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stock index returns: an alternative Bayesian

semiparametric model

Maria Kalli, Stephen G. Walker, and Paul Damien ∗

July 11, 2013

Abstract

This paper introduces a new family of Bayesian semi-parametric models for

the conditional distribution of daily stock index returns. The proposed mod-

els capture key stylized facts of such returns, namely heavy tails, asymmetry,

volatility clustering, and the ‘leverage effect’. A Bayesian nonparametric prior is

used to generate random density functions that are unimodal and asymmetric.
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Volatility is modelled parametrically. The new model is applied to the daily re-

turns of the S&P 500, FTSE 100, and EUROSTOXX 50 indices and is compared

to GARCH, Stochastic Volatility, and other Bayesian semi-parametric models.

Keywords: Stick-breaking processes; Infinite uniform mixture; Markov chain

Monte Carlo; Slice sampling.

1 Introduction

Financial managers as well as investors would like to be in a position to accu-

rately forecast asset return movements. The underlying distribution of these

returns affects their decisions. Their predictions on asset price movements will

be inaccurate, leading to bad investment decisions, if the distributional assump-

tions are not reflected in the financial data they are interested in.

The challenging task of modelling the conditional distribution of asset re-

turns has been the subject of many studies. Some develop ARCH-GARCH type

models, first introduced in Engle (1982) and Bollerslev (1986), while others

build on the stochastic volatility (SV) model first introduced by Taylor (1982).

For a comprehensive list of models, see Tsay (2005), Taylor (2005), and Boller-

slev (2008). The difficulty lies in developing a model that captures the com-

plicated features of the returns’ distribution, often referred to as stylized facts,

(see Cont (2001); Poon and Granger (2003)). In this paper we build a GARCH-

type model for the asset returns’ conditional distribution, which has a mode and

a mean close to zero, asymmetry, heavy tails, volatility clustering and ‘leverage

effects’.
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The deterministic nature and ease of estimation of GARCH type models

makes them a popular choice. The basic set up of these models is:

yt = htεt for t = 1, 2, . . . , n (1)

where yt is the log return, εt is the innovation following some distribution Fε

with mean zero and variance σ2ε = 1, and h2t is the volatility at time t, which

is a function of previous volatilities and returns. The choice of Fε determines

the conditional distribution of returns and impacts on distributions of future

returns.

The normal distribution had been a popular choice for Fε. However, it

has been shown that GARCH-type models with normal innovations fail to cap-

ture the heavy tails and slight asymmetry of the conditional distribution of

returns. Alternative distributional choices include the Student-t distribution

(Bollerslev, 1987), the generalised error distribution (Nelson, 1990), and a

mixture of normal distributions (Bai et al., 2003). Although these alternatives

account for the heavy-tailed behaviour of the distribution, they fail to capture

skewness. To account for both aforementioned features, Gallant and Tauchen

(1989) used Gram-Chalier expansions, while Hansen (1994) introduced the

skewed Student-t distribution, and Theodossiou (1998) considered the Gener-

alised t-distribution. Recently Chen et al. (2011) used the Asymmetric Laplace

distribution. However, all these choices are constrained by the properties and

parameters of the distributional family to which they belong to.

This paper describes a Bayesian nonparametric approach to modelling the

conditional distribution of returns by nonparametrically estimating Fε. Bayesian

nonparametric models place a prior on an infinite dimensional parameter space
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and adapt their complexity to the data. A more appropriate term is infinite

capacity models, emphasising the crucial property that they allow their com-

plexity (i.e. the number of parameters) to grow as more data are observed; in

contrast, finite-capacity models assume a fixed complexity. For a book length

review of Bayesian nonparametric methods see Hjort et al. (2010).

The Dirichlet Process Mixture (DPM) model, an infinite mixture model, first

introduced by Lo (1984) is the most popular Bayesian nonparameric model

in financial econometric applications, (see Chib and Hamilton (2002), Hirano

(2002),Jensen (2004), Griffin and Steel (2006), Leslie et al. (2007), Shahbaba

(2009), and Jensen and Maheu (2010)). The DPM model uses the Dirichlet

process (DP) (Ferguson, 1973) as a prior over the parameters of a normal dis-

tribution, with density k(·), facilitating the modelling of complex densities f(·).

Under the DPM model f(·) =
∫
k(·|θ)G(dθ), where θ is the parameter vector,

and G is the unknown random distribution drawn from a DP.

In our approach to modelling the innovations’ distribution, Fε, we depart

from the DPM model in two ways. We use a stick-breaking prior (SBP) instead

of a DP to generate G, and substitute the normal density with a scaled uniform

density. The uniform density ensures unimodality and an asymmetry parameter

allows us to capture the asymmetry in asset returns. Stick-breaking processes

are more general than the DP, in fact the DP is a subclass. They can therefore

adapt more flexibly to the data and together with the scaled uniform density

can capture more accurately the heavy tailed behaviour. We believe that with

this model we can better account for extreme events, which impact on the tail

behaviour of the returns’ distribution, by mitigating the risk of placing arti-

ficial modes at unusual points. We model the volatility dynamics using: the
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GARCH(1,1), the GJR-GARCH(1,1) and the EGARCH(1,1) models; the latter

two can capture the ‘leverage effect’.

The structure of this paper is as follows, in Section 2 we describe in de-

tail our infinite uniform mixture (IUM) model based on stick-breaking priors

for GARCH-type volatility representations. Section 3 describes the sampling

methodology for the IUM model, Section 4 provides a simulation study com-

paring IUM to a SBP with a normal set up and to the DPM. In Section 5 we

analyse samples from the S&P 500, FTSE 100, and EUROSTOXX 50 daily in-

dex returns using our IUM model and provide comparisons with GARCH, SV

models and alternative Bayesian semiparametric models. We summarise our

conclusions in Section 6.

2 GARCH-type infinite uniform mixture model

(IUM)

Bayesian infinite mixture models were popularized by Lo (1984). The prob-

lem of estimating a density f(·) is addressed using a Bayesian nonparametric

prior over the parameters of a continuous density function k(·). The model is

represented by

f(·) =

∫
k(·|θ)G(dθ),

where θ is the parameter vector, and G is an unknown random distribution

drawn from a Bayesian nonparametric prior.

Stick-breaking priors are examples of Bayesian nonparametric priors. They

are discrete random probability measures represented by
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G(·) =

∞∑
j=1

wjδθj (·) , (2)

where δθj is the Dirac measure giving mass one at location θj , with weight

wj . The weights must satisfy two conditions in order for G to be a probability

measure: 0 < wj < 1 and
∑∞

j=1wj = 1 with probability one. The locations θj

are independent identically distributed (iid) random variables with distribution

G0 and are independent of the random weights wj . The distribution G0 is

often referred to as the base or centering distribution. This is so because for

any measurable set B of a σ-field B we have E[G(B)] = G0(B). The random

weights wj are transformations of iid random variables, vj ∼ Be(aj , bj), that is

w1 = v1 and wj = (1− v1) . . . (1− vj−1)vj = vj
∏
l<j

(1− vl). (3)

Because of their representation they are referred to as stick-breaking weights.

For more on the long history of the stick-breaking notion of constructing infinite

dimensional priors see Halmos (1944), Freedman (1963), Kingman (1974),

and Ishwaran and James (2001).

The Dirichlet process is a subclass of stick-breaking processes. It arises when

aj = 1 and bj = c, where c ∈ [0,∞). The parameter c is often referred to as

the DP concentration parameter because it controls how close G is to G0. It

also controls the rate of decay of the weights. Looking at the expectation of the

weights we have

E(wj) =
1

1 + c

(
1− 1

1 + c

)j−1
for j > l,

and we can clearly see that the value of c solely controls their decay. This

decay is exponential, leading to fewer mixture components with non-negligible
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weights as j increases. This can be a disadvantage as more mixture components

may be needed to capture the heavy tails of the conditional returns’ distribu-

tion. Stick-breaking priors are more flexible. The number of non-negligible

wj depends on two parameters, the beta parameters (aj , bj), rather than one.

These parameters also depend on j, and therefore we have an infinite number

of parameters controlling the rate of decay, which provides more flexibility to

the model as more mixture components with small weights could be used to

account for the heavy tail behaviour of the returns’ distribution. This is the

reason we have decided to use a SBP as the generating process for Fε. In our

illustrations we specify the parameters of the parameters of this prior in the

following way. If wj ∼ SBP (aj , bj) then

E[wj ] =
aj

aj + bj

∏
l<j

(
1− al

al + bl

)
for j > l.

We will center this process over a distribution for the weight by choosing

E[wj ] = ξj , where ξj is Pr(X = j) for a random variable X with a discrete

distribution on 1, 2, 3, . . . . The random variable X is given a Beta-Geometric

distribution i.e. Pr(X = j) = p(1− p)j−1 where p ∼ Be(α1, α2). This yields

ξj =
Γ(α1 + α2)Γ(α1 + 1)Γ(α2 + j − 1)

Γ(α1)Γ(α2)Γ(α1 + α2 + j)
,

which allows us to control the number of non-negligible weights by choosing

the values of (α1, α2). Appendix 1 provides more details on this specification.

The other novel contribution of this paper is our choice of continuous den-

sity function k(·), and centering distribution G0. For the DPM model, both k(·),

and G0 are the density of a normal distribution and a normal distribution re-

spectively. We propose an infinite mixture of uniforms for the density of the
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innovations, fε(·) represented by

fε(·) =

∫
υ(ε|θ, λ)G(dθ), (4)

where υ(ε|θ, λ) is the density function of the scaled uniform distribution

U(−e−λθ, eλθ) with asymmetry parameter λ and location θ. The unknown

distribution G is generated from a SBP (aj , bj) with a standard exponential

distribution as the centering distribution G0. With the representation of equa-

tion (4) we ensure unimodality of the conditional return distribution, model

extreme returns using heavy tails and avoid the risk of artificial modes at these

extreme returns as it may be the case under the DPM model. Take the sim-

plest case of U(−θ, θ). This ensures unimodality for the innovations’ distri-

bution with mode at zero. The random distribution G ranges over all dis-

tribution functions on (0,∞) and therefore fε ranges over all unimodal and

symmetric density functions on (−∞,∞), see Feller (1957). We account for

the slight asymmetry of returns with parameter λ following Fernandez and

Steel (1998). We can have both negative and positive skewness, and symmetry

when λ < 0, λ > 0, and λ = 0 respectively. The flexible construction of our in-

finite mixture of uniforms means that we can develop a unimodal model family

which captures any level of kurtosis, and accounts for the slight asymmetry in

the returns yt.

Under our stick breaking representation, the infinite mixture of uniforms

for modelling the distribution of the innovations has the following hierarchical

set up:
yt = htεt

where yt are the log returns

εt ∼ U(−θdte−λ, θdteλ) for t = 1, . . . , n (5)
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Pr(dt = j) = wj for j = 1, 2, . . .

θj ∼ G0(·) for j = 1, 2, . . . where G0 is a standard exponential distribution

w1 = v1 and wj = (1− v1) . . . (1− vj−1)vj = vj
∏
l<j

(1− vl)

vj ∼ Be(aj , bj).

Thus the distribution of εt is

fv,θ(εt) =

∞∑
j=1

wjU(−θje−λ, θjeλ), (6)

with mean

(eλ − e−λ)
∑∞

j=1wjθj

2

and variance

4(e2λ + e−2λ − 1)
∑∞

j=1wjθ
2
j − 3(e2λ + e−2λ − 2)(

∑∞
j=1wjθj)

2

12
.

This implies that the conditional density of log return yt is represented by

fG,λ(yt|ht) =
∞∑
j=1

wjU(yt| − θjhte−λ, θjhteλ).

For our illustrations we will use three GARCH-type models for volatility, ht:

1. The GARCH(1,1) of Bollerslev (1986) where

h2t = β0 + β1y
2
t−1 + φh2t−1. (7)

2. The GJR-GARCH(1,1) of Glosten et al. (1993) where

h2t = β0 + β1y
2
t−1 + β2It−1y

2
t−1 + φh2t−1 (8)

with It−1 = 1 for yt−1 < 0 and It−1 = 0 for yt−1 ≥ 0.

9



3. The EGARCH(1,1) of Nelson (1990) where

log(h2t ) = β0 + β1

(
|yt−1|
ht−1

− E
[
|yt−1|
ht−1

])
+ β2

yt−1
ht−1

+ φ log(h2t−1). (9)

All models are characterised by an ARCH parameter β1 and a volatility param-

eter φ. The sum of β1 and φ can be interpreted as a measure of persistence of

shocks to volatility. The latter two representations have an extra parameter β2

which is introduced to capture the asymmetric response of volatility to positive

and negative shocks to returns i.e. the ‘leverage effect’. In the case of GJR-

GARCH(1,1) a β2 > 0 signifies the capture of the ‘leverage effect’, and in the

case of EGARCH(1,1) a β2 < 0. From now on we will refer to β0, β1, β2 and φ as

volatility coefficients. To ensure stationarity for yt, conditions are imposed on

these. For GARCH(1,1) β0 > 0, β1 > 0, φ > 0 and β1 + φ < 1, for GJR-GARCH

β0 ≥ 0, β1 ≥ 0, φ ≥ 0, β1 + β2 ≥ 0, and β1 + β2
2 + φ < 1, and for EGARCH(1,1)

we need to ensure that |φ| < 1. The additional requirement for EGARCH(1,1)

is the calculation of E
[
|yt−1|
ht−1

]
. For this paper we base this calculation on the

prior distribution of θ, and equation (6), that is
∑∞

j=1wjU(−θje−λ, θjeλ). The

resulting formula is

E

[
|yt−1|
ht−1

]
=

e2λ + e−2λ

2(eλ + eλ)

∞∑
j=1

wjθj , (10)

where
∑∞

j=1wjθj reduces to 1 as the prior for θj is the standard exponential

distribution.

3 Computation

This section details the MCMC algorithm for fitting the GARCH-type IUM model.

Under our model the mixing distribution Fε is modelled by a stick-breaking
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prior, leading to a stick-breaking uniform mixture distribution for the innova-

tions, εt. The infinite number of mixture components together with the fact that

our likelihood and the prior do not form a conjugate pair (as is the case with

the DPM) make inference difficult. Our MCMC algorithm provides samples

from the joint posterior distribution of the model parameters, and makes use of

the slice-efficient sampler of Kalli et al. (2011) to address the issue of infinite

mixture components and weights of the hierarchical model (5) and equation

(6). The exact number of components and weights that we need in order to

produce a valid Markov chain with the correct stationary distribution is found

by introducing a latent variable ut (to ensure that the number of mixture com-

ponents is finite), a decreasing positive sequence (ζj) (to address the updating

of the ut), and an allocation variable dt which indicates which of the mixture

components have innovations allocated to them. For more details on the slice-

efficient sampler and its mixing performance see Kalli et al. (2011). Following

the introduction of ut, ζt, and dt, the joint density of εt, ut, and dt is then

fv,θ(εt, ut, dt) = ζ−1dt 1(ut < ζdt)wdtU(−θdte−λ, θdteλ). (11)

The variables that need to be sampled at each iteration of this Gibbs algorithm

are

{(θj , vj), j = 1, 2, . . . ; (dt, ut), t = 1, . . . , n},

and the joint posterior distribution is then proportional to:

n∏
t=1

1(ut < ζdt)wdtζ
−1
dt
U(−θdte−λ, θdteλ).

Since ζ and v are conditionally independent, the sampling steps are:

• π(θj | . . .) ∝ g0(θj)
∏
dt=j

U(−θdte−λ, θdteλ)
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• π(vj) ∝ beta(vj ; a
′
j , b
′
j), where a′j = aj +

∑n
t=1 1(dt = j) and

b′j = bj +
∑n

t=1 1(dt > j).

• π(ut| · · · ) ∝ 1(0 < ut < ζdt).

• Pr(dt = κ| · · · ) ∝ 1(κ : ζκ > ut)wκζ
−1
κ U(−θdte−λ, θdteλ)

We complete this section by detailing the sampling steps for θ, λ and the

volatility coefficients. For simplicity we will explain the sampling scheme for

the volatility coefficients when we have the GARCH(1,1) set up where

h2t = b0 + b1y
2
t−1 + φh2t−1,

noting that for the GJR-GARCH (1,1) and EGARCH(1,1) the sampling is the

same but with the additional parameter b2 which accounts for the ‘leverage

effect’.

Recall that yt = htεt and thus the joint posterior distribution we will sample

from is proportional to

n∏
t=1

1(ut < ζdt)wdtζ
−1
dt
U(−θdthte−λ, θdthteλ).

Updating the θ’s

The θ’s are generated from G0 which is a standard exponential distribution,

thus their full conditional is proportional to

e−θj

∏
dt=j

1{−θje−λht < yt < θje
λht}

θ
nj
j

(12)

where nj is the number of yt allocated to cluster j, which is the size of the

cluster formed by those dt = j. The tricky part is to correctly identify the

truncations imposed by 1{−θje−λht < yt < θje
λht}, by considering the case

when yt is negative and the case when yt is positive. So the truncation when
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yt is negative is θj > maxdt=j,yt<0

{
−yt
e−λht

}
and when yt is positive it is θj >

maxdt=j,yt<0

{
yt
eλht

}
. We can therefore define the truncation point for θj as

trθj = max
dt=j

{
max
yt>0

(
yt
eλht

)
,max
yt<0

(
−yt
eλht

)}
. (13)

A rejection sampler is used to update the θdt ’s from (12). The candidate density

is a truncated exponential with trθj being the truncation. For the case were

j > dt we sample the θ’s from the prior, which is the standard exponential.

Updating λ

For the updates of the skewness parameter λ we again need to consider the

truncations that arise due our choice of a uniform kernel. We take a normal

prior with mean 0 and variance 1/2s to capture the slight asymmetry of

returns. In our illustrations s = 2. The full conditional for λ is therefore

proportional to

e−sλ
2

(e−λ + eλ)n

n∏
t=1

1{−θdte−λht < yt < θdte
λht}. (14)

To define the truncations we again consider the case when yt is negative and

the case when yt is positive. For a negative yt the truncation is

tr−λ = min
yt<0
{− log(yt) + log(−θdt) + log(ht)} .

For a positive yt the truncation is

trλ = max
yt>0
{log(yt)− log(θdt)− log(ht)} .

Since (14) is a log concave function we use the Adaptive Rejection Sampler

(ARS) of Gilks and Wild (1992) to update λ subject to the truncation points trλ

and tr−λ.
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Updating the volatility coefficients

The joint conditional for the volatility coefficients is proportional to

n∏
t=1

1
{
−θdte−λht < yt < θdte

λht

} 1

ht
. (15)

We draw attention to the fact that not all clusters have innovations allocated to

them. We have empty and full clusters, the full being identified by the θdt . For

updating the volatility coefficients we consider the full clusters. To improve the

mixing of the Markov chain we propose integrating over the θdt and working

with a simpler likelihood. Our starting point is

π(y|h) ∝
Nc∏
j=1

1∏n
t=1 ht

∫
1

θ
nj
j

1 {θj > trθ} e−θjdθj , (16)

whereNc is the number of full clusters. As with the update of the θ’s our prior is

the standard exponential, nj is the number of yt allocated to cluster j and trθj

is expressed in equation (13). In order to simplify (16) we introduce auxiliary

variables, zj . The distribution of zj conditional on the θj is gamma, that is

zj |θj ∼ Ga(nj , θj). The likelihood then becomes

π(y|h) ∝ 1∏n
t=1 ht

Nc∏
j=1

∫ ∞
trθj

z
nj−1
j e−θj(zj+1)dθj .

Integrating over the θj , the simpler likelihood which we use to update the

volatility coefficients is

π(y|h) ∝ 1∏n
t=1 ht

Nc∏
j=1

z
nj−1
j

e
−trθj (zj+1)

zj + 1
. (17)

We use the random walk Metropolis Hastings (MH) sampler to update each of

the volatility coefficients. In the case when h2t is represented as a GARCH(1,1)

and GJR-GARCH(1,1) we incorporate their stationarity conditions in the sam-

pler. For GARCH(1,1) we ensure that β0 > 0, β1 > 0, φ > 0 and β1 + φ < 1,
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and for GJR-GARCH(1,1) we ensure that β0 ≥ 0, β1 ≥ 0, φ ≥ 0 and β1 +β2 ≥ 0

and β1 + β2
2 + φ < 1. We choose a normal distribution truncated to interval

(0, 1) as the candidate density q(·) for each of these coefficients, with equation

(17) as the target density. We then accept the new values β′0, β
′
1, andφ′ with

probability
α(φ, φ′) =

π(y|h′)q(φ′, φ)

π(y|h)q(φ, φ′)
.

We used φ to show the acceptance ratio, as the set up of it is the same for

all coefficients, just replace φ with β1 and β0. In the case where h2t has the

EGARCH(1,1) representation we ensure that |φ| < 1 and use equation (9) with

a multivariate normal as the candidate density q(·).

Updating these coefficients one at a time is a lengthy process due to the

slow mixing of the MH sampler. This is because the correlation between the

coefficients is high, and mixing is improved by sampling the volatility coeffi-

cients in a block (see for example Chen and So (2006)). To efficiently sample

from the block we use the ideas of adaptive Monte Carlo discussed in Roberts

and Rosenthal (2009). Adaptive Monte Carlo algorithms allow the proposal

distribution in a Metropolis-Hastings step to change over an MCMC run. This

allows the sampler to adapt to the form of the posterior. The sampler is no

longer Markovian and so care is needed to define an algorithm that converges

to the posterior. Roberts and Rosenthal (2009) develop a general theory for

convergence of these algorithms using two conditions: diminishing adaptation

and uniform ergodicity. We do not discuss these concepts further since the

methods used in this paper are well studied and convergence is proved in the

accompanying references.

15



Let ϕ = (β0, β1, φ) which allows us to use the random walk MH with a mul-

tivariate normal as the candidate density as described in Haario et al. (2001).

Our multivariate normal distribution has mean ϕ and covariance matrix cϕΣit.

The positive constant cϕ is introduced to secure good acceptance rates. Though

Haario et al. (2001) suggest cϕ = 2.34 they allow the modeller to choose its

value based on trial and error. In our illustrations we used cϕ = 1. The co-

variance matrix Σit is the posterior covariance matrix at each iteration, that

is

Σit =
1

it− 2

{
it−1∑
i=1

ϕ(i)ϕ(i)T −
(
∑it−1

i=1 ϕ
(i))(

∑it−1
i=1 ϕ

(i))T

it− 1

}
. (18)

where it = 1, . . . ,M is the iteration index. This set up allows the covariance

matrix to adapt with each update of the volatility coefficients, and thus provide

a candidate density at each iteration, qit(ϕ,ϕ′), that adapts with each update of

the coefficients and of the covariance matrix. This results in improved mixing

of the MCMC sampler.

This blocked update for ϕ uses estimates of the variances and covariances

for all volatility coefficients. We suggest using an alternative update for a few

iterations (in our examples 200 iterations) in order to allow these estimates to

settle. Using the idea of Atchade and Rosenthal (2005) we adjust the variances

of the candidate densities of each of the volatility coefficients as follows, (we

display the set up using φ but this is exactly the same for β0 andβ1)

σ2φ = σ2φ +
1√
it

(α− 0.3),

where α is the acceptance ratio and it is the index of the iterations, it =

1, . . . ,M. This correction allows the variance to adapt with each acceptance

step at each iteration and thus improve on the mixing. The choice of 0.3 is a
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conservative one and it ensures that α does not fall below 0.3. Roberts et al.

(1997) find that the optimal acceptance rate for random walk MH samplers is

0.234, however in Roberts and Rosenthal (2009) it is suggested that it is best in

the case of the aforementioned adaptive step to be conservative.

4 Simulation Example

To assess the fit and predictive performance of the stick-breaking prior uniform

mixture, hereafter referred to as IUM, we simulated a single time series for yt

from the model in equation (1), where t = 1, . . . , 3000. Volatility was simulated

by the GARCH(1,1) model

h2t = 0.01 + 0.15y2t−1 + 0.80h2t−1, (19)

and the innovations were generated from the mixture distribution

εt ∼ 0.9N(0.1, 0.5) + 0.1N(−1, 4.41).

We compared the IUM model to the DPM model and to a stick-breaking

prior (SBP) with a normal mixture set up. To facilitate inference for both of

these alternatives we adjusted our computation to account for the normal mix-

ture set up. We provide the details of this adjustment in Appendix 2. We ran

the MCMC sampler under all three set ups using 35000 iterations and discarded

the initial 5000 as burn in. Trace plots (Figure 1) and the median estimates to-

gether with the 95% credible intervals of the posterior samples of the volatility

parameters, β0, β1, and, φ (Table 2) were generated.

The trace plots show the mixing of the volatility coefficients under the three

Bayesian nonparametric models. It is very similar for the DPM and SBP-normal,

and for the IUM it is also good. The volatility estimates of the IUM model are

the ones that are closer to the true values. Though the other two models, DPM
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and SBP-normal do well in estimating the value of φ, they underestimate the

values of β0 and β1. Finally the 95% credible intervals under the DPM and the

SBP-normal have similar width whereas those of the IUM model are actually

narrower.

To compare the fit of each of the three competing models, we calculated the

Mean Integrated Squared Error (MISE). Classically the MISE =
∫

(f trueε (x) −

f̂ε(x))2 dx where f trueε (x) is the true density of the innovations and f̂ε(x) the

estimated density. The model with the smallest MISE is preferred. In our

Bayesian approach MISE is viewed as the posterior expectation of the distance

between the true density estimated at point x and fε evaluated at x, that is

E
[ ∫

(f trueε (x)− fε(x))2 dx|y
]
. We approximate this expectation by

1

M

M∑
it=1

[ ∫ up

lo
(f trueε (x)− f (it)ε (x))2 dx

]
,

where it = 1, . . . ,M is the index of the iterations, and f
(it)
ε is the estimated

density at iteration it. We ensure that F trueε (lo) = 10−5 and F trueε (up) = 1 −

10−5, and evaluate the integral using the trapezoidal rule. The MISE estimates

are also displayed in Table 2. From the comparison of the three MISE estimates

it is clear that the IUM has the best fit. These results for both the MISE and the

volatility estimates demonstrate the flexibility of the IUM over the two normal

set ups, the DPM and the SBM-normal. Having a uniform mixture coupled with

the ability to control the decay of the weights leads to better fitting models and

volatility estimates that are closer to the true values of the model from where

the data was generated.

We assessed the predictive performance of the competing models by cal-

culating both average log predictive scores (LPS) and average log predictive
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tail scores (LPTS) (Delatola and Griffin, 2011). These scores are based on

the one step ahead predictive density f(yt+1|y(1:t−1), ϑ), where ϑ represents the

model parameters; ϕ the vector of the volatility coefficients, and Fε, the innova-

tion distribution. We approximate the predictive density by f(yt+1|y(1:t−1), ϑ̂),

where ϑ̂ represents parameter estimates. For ϕ these are the posterior medians

of each volatility coefficient. For Fε the point estimate is F̂ε(B) = E
[
Fε(B)

]
for

measurable sets B, which is the Bayes estimator under squared loss.

For the calculation of LPS and LPTS t = 1, . . . , n refers to the latter half of

the data set, the evaluation (out of sample) set. The first half is the training (in

sample) set which is used to estimate ϕ, and Fε. We calculate LPS as

LPS = − 1

n

n∑
t=1

logf(yt|y1:(t−1), ϑ̂). (20)

Under this calculation smaller values of the LPS indicate a better fitting model.

In practice we may be more interested in predicting extreme returns and thus

we calculate the LPTS. We identify zα, the upper 100α% of the absolute values

of the standardised yt. Since we built a conditional model and are interested

in the conditional ‘tails’, we carried out this standardisation, in order to have

a measure of the conditional extreme returns. The standardised yt is calcu-

lated as y?t = yt
ĥt

, where ĥt is an estimate of volatility ht, calculated using the

estimates of the volatility coefficients from the evaluation set. We then find

1(|y?t | ≥ zα), the number of extreme returns of y?t . Thus only predictions of re-

turns with absolute value in the upper 100α% of |y?t | are included in the score.

So, LPTS is,

LPTS = − 1∑n
t=1 1(|y?t | > zα)

n∑
t=1

1(|y?t | > zα)logf(yt|y1:(t−1), ϑ̂) (21)
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LPS LPTS-01 LPTS-05

DPM 0.311 3.435 4.700

SBP-normal 0.320 3.437 4.710

SBP-uniforms (IUM) 0.297 3.077 4.134

Table 1: LPS and LPTS under the three models for the simulated data.

β0 β1 φ MISE

True value 0.010 0.150 0.800

DPM 0.007 0.105 0.776 0.015

(0.002,0.017) (0.023,0.226) (0.718,0.823) (0.0003,0.1258)

SBP-normal 0.009 0.100 0.777 0.016

(0.003,0.019) (0.042,0.245) (0.727,0.808) (0.0004,0.1176)

IUM 0.011 0.165 0.797 0.007

(0.004,0.015) (0.085,0.219) (0.758,0.824) (0.0043,0.0234)

Table 2: Median estimates of volatility coefficients and MISE with their 95% credible intervals.

In our comparisons we looked at the upper 5% and 1% values. The results are

displayed in Table 1. The IUM outperforms the other two models both in terms

of the LPS and the LPTS. Its’ lower LPTS values demonstrate that it can predict

extreme returns more accurately than the two alternatives.
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Figure 1: Trace plots of the posterior samples of the volatility coefficients, β0,β1 (arch coefficient) and φ (volatility

coefficient).
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5 Empirical Examples

In this paper we look at daily log-returns of three stock indices: the S&P 500,

FTSE 100, and EUROSTOXX 50. Our samples for each index respectively are

from: January 3rd 1980 to December 30th 1987, January 3rd 1997 to March

12th 2009, and June 7th 2002 to March 3rd 2009. Figure 2 shows the time plots

for the daily log-returns. Table 3 shows the main summary statistics of these

returns.
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−30

−20
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20
EUROSTOXX 50

Figure 2: Time plots of observed daily returns

Descriptives S&P 500 FTSE 100 EUROSTOXX 50

median 0.044 0.031 0.000

st.dev 1.130 1.304 1.610

skewness -4.129 -0.124 0.010

kurtosis 90.609 (10.147) 8.772 8.929

Table 3: Summary Statistics

The plots in Figure 2 identify periods of sustained high volatility, which we
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refer to as volatility clusters. The most notable volatility clusters for each index

are those near the end of the sampled time period, which are all related to stock

market crashes. For the S&P 500, it was the October 1987 crash whereas for the

FTSE 100 and EUROSTOXX 50, it was the 2008 crash caused by the collapse of

the subprime mortgage market. From the summary statistics displayed in Table

3 we focus on the estimates of kurtosis and skewness. All three samples have

high levels of kurtosis. For the S&P 500 estimated kurtosis is nine times higher

when the extreme drop in the prices on October 19th 1987 is in the sample

than when it is excluded. This extreme observation also impacts on skewness,

which increases to −0.022 from − 4.129 once the extreme is removed. The

estimated skewness from the EUROSTOXX 50 sample is positive 0.010 rather

than negative as it the case with the samples from the other two indices.

We apply our infinite uniform mixture (IUM) with the GARCH(1,1), GJR-

GARCH(1,1), and EGARCH(1,1) representations for the volatility to all three

samples. We then compare our results to those from GARCH(1,1), GJR-GARCH(1,1)

and EGARCH(1,1) with Student-t innovations, and skewed Student-t innova-

tions. We refer to these models as parametric models. They were fitted using

Matlab’s Econometrics and Kevin Shephard’s Financial Econometrics toolboxes.

Both of these toolboxes carry out maximum likelihood estimation (MLE). Fur-

ther comparisons were made with two SV models with Student-t innovations

one without (SV(1)-t), and one with ‘leverage effect’ (SV(1)-t leverage), us-

ing the algorithms of Jacquier et al. (1994, 2004). Finally, we compared our

IUM model with a DPM model with the same GARCH-type representations for

the volatility, the SV-DPM model of Jensen and Maheu (2010), and the πDDP

model of Griffin and Steel (2006). In all cases the priors and samplers sug-
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gested by the authors are used. We refer to these models as Bayesian non-

parametric models. The results for the IUM and DPM models were based on

480000 runs with the first 20000 discarded as burn in. The parameters aj , bj of

the SBP are generated from the geometric-beta model (described in Section 2)

with parameters α1 = 1, α2 = 6. For the DPM , the ‘precision’ parameter, c = 1.

5.1 Results

As was the case with the simulated example, we assess the predictive per-

formance of the competing models by calculating both average log predictive

scores (LPS) and log predictive tail scores (LPTS) as per equations 20 and 21.

For the LPTS, we again considered the 5% and 1% points. The volatility esti-

mates used to obtain y? (the standardised yt) for each index were based on the

GJR-GARCH(1,1) model with skewed student-t innovations. We did estimate

the volatility using all GARCH-type models, and since the estimates were simi-

lar we decided to use those of the GJR-GARCH(1,1) model. The LPS and LPTS

scores for each model and each data set are included in Table 4.

Looking at these scores we see that the IUM model for the innovation dis-

tribution with the three GARCH-type volatility set ups is a competitive model.

It produces the lowest (best) LPS for two of the indices studied, the FTSE 100

and Eurostoxx 50 and the second best LPS for the S&P 500. In terms of the

LPTS it outperforms all other models for the three indices. Based on the LPTS

both the GJR-GARCH(1,1)-IUM and GARCH(1,1)-IUM have better predictive

performance of extreme events when compared to the EGARCH(1,1)-IUM. All

the GARCH-type IUM models produce better LPS and LPTS compared to the
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respective GARCH-type models with DPM innovations and SV-DPM for all in-

dices.

In Table 5 we also provide in-sample estimates of the volatility coefficients

for all three sampled indices. For the point estimates of the volatility coeffi-

cients under the Bayesian models we calculate the posterior medians and also

provide their 95% credible intervals. The πDDP of Griffin and Steel (2006)

models the volatility nonparametrically and therefore there are no volatility

coefficients to estimate. For the parametric models we calculate these esti-

mates based on MLE and provide their 95% confidence intervals. Regarding

the SV(1)-t with ‘leverage’ we do not include a value for a leverage coefficient.

The ‘leverage effect’ in this model is estimated by the correlation between the

innovations and the noise-terms of the volatility. We do provide these values

within the caption of Table 5. The estimates of β1 and φ for the GARCH(1,1)

and GJR-GARCH(1,1) models are not much different under the Student-t and

skewed Student-t choices for the innovation distribution for all three indices.

The estimates for φ under the two Bayesian nonparametric settings for Fε, DPM

and IUM, for each GARCH-type model are marginally lower to the those under

Student-t and skewed Student-t innovations. In terms of the IUM model the

estimates of β1 are actually similar whereas that of DPM are lower. There

is some disparity across both parametric and Bayesian nonparametric models

when it comes to the leverage coefficient β2. If we set the parametric models

as the benchmarks, then IUM seems to slightly under estimate for the FTSE

100 and Eurostoxx 50 and over-estimate for the S&P 500, whereas the DPM

largely under estimates β2 for the FTSE 100 and Eurostoxx 50, but provides

similar a estimate for the S&P 500. The EGARCH(1,1) estimates of β1, and β2
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vary across the distributional choices for the innovations and across indices,

whereas the estimates of φ are more similar. Looking at the estimates of φ un-

der the two SV(1)-t models and the SV(1)-DPM, we would say that those are

close to the corresponding estimates of the EGARCH(1,1) models.

We also provide in-sample estimates of the kurtosis κ̂yt of the unconditional

distribution of yt. We were able to check for the existence of a 4th moment and

then proceed to calculate κ̂yt for all GARCH-type set ups with the EGARCH(1,1)

being the exception. In EGARCH models the exponential growth of the con-

ditional variance of yt changes with the level of shocks, which leads to the

explosion of the unconditional variance of yt when the probability of extreme

shocks is large. This means that the existence of the unconditional variance

of yt (in the EGARCH case) depends on the choice of innovations distribution.

We have chosen the Student-t and skewed Student-t to model the innovations

in the parametric models and under these two choices the unconditional vari-

ance of yt does not exist. The formulas used to check for the existence of

the fourth moment, and calculate κ̂yt for the remaining GARCH-type and SV

set ups are included in Appedix 3. These formulas were extracted from Jon-

deau and Rockinger (2003), Carnero-Angeles et al. (2004), and Verhoeven and

McAleer (2004). All these formulas are based on the estimates of the volatil-

ity coefficients, and the estimated kurtosis of the innovation distribution, κ̂ε.

We used the estimates of the degrees of freedom and the skewness parameter

(where applicable) to calculate κ̂ε. For the Bayesian nonparametric GARCH-

type models, the IUM and the DPM, the estimated kurtosis of the innovation

distribution κε is that of the point estimate F̂ε(·) of Fε. It is not possible to

calculate an estimate of the unconditional kurtosis of yt under the πDDP model
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of Griffin and Steel (2006) and under the SV(1)-DPM of Jensen and Maheu

(2010). For the former model this is because the volatility is modelled using

an ordered dependent DP, and thus no volatility coefficient estimates exist, and

for the latter model the innovation distribution is not specified. The estimates

of the unconditional kurtosis of yt are displayed in Table 6 and the estimates

of the kurtosis of the innovation distribution are displayed in Table 7. There

are cases where the relevant condition for the existence of a fourth moment

was not met and this occurs mostly with the Eurostoxx 50. For this reason the

unconditional kurtosis of yt is considered unbounded and cannot be estimated.

We were however able to calculate κ̂yt for most models for the other two in-

dices, the S&P 500 and FTSE 100. All GARCH-type models with DPM innova-

tions tend to over-estimate κ̂yt for all indices. For the FTSE 100 we have three

estimates that are close to the empirical value, those of the GARCH(1,1)-IUM,

GJR-GARCH(1,1)-IUM and SV(1)-t (with and without leverage). The estimates

of the GARCH(1,1)-IUM model are closest to the empirical values of kurtosis

displayed in Table 3 for the S&P 500 and Eurostoxx 50. These results support

our motivation for using the IUM to model the innovation distribution.

Finally, in Table 8 we provide in-sample estimates of the skewness parame-

ter λ for all GARCH-type models with skewed Student-t, DPM and IUM innova-

tions. Overall, the estimates of λ for models with IUM innovations are closest

to the sample estimates for all indices.
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6 Conclusions

This paper introduces a new Bayesian semiparametric model for the condi-

tional distribution of daily stock index returns. The innovation distribution is

modelled nonparametrically with an infinite mixture of scaled uniform distri-

butions (IUM) rather than an infinite mixture of normals, as is the case with the

DPM. We replaced the normal kernel with the scaled uniform kernel in order

to capture the uni-modality, asymmetry and heavy-tailed behaviour of the con-

ditional return distribution. We used a stick-breaking prior (SBP), instead of

a Dirichlet process prior (DP) to model the unknown number of mixture clus-

ters, because it has the flexibility to generate more clusters with non-negligible

weights that could account for the heavy tails of the conditional return distri-

bution. The uniform kernel together with the stick-breaking prior can absorb

extreme returns via the heavy tails and avoid the risk of creating a mode at

those extreme points, as may be the case with the DPM model. We developed

an efficient MCMC based on the slice-efficient sampler introduced in Kalli et al.

(2011) which samples the volatility coefficients as a block using adaptive MH.

In our simulated study based on a GARCH(1,1) model our IUM has the best fit

and predictive performance when compared to the DPM.

We accounted for the ‘leverage effect’ using both a GJR-GARCH(1,1) and an

EGARCH(1,1) and tested our IUM on three samples of daily index returns taken

from the S&P 500, FTSE 100 and Eurostoxx 50. We compared our model to

GARCH(1,1), GJR-GARCH(1,1), and EGARCH(1,1) with Student-t and skewed

Student-t, and DPM innovations, and found that its’ predictive performance in

terms of extreme returns is better. It also accounts for kurtosis and skewness
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more accurately. We came to the same conclusion when we compared the

IUM to an SV(1) with Student-t innovations (with and without leverage), the

SV(1)-DMP of Jensen and Maheu (2010) and π-DDP Griffin and Steel (2006).

The over-arching conclusion is that the IUM model developed in this paper is

competitive and can lead to improved inferences and predictions in the context

of returns data analysis.
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Appendix 1

In Section 2 we introduced a method of specifying the parameters (aj , bj) of

the SBP for the mixture weights wj . In this Appendix we discuss this method

in more detail.

If wj ∼ SBP (aj , bj) then

ξj = E[wj ] =
aj

aj + bj

∏
l<j

(
1− al

al + bl

)
for j > l.

Let τj = aj/(aj +bj), we then require the sequence (τj) to satisfy the following,

τ1 = ξ1, and for j > 1, τj
∏
l<j(1− τl) = ξj .

For j > 1, set τj =
(

1−
∑

l<j ξl

)−1
ξj .We know that the

∑
l ξl = 1 therefore

ξj < 1 −
∑

l<j ξl and τj < 1. At this stage we need to check that
∑∞

j=1 log(1 +

aj/bj) = +∞, a condition to ensure that F is a random measure, see Ishwaran

and James (2001). As aj/bj = τj/(1−τj) and log(1+τi/(1−τj)) = − log(1−τj),

we have,

Nτ∑
j=1

− log(1− τj) = − log

Nτ∏
j=1

(1− τj) = − log

1−
Nτ∑
j=1

ξj

→ +∞,

therefore F is a random measure.
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We center this process over a distribution for the weights by choosing E[wj ] =

ξj , where ξj is Pr(X = j) for a randon variable X with a discrete distribution

on 1, 2, 3, . . . . The random variable X is given a Beta-Geometric distribution

i.e. Pr(X = j) = p(1− p)j−1 where p ∼ Be(α1, α2). This yields

ξj =
Γ(α1 + α2)Γ(α1 + 1)Γ(α2 + j − 1)

Γ(α1)Γ(α2)Γ(α1 + α2 + j)
,

which allows us to control the number of non-negligible weights by choosing

the values of (α1, α2).

To understand how the variance of wj affects the weight decay we re-

parameterise aj and bj as aj = rjτj and bj = rj(1 − τj). In order to specify

rj we consider

E(w2
j ) = ξj

1 + rjτj
1 + rj

∏
l<j

(
1− rlτl

1 + rl

)
,

and write rl/(1 + rl) = ql. This provides the expression for the variance of wj ,

Var(wj) = ξj [(1− qj) + qjτj ]
∏
l<j

(1− qlτl)− ξ2j .

The choice of qj is what controls the variance of wj and determines how close in

probability the weights are to ξj .We choose qj to satisfy qj = (1−τj)−1
[
1− Var(wj)+ξ2j

ξj
∏
l<j(1−qlτl)

]
.

Since 0 < qj < 1, we need

0 < 1−
Var(wj) + ξ2j

ξj
∏
l<j(1− qlτl)

< 1− τj ,

and hence

τjξj
∏
l<j

(1− qlτl)− ξ2j < Var(wj) < ξj
∏
l<j

(1− qlτl)− ξ2j .

One particular idea, which is used in the numerical illustrations, is to take

large variances, amounting to a non-informative prior. This implies qj is chosen

to be small, but not zero, and hence one could set ξj
∏
l<j(1 − qlτl) − ξ2j = cξ,
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for some small cξ, for all j. This follows since Var(wj) < ξj(1 − ξj) and we

obtain this limit as qj ↓ 0.

Appendix 2

In both the SBP with normals and DPM case the hierarchical set up is:

εt ∼ N(µdt, σ
2
dt) for t = 1, . . . , n

Pr(dt = j) = wj for j = 1, 2, . . .

µj , σ
2
j ∼ G0(·) for j = 1, 2, . . .

where G0(·) is µj |σ2j ∼ N(m,
σ2
j

γ ) and 1
σ2
j
∼ Ga(aσ, bσ)

w1 = v1 and wj = (1− v1) . . . (1− vj−1)vj = vj
∏
l<j(1− vl)

vj ∼ Be(aj , bj) for the SBM, and vj ∼ Be(1, c) for the DPM.

For our simulation example we have setm = 0.0001, γ = 0.1, aσ = 0.05, and bσ =

0.05. The precision parameter for the DPM is set c = 1 and the aj , bj of the SBP

are generated from the geometric-beta model (described in Section 2) with

parameters α1 = 1, α2 = 6.

We use the MCMC algorithm described in Section 3 for all models. For

both SBP with the normal set up and DPM the joint posterior distribution is

proportional to
n∏
t=1

1(ut < ζdt)wdtζ
−1
dt

N(εt|µdt , σ2dt).

Recall that ζ and v are conditionally independent and so the sampling steps

are:

• π(vj) ∝ beta(vj ; a
′
j , b
′
j) for the SBM where a′j and b′j are defined just like

in Section 3, and π(vj) ∝ beta(vj ; 1′, c′) for the DPM where 1′ = 1 +∑n
t=1 1(dt = j) and c′ = c+

∑n
t=1 1(dt > j).
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• π(µdt | . . .) ∼ N(
∑
t:dt=j

εt+mγ

nj+γ
,

σ2
dt

nj+γ
)

• π( 1
σ2
dt

| . . .) ∼ Ga(aσ +
nj
2 + 1

2 , bσ +
∑
t:dt=j

(εt−µdt )
2

2 +
γ(µdt−m)2

2 )

• π(ut| · · · ) ∝ 1(0 < ut < ζdt).

• Pr(dt = κ| · · · ) ∝ 1(κ : ζκ > ut)wκζ
−1
κ N(εt|µdt , σ2dt)

The random walk MH described in Section 3 is used to sample the volatility

coefficients. What changes in the case of the normal setup is the likelihood and

as a consequence the simplified likelihood used the MH sampler. The likelihood

is proportional to
n∏
t=1

e
(εt−µdt )

2/2σ2
dt√

2πσ2dt

where εt =
yt
ht

The simplified likelihood is obtained by integrating out the µdt over (−∞,∞)

and then the σ2dt over (0,∞), and it is proportional to

1∏n
t=1 ht

Nc∏
j=1

Υj

where Nc is the number of full clusters, nj the size of cluster j and

Υj =
γ

1
2 baσσ Γ(aσ +

nj
2 )

(2π)
nj
2 (γ + nj)

1
2 Γ(aσ)

(
bσ + 1

2

(
γm2 +

∑nj
j=1 ε

2
j −

(γm+
∑nj
j=1 ε

2
j )

2

γ+nj

))aσ+nj
2

Appendix 3

The GARCH(1,1) condition for the existence of a fourth moment is:

(β1 + φ)2 + β21(κε − 1) < 1.

If this condition is satisfied then the unconditional kurtosis of yt is

κyt = κε
[
1− β21(κε − 1)

1− (β1 + φ)2

]−1
,
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where β1 and φ are the coefficients of y2t−1 and h2t−1 respectively, and κε is the

kurtosis of the innovation distribution (see Carnero-Angeles et al. (2004)).

The GJR-GARCH(1,1) condition for the existence of a fourth moment is

φ2 + 2β1φ+ φβ2 + κεβ1β2 + κεβ21 +
1

2
β22κε < 1

If this condition is satisfied then the unconditional kurtosis of yt is

κyt = κε
1− (φ2 + 2β1φ+ φβ2 + β1β2 + β21 + 1

4β
2
2)

1− (φ2 + 2β1φ+ φβ2 + κεβ1β2 + κεβ21 + 1
2β

2
2κε)

,

where β1,β2 and φ are the coefficients of y2t−1,y
2
t−1It−1 and h2t−1 respectively,

and κε is the kurtosis of the innovation distribution (see Verhoeven and McAleer

(2004)).

In our illustrations we are using an SV(1) set up for the volatility, that is

log h2t = β0 + φ log h2t−1 + ηt, where η ∼ N(0, σ2η). In this case if the kurtosis of

the innovations’ distributions, κε, is finite, the condition for the existence of the

unconditional kurtosis of yt, κyt , is the stationarity condition, that is |φ| < 1.

Then
κyt = κε exp (σ2h) with σ2h =

σ2η
(1− φ2)

.

(see Carnero-Angeles et al. (2004))

The formula for calculating the kurtosis of the student-t distribution is

κε = 3 +
6

df − 4
for df > 4,

where df are the degrees of freedom. Calculating the kurtosis of the skewed

student-t distribution is more challenging. As with any distribution the kurtosis

of the innovations’ distribution is given by

κε =
E(ε4)− 4E(ε)E(ε3) + 6

[
E(ε)

]2E(ε2)− 3
[
E(ε)

]4[
Var(ε)

]2 .
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We use the formulas in Jondeau and Rockinger (2003) to calculate these mo-

ments. The formulas are,

E(ε) = 4λcε
df − 3

df − 1

E(ε2) = 1 + 3λ2

E(ε3) = 16cελ(1 + λ2)
(df − 2)2

(df − 1)(df − 3)

E(ε4) = 3
(df − 2)

(df − 4)
(1 + 10λ2 + 5λ4),

where cε =
Γ(df+1

2 )√
π(df − 2)Γ(df2 )

, and λ is the skewness parameter.
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S&P 500 FTSE 100 Eurostoxx 50

Garch(1,1)-t 3.71 *** ***

Garch(1,1) skew t 6.27 *** ***

Garch(1,1)-DPM 55.37 49.47 20.01

Garch(1,1)-IUM 85.70 9.63 7.68

GJR-Garch(1,1)-t 6.33 *** ***

GJR-Garch(1,1) skew t 6.19 *** ***

GJR-Garch(1,1)-DPM *** 40.04 21.10

GJR-Garch(1,1)-IUM *** 10.69 ***

SV(1)-t 5.60 8.34 10.94

SV(1)-t-leverage 5.82 7.64 8.65

Table 6: Estimates of unconditional kurtosis, κ̂yt , of yt. The *** signify failure to meet the conditions for the

existence of a 4th moment, resulting in unbounded kurtosis (see Appendix 2)

S&P 500 FTSE 100 Eurostoxx 50

Garch(1,1)-t 3.38 3.55 4.08

Garch(1,1) skew t 5.27 3.65 4.14

Garch(1,1)-DPM 46.00 15.68 20.01

Garch(1,1)-IUM 25.99 9.01 7.62

GJR-Garch(1,1)-t 5.10 3.50 3.60

GJR-Garch(1,1) skew t 5.01 3.51 3.65

GJR-Garch(1,1)-DPM 48 38.68 21.1

GJR-Garch(1,1)-IUM 13.56 5.03 7.89

SV(1)-t 3.67 3.19 3.24

SV(1)-t-leverage 4.00 3.20 3.24

Table 7: Estimates of the kurtosis of the innovation distribution, κε. (see Appendix 2)

S&P 500 FTSE 100 Eurostoxx 50

Sample estimates -4.13 (-0.022)* -0.124 0.099

Garch(1,1)-skew t -0.016 -0.111 -0.091

GJR-Garch(1,1) skew t -0.011 -0.127 -0.120

Egarch(1,1) skew t -0.013 -0.128 -0.129

Garch(1,1)-DPM -0.009 -0.093 0.000

GJR-Garch(1,1)-DPM -0.010 -0.108 -0.005

Egarch(1,1)-DPM -0.010 -0.110 -0.011

Garch(1,1)-IUM -0.025 -0.125 0.029

GJR-Garch(1,1)-IUM -0.019 -0.130 0.078

EGarch(1,1)-IUM -0.028 -0.131 0.091

Table 8: Estimates of skewness parameter, λ. Comparisons are for GARCH-type models with skewed-t, DPM,

and IUM innovations. Sample estimates are in italics. *In parenthesis: skewness estimate when the extreme outlier

is removed. 41


