
Deng, Yuhui, Huang, Xinyu, Song, Liangshan, Zhou, Yongtao and Wang, 
Frank Z. (2017) Memory Deduplication: An Effective Approach to Improve 
the Memory System.  Journal of Information Science and Engineering, 
33 (5). pp. 1103-1120. ISSN 1016-2364. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/69677/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.6688/JISE.2017.33.5.1

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
The Best Paper Award of all papers published in the Journal of Information Science and Engineering in 2017 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/69677/
https://doi.org/10.6688/JISE.2017.33.5.1
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


 1 / 19 
 

1
 

Memory Deduplication: An  

Effective Approach to Improve the Memory System 

 

 

Yuhui Deng
1,2

, Xinyu Huang
1
, Liangshan Song

1
, Yongtao Zhou

1
, Frank Wang

3 

 
1
Department of Computer Science, Jinan University, Guangzhou, 510632, P. R. China 

{tyhdeng@jnu.edu.cn；huangxinyu@tisson.cn；710260037@qq.com；y.t.zhou@foxmail.com} 
2
Key Laboratory of Computer System and Architecture, Chinese Academy of Sciences 

Beijing, 100190, PR China 
3
 School of Computing，University of Kent, CT27NF, UK 

frankwang@ieee.org 

 
Abstract— Programs now have more aggressive demands of memory to hold their data than before. This paper analyzes the 

characteristics of memory data by using seven real memory traces. It observes that there are a large volume of memory pages with 

identical contents contained in the traces. Furthermore, the unique memory content accessed are much less than the unique memory 

address accessed. This is incurred by the traditional address-based cache replacement algorithms that replace memory pages by 

checking the addresses rather than the contents of those pages, thus resulting in many identical memory contents with different 

addresses stored in the memory. For example, in the same file system, opening two identical files stored in different directories, or 

opening two similar files that share a certain amount of contents in the same directory, will result in identical data blocks stored in the 

cache due to the traditional address-based cache replacement algorithms. Based on the observations, this paper evaluates memory 

compression and memory deduplication. As expected, memory deduplication greatly outperforms memory compression. For example, 

the best deduplication ratio is 4.6 times higher than the best compression ratio. The deduplication time and restore time are 121 times 

and 427 times faster than the compression time and decompression time, respectively. The experimental results in this paper should 

be able to offer useful insights for designing systems that require abundant memory to improve the system performance. 

 

Keywords: Memory deduplication, address-based cache, content-based cache, memory compression, data 

characteristics,  

 

1. Introduction 

Memory hierarchy is designed to leverage data access locality to improve the performance of computer 

systems. Each level in the hierarchy has higher speed, lower latency, and smaller size than lower levels. Over the 

past decades, the memory hierarchy has suffered from significant bandwidth and latency gaps among processor, 

RAM, and disk drive [1,28]. For example, the performance of processors has continued to double about every 18 

months since the number of transistors on a chip has increased exponentially in accordance with Moore's law. The 

advent of multi-core processors will further facilitate this performance improvement. Unfortunately, disk access 

time was improved only about 8% per year [2], although the internal data transfer rate has been growing at an 

exponential rate of 40% each year over the past 15 years [3]. The performance gap between processor and RAM 

has been alleviated by fast cache memories. However, the performance gap of RAM to disk drive has been 

widened to six orders of magnitude in 2000 and will continue to widen by about 50% per year [4]. Therefore, a lot 

                                                             
1 A preliminary version of this paper appears as Evaluating Memory Compression and Deduplication in 

Proceedings of the 8th IEEE International Conference on Networking, Architecture, and Storage (NAS2013). 

We have significantly enhanced the preliminary version to this journal version. 
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of research efforts have been invested in alleviating this gap[3][30][31]. 

Many programs require more RAM to hold their data than a typical computer has[13, 32]. Although the 

amount of RAM in a typical computer has significantly increased due to the declining prices, program developers 

have even more aggressively increased their demands [27]. Programs that run entirely in RAM benefit from the 

improvements of processor performance, but the runtime of programs that page or swap is likely to be dominated 

by the disk access time when the amount of physical RAM is less than what the programs require [6, 7]. 

Additionally, due to the development of cloud technology, lightweight laptops are widely used as netbooks which 

are memory constrained but have rich CPU capability available[15].  

The traditional cache replacement algorithms including Least Frequently Used (LFU), Least Recently Used 

(LRU), etc. are all address-based approaches. These methods determine which memory page should be replaced 

by checking whether the address of that page has been accessed. This results in many identical memory pages 

stored in the cache, thus decreasing the effectiveness of the memory. The reason behind this is because there are 

many data blocks that have identical contents but associate with different addresses. For example, in the same file 

system, opening two identical files stored in different directories, or opening two similar files that share a certain 

amount of contents in the same directory, will result in identical data blocks stored in the cache due to the 

traditional address-based cache replacement algorithms. Another typical example is that multiple programs call 

the same static link library. 

Memory compression has been investigated by a lot of research efforts [6,7,8,9,10,11]. The basic idea is 

reserving some memory space that would normally be used directly by programs, compressing relatively unused 

memory pages, and storing the compressed pages in the reserved space. By compressing those pages, the effective 

memory size available to the programs becomes larger, and some memory paging and swapping can be avoided, 

thus eliminating some expensive disk accesses. Because accessing compressed memory is faster than accessing 

disk drives, memory compression can over commit memory space without significantly reducing performance. 

For example, when a virtual page needs to be swapped, this page can be first compressed and then maintained in 

the memory. When the page is needed again, it is decompressed and given back. This process is much faster than 

swapping those pages to disk drives, although it is slower than accessing real memory. Memory compression must 

employ lossless compression algorithms. 

Data deduplication periodically calculates a unique hash number for every chunk of data by using hash 

algorithms such as MD5 and SHA-1. The calculated hash number is then compared against other existing hash 

numbers in a database that dedicates for storing chunk hash numbers. If the hash number is already in the database, 

the data chunk does not need to be stored again, a pointer to the first instance is inserted in place of the duplicated 

data  chunk. Otherwise, the new hash number is inserted into the database and the new data chunk is stored. In 

this way, data chunks with equal content can be merged to a single chunk and shared in a copy-on-write fashion. 

In order to achieve the best effectiveness, compression and deduplication are normally applied to small data 

sets and big data sets, respectively. By using seven real memory traces, this paper applies deduplication to 

memory pages against the traditional memory compression for increasing the effective memory space. Moreover, 

this paper comprehensively analyzes the characteristics of memory data. Since memory is organized in pages, we 

take a single memory page as a basic unit of both compression and deduplication. Our experimental results 

demonstrate that memory deduplication significantly outperforms memory compression. Our key contributions 

are as follows: 

1) This paper reports that there are a large volume of pages with identical contents contained in the running 

memory system. 

2) This paper proposes to apply the deduplication technology to alleviate the memory bottleneck in modern 

computer environments. 
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3) This paper analyzes the characteristics of memory data in a great detail and explores the impacts of the 

characteristics on the memory compression and deduplication. 

4) This paper evaluates memory deduplication against traditional memory compression and explores the 

performance impacts of memory deduplication. 

The remainder of this paper is organized as follows. Section 2 introduces the related work. Background 

knowledge is presented in Section 3. Section 4 introduces the experimental environment. The characteristics of 

memory data are analyzed in Section 5. Section 6 and Section 7 perform a comprehensive evaluation to explore 

the compression and deduplication behavior of memory data, respectively. Section 8 concludes the paper with 

remarks on its contributions to research in this field. 

 

2. Related Work 

Memory compression has been considered as a technique to utilize memory resources more effectively. The 

existing technologies can be classified into two categories including full memory compression and compressed 

disk cache. Full memory compression keeps the entire memory compressed (with the possible exception of some 

specialized regions such as DMA)[6,8]. For example, Wilson et al.[6] introduced compression algorithms to 

compress virtual memory. Their approach can adaptively determine how much memory should be compressed by 

keeping track of recent program behavior. The full memory compression is best illustrated by the MXT (memory 

extension technology) of IBM[14]. Compressed disk cache [11] employs a portion of main memory as a buffer 

between the main memory and the disk drive.  The evicted memory pages from the regular memory are 

compressed and stored in the cache, thus alleviating the disk accesses. For example, Roy et al. [11] proposed to 

compress memory pages that need to be paged out and store the pages in memory, thus avoiding the large 

latencies of disk accesses.  

However, effectively managing the compressed memory has to handle a few challenges. First, memory 

decompression generates significant latency that causes a critical impact on the memory access time. This is 

because the compressed memory pages have to be all decompressed on the fly. Secondly, compressed memory 

results in variable-sized memory pages. This requires complicated design and an efficient method to maintain the 

mapping between the logical and the compressed address space, and reduce the memory fragmentation. Hallnor 

and Reinhardt [9]designed a memory hierarchy that employs a unified compression scheme encompassing the 

last-level on-chip cache, the off-chip memory channel, and off-chip main memory. This scheme simultaneously 

increases the effective on-chip cache capacity, off-chip bandwidth, and main memory size, while avoiding 

compression and decompression overheads between levels. Lee et al.[16] suggested several techniques to reduce 

the decompression overhead and the impact of variable-sized compressed blocks including selective compression, 

fixed space allocation for the compressed blocks, parallel decompression, using a decompression buffer, and so on. 

Tuduce and Gross[7] designed a memory compression solution that adapts the allocation of real memory between 

uncompressed and compressed pages and also manages fragmentation without user involvement. The method 

dynamically adjusts the optimal size of memory allocation for compression based on the resource demands of 

each application. The solution used to localize page fragments in the compressed area allows the system to 

reclaim or add space easily if it is advisable to shrink or grow the size of the compressed area. 

Some other optimization methods are also proposed to alleviate the challenges. M.Ekman and P.Stenstrom [8] 

proposed a main-memory compression scheme to remove decompression and translation overhead from the 

critical memory access path. The scheme employs a fast and simple compression algorithm by leveraging an 

observation that not only memory words, but also bytes, and entire blocks and pages frequently contain the value 

zero. A TLB-like structure is used to locate the compressed blocks in main memory without a memory indirection. 

Memory pages are logically arranged into a hierarchical structure with a small slack at each level. A DMA-engine 

is adopted to move data when the compressibility of a page is changed. X-Match[10] is a compression algorithm 
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that is efficient at compressing small blocks of data and suitable for high-speed hardware implementation. 

Recently, some research efforts are invested in using deduplication technology to alleviate the memory 

bottleneck in server virtualization environment, thus maximizing the number of virtual machines that can run on a 

physical machine of a given resource. Memory deduplication has to periodically calculate a hash value for every 

physical memory page.  The best location to calculate hash values is in the hypervisor of a virtualized server, 

since only the hypervisor has a full knowledge and access privilege of all physical memory pages. Pan et al.[5] 

proposed a deferrable aggregate hypercall (DAH) mechanism to achieve both low invocation overhead and low 

performance impact of memory deduplication on running applications in a virtual server. Memory scanning 

deduplication techniques require very aggressive scan rates to identify sharing opportunities with a short life span 

of up to about 5 minutes. Miller et al.[12] proposed to use the I/O-based hints generated by read and write 

operations in the virtual file system to make the memory scanning process more efficient,  and in consequence 

enable it to find and exploit short-lived sharing opportunities without raising the scan rate. In contrast to the 

existing works, this paper will investigate the performance behavior of memory deduplication against the 

traditional memory compression. 

 

3. Background 

3.1 Data Compression 

A simple characterization of data compression is that it involves transforming a string of characters in some 

representation into a new string that contains the same information but whose length is as small as possible [17]. 

Compression relies on the fact that the data is redundant, and the redundant data follows some rules. The rules can 

be learned and used to accurately predict the data. By leveraging the rules, compressing a sequence of symbols is 

obtained by encoding the more frequent or likely symbols with shorter code words compared to the less frequent 

or likely symbols. Therefore, Compression can be divided into two phases including modeling and encoding that 

are typically interleaved with each other. Modeling detects regularities that allow a more concise representation of 

the information, and makes a probability distribution. Encoding is the construction of that more concise 

representation based on the probabilities assigned by the model [6,18]. The compression algorithms are 

categorized as lossless compression and lossy compression. Lossless compression is mainly used for data where 

the original data must be exact bit per bit to the original one. Lossy compression accepts some errors, and in most 

of the cases the errors are not detected. 

Many coding algorithms have been proposed to handle lossless data compression. The approaches can be 

classified as statistical methods and dictionary based methods. The statistical methods assign codes to symbols so 

as to match code lengths with the probabilities of the symbols. Dictionary methods exploit repetitions in the 

datasets. We only discuss six lossless compression algorithms (Arithmetic algorithm, Huffman algorithm, LZ77, 

LZ78, LZW, and RLE), since the algorithms will be employed to compress memory data. The arithmetic 

algorithm and Huffman algorithm belong to statistical method, while LZ family algorithms belong to dictionary 

method. The reader is referred to [17] for a comprehensive understanding of the data compression algorithms. 

(1) Arithmetic coding employs an interval between 0 and 1 on the real number line to represent a source. Each 

symbol of the source narrows this interval. The number of bits needed to represent the symbol grows with the 

reducing of the interval. This approach uses an explicit probabilistic model and adopts the probabilities of the 

source to narrow the interval. It initially employs an unordered list of source and their probabilities. The 

number line is then partitioned into subintervals on the basis of cumulative probabilities. Therefore, a 

high-probability symbol narrows the interval less than a low-probability symbol, so that the high probability 

symbol contributes fewer bits to the coded information.  

(2) Huffman coding uses a variable-length code table for encoding a source. It takes a list of nonnegative 

weights that denote the probabilities associated with the source, and constructs a full binary tree whose 

http://en.wikipedia.org/wiki/Variable-length_code
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leaves are labeled with the weights. A set of singleton trees are initially constructed for each weight in the list. 

At each step the trees that have the two smallest weights Wi and Wj are merged into a new tree. The weight 

of the new tree is Wi + Wj, and the tree has two children represented by Wi and Wj. The weights Wi and Wj 

are then deleted from the list, and the weight Wi + Wj is added into the list. This process continues until the 

weight list contains a single value. 

(3) LZ77 and LZ88 are both theoretically dictionary coders. LZ77 maintains a sliding window to keep track of 

some amount of the most recent data. The encoder uses this data to look for matches, and the decoder 

employs this data to interpret the matches that the encoder refers to. This method compresses data by 

replacing repeated occurrences of data with references to a single copy of that data existing in the sliding 

window. A match is encoded by a pair of numbers (length-offset pair). LZ78 compresses data by replacing 

repeated occurrences of data with references to a dictionary. The dictionary is built in terms of the input data 

stream. LZW (Lempel–Ziv–Welch) is an improved implementation of the LZ78. LZW encodes sequences of 

8-bit data as fixed-length 12-bit codes. The codes from 0 to 255 denote 1-character sequences, and the codes 

from 256 to 4095 are generated in a dictionary for sequences encountered in the data as it is encoded. At each 

phase in compression, input data are grouped into a sequence until the next character would make a sequence 

for which there is no code yet in the dictionary. The code for the sequence (without that character) is 

removed, and a new code (for the sequence with that character) is inserted to the dictionary. 

(4) RLE (Run-length encoding) stores sequences in which the same data value occurs in many consecutive data 

elements as a single data value and count. 

 

3.2 Data Deduplication 

Data deduplication is also called intelligent compression or single-instance storage. It involves two phases 

including chunking and deduplication detection [19,20]. The chunking phase splits data into non-overlapping data 

blocks (chunks). Each of these chunks is processed independently afterwards. The duplication detection phase 

detects if another chunk with exactly the same content has already been stored, by using hash algorithms such as 

MD5 and SHA-1. If a chunk is duplicated, the subsequent deduplicated chunks receive a pointer to the original 

chunk instance. This approach can effectively eliminate redundant chunks, and ensure that only the first unique 

instance of any chunk is actually stored. Chunking phase is very important for the quality of redundancy detection. 

It can be classified into four categories: 

(1) Whole file chunking (WFC): WFC employs a complete file as a basis for the duplication detection. If two 

files are exactly the same, the first instance of the file is stored and the subsequent deduplicated files are 

replaced with pointers to the stored file copy. Unfortunately, the approach only locates exact file duplication, 

the change of a single bit within a file results in a totally different copy of the entire file being stored. 

Therefore, this method is not very effective. 

(2) Fixed-size partition (FSP)[21]: FSP splits data into equal chunks that are independent of the content of the 

data being stored. The effectiveness of this method is highly sensitive to the sequence of data streams. For 

example, adding a single bit at the beginning of a file can change the boundaries and the content of all 

chunks in the file. This results in a failure of redundancy detection and eliminates any remaining matches, 

although the two file are nearly identical with only one bit shifted. 

(3) Content-defined Chunking (CDC) [19]: CDC is a variable-sized technique. It employs the data content rather 

than the data position within files to locate the boundaries of chunks, thus avoiding the impact of data 

shifting. This approach computes a hash value F for all substrings which are equal in size (usually 48 bytes) 

of the file. All data between two positions for that hash value F of the substring fulfills the equitation 

F                 is assigned to one chunk. The chunks have a variable size with an expected size 

N. Minimal and maximal chunk sizes are determined to avoid too small and too large chunks. However, the 
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expected size N determines the granularity of duplicate elimination, thus deciding the storage utilization. 

(4) Sliding Block (SB)[22]: SB divides files into fixed-size and non-overlapping chunks and calculates its 

signatures (4-byte MD4 along with a 2-byte rolling checksum). If two files have the same name, each chunk 

signature of the target file is compared against a sliding-block signature of every chunk in the source file. 

This method has to calculate a separate multi-byte checksum for each byte of the data. However, the 

checksum information for all offsets of all files is too large in contrast to the data being stored, so this 

approach normally performs a finer-granularity matching. 

 

4. Experimental Environment 

Table 1. Features of memory page traces 

 Trace name Description Size(GByte) 

1 espresso A circuit simulator 1.47 

2 gcc-2.7.2 A GNU C/C++ compiler 1.13 

3 gnuplot A GNU plotting utility 1.47 

4 grobner Calculated Grobner basis functions 3.28 

5 lindsay A hypercube simulator 1.11 

6 p2c A Pascal->C transformer 1.36 

7 rscheme An implementation of Scheme 0.25 

 

Wilson et al.[6] executed a set of real programs on an Intel x86 machine and employed Vmtrace[23] to 

collect traces of memory pages. The Vmtrace captures overall amount of live data for a run of the program and 

writes it into a trace file. Because different program behaviour influence the trace results, a specific use case is 

employed to generate to page images. For example, the gcc-2.7.2 compiler compiles the largest file of its own 

source code combine.c to generate the page images of memory [29]. The page image traces are LRU behavior 

sequences that contain the paging traffic for an LRU memory of some fixed size. Each record in the behavior 

sequences contains six fields including a compulsory tag, a fetched page number, a fetched page image, a dirtiness 

tag, an evicted page number, an evicted page image. Table 1 summarizes the general information of the traces.  

 

Table 2. Configuration of the experimental platform 

Components Description 

CPU Intel Core2 T6400 (2M Cache, 2.00 GHz, 800 MHz FSB) 

Memory 2G, DDR2 800MHz 

Hard disk WDC WD2500BEVT-60ZCT1（250GB /5400RPM） 

Chipset Intel 4 Series - ICH9M 

 

In order to maintain the characteristics of the traces, we also adopted an Intel X86 machines to process the 

traces in the following experiments. Table 2 describes the configuration of our experimental platform. In order to 

minimize the impacts of background processes and obtain accurate results, we turned off all unnecessary 

processes and dedicated a partition of 100 GB for the evaluation. All the analysis in this paper is based on ASCII 

characters. 

 

5. Analyzing Memory Data Characteristics 

5.1 Statistic Results 

Table 3 concludes the statistic results of the page image traces. The results refer to a symbol set which has a 

granularity of one byte. All percentages are of the total memory data volume. The Zero column indicates that a 
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large volume of memory data are zero bytes across seven traces. The Continuous zero column summarizes the 

percentage of pages that contain continuous zeros longer than 32 bytes. According to the two columns, the 

percentage of zeros ranges between 35.98% and 86%. This means at least one third of the memory data is zeroes. 

Furthermore, most of the zeros occur continuously. The Bound column includes the percentage of memory data 

which is continuous zeroes longer than 32 bytes, and the continuous zeroes start or end at a page boundary. The 

Low column shows percentage of memory data that are low values ranging between 1 and 9. Since we use 

decimal to denote ASCII characters in this paper, the low values represent start of heading, start of text, end of text, 

end of transmission, enquiry, acknowledge, bell, backspace, and horizontal tab, respectively[24]. The Power(2,n) 

column implies the integral power-of-two values. It indicates the values of 2, 4, 8, 16, 32, 64, 128, 255 using 

decimal. 

Table 3. Statistic results of the page image traces 

Trace name Zero(%) 
Continuous 

zeros (%) 
Bound(%) Low(%) Power(2,n)(%) Entropy 

Espresso 45.94  14.61  10.34  16.25  16.46  4.19  

gcc-2.7.2 56.09  29.88  6.44  11.13  12.25  3.85  

gnuplot 80.72  44.53  44.50  3.29  4.66  2.01  

grobner 58.34  30.91  19.78  18.62  15.35  3.30  

lindsay 86.00  49.96  25.77  6.40  6.72  1.33  

p2c 59.62  13.87  7.63  6.30  7.89  3.60  

rscheme 35.98  10.75  6.39  17.86  17.85  4.94  

 

Entropy is normally employed as a measure of redundancy. The entropy of a source means the average 

number of bits required to encode each symbol present in the source. Therefore, the compressibility grows with 

the decrease of the entropy value. Entropy is a useful indicator of compression ratio for a compressor. Given a set 

of symbols            and a source in which these symbols occur, if each symbol    occurs with probability 

     , the zero-order entropy is                      
 
   . The Entropy column in Table 3 is calculated 

with zero-order entropy. 

 

5.2 Zero Distribution 
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(c)                                        (d) 
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(e)                                (f) 
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(g) 

Fig.1 percentage of continuous zero bytes 

Fig. 1 shows the percentage of continuous zero distribution, where X axis represents the length of continuous 

zero byte, and Y axis denotes the percentage. The maximum value of X axis is 4096 which is equal to one page 

size. Please note that the Y axes across the seven traces are in different scale, in order to have a close observation 

of the percentage. If we assume that the length of continuous zero is K, the number of K is N, and the size of trace 

is C bytes, the percentage is calculated as (K×N)/C. 

The compressibility is strongly related to the distribution of zero. Since the value of a tick in the X axis 

represents the length of continuous zero byte, the bigger the value, the more compressible the page. For example, 

if the length of continuous zero is 4096, this indicates that the whole page is zero. This page will achieve the 
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highest compression ratio. We also can draw a conclusion that if there are more ticks concentrating in the second 

half of X axis, the trace will achieve higher compression ratio than that in the first half of X axis. 

Fig.1 (a) shows that three continuous zero has the highest percentage (P3=0.16, where the number 3 indicates 

three continuous zeros). There are some ticks distributed across X axis. For example, P1984=0.02. According to 

Fig.1(b), this trace has a larger portion of zero than that of Fig.1(a). However, the length of continuous zero is 

very short. The length normally ranges between 0 and 10. Therefore, most of the ticks concentrate in the 

beginning of X axis. For example, the highest percentage P3 is 0.07. Although we can observe many ticks in the 

second half of X axis, the percentage is very low. Fig.1(c) and Fig.1(d) demonstrate a similar pattern. Some ticks 

distribute in the middle of X axis (they have a relatively long length of continuous zero), and the percentages are 

also very high. For example, the highest percentage in Fig.1(c) and Fig.1(d) are P2574 = 0.12 and P3 = 0.15, 

respectively. The distribution of ticks across Fig.1(e), Fig.1(f),and Fig.1(g) are very much like Fig.1 (b). Most of 

the long continuous zero concentrate in the beginning of X axis. It is very interesting to observe that P4096 of 

Fig.1(a), Fig.1(b), Fig.1(c), Fig.1(d), Fig.1(e), Fig.1(f), Fig.1(g) are 0.0056, 0.02, 0.11, 0.0006, 0.06, 0.005, and 

0.09, respectively. This indicates that there are many pages full of zeroes across the seven traces. 

 

5.3 Symbol Distribution 
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Fig.2 Accumulate percentage of symbol distribution 

 

Fig.2 shows the accumulate percentage of symbol distribution across the seven traces. It is easy to observe 

that zeroes and low values constitute over 50% of the memory data. This is consistent with the statistics 

summarized in Table 3. The percentage curves grow with the increase of ASCII values. However, there is a steep 

growth in the very beginning of X axis, and the growth trend gradually slows. This indicates that the extended 

ASCII codes (The decimal of ASCII codes ranges from 128 to 255.) except 255 are only a small part of the 

memory data over the seven traces. 
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Fig. 3 Symbol distribution of seven traces 
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Fig.3 deconstructs the symbol distribution across seven traces to get further insights into the distribution 

pattern as a complement to Fig.2. The figures demonstrate that cluster is the most obvious feature across the seven 

traces. Most of the clusters are short lived at fine granularity and they appear to smooth out gradually. A number 

of spikes can be observed to interrupt the smoothness. Most of the spikes are accumulated within a relatively 

small and specific area. The spikes imply that the corresponding symbols occur frequently. The higher the spikes, 

the more frequent the symbols. Therefore, according to the figures, only a small number of symbols occur with a 

high frequency. It indicates a significant temporal locality.  

A similar pattern across the figures is that the high clustered spikes are normally accumulated within some 

specific areas. For example, the beginning of X axis, around the decimal value 25, 50, 80,100, and 110. We further 

analyzed the collected data and found that the frequently occurred symbols normally distribute in the intervals of 

[0,9], [48,75],[65,90],and [97,122]. The intervals correspond to the ASCII characters summarized in Table 4. 

 

Table 4. Some specific ASCII characters and the corresponding decimal 

Decimal Values 0→9 48→57 65→90 97→122 

ASCII character Null, start of heading, 

start of text, end of text, 

end of transmission, 

enquiry, acknowledge, 

bell, backspace, and 

horizontal tab 

0→9 A→Z a→z 

 

According to the analysis in this section, we can draw the following conclusions: (1) Memory data contains a 

large portion of zeroes and the zeroes normally occur continuously. (2) A small number of symbols occur 

frequently. This indicates a strong temporal locality. (3) Some symbols are normally clustered and appear together. 

This implies a high spatial locality. 

 

6. Identical Memory Pages 
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Fig. 4 Percentage of identical memory pages 

In order to identify the identical memory pages contained in the traces, we calculate a hash number for the 

content of each memory page, and compare the hash numbers against each other. The same hash number indicates 

identical content of memory pages. Fig. 4 shows the percentages of identical memory pages of seven traces. It is 

very interesting to observe that espresso, gcc-2.7.2, gnuplot, grobner, lindsay, p2c, and rscheme contain 85%, 91%, 

83%, 79%, 55%, 88%, and 75% identical memory pages, respectively. The seven traces are all collected when the 
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memory system of the computer employs LRU replacement algorithm. LRU decides which page is used least 

recently by checking the address of the page rather than the content of that page. Therefore, the LRU method has 

completely no information about the content of the page that is replaced. This results in many identical memory 

pages that are associated with different addresses. For example, opening two identical files stored in different 

directories, or opening two similar files stored in the same directory, will incur many identical memory pages. 

This result can be applied to all traditional address-based cache replacement algorithms such as LFU, SLRU, etc. 

The above analysis indicates that memory system is a very good candidate for applying deduplication. 
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Fig. 5 Unique address access vs. unique content access 

 

In order to verify the above observations and analysis, we further investigate the number of accesses going to 

unique page addresses and unique page contents. The traces record the information of page hit when performing 

the page replacement algorithm. Each page hit indicates that there is an identical page address in the memory 

system in contrast to the current page address. Therefore, we can calculate the number of unique address accesses. 

It is simple to obtain the number of unique page content accesses by using the approach employed to calculate the 

identical memory pages. Fig. 5 shows that the number of unique address accesses is much higher than the unique 

content accesses. This confirms what we report in Fig. 4. 

 

7. Memory Data Compression 

The lossless data compression approaches can be classified as stream compression and block compression. 

The streaming compression continuously accepts a stream of bytes as input and produced a compressed stream as 

output, while block compression accepts data block by block and compresses each block separately. Most 

compression methods work in the streaming mode. However, if the entire memory data is compressed as a single 

contiguous stream, it would be very expensive when a few memory pages are read, since the entire compressed 

data has to be decompressed before serving the small read requests, and this would incur some memory swapping. 

Therefore, it is better to compress a small group of consecutive blocks at one time. This makes the 

compression/decompression more efficient. When a read request comes, the system only needs to read and 

decompress a small group of blocks. This optimizes read operation and allows greater scalability in the total size 

of the memory data being compressed. Since the memory system is organized in pages, we employ block 

compression in this section to evaluate the compressibility of memory data, and the group size is defined as an 

integer times of the memory page size. The compression ratio is defined as the size of compressed memory data 

divided by the size of uncompressed memory data. 
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(a) Compression ratio          (b) Compression time 
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(c) Decompression time 

Fig.6 Impact of different algorithms on the memory data compression 

 

We will quantify the benefits achieved by compressing seven memory traces to identify the effect of different 

compression algorithms on the overall system behaviour. The block size of this evaluation is 8KB that is equal to 

two memory pages. Fig.6 reveals significant variations of system behavior between different compression 

algorithms. Fig.6(a) shows that the LZ algorithms (LZ77, LZ78, LZW) obtain the significant compression ratios 

(around 0.4), and gunplot trace achieves the best compression ratio across the six algorithms. Fig.6 (b) and (c) 

demonstrate the compression and decompression time of a single block by using different algorithms and traces. It 

shows that the RLE algorithm performs best, and the performance of LZ77 and LZW are not acceptable in 

contrast to the latest Hitachi Ultrastar 15K which has an average access time of 2 milliseconds [25], since the 

compression time of LZ77 and decompression time of LZW are over 70 milliseconds and 50 milliseconds, 

respectively. According to the above evaluation and discussion, we believe that LZ78 strikes a good balance 

between compression ratio, compression time, and decompression time. The compression time and decompression 

time are both less than 4 milliseconds across seven traces. Fig.6 reveals that the compression and decompression 

performance difference under different algorithms can be over 500 times and 300 times, respectively. 
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(a) Compression ratio                 (b) Compression time        
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(c) Decompression time 

Fig.7 Impact of block size on the system behavior (LZ78 algorithm) 

Since we use block compression to perform the evaluation, the block size has a significant impact on the 

system behaviour. Fig.7(a) shows a general trend that the compression ratio decreases with the increase of block 

size (from 4Kbyte to 128Kbyte) across the seven traces. Fig.7 (b) and (c) reveal that the bigger the block size is, 

the higher the compression and decompression time are. This pattern is reasonable, because larger data block is 

more compressible and requires more time to compress and decompress. However, the performance decrease is 

not linearly proportional to the block size. 

 

8. Memory Data Deduplication 

Before the evaluation, we delete the header information as introduced in Section 4 in the traces and align the 

boundaries of chunks to the boundaries of memory pages. In contrast to the traditional compression methods, data 

deduplication works at a course-grained level. Fig.8 shows the performance pattern of memory deduplication. The 

X axis denotes different chunking policies as discussed in Section 3.2, where the numbers following FSP and SB 

represent the chunking size. For example, FSP-4K implies that fixed-size partition scheme splits data into equal 

4KByte chunks. Since the WFC approach is not suitable for memory deduplication, our evaluation only adopts 

three schemes including FSP, CDC, and SB. Please note that the Y axis of Fig.8 (b) and(c) is in microseconds. 

Since the page size of the seven memory traces is 4Kbyte, FSP-4K covers one memory page, FSP-8K covers two 

memory pages, and so on. The deduplication ratio is defined as the size of the data deduplicated divided by the 

size of the original data. 
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(a) deduplication ratio                       (b) deduplication time 
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(c) restore time 

Fig.8 Performance behavior of memory deduplication 

 

Fig.8 (a) shows that FSP-4K and SB-4K achieve the best deduplication ratio across the seven traces. The 

experimental results are very close to each other by using the above two algorithms. When the chunking size of 

FSP is increased from 4Kbyte to 32Kbyte, the deduplication ratio is significantly increased. The compression ratio 

of CDC is close to 1. It is not acceptable either. Therefore, from a compression ratio standpoint, FSP-4K and 

SB-4K are the best candidates to perform memory deduplication. Furthermore, we believe that the optimal 

chunking size of memory deduplication is one memory page. Unfortunately, according to Fig.8 (b) and Fig.8(c), 

the deduplication time of SB-4K is about 40 times higher than that of the FSP-4K, although the restore time is 

comparable. According the above discussion, we believe that FSP-4K is the best candidate policy for memory 

deduplication, since FSP-4K takes less than 50 microseconds and 10 microseconds to deduplicate and restore a 

single memory page in terms of the experimental results reported in Fig.8 (b) and Fig.8(c). 

According to the evaluation in Section 6 and Section 7, the chunking size has an opposite impact on the 

performance of memory compression and memory deduplication. This is because the probability of those identical 

characters contained in a chunk grows with the increase of the chunk size, while the probability of two chunks that 

are exactly the same is decreased with the growth of the chunk size. For example, an 8Kbyte chunk would involve 

more compressable characters than that of a 4Kbyte. However, it is more difficult to find two identical 8Kbyte 

chunks than 4Kbyte chunks. Furthermore, the memory characteristics may have different impacts on the 

compression and deduplication. For example, gunplot trace has the best compression ratio and compression 
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performance. However, this advantage disappears when the trace is performed deduplication. 

 

9. Comparison of Memory Compression and Deduplication 
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(a) Compression time against deduplication time     (b) Decompression time against restore time 
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(c) Compression ratio against deduplication ratio 

Fig.9 Comparison of memory compression and deduplication 

  

 In order to further investigate the performance behaviour of memory deduplication, we compare the memory 

compression against memory deduplication in terms of time overhead and data reduction ratio. As discussed in 

Section 7 and Section 8, LZ78 algorithm and FSP-4K achieve the best performance in the compression and 

deduplication, respectively. Therefore, we only compare the performance behaviour of LZ78 against FSP-4K. Fig. 

9(a) shows the compression time against deduplication time. It demonstrates that the deduplication time is much 

faster than that of compression time across seven traces. Fig. 9(b) depicts a similar trend. It indicates that the 

restore time significantly outperforms the decompression time when using the seven traces. For example, it takes 

only 8.83 microseconds to restore the rscheme trace data when employing FSP-4K. However, the decompression 

time of LZ78 grows to 4620 microseconds. Fig.9 (c) demonstrates the compression ratio against deduplication 

ratio when the seven traces are adopted to perform the evaluation. It shows that the deduplication ratio is much 

better than that of compression ratio. This means that there are many identical pages contained in the traces. These 

pages generate the high deduplication ratio. However, this characteristic cannot be leveraged by compression, 

because compression is only performed within every single memory page. 

 

10. Conclusion 

This paper explores the performance behavior of memory deduplication against memory compression by 
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using seven real memory traces. The experimental results give the following indications: 

(1) There is a large volume of memory pages with identical contents contained in the memory system, and the 

number of unique memory content accessed is much less than the unique memory address accessed. The 

reason behind this is because the traditional address-based cache replacement algorithms replace memory 

pages by checking the addresses rather than the contents of those pages. Therefore, memory deduplication 

significantly outperforms memory compression.  

(2) FSP achieves the best performance in contrast to CDC and SB when performing memory deduplication. The 

optimal chunking size of FSP is equal to the size of a memory page. 

(3) A specific memory data that is very compressable may not be able to achieve good deduplication 

performance.  

(4) The characteristics of memory data have different impacts on compression and deduplication. 

The analysis results in this paper should be able to provide useful insights for designing or implementing 

systems that require abundant memory resources to enhance the system performance. Possible direction for future 

work includes designing a real deduplication based memory system by leveraging the experimental results 

reported in this paper. 
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