
Deng, Yuhui, Huang, Xinyu, Song, Liangshan, Zhou, Yongtao and Wang,
Frank Z. (2017) Memory Deduplication: An Effective Approach to Improve
the Memory System. Journal of Information Science and Engineering,
33 (5). pp. 1103-1120. ISSN 1016-2364.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/69677/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.6688/JISE.2017.33.5.1

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
The Best Paper Award of all papers published in the Journal of Information Science and Engineering in 2017

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/69677/
https://doi.org/10.6688/JISE.2017.33.5.1
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

 1 / 19

1

Memory Deduplication: An

Effective Approach to Improve the Memory System

Yuhui Deng
1,2

, Xinyu Huang
1
, Liangshan Song

1
, Yongtao Zhou

1
, Frank Wang

3

1
Department of Computer Science, Jinan University, Guangzhou, 510632, P. R. China

{tyhdeng@jnu.edu.cn；huangxinyu@tisson.cn；710260037@qq.com；y.t.zhou@foxmail.com}
2
Key Laboratory of Computer System and Architecture, Chinese Academy of Sciences

Beijing, 100190, PR China
3
 School of Computing，University of Kent, CT27NF, UK

frankwang@ieee.org

Abstract— Programs now have more aggressive demands of memory to hold their data than before. This paper analyzes the

characteristics of memory data by using seven real memory traces. It observes that there are a large volume of memory pages with

identical contents contained in the traces. Furthermore, the unique memory content accessed are much less than the unique memory

address accessed. This is incurred by the traditional address-based cache replacement algorithms that replace memory pages by

checking the addresses rather than the contents of those pages, thus resulting in many identical memory contents with different

addresses stored in the memory. For example, in the same file system, opening two identical files stored in different directories, or

opening two similar files that share a certain amount of contents in the same directory, will result in identical data blocks stored in the

cache due to the traditional address-based cache replacement algorithms. Based on the observations, this paper evaluates memory

compression and memory deduplication. As expected, memory deduplication greatly outperforms memory compression. For example,

the best deduplication ratio is 4.6 times higher than the best compression ratio. The deduplication time and restore time are 121 times

and 427 times faster than the compression time and decompression time, respectively. The experimental results in this paper should

be able to offer useful insights for designing systems that require abundant memory to improve the system performance.

Keywords: Memory deduplication, address-based cache, content-based cache, memory compression, data

characteristics,

1. Introduction

Memory hierarchy is designed to leverage data access locality to improve the performance of computer

systems. Each level in the hierarchy has higher speed, lower latency, and smaller size than lower levels. Over the

past decades, the memory hierarchy has suffered from significant bandwidth and latency gaps among processor,

RAM, and disk drive [1,28]. For example, the performance of processors has continued to double about every 18

months since the number of transistors on a chip has increased exponentially in accordance with Moore's law. The

advent of multi-core processors will further facilitate this performance improvement. Unfortunately, disk access

time was improved only about 8% per year [2], although the internal data transfer rate has been growing at an

exponential rate of 40% each year over the past 15 years [3]. The performance gap between processor and RAM

has been alleviated by fast cache memories. However, the performance gap of RAM to disk drive has been

widened to six orders of magnitude in 2000 and will continue to widen by about 50% per year [4]. Therefore, a lot

1 A preliminary version of this paper appears as Evaluating Memory Compression and Deduplication in

Proceedings of the 8th IEEE International Conference on Networking, Architecture, and Storage (NAS2013).

We have significantly enhanced the preliminary version to this journal version.

mailto:tyhdeng@jnu.edu.cn

 2 / 19

of research efforts have been invested in alleviating this gap[3][30][31].

Many programs require more RAM to hold their data than a typical computer has[13, 32]. Although the

amount of RAM in a typical computer has significantly increased due to the declining prices, program developers

have even more aggressively increased their demands [27]. Programs that run entirely in RAM benefit from the

improvements of processor performance, but the runtime of programs that page or swap is likely to be dominated

by the disk access time when the amount of physical RAM is less than what the programs require [6, 7].

Additionally, due to the development of cloud technology, lightweight laptops are widely used as netbooks which

are memory constrained but have rich CPU capability available[15].

The traditional cache replacement algorithms including Least Frequently Used (LFU), Least Recently Used

(LRU), etc. are all address-based approaches. These methods determine which memory page should be replaced

by checking whether the address of that page has been accessed. This results in many identical memory pages

stored in the cache, thus decreasing the effectiveness of the memory. The reason behind this is because there are

many data blocks that have identical contents but associate with different addresses. For example, in the same file

system, opening two identical files stored in different directories, or opening two similar files that share a certain

amount of contents in the same directory, will result in identical data blocks stored in the cache due to the

traditional address-based cache replacement algorithms. Another typical example is that multiple programs call

the same static link library.

Memory compression has been investigated by a lot of research efforts [6,7,8,9,10,11]. The basic idea is

reserving some memory space that would normally be used directly by programs, compressing relatively unused

memory pages, and storing the compressed pages in the reserved space. By compressing those pages, the effective

memory size available to the programs becomes larger, and some memory paging and swapping can be avoided,

thus eliminating some expensive disk accesses. Because accessing compressed memory is faster than accessing

disk drives, memory compression can over commit memory space without significantly reducing performance.

For example, when a virtual page needs to be swapped, this page can be first compressed and then maintained in

the memory. When the page is needed again, it is decompressed and given back. This process is much faster than

swapping those pages to disk drives, although it is slower than accessing real memory. Memory compression must

employ lossless compression algorithms.

Data deduplication periodically calculates a unique hash number for every chunk of data by using hash

algorithms such as MD5 and SHA-1. The calculated hash number is then compared against other existing hash

numbers in a database that dedicates for storing chunk hash numbers. If the hash number is already in the database,

the data chunk does not need to be stored again, a pointer to the first instance is inserted in place of the duplicated

data chunk. Otherwise, the new hash number is inserted into the database and the new data chunk is stored. In

this way, data chunks with equal content can be merged to a single chunk and shared in a copy-on-write fashion.

In order to achieve the best effectiveness, compression and deduplication are normally applied to small data

sets and big data sets, respectively. By using seven real memory traces, this paper applies deduplication to

memory pages against the traditional memory compression for increasing the effective memory space. Moreover,

this paper comprehensively analyzes the characteristics of memory data. Since memory is organized in pages, we

take a single memory page as a basic unit of both compression and deduplication. Our experimental results

demonstrate that memory deduplication significantly outperforms memory compression. Our key contributions

are as follows:

1) This paper reports that there are a large volume of pages with identical contents contained in the running

memory system.

2) This paper proposes to apply the deduplication technology to alleviate the memory bottleneck in modern

computer environments.

 3 / 19

3) This paper analyzes the characteristics of memory data in a great detail and explores the impacts of the

characteristics on the memory compression and deduplication.

4) This paper evaluates memory deduplication against traditional memory compression and explores the

performance impacts of memory deduplication.

The remainder of this paper is organized as follows. Section 2 introduces the related work. Background

knowledge is presented in Section 3. Section 4 introduces the experimental environment. The characteristics of

memory data are analyzed in Section 5. Section 6 and Section 7 perform a comprehensive evaluation to explore

the compression and deduplication behavior of memory data, respectively. Section 8 concludes the paper with

remarks on its contributions to research in this field.

2. Related Work

Memory compression has been considered as a technique to utilize memory resources more effectively. The

existing technologies can be classified into two categories including full memory compression and compressed

disk cache. Full memory compression keeps the entire memory compressed (with the possible exception of some

specialized regions such as DMA)[6,8]. For example, Wilson et al.[6] introduced compression algorithms to

compress virtual memory. Their approach can adaptively determine how much memory should be compressed by

keeping track of recent program behavior. The full memory compression is best illustrated by the MXT (memory

extension technology) of IBM[14]. Compressed disk cache [11] employs a portion of main memory as a buffer

between the main memory and the disk drive. The evicted memory pages from the regular memory are

compressed and stored in the cache, thus alleviating the disk accesses. For example, Roy et al. [11] proposed to

compress memory pages that need to be paged out and store the pages in memory, thus avoiding the large

latencies of disk accesses.

However, effectively managing the compressed memory has to handle a few challenges. First, memory

decompression generates significant latency that causes a critical impact on the memory access time. This is

because the compressed memory pages have to be all decompressed on the fly. Secondly, compressed memory

results in variable-sized memory pages. This requires complicated design and an efficient method to maintain the

mapping between the logical and the compressed address space, and reduce the memory fragmentation. Hallnor

and Reinhardt [9]designed a memory hierarchy that employs a unified compression scheme encompassing the

last-level on-chip cache, the off-chip memory channel, and off-chip main memory. This scheme simultaneously

increases the effective on-chip cache capacity, off-chip bandwidth, and main memory size, while avoiding

compression and decompression overheads between levels. Lee et al.[16] suggested several techniques to reduce

the decompression overhead and the impact of variable-sized compressed blocks including selective compression,

fixed space allocation for the compressed blocks, parallel decompression, using a decompression buffer, and so on.

Tuduce and Gross[7] designed a memory compression solution that adapts the allocation of real memory between

uncompressed and compressed pages and also manages fragmentation without user involvement. The method

dynamically adjusts the optimal size of memory allocation for compression based on the resource demands of

each application. The solution used to localize page fragments in the compressed area allows the system to

reclaim or add space easily if it is advisable to shrink or grow the size of the compressed area.

Some other optimization methods are also proposed to alleviate the challenges. M.Ekman and P.Stenstrom [8]

proposed a main-memory compression scheme to remove decompression and translation overhead from the

critical memory access path. The scheme employs a fast and simple compression algorithm by leveraging an

observation that not only memory words, but also bytes, and entire blocks and pages frequently contain the value

zero. A TLB-like structure is used to locate the compressed blocks in main memory without a memory indirection.

Memory pages are logically arranged into a hierarchical structure with a small slack at each level. A DMA-engine

is adopted to move data when the compressibility of a page is changed. X-Match[10] is a compression algorithm

 4 / 19

that is efficient at compressing small blocks of data and suitable for high-speed hardware implementation.

Recently, some research efforts are invested in using deduplication technology to alleviate the memory

bottleneck in server virtualization environment, thus maximizing the number of virtual machines that can run on a

physical machine of a given resource. Memory deduplication has to periodically calculate a hash value for every

physical memory page. The best location to calculate hash values is in the hypervisor of a virtualized server,

since only the hypervisor has a full knowledge and access privilege of all physical memory pages. Pan et al.[5]

proposed a deferrable aggregate hypercall (DAH) mechanism to achieve both low invocation overhead and low

performance impact of memory deduplication on running applications in a virtual server. Memory scanning

deduplication techniques require very aggressive scan rates to identify sharing opportunities with a short life span

of up to about 5 minutes. Miller et al.[12] proposed to use the I/O-based hints generated by read and write

operations in the virtual file system to make the memory scanning process more efficient, and in consequence

enable it to find and exploit short-lived sharing opportunities without raising the scan rate. In contrast to the

existing works, this paper will investigate the performance behavior of memory deduplication against the

traditional memory compression.

3. Background

3.1 Data Compression

A simple characterization of data compression is that it involves transforming a string of characters in some

representation into a new string that contains the same information but whose length is as small as possible [17].

Compression relies on the fact that the data is redundant, and the redundant data follows some rules. The rules can

be learned and used to accurately predict the data. By leveraging the rules, compressing a sequence of symbols is

obtained by encoding the more frequent or likely symbols with shorter code words compared to the less frequent

or likely symbols. Therefore, Compression can be divided into two phases including modeling and encoding that

are typically interleaved with each other. Modeling detects regularities that allow a more concise representation of

the information, and makes a probability distribution. Encoding is the construction of that more concise

representation based on the probabilities assigned by the model [6,18]. The compression algorithms are

categorized as lossless compression and lossy compression. Lossless compression is mainly used for data where

the original data must be exact bit per bit to the original one. Lossy compression accepts some errors, and in most

of the cases the errors are not detected.

Many coding algorithms have been proposed to handle lossless data compression. The approaches can be

classified as statistical methods and dictionary based methods. The statistical methods assign codes to symbols so

as to match code lengths with the probabilities of the symbols. Dictionary methods exploit repetitions in the

datasets. We only discuss six lossless compression algorithms (Arithmetic algorithm, Huffman algorithm, LZ77,

LZ78, LZW, and RLE), since the algorithms will be employed to compress memory data. The arithmetic

algorithm and Huffman algorithm belong to statistical method, while LZ family algorithms belong to dictionary

method. The reader is referred to [17] for a comprehensive understanding of the data compression algorithms.

(1) Arithmetic coding employs an interval between 0 and 1 on the real number line to represent a source. Each

symbol of the source narrows this interval. The number of bits needed to represent the symbol grows with the

reducing of the interval. This approach uses an explicit probabilistic model and adopts the probabilities of the

source to narrow the interval. It initially employs an unordered list of source and their probabilities. The

number line is then partitioned into subintervals on the basis of cumulative probabilities. Therefore, a

high-probability symbol narrows the interval less than a low-probability symbol, so that the high probability

symbol contributes fewer bits to the coded information.

(2) Huffman coding uses a variable-length code table for encoding a source. It takes a list of nonnegative

weights that denote the probabilities associated with the source, and constructs a full binary tree whose

http://en.wikipedia.org/wiki/Variable-length_code

 5 / 19

leaves are labeled with the weights. A set of singleton trees are initially constructed for each weight in the list.

At each step the trees that have the two smallest weights Wi and Wj are merged into a new tree. The weight

of the new tree is Wi + Wj, and the tree has two children represented by Wi and Wj. The weights Wi and Wj

are then deleted from the list, and the weight Wi + Wj is added into the list. This process continues until the

weight list contains a single value.

(3) LZ77 and LZ88 are both theoretically dictionary coders. LZ77 maintains a sliding window to keep track of

some amount of the most recent data. The encoder uses this data to look for matches, and the decoder

employs this data to interpret the matches that the encoder refers to. This method compresses data by

replacing repeated occurrences of data with references to a single copy of that data existing in the sliding

window. A match is encoded by a pair of numbers (length-offset pair). LZ78 compresses data by replacing

repeated occurrences of data with references to a dictionary. The dictionary is built in terms of the input data

stream. LZW (Lempel–Ziv–Welch) is an improved implementation of the LZ78. LZW encodes sequences of

8-bit data as fixed-length 12-bit codes. The codes from 0 to 255 denote 1-character sequences, and the codes

from 256 to 4095 are generated in a dictionary for sequences encountered in the data as it is encoded. At each

phase in compression, input data are grouped into a sequence until the next character would make a sequence

for which there is no code yet in the dictionary. The code for the sequence (without that character) is

removed, and a new code (for the sequence with that character) is inserted to the dictionary.

(4) RLE (Run-length encoding) stores sequences in which the same data value occurs in many consecutive data

elements as a single data value and count.

3.2 Data Deduplication

Data deduplication is also called intelligent compression or single-instance storage. It involves two phases

including chunking and deduplication detection [19,20]. The chunking phase splits data into non-overlapping data

blocks (chunks). Each of these chunks is processed independently afterwards. The duplication detection phase

detects if another chunk with exactly the same content has already been stored, by using hash algorithms such as

MD5 and SHA-1. If a chunk is duplicated, the subsequent deduplicated chunks receive a pointer to the original

chunk instance. This approach can effectively eliminate redundant chunks, and ensure that only the first unique

instance of any chunk is actually stored. Chunking phase is very important for the quality of redundancy detection.

It can be classified into four categories:

(1) Whole file chunking (WFC): WFC employs a complete file as a basis for the duplication detection. If two

files are exactly the same, the first instance of the file is stored and the subsequent deduplicated files are

replaced with pointers to the stored file copy. Unfortunately, the approach only locates exact file duplication,

the change of a single bit within a file results in a totally different copy of the entire file being stored.

Therefore, this method is not very effective.

(2) Fixed-size partition (FSP)[21]: FSP splits data into equal chunks that are independent of the content of the

data being stored. The effectiveness of this method is highly sensitive to the sequence of data streams. For

example, adding a single bit at the beginning of a file can change the boundaries and the content of all

chunks in the file. This results in a failure of redundancy detection and eliminates any remaining matches,

although the two file are nearly identical with only one bit shifted.

(3) Content-defined Chunking (CDC) [19]: CDC is a variable-sized technique. It employs the data content rather

than the data position within files to locate the boundaries of chunks, thus avoiding the impact of data

shifting. This approach computes a hash value F for all substrings which are equal in size (usually 48 bytes)

of the file. All data between two positions for that hash value F of the substring fulfills the equitation

F is assigned to one chunk. The chunks have a variable size with an expected size

N. Minimal and maximal chunk sizes are determined to avoid too small and too large chunks. However, the

 6 / 19

expected size N determines the granularity of duplicate elimination, thus deciding the storage utilization.

(4) Sliding Block (SB)[22]: SB divides files into fixed-size and non-overlapping chunks and calculates its

signatures (4-byte MD4 along with a 2-byte rolling checksum). If two files have the same name, each chunk

signature of the target file is compared against a sliding-block signature of every chunk in the source file.

This method has to calculate a separate multi-byte checksum for each byte of the data. However, the

checksum information for all offsets of all files is too large in contrast to the data being stored, so this

approach normally performs a finer-granularity matching.

4. Experimental Environment

Table 1. Features of memory page traces

 Trace name Description Size(GByte)

1 espresso A circuit simulator 1.47

2 gcc-2.7.2 A GNU C/C++ compiler 1.13

3 gnuplot A GNU plotting utility 1.47

4 grobner Calculated Grobner basis functions 3.28

5 lindsay A hypercube simulator 1.11

6 p2c A Pascal->C transformer 1.36

7 rscheme An implementation of Scheme 0.25

Wilson et al.[6] executed a set of real programs on an Intel x86 machine and employed Vmtrace[23] to

collect traces of memory pages. The Vmtrace captures overall amount of live data for a run of the program and

writes it into a trace file. Because different program behaviour influence the trace results, a specific use case is

employed to generate to page images. For example, the gcc-2.7.2 compiler compiles the largest file of its own

source code combine.c to generate the page images of memory [29]. The page image traces are LRU behavior

sequences that contain the paging traffic for an LRU memory of some fixed size. Each record in the behavior

sequences contains six fields including a compulsory tag, a fetched page number, a fetched page image, a dirtiness

tag, an evicted page number, an evicted page image. Table 1 summarizes the general information of the traces.

Table 2. Configuration of the experimental platform

Components Description

CPU Intel Core2 T6400 (2M Cache, 2.00 GHz, 800 MHz FSB)

Memory 2G, DDR2 800MHz

Hard disk WDC WD2500BEVT-60ZCT1（250GB /5400RPM）

Chipset Intel 4 Series - ICH9M

In order to maintain the characteristics of the traces, we also adopted an Intel X86 machines to process the

traces in the following experiments. Table 2 describes the configuration of our experimental platform. In order to

minimize the impacts of background processes and obtain accurate results, we turned off all unnecessary

processes and dedicated a partition of 100 GB for the evaluation. All the analysis in this paper is based on ASCII

characters.

5. Analyzing Memory Data Characteristics

5.1 Statistic Results

Table 3 concludes the statistic results of the page image traces. The results refer to a symbol set which has a

granularity of one byte. All percentages are of the total memory data volume. The Zero column indicates that a

 7 / 19

large volume of memory data are zero bytes across seven traces. The Continuous zero column summarizes the

percentage of pages that contain continuous zeros longer than 32 bytes. According to the two columns, the

percentage of zeros ranges between 35.98% and 86%. This means at least one third of the memory data is zeroes.

Furthermore, most of the zeros occur continuously. The Bound column includes the percentage of memory data

which is continuous zeroes longer than 32 bytes, and the continuous zeroes start or end at a page boundary. The

Low column shows percentage of memory data that are low values ranging between 1 and 9. Since we use

decimal to denote ASCII characters in this paper, the low values represent start of heading, start of text, end of text,

end of transmission, enquiry, acknowledge, bell, backspace, and horizontal tab, respectively[24]. The Power(2,n)

column implies the integral power-of-two values. It indicates the values of 2, 4, 8, 16, 32, 64, 128, 255 using

decimal.

Table 3. Statistic results of the page image traces

Trace name Zero(%)
Continuous

zeros (%)
Bound(%) Low(%) Power(2,n)(%) Entropy

Espresso 45.94 14.61 10.34 16.25 16.46 4.19

gcc-2.7.2 56.09 29.88 6.44 11.13 12.25 3.85

gnuplot 80.72 44.53 44.50 3.29 4.66 2.01

grobner 58.34 30.91 19.78 18.62 15.35 3.30

lindsay 86.00 49.96 25.77 6.40 6.72 1.33

p2c 59.62 13.87 7.63 6.30 7.89 3.60

rscheme 35.98 10.75 6.39 17.86 17.85 4.94

Entropy is normally employed as a measure of redundancy. The entropy of a source means the average

number of bits required to encode each symbol present in the source. Therefore, the compressibility grows with

the decrease of the entropy value. Entropy is a useful indicator of compression ratio for a compressor. Given a set

of symbols and a source in which these symbols occur, if each symbol occurs with probability

 , the zero-order entropy is

 . The Entropy column in Table 3 is calculated

with zero-order entropy.

5.2 Zero Distribution

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

4096

0.005

0.010

0.015

0.020

0.025

0.030

P
e
rc

e
n

ta
g

e

Number of continuous zero

 espresso

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

4096

0.005

0.010

0.015

0.020

0.025

0.030

P
er

ce
n

ta
g

e

Number of continuous zero

 gcc-2.7.2

(a) (b)

 8 / 19

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

4096

0.02

0.04

0.06

0.08

0.10

0.12

P
e
rc

e
n

ta
g

e

Number of continuous zero

 gnuplot

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

4096

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

P
e
rc

e
n

ta
g

e

Number of continuous zero

 grobner

(c) (d)

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4096

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
e
rc

e
n

ta
g

e

Number of continuous zero

 lindsay

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4096

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

ce
n

ta
g

e

Number of continuous zero

 p2c

(e) (f)

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

4096

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

P
er

ce
n

ta
g

e

Number of continuous zero

 rscheme

(g)

Fig.1 percentage of continuous zero bytes

Fig. 1 shows the percentage of continuous zero distribution, where X axis represents the length of continuous

zero byte, and Y axis denotes the percentage. The maximum value of X axis is 4096 which is equal to one page

size. Please note that the Y axes across the seven traces are in different scale, in order to have a close observation

of the percentage. If we assume that the length of continuous zero is K, the number of K is N, and the size of trace

is C bytes, the percentage is calculated as (K×N)/C.

The compressibility is strongly related to the distribution of zero. Since the value of a tick in the X axis

represents the length of continuous zero byte, the bigger the value, the more compressible the page. For example,

if the length of continuous zero is 4096, this indicates that the whole page is zero. This page will achieve the

 9 / 19

highest compression ratio. We also can draw a conclusion that if there are more ticks concentrating in the second

half of X axis, the trace will achieve higher compression ratio than that in the first half of X axis.

Fig.1 (a) shows that three continuous zero has the highest percentage (P3=0.16, where the number 3 indicates

three continuous zeros). There are some ticks distributed across X axis. For example, P1984=0.02. According to

Fig.1(b), this trace has a larger portion of zero than that of Fig.1(a). However, the length of continuous zero is

very short. The length normally ranges between 0 and 10. Therefore, most of the ticks concentrate in the

beginning of X axis. For example, the highest percentage P3 is 0.07. Although we can observe many ticks in the

second half of X axis, the percentage is very low. Fig.1(c) and Fig.1(d) demonstrate a similar pattern. Some ticks

distribute in the middle of X axis (they have a relatively long length of continuous zero), and the percentages are

also very high. For example, the highest percentage in Fig.1(c) and Fig.1(d) are P2574 = 0.12 and P3 = 0.15,

respectively. The distribution of ticks across Fig.1(e), Fig.1(f),and Fig.1(g) are very much like Fig.1 (b). Most of

the long continuous zero concentrate in the beginning of X axis. It is very interesting to observe that P4096 of

Fig.1(a), Fig.1(b), Fig.1(c), Fig.1(d), Fig.1(e), Fig.1(f), Fig.1(g) are 0.0056, 0.02, 0.11, 0.0006, 0.06, 0.005, and

0.09, respectively. This indicates that there are many pages full of zeroes across the seven traces.

5.3 Symbol Distribution

0 25 50 75 100 125 150 175 200 225 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

255

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

ce
n

ta
g

e

Symbol distribution

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

Fig.2 Accumulate percentage of symbol distribution

Fig.2 shows the accumulate percentage of symbol distribution across the seven traces. It is easy to observe

that zeroes and low values constitute over 50% of the memory data. This is consistent with the statistics

summarized in Table 3. The percentage curves grow with the increase of ASCII values. However, there is a steep

growth in the very beginning of X axis, and the growth trend gradually slows. This indicates that the extended

ASCII codes (The decimal of ASCII codes ranges from 128 to 255.) except 255 are only a small part of the

memory data over the seven traces.

 10 / 19

0 25 50 75 100 125 150175 200225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
er

ce
n

ta
g

e(
%

)

Symbol distribution

 espresso

0 25 50 75 100 125 150 175 200 225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
er

ce
n

ta
g

e(
%

)

Symbol distribution

 gcc-2.7.2

0 25 50 75 100 125 150 175 200 225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
e
rc

e
n

ta
g

e
(%

)

Symbol distribution

 gnuplot

0 25 50 75 100 125 150 175 200 225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
e
rc

e
n

ta
g

e
(%

)

Symbol distribution

 grobner

0 25 50 75 100 125 150 175 200 225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
er

ce
n

ta
g

e(
%

)

Symbol distribution

 lindsay

0 25 50 75 100 125 150 175 200 225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
e
rc

e
n

ta
g

e
(%

)

Symbol distribution

 p2c

0 25 50 75 100 125 150 175 200 225 250
0.00

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

255

0.01

0.02

0.03

0.04

10
20
30
40
50
60
70

P
e
rc

e
n

ta
g

e
(%

)

Symbol distribution

 rscheme

Fig. 3 Symbol distribution of seven traces

 11 / 19

Fig.3 deconstructs the symbol distribution across seven traces to get further insights into the distribution

pattern as a complement to Fig.2. The figures demonstrate that cluster is the most obvious feature across the seven

traces. Most of the clusters are short lived at fine granularity and they appear to smooth out gradually. A number

of spikes can be observed to interrupt the smoothness. Most of the spikes are accumulated within a relatively

small and specific area. The spikes imply that the corresponding symbols occur frequently. The higher the spikes,

the more frequent the symbols. Therefore, according to the figures, only a small number of symbols occur with a

high frequency. It indicates a significant temporal locality.

A similar pattern across the figures is that the high clustered spikes are normally accumulated within some

specific areas. For example, the beginning of X axis, around the decimal value 25, 50, 80,100, and 110. We further

analyzed the collected data and found that the frequently occurred symbols normally distribute in the intervals of

[0,9], [48,75],[65,90],and [97,122]. The intervals correspond to the ASCII characters summarized in Table 4.

Table 4. Some specific ASCII characters and the corresponding decimal

Decimal Values 0→9 48→57 65→90 97→122

ASCII character Null, start of heading,

start of text, end of text,

end of transmission,

enquiry, acknowledge,

bell, backspace, and

horizontal tab

0→9 A→Z a→z

According to the analysis in this section, we can draw the following conclusions: (1) Memory data contains a

large portion of zeroes and the zeroes normally occur continuously. (2) A small number of symbols occur

frequently. This indicates a strong temporal locality. (3) Some symbols are normally clustered and appear together.

This implies a high spatial locality.

6. Identical Memory Pages

espresso gcc gnuplotgrobner lindsay p2c rscheme
0.0

0.2

0.4

0.6

0.8

P
e
rc

e
n

ta
g

e
 o

f
id

e
n

ti
c
a
l

m
e
m

o
ry

 p
a
g

e
s

Memory Data Traces

Fig. 4 Percentage of identical memory pages

In order to identify the identical memory pages contained in the traces, we calculate a hash number for the

content of each memory page, and compare the hash numbers against each other. The same hash number indicates

identical content of memory pages. Fig. 4 shows the percentages of identical memory pages of seven traces. It is

very interesting to observe that espresso, gcc-2.7.2, gnuplot, grobner, lindsay, p2c, and rscheme contain 85%, 91%,

83%, 79%, 55%, 88%, and 75% identical memory pages, respectively. The seven traces are all collected when the

 12 / 19

memory system of the computer employs LRU replacement algorithm. LRU decides which page is used least

recently by checking the address of the page rather than the content of that page. Therefore, the LRU method has

completely no information about the content of the page that is replaced. This results in many identical memory

pages that are associated with different addresses. For example, opening two identical files stored in different

directories, or opening two similar files stored in the same directory, will incur many identical memory pages.

This result can be applied to all traditional address-based cache replacement algorithms such as LFU, SLRU, etc.

The above analysis indicates that memory system is a very good candidate for applying deduplication.

espresso gcc gnuplot grobner lindsay p2c rscheme
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

N
u

m
b

e
r

o
f

a
c
c
e
ss

e
s

Memory Data Traces

 Address access

 Content access

Fig. 5 Unique address access vs. unique content access

In order to verify the above observations and analysis, we further investigate the number of accesses going to

unique page addresses and unique page contents. The traces record the information of page hit when performing

the page replacement algorithm. Each page hit indicates that there is an identical page address in the memory

system in contrast to the current page address. Therefore, we can calculate the number of unique address accesses.

It is simple to obtain the number of unique page content accesses by using the approach employed to calculate the

identical memory pages. Fig. 5 shows that the number of unique address accesses is much higher than the unique

content accesses. This confirms what we report in Fig. 4.

7. Memory Data Compression

The lossless data compression approaches can be classified as stream compression and block compression.

The streaming compression continuously accepts a stream of bytes as input and produced a compressed stream as

output, while block compression accepts data block by block and compresses each block separately. Most

compression methods work in the streaming mode. However, if the entire memory data is compressed as a single

contiguous stream, it would be very expensive when a few memory pages are read, since the entire compressed

data has to be decompressed before serving the small read requests, and this would incur some memory swapping.

Therefore, it is better to compress a small group of consecutive blocks at one time. This makes the

compression/decompression more efficient. When a read request comes, the system only needs to read and

decompress a small group of blocks. This optimizes read operation and allows greater scalability in the total size

of the memory data being compressed. Since the memory system is organized in pages, we employ block

compression in this section to evaluate the compressibility of memory data, and the group size is defined as an

integer times of the memory page size. The compression ratio is defined as the size of compressed memory data

divided by the size of uncompressed memory data.

 13 / 19

ArithmeticHuffman LZ77 LZ78 LZW RLE
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o

m
p

re
ss

io
n

 r
a
ti

o

Algorithms

 espresso gcc-2.7.2 gnuplot

 grobner lindsay p2c

 rscheme

ArithmeticHuffman LZ77 LZ78 LZW RLE
0
1
2
3
4
5
6
7

40
50
60
70
80
90

100
110

0
1
2
3
4
5
6
7
40
50
60
70
80
90
100
110

C
o

m
p

re
ss

io
n

 t
im

e
 (

m
il

li
se

c
o

n
d

)

Algorithms

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

(a) Compression ratio (b) Compression time

ArithmeticHuffman LZ77 LZ78 LZW RLE
0

5

40

45

50

55

0

5

40

45

50

55

D
ec

o
m

p
re

ss
io

n
 t

im
e

(m
il

li
se

co
n

d
)

Algorithms

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

(c) Decompression time

Fig.6 Impact of different algorithms on the memory data compression

We will quantify the benefits achieved by compressing seven memory traces to identify the effect of different

compression algorithms on the overall system behaviour. The block size of this evaluation is 8KB that is equal to

two memory pages. Fig.6 reveals significant variations of system behavior between different compression

algorithms. Fig.6(a) shows that the LZ algorithms (LZ77, LZ78, LZW) obtain the significant compression ratios

(around 0.4), and gunplot trace achieves the best compression ratio across the six algorithms. Fig.6 (b) and (c)

demonstrate the compression and decompression time of a single block by using different algorithms and traces. It

shows that the RLE algorithm performs best, and the performance of LZ77 and LZW are not acceptable in

contrast to the latest Hitachi Ultrastar 15K which has an average access time of 2 milliseconds [25], since the

compression time of LZ77 and decompression time of LZW are over 70 milliseconds and 50 milliseconds,

respectively. According to the above evaluation and discussion, we believe that LZ78 strikes a good balance

between compression ratio, compression time, and decompression time. The compression time and decompression

time are both less than 4 milliseconds across seven traces. Fig.6 reveals that the compression and decompression

performance difference under different algorithms can be over 500 times and 300 times, respectively.

 14 / 19

4 8 16 32 64 128

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
o

m
p

re
ss

io
n

 r
at

io

Block size(KB)

 espresso gcc-2.7.2 gnuplot

 grobner lindsay p2c

 rscheme

4 8 16 32 64 128

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

180

200

C
o

m
p

re
s
s
io

n
 t

im
e

(m
ill

is
e

c
o

n
d

)

Block size(KB)

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

(a) Compression ratio (b) Compression time

4 8 16 32 64 128

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

D
ec

o
m

p
re

ss
io

n
 t

im
e(

m
il

li
se

co
n

d
)

Block size(KB)

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

(c) Decompression time

Fig.7 Impact of block size on the system behavior (LZ78 algorithm)

Since we use block compression to perform the evaluation, the block size has a significant impact on the

system behaviour. Fig.7(a) shows a general trend that the compression ratio decreases with the increase of block

size (from 4Kbyte to 128Kbyte) across the seven traces. Fig.7 (b) and (c) reveal that the bigger the block size is,

the higher the compression and decompression time are. This pattern is reasonable, because larger data block is

more compressible and requires more time to compress and decompress. However, the performance decrease is

not linearly proportional to the block size.

8. Memory Data Deduplication

Before the evaluation, we delete the header information as introduced in Section 4 in the traces and align the

boundaries of chunks to the boundaries of memory pages. In contrast to the traditional compression methods, data

deduplication works at a course-grained level. Fig.8 shows the performance pattern of memory deduplication. The

X axis denotes different chunking policies as discussed in Section 3.2, where the numbers following FSP and SB

represent the chunking size. For example, FSP-4K implies that fixed-size partition scheme splits data into equal

4KByte chunks. Since the WFC approach is not suitable for memory deduplication, our evaluation only adopts

three schemes including FSP, CDC, and SB. Please note that the Y axis of Fig.8 (b) and(c) is in microseconds.

Since the page size of the seven memory traces is 4Kbyte, FSP-4K covers one memory page, FSP-8K covers two

memory pages, and so on. The deduplication ratio is defined as the size of the data deduplicated divided by the

size of the original data.

 15 / 19

FSP-4K FSP-8K FSP-16KFSP-32K CDC SB-4K
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

 espresso gcc-2.7.2 gnuplot

 grobner lindsay p2c

 rscheme
D

ed
u

p
li

ca
ti

o
n

 r
at

io

Algorithms

FSP-4K FSP-8K FSP-16KFSP-32K CDC SB-4K
0

100

200

1200

1400

1600

1800

0

100

200

1200

1400

1600

1800

D
e
d

u
p

li
c
a
ti

o
n

 t
im

e
(m

ic
ro

se
c
o

n
d

s)

Algorithms

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

(a) deduplication ratio (b) deduplication time

FSP-4K FSP-8K FSP-16KFSP-32K CDC SB-4K
0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

R
e
st

o
re

 t
im

e
(m

ic
ro

se
c
o

n
d

s)

Algorithms

 espresso

 gcc-2.7.2

 gnuplot

 grobner

 lindsay

 p2c

 rscheme

(c) restore time

Fig.8 Performance behavior of memory deduplication

Fig.8 (a) shows that FSP-4K and SB-4K achieve the best deduplication ratio across the seven traces. The

experimental results are very close to each other by using the above two algorithms. When the chunking size of

FSP is increased from 4Kbyte to 32Kbyte, the deduplication ratio is significantly increased. The compression ratio

of CDC is close to 1. It is not acceptable either. Therefore, from a compression ratio standpoint, FSP-4K and

SB-4K are the best candidates to perform memory deduplication. Furthermore, we believe that the optimal

chunking size of memory deduplication is one memory page. Unfortunately, according to Fig.8 (b) and Fig.8(c),

the deduplication time of SB-4K is about 40 times higher than that of the FSP-4K, although the restore time is

comparable. According the above discussion, we believe that FSP-4K is the best candidate policy for memory

deduplication, since FSP-4K takes less than 50 microseconds and 10 microseconds to deduplicate and restore a

single memory page in terms of the experimental results reported in Fig.8 (b) and Fig.8(c).

According to the evaluation in Section 6 and Section 7, the chunking size has an opposite impact on the

performance of memory compression and memory deduplication. This is because the probability of those identical

characters contained in a chunk grows with the increase of the chunk size, while the probability of two chunks that

are exactly the same is decreased with the growth of the chunk size. For example, an 8Kbyte chunk would involve

more compressable characters than that of a 4Kbyte. However, it is more difficult to find two identical 8Kbyte

chunks than 4Kbyte chunks. Furthermore, the memory characteristics may have different impacts on the

compression and deduplication. For example, gunplot trace has the best compression ratio and compression

 16 / 19

performance. However, this advantage disappears when the trace is performed deduplication.

9. Comparison of Memory Compression and Deduplication

espresso gcc-2.7.2 gnuplot grobner lindsay p2c rscheme
0

20

40

60

80

2000

4000

6000

T
im

e
(m

ic
ro

se
c
o

n
d

s)

 Compression(LZ78)

 Deduplication(FSP-4K)

espresso gcc-2.7.2 gnuplot grobner lindsay p2c rscheme
0

2

4

6

8

10

2000

3000

4000

5000

T
im

e
(m

ic
ro

se
c
o

n
d

s)

 Compression(LZ78)

 Deduplication(FSP-4K)

(a) Compression time against deduplication time (b) Decompression time against restore time

espresso gcc-2.7.2 gnuplot grobner lindsay p2c rscheme
0.0

0.1

0.2

0.3

0.4

0.5

0.6
 Compression(LZ78)

 Deduplication(FSP-4K)

c
o

m
p

re
ss

io
n

 /
 d

e
d

u
p

li
c
a
ti

o
n

 r
a
ti

o

(c) Compression ratio against deduplication ratio

Fig.9 Comparison of memory compression and deduplication

 In order to further investigate the performance behaviour of memory deduplication, we compare the memory

compression against memory deduplication in terms of time overhead and data reduction ratio. As discussed in

Section 7 and Section 8, LZ78 algorithm and FSP-4K achieve the best performance in the compression and

deduplication, respectively. Therefore, we only compare the performance behaviour of LZ78 against FSP-4K. Fig.

9(a) shows the compression time against deduplication time. It demonstrates that the deduplication time is much

faster than that of compression time across seven traces. Fig. 9(b) depicts a similar trend. It indicates that the

restore time significantly outperforms the decompression time when using the seven traces. For example, it takes

only 8.83 microseconds to restore the rscheme trace data when employing FSP-4K. However, the decompression

time of LZ78 grows to 4620 microseconds. Fig.9 (c) demonstrates the compression ratio against deduplication

ratio when the seven traces are adopted to perform the evaluation. It shows that the deduplication ratio is much

better than that of compression ratio. This means that there are many identical pages contained in the traces. These

pages generate the high deduplication ratio. However, this characteristic cannot be leveraged by compression,

because compression is only performed within every single memory page.

10. Conclusion

This paper explores the performance behavior of memory deduplication against memory compression by

 17 / 19

using seven real memory traces. The experimental results give the following indications:

(1) There is a large volume of memory pages with identical contents contained in the memory system, and the

number of unique memory content accessed is much less than the unique memory address accessed. The

reason behind this is because the traditional address-based cache replacement algorithms replace memory

pages by checking the addresses rather than the contents of those pages. Therefore, memory deduplication

significantly outperforms memory compression.

(2) FSP achieves the best performance in contrast to CDC and SB when performing memory deduplication. The

optimal chunking size of FSP is equal to the size of a memory page.

(3) A specific memory data that is very compressable may not be able to achieve good deduplication

performance.

(4) The characteristics of memory data have different impacts on compression and deduplication.

The analysis results in this paper should be able to provide useful insights for designing or implementing

systems that require abundant memory resources to enhance the system performance. Possible direction for future

work includes designing a real deduplication based memory system by leveraging the experimental results

reported in this paper.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their constructive comments and suggestions. This work is

supported by the National Natural Science Foundation (NSF) of China under grant (No. 61572232, No.

61272073), the key program of Natural Science Foundation of Guangdong Province (no. S2013020012865), Open

Research Fund of Key Laboratory of Computer System and Architecture, Institute of Computing Technology,

Chinese Academy of Sciences (CARCH201401).

References

[1] Y. Deng, Exploiting the performance gains of modern disk drives by enhancing data locality, Information

Sciences, Vol.179,No. 14, 2009 , pp. 2494-2511.

[2] Hitachi Global Storage Technologies – HDD Technology Overview Charts.

<http://www.hitachigst.com/hdd/technolo/overview/storagetechchart.html>.

[3] W.W. Hsu, A.J. Smith, The performance impact of I/O optimizations and disk improvements, IBM Journal of

Research and Development, Vol. 48,No. 2, 2004, pp.255–289.

[4] S.W. Schlosser, J.L. Griffin, D.F. Nagle, G.R. Ganger, Designing computer systems with MEMS-based

storage, in Proceedings of the 9th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2000, pp. 1–12.

[5] Y. Pan，J. Chiang, H. Li, et al. Hypervisor support for efficient memory de-duplication, in Proceedings of the

IEEE 17th International Conference on Parallel and Distributed Systems(ICPADS), 2011.

[6] P.R. Wilson, S.F. Kaplan, and Y. Smaragdakis. The case for compressed caching in virtual memory systems,

in Proceedings of the 1999 USENIX Annual Technical Conference (ATC), 1999.

[7] I. Tuduce and T. Gross. Adaptive main memory compression, in Proceeding of the annual conference on

USENIX Annual Technical Conference (ATC), 2005.

[8] M. Ekman and P. Stenstrom. A robust main-memory compression scheme, in Proceedings of the 32nd annual

international symposium on Computer Architecture (ISCA), 2005.

[9] E.G. Hallnor and S.K. Reinhardt. A unified compressed memory hierarchy, in Proceedings of the 11th

International Symposium on High-Performance Computer Architecture (HPCA), 2005.

 18 / 19

[10] M. Kjelsg, M. Gooch, S. Jones. Design and performance of a main memory hardware data compressor, in

Proceedings of the 22nd EUROMICRO Conference (EUROMICRO), 1996.

[11] S.Roy, Raj. Kumar, Milos Prvulovic. Improving system performance with compressed memory, in

Proceedings of the 15th International Parallel and Distributed Processing Symposium, 2001.

[12] K.Miller, F. Franz, T.Groeninger. KSM++: Using I/O-based hints to make memory-deduplication scanners

more efficient, in Proceedings of 2012 Runtime Environments, Systems, Layering and Virtualized

Environments (RESoLVE12) , 2012.

[13] K. Zhou, Y. Liu, J. Song, L. Yan, F. Zou and F. Shen, Deep Self-taught Hashing for Image Retrieval, in

Proceedings of 23th ACM International Conference on Multimedia, 2015, pp.1215-1218.

[14] B. Abali, H. Franke, S. Xiaowei, et.al. Performance of hardware compressed main memory, in Proceedings of

the 7th International Symposium on High-Performance Computer Architecture (HPCA), 2001.

[15] Y. Zhao, H. Jiang, K. Zhou, Z. Huang, P. Huang. DREAM-(L)G: A Distributed Grouping-Based Algorithm

for Resource Assignment for Bandwidth-Intensive Applications in the Cloud. IEEE Transactions on Parallel

and Distributed Systems, Vol. 27, No.12, 2016, pp. 3469-3484.

[16] J. Lee, W. Hong, and S. Kim. Design and evaluation of a selective compressed memory system, in

Proceedings of International Conference on Computer Design (ICCD), 1999.

[17] D. A. Lelewer, D. S. Hirschberg, Data Compression, ACM Computing Surveys, Vol.19, 1987, pp.261-296.

[18] M. Nelson and J. Gailly. The Data Compression Book. M&T Books, New York, 1995.

[19] D.Meister, A. Brinkmann. Multi-Level comparison of data deduplication in a backup scenario, in

Proceedings of SYSTOR 2009, 2009.

[20] B. Zhu, K. Li, H. Patterson. Avoiding the disk bottleneck in the data domain deduplication file system, in

Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST), 2008.

[21] D. Bobbarjung, S. Jagannathan, C. Dubnicki. Improving duplicate elimination in storage systems. ACM

Trans. on Storage, Vol. 2, No.4, 2006, pp. 424−448.

[22] N. Jain, M. Dahlin, R. Tewari. Taper: Tiered approach for eliminating redundancy in replica synchronization,

in Proceedings of the 4
th
 Usenix Conf. on File and Storage Technologies (FAST), 2005.

[23] VMTrace. http://linux-mm.org/VmTrace

[24] Ascii table. http://www.asciitable.com/

[25] ULTRASTAR 15K147. 2009. Ultrastar 15K147 Hard Disk Drives Specifications.

http://www.hitachigst.com/hdd/support/15k147/15k147.htm

[26] Y. Deng, L. Song, X. Huang. Evaluating memory compression and deduplication, in Proceedings of the 8th

IEEE International Conference on Networking, Architecture, and Storage (NAS), 2013.

[27] J. M.Rodriguez, C. Mateos, A.Zunino. Energy-efficient job stealing for CPU-intensive processing in mobile

devices. Computing. Vol.96, No.2, 2014, pp 87-117.

[28] Y. Deng. What is the future of disk drives, death or rebirth？ACM Computing Surveys. Vol.43, No.3, 2011,

Article 23.

[29] P.Wilson, M. Johnstone, M. Neely and D. Boles. Dynamic storage allocation: a survey and critical review, in

Proceedings of the 1995 International Workshop on Memory Management, 1995.

[30] Y. Deng, F. Wang, N. Helian. EED: energy efficient disk drive architecture. Information Sciences. Vol.178,

No. 22, 2008, pp. 4403-4417.

[31] Y. Deng, J. Cai, W. Jiang, X. Qin. Employing dual-block correlations to reduce the energy consumption of

disk drives. Computing. Vol.99, No.3, 2017, pp. 235-253.

[32] Z. Huang, H. Jiang, K. Zhou, C. Wang, Y. Zhao. XI-Code: A Family of Practical Lowest Density MDS Array

Codes of Distance 4. IEEE Transactions on Communications, Vol.64, No.7, 2016, pp. 2707-2718.

http://linux-mm.org/VmTrace
http://www.asciitable.com/
http://www.hitachigst.com/hdd/support/15k147/15k147.htm

 19 / 19

 Yuhui Deng is a professor at the Computer Science Department of Jinan

University. Before joining Jinan University, he worked at EMC Corporation as a

senior research scientist from 2008 to 2009. He worked as a research officer at

Cranfield University in the United Kingdom from 2005 to 2008. He is on the editorial

board of International Journal of Grid and High Performance Computing. He has

authored and coauthored more than 60 refereed papers. His research interests cover

information storage, cloud computing, green computing, computer architecture, etc.

Prof. Frank Wang is Head of School, School of Computing, University of

Kent, UK. He was the director of Centre for Grid Computing,

Cambridge-Cranfield High Performance Computing Facility (CCHPCF),

Cranfield University. He was Chair in e-Science and Grid Computing. He is on the

editorial board of IEEE Distributed Systems Online, International Journal of Grid

and Utility Computing, International Journal of High Performance Computing and

Networking, and International Journal on Multiagent and Grid Systems. He is on

the High End Computing Panel for the Science Foundation Ireland (SFI). He was

the Chair (UK & Republic of Ireland Chapter) of the IEEE Computer Society.

