

Most of the definition of the logical relation is standard, e.g., in the case of function
types, where related functions are required to map related input to related output. The
case of recursive type deserves some attention. On the right hand side, we have = of
type [uc.7], which means it is a piece of data which later will be unfolded and therefore
available. More precisely, it has also type > [7[uc.7/c]]. This semantic program is related
to a syntactic program M if and only if the unfolding of M reduces in one computational
step to an M which is later related to x.

The logical relation is an example of a guarded recursive definition. To see this, note
first that the lifting operation can be expressed on codes mapping R : A — B — U to

Az: A y: bBB(next[r) « 2,y < y].(z' R ¥))
and this operation factors as F o next, for F': (A — B - U) - A — B — U defined as
ASAz: pA y: >BS(next [z’ « z,y <y, R « S].(a' R Y))
Using this, one can formally define the logical relation as a fixed point of a function of
type

>(II(7 : Type,, )- [7] X Termym, — U) — (II(7 : Type,,, ). [7] X Terme. — U)

FPC FPC

similarly to the formal definition of 8 in the equation .

5.3. Proof of computational adequacy

Before proving computational adequacy we need to show some key properties about the
logical relation R. The first of these is that the relation respects the applicative structure
of the > operator which is that we can apply an argument that will be available later to
a function that will also be available later.
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Lemma 5.1. If f bR, next(M) and r bR, next(L) then
(f®r) bRy, next(ML)
Proof. By definition f bR,_,, next(M) is type equal to
>z« fl.(z Rrse M)
which by definition is
>z« f].(T(y : [7])(L : Termge).y R L — z(y) Re ML)

By applying the latter to r and next L using the generalised later application of we
get an element of

>z« fyer,L<nextL].(y R L — z(y) Re ML)
=z« fiy<r].(yR; L - z(y) Ry, ML)

By further applying this to the hypothesis r >R, next(L) =p[y « r].(y R, L) we get
>z < fiy < r].(z(y) Re ML)
which is equivalent to (f ® r) >R, next(M L), thus concluding the case. Ll

Next we show that the relation is agnostic to 0-step reduction in the operational seman-
tics.

Lemma 5.2. If M =% N then z R, M iff z R, N.

Proof. We prove first the left to right implication by induction on o, and show just a
few cases.

In the case of coproducts, we proceed by case analysis on x. In the case of x = n(inl(y)),
by the assumption we have that M —? inl (N’) and y R,, N'. If M = inl (N’), then
by N must be of the form inl (N”') for some N”, such that N’ —° N”. In this case,
by induction hypothesis y R, N” and so & R, +-, N. If the reduction M —? inl (N')
has positive length, by determinancy of the operational semantics (Lemma we get
N —9¥ inl N’, and thus z R, ., N. The case where z = n(inl(y)) is similar. When
x = 0;,4,(y), by the assumption x R, +,, M there exist M’ and M" such that M —?
M’ and M’ —! M’ and y bRy next(M"). Again by determinancy of the operational
semantics, N —9 M’ and thus we conclude * R, 4, N.

Now we consider the case for recursive types. By assumption we know there exists M’
and M" such that unfold M —9 M’ and M’ —* M" and x >R, (4.7 /q] next(M"). Since
M —% N then also unfold M —° unfold N. Therefore, from the assumption and the
fact that the operational semantics is deterministic (Lemma we get unfold N —?
M’. By definition of the logical relation we get © R .- N, which concludes the proof.

The proof of the right to left implication is also by induction on the structure of o.
Again we just show a few cases.

In the case of the unit type, we proceed by case analysis on . When z = n(x) we
have that N —? (). Since M —% N we get M —? () as required. When z is 6;(z')
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by assumption z R; N implies that there exists N’ and N” such that N —¢ N’ and
N’ =1 N” and 2/ >R; next(N"). Since also M — N’ this implies x Ry M.

In the case of recursive types, by assumption we have that z R, N and M —0
N. From the former we derive that there exists M’ and M” such that unfold N —?
M' M —' M" and & Rrjua.r/a] next(M”). Since M —° N then also unfold M —°
unfold N. Therefore, we know that unfold M —2 M’, thus by definition of the logical
relation we conclude. U

Now we show a key property of the logical relation. This states that for programs that
are related later after a 1-step operational reduction are related now. Note that in the
interpretation of the unit type we used the lifting monad. This was not strictly necessary
to get a “tick” algebra structure, but it is crucial to make the following lemma to work.

Lemma 5.3. If z >R, next(M) and M’ —' M then 0,(z) R, M'.

Proof. The proof is by guarded recursion, so we assume that the lemma is “later true”,
i.e., that we have an inhabitant of the type obtained by applying > to the statement of
the lemma. We proceed by induction on 7.

The cases for the unit type and for the coproduct are straightforward by definition. In
the case for products, by assumption we have

Y DRy xr, next(M).
Unfolding definitions we get
>z < y].(m(x) Ry (fst M)) and (m2(x) R, st (M))
which implies
(m1(y)) PRy, next(fst M) and mo(y) >R;, next(snd M)

Since M’ —' M then also fst M’ —! fst M and snd M’ —' snd M, thus we can use
the induction hypothesis on 71 and 75 and get

0, (m1(y)) R, £st M’ and 0., (m2(y)) R+, snd M’
by definition 6, -, commutes with m; and my. Thus, we obtain
1 (Ory s (¥)) Rey £st M’ and  wa(0r, %y (y)) Ry, snd M’

which is by definition what we wanted.

Now the case for the function space. Assume f bR, ., next(M) and M’ —' M. We
must show that if y : [71], N : Termgy, and y R, N then (6, -, (f))(y) R, (MN). So
suppose y R, N, and thus also >(y R,, N) which is equal to next(y) >R,, next(N). By
applying Lemma to this and f >R, ., next(M) we get

f ® (next(y)) PR, next(MN)

Since M’ —' M also M'N —' MN, and thus, by the induction hypothesis for 75,
0, (f ® (next(y))) R, M'N. Since by definition 0., ., (f)(y) = 0., (f ® next(y)), this
proves the case.
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The interesting case is the one of pa.7. Assume x >R q - next(M) and M’ —! M. By
definition of >R this implies > [y « 2] .(y Ryua.r M) which by definition of R,q.- is

>[y « ] XN'N”.unfold M —2 N’ and N’ —' N” and (y DR r[ua.r/a) Next(N"))
Since zero-step reductions cannot eliminate outer unfold’s, N’ must be on the form

unfold N for some N, such that M —% N. Thus, we can apply the guarded induction
hypothesis to get

>y « 2] . (EN.M =2 N and (Orfpar/a)(¥) Rrfua.r/a) unfold N))
Since unfold M —? unfold N, by Lemma we get

> [y - 1’] '(GT[MOA.T/IX] (y) Rr[pa.r/a] unfold M)
which by is

next [y < x].(0r(ua.7/a](¥)) PRr[ua.r/a) Next(unfold M)

By this implies
next(0:(ua.r/a]) ® T >Ryjua.r/a] Next(unfold M)
Since by assumption M’ —! M also unfold M’ —! unfold M thus, by definition of the
logical relation
next(0:ua.7/a]) ® & Rpua.r M’

By definition next(0;[ua.r/a)) ®  is equal to 6,4, (x) thus we can derive
o/wz.‘r(gj) R[LOL.T M’
as we wanted. ]

We can now finally state and prove the fundamental lemma stating that any term is
related to its denotation in the logical relation of Figure [7] As we shall see below, this
will imply computational adequacy.

Lemma 5.4 (Fundamental Lemma). Suppose ' M : 7, forT' =2y : 79, ;2 : T
and = N; : 73, 7y« [i] and ~; Ryp,p N; for i € {1,...,n}, then [M] (7) R, MI[N /]

Proof. The proof is by guarded recursion, and so we assume > applied to the statement
of the lemma. This implies that for all well-typed terms M with context I and type 7
the following holds:

>([M] (3) R, MIN /&)
Then we proceed by induction on the typing derivation I' = M : 7, showing only the

interesting cases.
Consider first the case of I' F Ax.M : 0 — 7. Assuming v,+1 Ro Mp+1, we must show

[\e.M] (7) (s1) Re [M] (7, os)- Since

H)\ZL’M]] (’7)(’771%*1) = [[M]] (’77 '7n+1)
(e M)V /2 (M 1) = A (MNE /) (M)
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and Az.(M[M /7)) (Mypq1) —° (M[M /])[My41/2], by Lemma it suffices to prove
[M] (3, vns1) Ry MM /7| [My1 /2]

which follows from the induction hypothesis.
For the case ' - unfold M : 7[pa.7/a] we must show that

[unfold M| (7) Rrjpar/a) (unfold M)[N /7]

By induction hypothesis we know that [M] (¥) Rua.r (M [N/Z]) which means that
there exists M’ and M" such that unfold (M[N/Z#]) =9 M’ and M’ —! M" and

HM]] (’Y) I>Te"l’[u,w.‘r/a] niXt(M”)' By Lemma then GT[MQ.T/(X]([[M]] (’7)) RT[uaxr/a] M’

and since unfold (M[N/Z]) =% M’ by repeated application of Lemma we get
er[ua.‘r/a]([[Mﬂ (’7)) R'r[,ua.r/a] unfold (M[N/‘ﬂ)

Since by definition [unfold M](Y) = Or(ua.r/a]([M] (7)) this finishes the proof of the

case.
For the case I' - fold M : pa.T we want to show that

[£01d M] (7) Rye.r (£01d M)[N/1]

By definition of the logical relation we have to show that there exist M’ and M" such
that

unfold (fold (M[N/Z])) —° M’
M' —* M" and that [fold M] () bR jua.r/a) next(M"). Setting M” to be (M[N /i),
we are left to show that

[fold M] (%) Rojua.r/a] next(M[N/z])

which is equal by definition of the interpretation function to

neXt([[Mﬂ (’7)) DRT[ua.T/a] neXt((M[N/f]))

The latter is equal by to >([M] (V) Rrjpa.r/al (M[N/&])) which is true by the
guarded recursive hypothesis.
For the case I' - inl M : 7y + 75 we have to prove that

[inl M] () Rry4r, inl M[M /7]
By definition of the interpretation function [inl M] (%) is equal to n(inl([M] (¥))). By
definition of the logical relation we have to prove that there exists M’ such that
(inl M)[M/Z] =° in1 M’ and [M](5) R., M'.
The former is trivially true with M’ = M[M /Z) and the latter is by induction hypothesis.

The case for I' - inr N : 7y + 72 is similar.
For the case I' - case L of x1.M;x5.N : 0 we have to prove that

[case L of 21.M;x5.N] (7) Ry (case L of 1.M;x5.N)[M /]
For this it suffices to prove

[Mz.case z of x1.M;25.N] (7) R srsmso (Az.case x of 21.M;xy.N)[M /] (40)
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and then applying this to [L] (§) Ry 4r, L[M /Z]. We prove by guarded recursion
thus assuming the statement is true later.

Assume y of type [11 + 72], L a term, and y R, +-, L. We proceed by case analysis on
y which is of type [1 + 72]] which by definition is L([71]+ [72]). In the case y = n(inl(z)),
where z is of type [11] we know by assumption that there exists L’ s.t. L =° inl (L)
and z R,, L. Since

[Mr.case x of x1.M;z2.N] (7)(n(inl(z))) = [M] (7, 2)
and
case L of x1.M[M/Z];29.N[M /&) =° M[M /Z][L' 1]
by Lemma we are left to prove
[M](3,7) Ro MM /Z|[L' /1]

which is true by induction hypothesis. The case y = 7(inl(z)) where z is of type [72] is
similar.

Now consider the case of y = 6., 1.,(2), where z is of type > [ + 72]. By induction
hypothesis we know that 6, 1+,(2) Ry +r, L, thus there exist L’ and L” of type Termg,
such that L —9 L', L’ —' L" and 2 bR, +,, next(L").

Recall that we have assumed > of ([40), i.e.,

>([Az.case & of 1. M;29.N] (¥) Ryytryso (Az.case x of x1.M;x9.N)[M/Z])

which is type equal to
next([Az.case x of z1.M;29.N] (7)) DRy, 4rys0 next((Az.case x of z1.M;x9.N)[M /)
By Lemma [5.1] we can apply this to the assumption z >R, -, next(L”) thus getting
next([Az.case x of z1.M;29.N] (7))®z >Ry next(((Az.case z of x1.M;xo.N)[M/Z])(L"))
Since L' —!' L” we can apply Lemma [5.3] and obtain

0, (next([\z.case x of x1.M;x5.N] (7)) ® 2) Ry case L' of x1.M[M /Z];25.N[M /]
By Lemmawith the fact that L —9 L’ we get

0, (next([\z.case x of z1.M;22.N] (7)) ® 2) R, case L of x1.M[M /]; x5.N[M /7]
And finally by simplifying the left-hand side using Lemma [4.6

0, (next([A\x.case © of x1.M;22.N] (7)) ® z) = [Az.case x of x1.M;x2.N] (¥)(y)
thus getting
[Az.case  of 1.M;x5.N] (7)(y) Re (Az.case x of x1.M;a5.N)[M/Z|(L)

as we wanted. Ll
From the Fundamental lemma we can now prove computational adequacy.

Theorem 5.5 (Intensional Computational Adequacy). If M: 1 is a closed term
then M = () iff [M] (x) = % (n(x)).
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Proof. The left to right implication is soundness (Proposition [4.8)). For the right to left
implication note first that the Fundamental Lemma (Lemma plies §k(n(*)) Ry M.
To complete the proof it suffices to show that o (n(x)) Ry M implies M =F ().

This is proved by guarded recursion and induction on k: the case of k = 0 is immediate
by definition of R; . If k = k' +1 first assume 6% (n(x)) Ry M. By definition of R there
exist M’ and M” such that M —0 M’, M’ —' M” and next(6¥ ((x))) bRy next(M")
which is type equal to (6% (5(x)) Ry M”). By the guarded recursion assumption we get
>(M" =F*" ()) which by definition implies M =* (). O

From Theorem [5.5] one can deduce that whenever two terms have equal denotations
they are contextually equivalent in a very intensional way, as we now describe. By a
context, we mean a term C[—] with a hole, and we say that C[—] has type I, 7 — (—,1)
if C[M] is a closed term of type 1, whenever I' - M : 7.

Corollary 5.6. Suppose I' - M : 7 and [M] = [N]. If C[—] has type I', 7 — (—, 1) and
C[M] =F () also C[N] =F ().

As stated above, this is a very intensional result in the sense that whenever two FPC-
denotable programs are equal we can derive that, under any context, they reduce to the
same value with the same number of computational steps. This means that our model dis-
tinguishes programs whose input-output behaviour is the same, but the way in which the
result is computed is computationally different. More specifically, two different algorithms
implementing the same specification, but with a different computational complexity, will
be considered different in the model. We explain how to recover this extensionality via a
logical relation in the next section.

6. Extensional Computational Adequacy

Our model of FPC is intensional in the sense that it distinguishes between computations
computing the same value in a different number of steps. In this section we define a
logical relation which relates elements of the model if they differ only by a finite number
of computation steps. In particular, this also means relating 1 to L.

Such a relation must be defined on the types of the form Vk. [o] rather than directly
on the types [o]. To see why, consider the case of ¢ = 1, in which case [o] = L1. Recall
from Section that in the topos of trees model L1 is interpreted as the family of sets

Li(n)={L,0,1,...,n—1}

which describes computations terminating in at most n — 1 steps or using at least n steps
(corresponding to L). It cannot distinguish between termination in more than n — 1
steps and real divergence. Our relation should relate a terminating value = in L1(n) to
any other terminating value, but not real divergence, which is impossible, if divergence
cannot be distinguished from slow termination. Another, more semantic, way to phrase
the problem is that termination as described by the subsets {0,1,...,n—1} of L1(n) for
each n does not form a subobject of L1.
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On the other hand, if L1 2 14,1 then, as we saw in section the type
1#A 2 ve LA
is a coinductive solution to the type equation
L1 =14 181

Semantically L&'1 is modelled as the set N+{ L}, and termination is the subset of this cor-
responding to the left inclusion of N. So on the global level we can, at least semantically,
distinguish between termination and non-termination. This is reflected syntactically in
Lemma

We refer to Vk. [1] = L8'1 as the global interpretation of the type 1 because it captures
the global behaviour (computable in any number of steps) of terms of type 1. We now
extend this to the global interpretation of all types and terms and give the definition of
the logical relation.

6.1. Global interpretation of types and terms

Recall that the developments above should be read as taking place in a context of an
implicit clock x. To be consistent with the notation of the previous sections, x will remain
implicit in the denotations of types and terms, although one might choose to write e.g.
[¢]" to make the clock explicit.

We define global interpretations of types and terms as follows:

[o]% 2L vk. [o]
[M]E 2L Ak. [M]
such that if I - M : 7, then
[M]#: Ve.([T] = [7])

Note that [o]# is a wellformed type, because [o] is a wellformed type in context o : Type
and Type

FPC

is an inductive type formed without reference to clocks or guarded recursion,
thus x does not appear in Type_,, . By a similar argument [ ]]g1 is welltyped.
Define for all o the delay operator 68': [o]% — [o]% as follows

FPC

58 (z) 2L Ak.8,(z[K]) (41)

Similarly for LA, 62, (z) A Ak.Spa (z[x])-

With these definitions we can lift the adequacy theorem to the global points. To prove
the denotational model is computationally adequate w.r.t. the standard big-step opera-
tional semantics || we take the global view points of the the denotational semantics in
order to be able to remove the occurrences of the > operator.

Corollary 6.1 (Computational adequacy). If M: 1 is a closed term and n is a
natural number, then M " () iff Vk. [M] (x) = 6™ (n(x)).

Proof. Since Vk.(—) is functorial, Theorem|[5.5|gives V. [M] (x) = 6" (n(x)) iff Vk.M ="
(), which by Lemma [3.2 holds iff M | (). Ul
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We have now a semantics that implies the standard operational semantics. However, we
are still not able to prove that if two programs are equal they are going to be contextually
equivalent w.r.t. the input-output behaviour. To achieve so, we need to lift the explicit
step-indexing as well.

6.2. A weak bisimulation relation for the lifting monad

Before defining the logical relation on the interpretation of types, we define a relational
version of the guarded recursive lifting monad L. If applied to the identity relation on
a type A in which k does not appear, we obtain a weak bisimulation relation similar to
the one defined by Capretta [Cap05| for the coinductive partiality monad.

Definition 6.2. For a relation R : A x B — U define the lifting LR : LAx LB - U
by guarded recursion and case analysis on the elements of LA and LB:

n(z) LR n(y)
n(x) LR 05 (y)
(¥)
(¥)

o
n

€

xRy

¥n,y'0rp(y) =07 p(n(y’)) and z Ry’
Yn, 2" .0pa(x) =0} 4(n(z") and 2’ Ry
z>LRy

o
-

€

Q.
-

€

QLA(JL‘) LR my
HLA(.’E) LR 0LB Yy

[N
n

€

Intuitively, LR relates two elements if they either both diverge, or both both converge
to elements related in R. For example, L as defined in Section [d] is always related to
itself which can be shown by guarded recursion as follows. Suppose >(L LR 1). Since
1 = 0(next(L)), to prove L LR 1, we must prove next(L) >LR next(L). But, this type
is equal to the assumption >(L LR 1) by .

By the intuition given for LR below, it should be possible to add or remove ticks on
either side without breaking relatedness in LR. The next lemma shows half of this.

Lemma 6.3. If R: Ax B— U, and LR y then « LR é.p(y) and dpa(x) LR y.

Proof. Assume & LR y. We show = LR 65,5(y). The proof is by guarded recursion,
hence we first assume:

>(Ilz : LA,y : LB.x LRy = x LR 61,5(y)). (42)

We proceed by case analysis on = and y. If x = n(z’), then, since x LR y, there exist n
and gy’ such that y = 67 5(n(y’)) and 2’ R y'. So then d15(y) = 675" (n(y')), from which
it follows that = LR 61,5 (y).

For the case where x = 61, 4(2") and y = n(v), it suffices to show that §7 4, (n(w)) LR n(v)
implies 67 4(n(w)) LR dr5(n(v)). The case of n = 0 was proved above. For n = m + 1
we know that if 07 , (n(w)) LR n(v) also 674 (n(w)) LR n(v) holds by definition, and this
implies

>(07'a (n(w)) LR 7(v))
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But this type can be rewritten as follows

>(7'4(n(w)) LR n(v)) = next(07'4(n(w)) >LR next(n(v)))
= 04 (next(674 (n(w)))) LR 015 (next(n(v))))
=07 4(n(w)) LR d5(n(v))

proving the case.
Finally, the case when & = 6 4(2’) and y = 0. 5(y’). The assumption in this case is
2’ >LR y', which means by (38),

>z « 2y «y].2” LRy"
By the guarded recursion hypothesis we get
>z « 2 y" < y].2" LR §.p(y")
which can be rewritten to
>l « 2’y « y].2" LR 0p(next(y")) (43)

By there is an inhabitant of the type

"

>l — 2’y <] (next(y") = o)

and thus implies > [z « 2'] .« LR 01,5(y"), which, by and since y = 0.5(y’)
equals ' >LR next(y). By definition, this is

Ora(x") LR 015 (next(y))

which since = 04 (") is « LR dr5(y). ]

We can lift this result to L8 as follows. Suppose R : A x B — U and & not in A or B.

Define L8'R : L8'A x L#'B — U as
z LE'Ry def Vk.xz[k] LR y[K]

Lemma 6.4. Let x : L8'Aandy : L8'B. If v L8'R y then x L&' R 6#!(y) and §8'(x) L&' R y.

Proof. Follows directly from Lemma [6.3 ]

One might expect that é;,4(z) LR 01,5 (y) implies © LR y. This is not true, it only implies
>(x LR y). In the case of L&, however, we can use force to remove the >.

Lemma 6.5. Forallz : L8'Aandy : L8 B and forall R : AxB — U, if 5%1A(x) LE'R (5%13(y)
then = L&' R y.

Proof. Assume 5%1 4 (z) LER 5ilB(y). We can rewrite this type by unfolding definitions
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Fig. 8. The logical relation =, is a predicate over denotations of 7 of type
[l x[r]—=U

and as follows.
884(x) LE'R 6% 5 (y) = Vk.(054(2))[K] LR (85 5(y))[x]

Using force this implies V&.(z[x] LR (y[x])) which is equal to = L8R y. Ul

Lemma 6.6. For all z of type L&' A and y of type L&' B, if 6§IA(9U) LE'R y then x L8R y.

Proof. Assume 62, () LE'R y. Then by applying Lemmawe get 6%, (z) L&'R 6% 4 (y)
and by applying Lemma we get x L8R y. ]

With this machinery in place we can now define a relation on the semantics that
relates programs that produce the same value (or both diverge) and that discards the
information about the number of delays used.

6.3. Relating terms up to extensional equivalence

Figure 8] defines for each FPC type 7 the logical relation ~; : [7] x [7] — U. The defini-
tion is by guarded recursion, and well-definedness can be formalised using an argument
similar to that used for well-definedness of # in equation . The case of recursive types
is well typed by Lemma The figure uses the following lifting of relations to sum

types.

Definition 6.7. Let R: Ax B — U and R’ : A’ x B’ - U. Define (R+ R') : (A+ A’) x
(B + B’) — U by case analysis as follows (omitting false cases)

inl(z) (R+ R') inl(y) <L 2 Ry
inl(z) (R+ R) inl(y) <L 2 R’y

The logical relation can be generalised to open terms and the global interpretation of
terms as in the next two definitions.
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Definition 6.8. For I' =z : 01, ,2, : 0y, and for f, g of type [['] — [r] define

def N R N N R R
f e g =177 [0]).Z =& §— f(T) =+ 9(7)

For z,y of type Vk.([T'] — [7]) define

def
- %1%1,7 y == Vr.z[k] ~r., y[x]

Perhaps surprisingly, this relation is not reflexive. For example the function f: L1 —
L1 defined by f(n(x)) = n(x) and f(fr1(x)) = L does not satisfy f =11 f. On
the other hand, the denotation of any term is always related to itself, as the following
proposition states.

Proposition 6.9. If I' - M : o, then [M] =~r, [M].

The rest of this section is devoted to the proof of Proposition [6.9 which is important for
the proof of the extensional computational adequacy theorem. To prove the proposition
we first establish some basic properties of the logical relation. The first lemma states
that delayed application ® respects the logical relation.

Lemma 6.10. For all f, g of type >[7 — o] and z,y of type &[], if f > ~,, g and
x>, ythen (f@®z) >, (9®Y).
Proof. Assume f > =, ., ¢ and x > =, y. By Definition fro = gis

>[f < f,9 < g .(f/ =+~ ¢') which by unfolding the definition of =,_,, is

>[f e fg gl Mz y: [o])x = y— f(z) = g'(y))
By applying this to z, y and = > ~, ¥y using the dependent version of ® defined in
we get

>[f = f.g < gacabeyl.(f(a) =; g (b))

By this is equal to

next [f' « f,a < a].(f'(a)) >~y next[g’ < g,b < y].(g'(b)
which by rule is equal to

(fe®z)>~, (g®Y)

Next we show that 6 respects the logical relation.
Lemma 6.11. Let x,y of type > [o], if (x > =, y) then 0,(x) =, 0,(y)

Proof. We prove the statement by guarded recursion. Thus, we assume the statement
holds “later” and we proceed by induction on o. All the cases for the types that are
interpreted using the lifting — namely the unit type and the sum type — in Definition [6.2]
hold by definition of the lifting relation.

First the case for the function types: Assume o0 = 71 — 7 and assume [ and g of type
> [r1 — 72] such that f >~ ., g. We must show that if z,y : [11]" and z ~,, y then

(Or) =7 (F)(@) ~ry (Or,572(9))(Y))-
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So suppose ¢ =, y, then also >(x =, y), which by is equal to next(x) > =,
next(y). By applying Lemma to this and f > =~ ., g we get

f ® (nextx) > ~,, g®nexty

By induction hypothesis on 72, we get 0, (f®(nextx)) ~,, 0,,(g®(nexty)). We conclude
by observing that by definition of 8, 0, ., (f)(z) = 0., (f ® next(z)).

The case of the product is straightforward.

For the case of recursive types, assume ¢ > ~,q.» . This is type equal to

>z« ¢y« Yl (v Ruar Y)

By definition this is equal to

> [.’E - ¢7y A ¢] (‘T D> Rrlpa.t/al y)

By the guarded recursion hypothesis we get

> [l‘ A ¢7 Yy <= ’(/)] '(er[ua.'r/a] ($) Nrpo.t/a) e‘r[,ua“r/a] (y))
By this is equal to

(neXt [‘T - ¢] '(&'[;wz.r/a] (‘T))) > Rrlpe.t/al (neXt [y A l/}] '(ar[ua.r/a] (y)))

This equals

(neXt(ar[pa.T/a]) ® (b > Xrlua.t/al (neXt(ar[pa.T/a]) ® ¢
By definition next(0;ua.r/a]) ® ¢ is equal to 0,4 (¢) thus we can derive

9ua.7(¢) > Rrlpa.t/a) e,uom'('(/})

which by definition of =4, is

9ua.-r(¢) ot 0;;047(7/})

Next we generalise Lemma [6.3] to hold for ~, for all o.

Lemma 6.12. Let o be a closed FPC type and let  and y of type [o], if ¢ ~, y then
05(x) =y yand x =, §,(y).

Proof. The proof is by guarded recursion and then by induction on the type o. Thus,
assume this lemma holds “later”, and proceed by induction on ¢. The cases of the unit
type and coproduct follow from Lemmal[6.3]and the case of products follows by induction
from the fact that &, (m(2)) = 7;(dr, xrp (), for i« = 1,2. The case of function types
follows from the fact that 05—, (f)(z) = 0-(f(z)).

For the case of recursive types assume r ~,,.r y. Note that

T Ryar Y=T P> Rrpar/a] Y
=b [:E/ -, y/ = y] ! Nrpo.t/a) y/

Using the dependent version of ® as defined in we can apply the guarded recursion
assumption to conclude > [z" « 2,9 < y|.2" ~rpuar/a] Orjpa.r/a)(y'). Note that the
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delay operator is the composition # o next, thus 3’ appears under next. We can thus
employ to derive that > [z’ < z].2" ~;[ua.r/a] Orlua.r/a](¥). From here we conclude
by a simple computation:

> [3?/ = LU] ! Rrlpe.t/a) er[,uour/a] (y) =zrb Nrpe.t/a) neXt(eT[ua.‘r/a] (y))
=T D Rrfuar/a] NeXt(Or[ua.r/a)) ® next(y)
=T > Rruar/al euaf(neXt(y))

=2 par 5;La.7(y)

O

Lemma 6.13. Let o be a closed FPC type and let x,y of type [o]8!. If z ~&! y then
v ~% 08 (y) and 0 (z) ~§ y

Proof. Direct from Lemma [6.12) ]

Proof of Proposition[6.9 The proof is by induction on M and we just show the inter-
esting cases. In all cases we will assume I' = z1 : 01.., 2, : 0, and that we are given &
and 3 such that & =~z 7.

For case expressions, to prove that

[case L of x1.M;x5.N| (¥) =, [case L of x1.M;x2.N] (%)
it suffices to prove that
[Ax.case x of x1.M;29.N] (%) ~o—r [Az.case x of x1.M;xz2.N] () (44)
Thus that for all z, y s.t. ¢ =47 ¥
[Ax.case x of x1.M;x9.N| (Z)(z) =, [Ax.case z of x1.M;25.N] (9)(y)

holds. We prove by guarded recursion. Thus, we assume the statement holds “later”
and we proceed by case analysis on x and y. When z is n(z’) and y is n(y’) either 2’ and
1y’ are both in the left component or they are both in the right component of the sum.
The former case 2’ = inl(2”) and 3’ = inl(y”") reduces to

[M] (Z,2") ~- [M](Fy")

which follows from the induction hypothesis, and the latter case is similar.

Now consider the case of x = 0,4, (') and y = n(v). Since by assumption  ~r 47, Yy
there exists n and w such that = = 67, (n(w)) and w =7 17, v. As before, v and w
must be in the same component of the coproduct, so assume w = inl(w’) and v = inl(v")
such that w’ =2,, v’. By induction hypothesis we know that [M] (Z) ~,,—, [M] (¥) and
thus that [M] (Z)(w’) ~, [M](7)(v"). By Lemmal6.12)this implies 67 ([M] (Z)(w')) =~
[M] () (0"). Since

[M] (Z)(w') = [Ax.case x of x1.M;x2.N] (Z)(n(w)),
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by Lemma [.6] we get
SM([M] (2)(w")) = 62 ([Mw.case x of z1.M; 2. N])(Z)(n(w)))
= [Ar.case x of x1.M;29. N (Z)(67 ., (n(w)))
and thus we conclude
[Ax.case x of x1.M;x2.N] (£)(6) 4., (n(w))) Rri4r, [Mr.case x of x1.M;x2.N])(Z)(n(v))

which is what we wanted to show.
The last case is when z is 0, 4, (¢') and y is 0, -, (v'). By guarded recursion we know
that

>([Az.case x of 1. M;x2. N (Z) =7 +r—sr ([Ar.case x of z1.M;x2.N|)(¥))
By we get
next([Ax.case x of x1.M;x9. N|| (Z)) b ~p4rp—sr next([Az.case x of z1.M;22.N] (¥))

Since the assumption 0. ., (') ~r4r Or 4 (y'), means that ' > ~. 1., v/, by
Lemma this implies

next([A\z.case x of z1.M;25.N])(%) ® 2’ > ~, next([\r.case x of x1.M;x5.N|)(7) ® v/

By Lemma this implies

0, (next([A\z.case x of x1.M;x5.N])(Z) ® 2') ~, 0,(next([M\r.case z of z1.M;z2.N])(§) ® ')
By Lemma [4.6) we conclude that

[Mz.case x of z1.M;22.N| () (0r, 40, (7)) =~ [Mv.case x of x1.M;xo. N (%) (0r, 4, 1"))

proving the case.
Finally we prove the two cases for the recursive types. We first consider the case for
unfold M of type T[pa.7/a]. We have to show that

[unfold M| (Z) ~r[ua.r/a) [unfold M] (¥)
By induction hypothesis we know that [M] (Z) ~pa.r [M](¥) which by definition of
Npa.r is IIM]] (f) > zT[ua.T/a] [[M]] (g) By Lemma we get
GT[ua.T/a]([[M]] (f)) Nrlpa.T/a QT[M(X.T/(X]([[M]] (27))

and by definition of the interpretation function this is what we wanted.

Now the case for fold M of type pa.7. By induction hypothesis we know that
[IM] (%) =rjuar/a) [M](¥) which implies >([M](¥) ~rpa.r/a) [M] (7)) which is
equal to

next([M] (Z)) > ~r(ua.r/a) next([M] (7).
By definition of =, this is precisely next([M] (%)) ~ua.r next([M] (7)) which by
definition of the interpretation function is

[fold M] (%) ~uar [fold M](Y)
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6.4. Extensional computational adequacy

Contextual equivalence of FPC is defined in the standard way by observing convergence
at unit type. We first define the language of contexts. These are FPC programs with a
hole [—] defined inductively as in the next definition.

Definition 6.14 (Contexts).

Ctx :=[-] | Az. Ctx | Ctx N | M Ctx
| inl Citx | inr Ctx | (Ctx, M) | (M, Ctx) | £st Ctx | snd Ctx
| case Ctx of x1.M;x9.N
| case L of x1.Ctx;x9.N | case L of z1.M; z5. Ctx
| unfold Ctx | fold Ctx

Intuitively, a context is a term that takes a term and returns a new term.

We define the “fill hole” function -[-] : Ctx X0Termy, — 0Termy, by induction on the
context in the standard way. Note that this may capture free variables in the term being
substituted.

We say that a context C has type (I',0) — (A, 7) if A+ C[M] : 7 whenever I' - M : 0.
This can be captured by a typing relation on contexts as defined in Figure [0} Next
we define contextual equivalence using the big-step semantics |}. This states that two
program are contextually equivalent if no context can distinguish them. Using | (instead
of |¥) ensures that we capture the standard notion of contextual equivalence, thus that
two programs producing the same value will be equivalent no matter how many steps
they take to terminate.

Definition 6.15. Let I' = M, N : 7. We say that M, N are contextually equivalent,
written M =crx N, if for all contexts C of type (I',7) — (—, 1)

CIMI () = CINJ ()

Finally we can state the main theorem of this section. Using the global view of the
logical relation &~ we can prove if the denotations of two programs are related then they
are contextual equivalent in the extensional sense.

Theorem 6.16 (Extensional Computational Adequacy). If ' v M, N : 7 and
[M]e" ~&'_ [N]e then M ~ex N.

To prove this theorem, we need the following lemma stating that contexts preserve the
logical relation.

Lemma 6.17. Let ' - M : 7 and ' F N : 7 and suppose [M] ~r, [N].If Cisa
context such that C' : T',7 — A, o then [C[M]] =a. [C[N]]

Proof. The proof is by induction on C' and most cases can be proved either very simi-
larly to corresponding cases of Proposition[6.9] or by direct application of Proposition
We show how to do the latter in two cases.

For a context unfold C' of type (I',0) — (A, 7[pa.7/a]) we have by induction that C
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C:(T,7)= (Az:0'),0)

—: (1) = (,7) Mz.C) : (T, 1) = (A, 0" — o)
C:(T,7) = (A7 = 0) AFN:7 C:(T,0) = (A7) AFM:7 =0
CN: (T,7) = (A, 0) MC: (T,o) — (A, 0)
C: (o) = (A, po.t) C:(T,o) = (A, T[pa.7/a])
unfold C': (I',0) = (A, T[pc.7/al) fold C': (I',0) — (A, po.)

C: (T, 71) = (A, 71 X T2) C:(T,7) = (A, 71 X T2)

fst C: (I, 7) — (A, 711) snd C : (I, 7) = (A, 72)
C:(I,7) = (A7) AFN:m C:(I,7) = (A, 72) AFM:m
(C,N): (I,7) = (A, 11 X 72) (M,C): (T,7) = (A, 71 X 72)

C:(T,7) = (A7 +72) Axri:ntHM:o Axza:T2FN:o
case C of 1. M;z2.N : (I',7) = (A, 0)

AFL:17+ 1 C:(T,7)—= (Ayz1:71),0) Axo:2FN:o
case L of z1.C;z2.N : (T, 7) = (A, 0)

AFL:7i+7 Ajzi:mEM:o C:(T,7)—= (Ayz2:T2),0)
case L of 1.M;xz2.C : (I, 1) — (A, 0)

C: (1) = (A, 71) C:(I,7) = (A, 72)
inl C: (I, 7) = (A, 71 + 72) inr C: (I, 7) = (A, 71+ 72)

Fig. 9. Typing judgment for contexts

has type (I, 0) = (A, pa.7) and thus induction hypothesis we know that [C[M]] (Z) ~ua.~
[C[N]] (). By Proposition [6.9 we know that

[Az.unfold ] ~(ua.r)—(r[pa.r/a]) [Az.unfold z]
By applying this latter fact to the induction hypothesis we obtain
[unfold CM]|] (¥) =r[ua.r/a) [unfold C[N]] (¥)

which is what we wanted.

When the context binds a variable one has to be a bit more careful. For example, for a
context of the form case L of x1.C;x2.N' of type (I, 7) — (A, o) we have by induction
that C has type (I',7) — ((A,z1: 71),0) and thus by induction hypothesis we know by
applying the context parameters that [C[M]] (&) ~r ., [C[N]](%). From this we also
know that

[Me1.C[M)]) (Z) ~r =06 [Mx1.C[N]] (). (45)
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By Proposition [6.9] we know that

—

[Az.case L of x1.2(x1); 22.N'] (¥) R(r,-0)m0 [Ar.case L of x1.z(x1); 22.N'] (7))
By applying this to we conclude. L]
As a direct consequence we get the following lemma.

Lemma 6.18. If ' - M, N : 7 and [M]#! ’fu%lﬁ [N]& then for all contexts C of type
(T,7) = (1), [CIM]J =2, [CIN]#

The next lemma states that if two computations of unit type are related then the first
converges iff the second converges. Note that this lemma needs to be stated using the
fact that the two computations are globally related.

Lemma 6.19. For all 2,y of type [1]8, if « %%17 ;) ¥ then
Sna = (5f)" (n(x)) & Sm.y = (6F)" (n(+))

Proof. We show the left to right implication, so suppose x = (6%1)"(77(*)). The proof
proceeds by induction on n. If n = 0 then since by assumption Vk.xz[k] =1 y[k], by
definition of = , for all k, there exists an m such that y[x] = d7*(n(x)). By type
isomorphism , since m is a natural number, this implies there exists m such that for
all k, y[k] = 67 (n(x)) which implies y = Ak.y[x] = (65)™(n(x)).

In the inductive case n = n’+1, since by Lemma (6%1)"/([[1)]]@) ~8 y, the induction
hypothesis implies $m.y = (65)™(n(x)). Ul

Proof of Theorem Suppose [M]8! %%177 [N]8' and that C has type (I,7) —
(—,1). We show that if C[M] | () also C[N] | (). So suppose C[M] | (). By definition
this means Yn.C[M] |" (). By Corollary [6.1] we get $n.Vx. [C[M]] = (61)"(n(*)) which
is equivalent to Xn.[C[M]]g" = (62')"(5()). From the assumption and Lemma we
know that [C[M]]& =8 [C[N]]#, so by Lemma [6.19] there exists an m such that
[CIN]]# = (68" (5(x)). By applying the Corollary once again we get C[N] | () as
desired. Ul

7. Executing the denotational semantics

In this final section we sketch an additional benefit of the denotational semantics de-
scribed in this paper: The denotational semantics can be executed. More precisely, given
a closed FPC term of base type and a number n, the denotational semantics can be
executed up to n steps. This will terminate if and only if the big-step operational seman-
tics terminates in n steps or less. The time-out n is necessary since FPC programs can
diverge and programs in type theory must terminate. We emphasize that at the moment
there is no full implementation of GDTT and so the practical implications of this section
are speculative.

We illustrate the execution of the denotational semantics in the case of programs
computing booleans, i.e., closed term of type 1 + 1. The global interpretation of such a
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term has type [1 + 1]8' = Vx.L(L1 + L1). We first define a term
runstep : (Vk.L(L1+ L1)) — (1 4+ 1) + (Vk.L(L1 + L1))

running the denotation of the term for one step. We define runstep = by cases of z[xo] :
L(L1 + L1)[ko/k] where kg is the clock constant. If z[kg] = n(inl(y)) for some y, then
runstep x = inl(inl(x)), and likewise if z[ko] = n(inr(y)) for some y, then runstep x =
inl(inr(%)). In case x[ko] is of the form O(y), then, as we saw in the construction of the
isomorphism in Section there is a term z, such that z[k] = 0(z,). (Precisely,
zx, = ma(x[k]) using the encoding of binary sums as dependent sums over 1+ 1.) In that
case we define runstep z = inr(prev k.z,).

Using runstep we can define a function

exec: N — (Vk.L(L1+ L1)) = (1 + 1) + (Vk.L(L1 + L1))

such that exec n iterates runstep until it gets a result, or for at most n+1 times. Precisely,
we define exec 0z = runstep = and exec (n + 1) & = runstep « if runstep z is in the left
component and exec (n + 1) x = exec ny if runstep z = inr(y).

We now show that executing the denotational semantics using exec n corresponds to
executing the operational semantics for up to n steps.

Proposition 7.1. Let M be a closed term of FPC of type 1+ 1, and let n be a natural
number. Then exec n [M]8" = inl(inl(x)) iff there exists an N such that M ¥ inl (N)
for some k < n.

To prove Proposition we need following two lemmas.

Lemma 7.2. If exec nz = inl(inl(x)) then there exists a k& < n and a y such that
z = (68,1 (Ar.(inl(y[x]))).

Proof. The proof is by induction on n and case analysis of x[ko]. If z[ko] = n(inl(y))
for some y, then, as above, also z[k] = n(inl(z,)) for some z, and so x = Ak.n(inl(zy))
proving the lemma.

If z[ko] = n(inr(y)), then also exec nx = inl(inr(x)). Comparing this with the as-
sumption we get inl(inr(x)) = inl(inl(x)). Recall [Unil3 Section 2.12] that inl(inr(%)) =
inl(inl(x)) is equivalent to inr(*) = inl(x) which is equivalent to the empty type, so from
this we conclude 0 and thus anything is provable.

Suppose finally that [xo] = 6(y). Then x[x] = 0(z,), and runstepz = inr(prev k.z,;). In
this case n must be greater than 0, i.e., n = m+1, and exec (m+1) x = exec m (prev k.z,;).
In this case, by induction hypothesis, prev k.z, = (5%“) (Ax.n(inl(y[x]))) for some y and
k < n. So then,

&

2[x])

(2]
(0(z2x))
(

A

&

A
A
Ak.(0141 next™((prev k.2, ) [K])
Ak

8141 (851" (Ak.n(inl(y[x])))[x])
= (0%, )M (A (inl(y[x]))
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O

Lemma 7.3. Let M be a closed term of FPC of type 1+1. If [M]8! = (5%;1)’“(An.n(inl(y[m})))
then there exists an N such that M ||* inl (N).

Proof. We prove by induction on k that if

V.07 11 (n(inl(y[K])) Reyry M
then there exists an N such that M ||* inl (N). The lemma then follows from the
Fundamental Lemma (Lemma . In the case of k& = 0, by definition the assumption
implies
Vk.EN.M |J° inl (N)
which by an application to the clock constant g implies
YN.M ||° inl (N)
as desired. If k = [+ 1, the assumption Vx.0(next" (8%, | (n(inl(y[x]))))) Rr4r, M reduces
to
Vi (SM', M": Termge. M — M’ —' M"” and next™ (8%, (n(inl(y[k])))) >Ry, next(M”))
This implies
SM', M": Termye. M —2 M' —* M" and Vi, (8%, (n(inl(y[k]))) Rrysry M)
which, using force implies
SM', M": Termye. M —9 M' —* M” and k.8, 1 (n(inl(y[K]))) Roysry M”
Now the induction hypothesis applies to give an N such that M” |}! inl (N), which by

Lemma implies M” —. v and thus M —* v which implies M ||* inl () again by
Lemma 3.2 O

Proof of Proposition[7.1] The left to right implication follows from Lemmas|[7.2]and [7.3]
If M |J* inl (N) for some k < n, then [M]e' = (5%11)k(An.n(inl([[N]]))). We prove that
this implies that exec n [M]8" = inl(inl(x)) by induction on k. The case of k = 0 follows
directly by definition of exec. If k =1+ 1 also n = m + 1 for some m. Observe now that
for any x : [1 + 1]#!

runstep Ax.(6(next”(z[x])))

runstep 0%, , ()

inr(prev k.(next"(x[x])))
= inr(Ak.z[K])
= inr(z)
and so in particular
runstep [M]# = inr((5%,.,)! (Ar.n(inl(IN]))))
so that
exec (n + 1) [M]#" = exec n (3%, ,)' (Aw.n(inl([N])))
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which equals inl(inl(x)) by the induction hypothesis. L]

8. Conclusions and Future Work

We have shown that programming languages with recursive types can be given sound
and computationally adequate denotational semantics in guarded dependent type theory.
The semantics is intensional, in the sense that it can distinguish between computations
computing the same result in different number of steps, but we have shown how to
capture extensional equivalence in the model by constructing a logical relation on the
interpretation of types.

This work can be seen as a first step towards a formalisation of domain theory in type
theory. Other, more direct formalisations have been carried out in Coq, e.g. [BKV09;
Ben+10; [Doc14] but we believe that the synthetic viewpoint offers a more abstract and
simpler presentation of the theory. Moreover, we hope that the success of guarded re-
cursion for operational reasoning, mentioned in the introduction, can be carried over to
denotational models of more advanced programming language features as, for example,
to general references, for which, at the present day, no denotational model exists.

Future work also includes implementation of GDTT in a proof assistant, allowing for
the theory of this paper to be machine verified. Currently, initial experiments are being
carried out in this direction [Bir+16].

Finally, we have not yet investigate the possible applications of the weak bisimulation
introduced in Section [6
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