
Solving the Rubik’s Cube
with Learned Guidance Functions

Colin G. Johnson
School of Computing, University of Kent

Canterbury, Kent, United Kingdom; C.G.Johnson@kent.ac.uk

Abstract—This paper introduces move sequence problems—
problems where a system can exist in a number of states,
including a goal state, with moves between those states. This
paper introduces Learned Guidance Functions (LGFs) as a
machine learning method to tackle these. An LGF is a function
learned by supervised machine learning that predicts how far a
particular state is from the goal state. These methods are applied
to the challenging problem of unscrambling a Rubik’s Cube.

Index Terms—Machine learning; error measures; loss func-
tions; fitness landscapes; human-like computing

I. INTRODUCTION

Consider a system that can exist in a large number of
states, and, given a particular starting state, the task is to
find a sequence of moves—transitions from state-to-state—
that terminate in some goal state. Call these move sequence
problems (MSPs). What makes these difficult for traditional
machine learning approaches is that for each instance of the
problem, the sequence of moves required will vary. It is not
possible to simply learn a sequence of moves.

Examples of such problems include:
• Calculating the folded configuration of a protein. The

states are configurations of the proteins, moves are
changes between configurations, starting states are un-
folded proteins (amino acid sequences), and goal states
are folded proteins.

• Cleaning a distorted/noisy audio file: a recording made
in a noisy environment, or one that has been deliberately
distorted such as an audio CAPTCHA. The states are
audio files, moves are the application of a filter or
transformation to the audio, starting states are distorted
audio files, and goal states are clean audio files.

• Similarly, cleaning a distorted/noisy image or video file.
• Mathematical problems such as taking a knot and work-

ing out the sequence of moves to unknot it. The states are
knot diagrams, moves local changes to the knot, starting
states knotted diagrams, and the goal state an unknotted
diagram.

• Solving a puzzle where the player is given a random
starting state and has to apply a sequence of moves to
get to some configuration. The states are configurations
of the puzzle, moves legal moves in the puzzle, stating
states the initial state of the puzzle, and the goal state the
solution to the puzzle.

In all of these cases we have a set of states, moves between the
states, and we can compare two states in the dataset (but, we

do not have an oracle that can compare two arbitrary states).
Also, in these examples we have access to plentiful data.

This paper introduces learned guidance functions (LGFs).
These do not learn the sequence directly, but learn the concept
of how close a particular state is to being a goal. The LGF
learns to map from states to labels (nonnegative integers),
where 0 represents a goal state, 1 a state close to a goal
state, 2 a state a little further away etc.; the idea is to
learn to generalise this from a sample of labelled states. In
this paper, which applies this approach to the Rubik’s Cube,
this discrete representation is appropriate, as these numbers
represent the number of turns. In other problems, a continuous
representation might be more appropriate.

Experimental evidence starting with the work of Rosch [1]
has shown that human concept representations are graded, that
we learn categories not as sharp boundaries but as continua
from core examples of the concept to peripheral ones. As
Gärdenfors [2] has emphasised, these “conceptual spaces”
around a concept are not typically based around a single
feature, but are multidimensional feature spaces. In solv-
ing complex problems, people move through this conceptual
space, guided by the idea of closeness to the core concept;
this work is inspired by this cognitive representation.

These LGFs are learned from graded training sets (GTSs).
A GTS consists of a set of example states, each labelled with
how close that state is to the goal state. This is not a simple
error measure, but is sampled from trajectories from start state
to goal state. The following are possible ways in which the
graded labels can be obtained:
• Synthetically, by making sequences of reverse moves

from known goal states.
• From known move sequences from experimental or obser-

vational studies, or move sequences provided by a domain
expert.

• By the judgement of a domain expert on how close each
of a set of examples are to the goal state.

• By applying problem-specific heuristics, or metaheuris-
tics, to some instances the problem, particularly where
these heuristics take longer in time than is needed in the
final application, or where they can be applied to simple
examples but not more complex ones.

The LGF is the model discovered by applying a classification
algorithm to the GTS, with the aim of building a predictive
model associating labels to states. This is called this a guid-
ance function because it guides a search in the state-space



of the MSP. Most simply, this can be used in a simple hill-
climbing approach: at each hillclimbing step, make a choice
of move that results in a state that the LGF predicts to be
closer to the goal state than the current state.

This paper shows how LGFs can be applied to the MSP of
unscrambling the Rubik’s Cube puzzle. Section II discusses
some related techniques. Section III formalises the notion of
MSP, GTS, and LGF in general, and then Section IV constructs
Rubik’s cube unscrambling as an MSP. Sections V and VI give
experimental results, then analysis based on fitness landscapes
is given in Section VII. Finally, Section VIII summarises the
work, gives broader context, and suggests future work.

II. RELATED WORK

The idea of LGFs has some similarity to the technique of
target analysis (TA)—a technique for setting the parameters
of a metaheuristic algorithm [3]. This takes a number of high
quality solutions that have been generated by application of
exhaustive or manual methods on small scale examples, or
else examples where a large amount more effort is expended
to solve them than would be practical in the final application.
These are then used to tune the parameters of the meta-
heuristic. This tuned metaheuristic is then applied to realistic
examples. There are some similarities between TA and LGF
approaches, in that both work from a set of solved examples
as their initial material. In TA it is the parameters of the
metaheuristic that is tuned. By contrast, the LGF approach
tries to learn the concept of degrees of distance from the target
state.

LGFs also share some ideas with reinforcement learning
(RL) [4]: in particular, the idea of applying learning to
create a set of local decision-making rules that produce a
global behaviour. However, the information used for training
is different. In RL the system is trained based on a reward
function, which measures the value of actions taken. In LGF-
based learning, the driver of learning is the LGF learned from
the GTS.

A third related topic is the use of evaluation functions in
game-playing AI—that is, functions that take a board state
and evaluate the strength of that position. Both this and
LGFs use the idea of attributing value to a particular system
state and then making decisions about moves based on local
optimisation of state. Evaluation functions can be built built
as a combination of heuristics devised by expert players. For
example, the IAGO Othello system [5] is driven by a weighted
combination of four human-created features, with weights
varying to emphasise the different importance of these factors
at different times in the game; in the BILL system [5], similar
features are used but the weights are learned from example
games. This is the most similar to the approach taken in this
paper. Other methods use an approach of learning features
in the form of patterns of pieces on the board [6]. Another
approach is to create a set of generic heuristics for a broad set
of games [7].

One specific form of heuristic that has been applied to the
Rubik’s Cube is the pattern database [8]. These consist of

databases of sets of partial states of the cube (for example,
all corner pieces), and the set of moves required to solve that
partial state, with the remaining faces considered to be a “don’t
care” state. The results from multiple pattern databases can
then be combined to give an estimate of the number of moves
needed to solve a particular combination, and thus provide a
heuristic evaluation function to guide a search process.

Another problem that has similarities to the MSP is super
resolution [9] enhancing a low-resolution image. Clearly, there
is not enough information in the image alone, so these methods
make use of additional information in the form of models of
what is likely to be found in the image. For example, Dahl et
al. [10] does this for faces, using one part of the to find the
most likely baseline match from a large database, and another
part to modify that baseline. This can be framed as an MSP
problem—start with a large number of high-resolution faces,
create a GTS from the intermediate resolution levels, and then
learn an LGF from that GTS; this approach has not yet been
tried.

Metric learning [11] is another related topic. This consists
learning distances (usually similarity) between items in a
space, from a set of examples where the distance has been
given. LGFs can be seen as a kind of discrete distance learning,
where discrete distances are being learned between points in
the GTS and the set of goal states of the problem.

There are bespoke methods for specifically solving the
Rubik’s Cube [12]. The experiments in this paper are designed
to show that a complex problem such as the Cube can be
solved by a generic machine learning algorithm, together with
a set of rules for the specific problem, not an approach that has
been hand-tuned to the specific problem (the importance of AI
methods being able to learn without explicit human knowledge
has been emphasised in the recent paper by Silver et al. [13]).

In summary: a number of other methods are based on the
idea of learning by generalising from solved examples of the
problem at hand. However, the idea of explicitly learning the
distance of instances from the target has not previously been
applied. The closest to this is the use of machine learning to
learn board evaluation functions.

III. LEARNED GUIDANCE FUNCTIONS

Define a move sequence problem (MSP) as a 3-tuple
(S,M,G) consisting of a set S called the states, a set M
of partial functions from S to S, called moves, and a subset
G ⊂ S of states called goal states.

Define a graded training set (GTS) as a set of states from
a given MSP, each assigned a label from Z≥0, where all goal
states in the GTS are mapped to 0, and no non-goal states are
mapped to 0. Informally, the labels represent how far away
from the goal state the state is.

A learned guidance function (LGF) is a function L : S →
Z≥0. This is a model obtained by applying a classification
algorithm to the graded training set.

Once an LGF has been learned for a specific MSP, a process
can be applied to solve a specific problem consisting of a pair
of an MSP and a starting state p ∈ S \G. Solving the problem



consists of finding a sequence of moves m0,m1, . . . ,mn

such that mn(mn−1(. . .m1(m0(p)) . . .)) ∈ G. This paper
will focus on the use of simple hillclimbing processes to
successively choose the moves. Such a simple approach is used
is that the complexities of searching the set of states (e.g. local
minima) are handled in this approach by the construction of
the LGFs rather than by the search algorithm.

IV. LGFS APPLIED TO THE RUBIK’S CUBE

The Rubik’s Cube [12] is a combinatorial puzzle consisting
of a cube broken into sub-cubes, with sides of different
colours; the canonical cube has 3 × 3 squares on each face.
The cube can be twisted in a number of ways, changing the
colours on each side. In particular, each face can be turned
clockwise or anticlockwise. Therefore, there are 12 basic
moves, consisting of turning a face clockwise or anticlockwise
by 90°; a well-known notation [14] notates the clockwise
moves as members of the set {F,B,R,L, U,D} where each
letter corresponds to a face; a prime symbol (′) appended to
the letter denotes an anticlockwise turn. These are called the
quarter turns, and the quarter turn metric is the number of
quarter turns carried out in a given sequence of moves.

Other notations exist to denote turning the middle layer, a
180° turn, and changing the position of the cube in space rela-
tive to the observer. However, the first two can be expressed as
composites of the above basic moves, and the last is irrelevant
to an algorithmic solution that can “see” all sides of the cube
simultaneously.

A state of the cube is a specification of all of the coloured
faces. The goal of a problem instance is to apply a sequence
of moves to transform the cube from a given starting state to
the single goal state, i.e. the state where the cube has the same
colours on every side.

In the experiments in this paper a GTS is created synthet-
ically by repeatedly starting from the goal state and applying
a number of moves randomly, adding the state of the cube,
labelled by the number of moves made, to the GTS after
each move (Figure 1. This takes two input parameters: ns

is the number of times this process is carried out, and n`

is the number of labels (i.e. the label set is [0, . . . , n` − 1])
(Algorithm 1)

Algorithm 1 Construct a GTS for the Rubik’s cube
1: procedure GTSRUBIK(ns, n`)
2: M = {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
3: T = ∅
4: for s ∈ [0, . . . , ns − 1] do
5: Let C be a new cube in the solved state
6: for ` ∈ [0, . . . , n` − 1] do
7: T = T ∪ {(C, `)}
8: m = random selection from M
9: C = m(C)

10: end for
11: end for
12: return T
13: end procedure

One criticism of this procedure is that for the smaller values
of `, the number of states is small; indeed for ` = 0, there

Fig. 1. Synthetic construction of the GTS for the Rubik’s cube. This process
is repeated ns times.

is only one state (call it g), so the training set contains ns

instances of (g, 0). However, it is well known that imbalanced
class distributions can cause problems for classification algo-
rithms [15], and so the duplicates are retained.

A second criticism is that some move sequences can result
in a state that could have been reached via a shorter sequence.
As a simple example, the state reached by F (B(U ′(U(g)))) is
the same state reached by F (B(g)), but the former would be
labelled with 4 by Algorithm 1. For a specific move sequence
problem there might be a way to identify these cases, however
there is no easy general method for identifying these. Ignoring
these is in the spirit of investigating whether the LGF approach
can learn naı̈vely from a basic problem description, without
adding in additional domain knowledge. This issue is revisited
in Section V-B.

V. EXPERIMENT 1: CAN AN LGF ACCURATELY LEARN
FROM A GTS?

The first set of experiments tests a number of classification
algorithms on the task of learning to label GTSs created by
Algorithm 1.

A. Experiment 1a: Using scikit-learn Classifiers

The classification algorithms used are drawn from the well-
known Python scikit-learn package [16]. Experiments were
performed using version 0.18.2 of scikit-learn, using Python
3.6.2. The classification algorithms used in these experiments
are detailed in Table I.

These classifiers were run on GTSs built with all
combinations of the following parameter sets: ns ∈
{100, 1000, 10000, 100000} (number of labels per class) and
n` ∈ [1, . . . , 14] (largest class). If a classifier took more than
24 hours to run for all values of n` for a particular value
of ns, then these were stopped and left out of the tables.
These were run using 10-fold cross-validation and the mean
predictive accuracy is given in Table II. Also given is the time
in seconds required to run the cross-validation experiments
for each (classifier, ns) pair; this gives a broad sense of
the comparative time required to train various classifiers. All



TABLE I
scikit-learn CLASSIFIERS USED IN THE EXPERIMENTS.

Method sklearn Name and Parameters
Random Forests (RF) RandomForestClassifier(n_estimators=10,

max_depth=20,min_samples_split=2)
K-Nearest Neighbours (k-NN) KNeighborsClassifier(3)
Support Vector Machine: linear kernel (Linear SVM) SVC(kernel="linear", C=0.025)
Support Vector Machine: RBF kernel (RBF SVM) SVC(gamma=2, C=1)
Decision Tree (DecTree) DecisionTreeClassifier(max_depth=5)
AdaBoost AdaBoostClassifier()
Gaussian Naı̈ve Bayes (Gaussian NB) GaussianNB()
Linear Discriminant Analysis (LDA) LinearDiscriminantAnalysis()
Quadratic Discriminant Analysis (QDA) QuadraticDiscriminantAnalysis()

experiments in the paper were run on a mid-2015 Retina iMac
with a 3.3 GHz Intel Core i5 processor and 16GB memory.

In conclusion, these experiments give some prima facie
evidence that enough accuracy is available to apply these these
LGFs to the Rubik’s Cube problem.

Experiment 1b: Using TPOT to Build a Bespoke Classifier

In this experiment, rather than choosing between specific
classifiers from scikit-learn, a meta-learning approach is used.
approach. Specifically, the TPOT [17], [18] system is used,
which constructs pipelines of classifiers drawn from scikit-
learn using an optimisation method, and optimises the param-
eters of the components of that pipeline. The idea is to produce
a specific bespoke classification pipeline for a specific dataset.

In this case, TPOT is run using GTSs with n` ∈ [1, 14] and
of ns ∈ {100, 1000, 10000}, as in the experiments with single
classifiers above. The meta-parameters are generations=5
and population_size=50.

The results are given in the TPOT sub-table of Table II.
Due to TPOT being a meta-learning algorithm, and therefore
needing to run with many different base classifiers, it was not
practical to run this on very large training sets.

Final Classifier Choice

Based on the cross-validation results in Table II, the calcula-
tion of the LGFs for the remainder of the paper is based on the
Random Forests classifier, trained using ns = 100, 000 except
for the smaller cases of n`, which used: n` = 1, ns = 100;
when n` = 2, ns = 1000; n` = 3, ns = 10000 (this was be-
cause, looking at Table II, these gave minimal improvement).

B. Analysis of Misclassifications

This section contains analysis of the misclassifications that
are made by the classifier. A confusion matrix is presented in
Table III for the Random Forests, with 9 labels, trained on
50,000 examples per label. These values were chosen as mid-
range figures, applying a decent amount of learning effort to
a problem of decent size.

There is an interesting pattern in Table III. For many of the
rows, the values alternate in a high-low pattern. For example,
for the row where the true value is 4, the highest predicted
value is 4 (30,050 correct predictions); but, none of these have
been confused for 3, whereas a large number (12,853) have
been confused for label 2. One possible explanation for this is

that many of the examples labelled 4 in the training set have
a pair of moves that cancel each other, as discussed above.

To investigate this a little further, a new GTS set was
constructed using similar the same basic procedure as Algo-
rithm 1, but restricting the choice of of m so that it cannot
be the inverse of the immediate previous state. The confusion
matrix for the Random Forest classifier with with 9 labels,
trained on 50,000 examples constructed using this revised GTS
is shown in Table IV. It is notable that confusion with smaller
labels is considerably reduced.

VI. EXPERIMENT 2: CAN THE LGF SOLVE THE CUBE?

This LGF can now be used to tackle the MSP of unscram-
bling the Rubik’s Cube. The idea is to use the LGF as the
objective function for a hillclimbing-style search process, with
random moves if the guidance function provides no positive
direction. For comparison, the same process with a simple
error metric in place of the LGF is used; call this the mismatch
error. This consists of counting the faces in the current state
of the cube that are of a different colour from the solved state
of the cube, with the optimum being that they are all matched.

Algorithm 2 is the unscrambling procedure. Cube is the set
of possible states of the cube. E : Cube → Z≥0,<ns is the er-
ror function (either LGF or mismatch), ns the number of labels
in the model, np the number of random moves made to pose
the problem, nn the maximum number of random moves made
when a downward hillclimbing move cannot be made, and G is
the goal state. M = {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
is a set of functions from Cube → Cube, representing the
quarter-turn moves.

Algorithm 2 was run using all combinations ns, np ∈
[1, 14], with nn = 20 (20 was determined by informal
experimentation; in practice, the neutral moves were rarely
beneficial; the range [1,14] was determined by practicality in
terms of time taken to run experiments, and the lack of many
positive results when the problems became more complex).

Table V presents the results. The unscrambling algorithm
driven by the LGF is generally much more likely to solve the
problem than the error-based approach. Also, using a model
of size greater than np + 1 rarely has any beneficial effect.

The number of moves needed is surprisingly small; in
particular, the mean number is often smaller than the prob-
lem size. This suggests that often the problem generated by
carrying out np moves is actually solvable in a smaller number



TABLE II
10-FOLD CROSS VALIDATION PREDICTIVE ACCURACY RESULTS. ROWS REPRESENT NUMBER OF MOVES (n`) AND TIME IN SECONDS, COLUMNS

REPRESENT NUMBER OF SAMPLES PER LABEL (ns). THE FINAL SUB-TABLE SHOWS THE RESULTS FROM THE TPOT META-LEARNER.

Random Forests 100 1000 10000 100000
1 1.000 1.000 1.000 1.000
2 0.970 0.973 0.971 0.972
3 0.827 0.925 0.933 0.935
4 0.646 0.804 0.888 0.894
5 0.588 0.679 0.788 0.849
6 0.487 0.599 0.691 0.761
7 0.466 0.539 0.620 0.682
8 0.389 0.482 0.561 0.621
9 0.367 0.442 0.512 0.566
10 0.322 0.401 0.469 0.521
11 0.322 0.370 0.435 0.484
12 0.297 0.349 0.406 0.450
13 0.291 0.335 0.379 0.421
14 0.258 0.307 0.357 0.395
Time(sec) 3.4 20.9 221.0 54471.4

k-NN 100 1000 10000
1 1.000 1.000 1.000
2 0.800 0.968 0.972
3 0.615 0.854 0.930
4 0.576 0.695 0.813
5 0.442 0.597 0.687
6 0.411 0.508 0.604
7 0.355 0.458 0.536
8 0.323 0.416 0.488
9 0.299 0.379 0.442
10 0.262 0.337 0.403
11 0.242 0.320 0.378
12 0.232 0.302 0.350
13 0.218 0.278 0.322
14 0.217 0.255 0.304
Time(sec) 1.3 73.9 10071.4

AdaBoost 100 1000 10000
1 1.000 1.000 1.000
2 0.540 0.509 0.584
3 0.487 0.493 0.484
4 0.330 0.382 0.363
5 0.370 0.373 0.348
6 0.303 0.297 0.315
7 0.267 0.276 0.286
8 0.268 0.255 0.251
9 0.228 0.218 0.243
10 0.174 0.214 0.214
11 0.202 0.184 0.205
12 0.175 0.172 0.177
13 0.161 0.177 0.155
14 0.157 0.154 0.139
Time(sec) 14.1 71.0 899.2

Gaussian NB 100 1000 10000 100000
1 1.000 1.000 1.000 1.000
2 0.840 0.944 0.954 0.954
3 0.645 0.797 0.808 0.811
4 0.574 0.641 0.675 0.673
5 0.507 0.548 0.589 0.584
6 0.463 0.516 0.521 0.518
7 0.411 0.466 0.470 0.465
8 0.323 0.406 0.423 0.423
9 0.317 0.376 0.388 0.387
10 0.295 0.346 0.358 0.357
11 0.275 0.337 0.332 0.331
12 0.266 0.297 0.309 0.308
13 0.252 0.270 0.287 0.288
14 0.237 0.265 0.270 0.271
Time(sec) 0.8 5.7 60.3 621.8

LDA 100 1000 10000 100000
1 0.770 0.805 0.754 0.750
2 0.950 0.971 0.972 0.972
3 0.797 0.864 0.882 0.885
4 0.616 0.709 0.715 0.725
5 0.552 0.591 0.596 0.604
6 0.441 0.516 0.505 0.511
7 0.401 0.448 0.438 0.442
8 0.369 0.376 0.386 0.393
9 0.331 0.339 0.346 0.353
10 0.274 0.313 0.314 0.313
11 0.283 0.304 0.291 0.278
12 0.243 0.271 0.257 0.259
13 0.221 0.249 0.247 0.244
14 0.209 0.216 0.224 0.226
Time(sec) 1.1 9.3 111.3 1237.4

QDA 100 1000 10000 100000
1 0.500 0.500 0.500 0.500
2 0.333 0.333 0.333 0.333
3 0.250 0.250 0.250 0.250
4 0.200 0.200 0.200 0.200
5 0.167 0.167 0.167 0.167
6 0.143 0.143 0.143 0.143
7 0.125 0.125 0.125 0.125
8 0.111 0.111 0.111 0.111
9 0.100 0.100 0.100 0.100
10 0.091 0.091 0.091 0.091
11 0.083 0.083 0.083 0.083
12 0.077 0.077 0.077 0.077
13 0.071 0.071 0.071 0.071
14 0.067 0.067 0.067 0.067
Time(sec) 1.5 7.5 83.9 1050.8

Linear SVM 100 1000
1 1.000 1.000
2 0.950 0.958
3 0.812 0.881
4 0.590 0.743
5 0.547 0.649
6 0.497 0.566
7 0.446 0.501
8 0.400 0.462
9 0.365 0.418
10 0.335 0.389
11 0.307 0.355
12 0.270 0.332
13 0.274 0.311
14 0.259 0.288
Time(sec) 8.3 719.1

RBF SVM 100 1000
1 1.000 1.000
2 0.977 0.975
3 0.805 0.935
4 0.664 0.801
5 0.570 0.694
6 0.491 0.608
7 0.438 0.536
8 0.404 0.484
9 0.351 0.437
10 0.305 0.389
11 0.299 0.362
12 0.270 0.337
13 0.256 0.316
14 0.259 0.290
Time(sec) 12.6 1122.8

DecTree 100 1000 10000 100000
1 1.000 1.000 1.000 1.000
2 0.907 0.940 0.936 0.937
3 0.758 0.790 0.802 0.803
4 0.604 0.662 0.670 0.667
5 0.508 0.565 0.583 0.582
6 0.479 0.495 0.505 0.509
7 0.437 0.445 0.455 0.458
8 0.378 0.399 0.413 0.414
9 0.330 0.367 0.380 0.378
10 0.313 0.335 0.342 0.345
11 0.298 0.322 0.317 0.319
12 0.272 0.292 0.298 0.295
13 0.255 0.272 0.278 0.279
14 0.245 0.260 0.257 0.258
Time(sec) 1.0 8.3 96.0 1506.6

TPOT 100 1000
1 1.000 1.000
2 0.960 0.973
3 0.820 0.923
4 0.680 0.823
5 0.533 0.718
6 0.537 0.598
7 0.430 0.545
8 0.391 0.490
9 0.316 0.445
10 0.280 0.411
11 0.350 0.357
12 0.243 0.343
13 0.254 0.334
14 0.259 0.292
Time(sec) 5994.6 46184.1



TABLE III
CONFUSION MATRIX USING THE RANDOM FORESTS CLASSIFIER WITH

n` = 8

Predicted Label
0 1 2 3 4 5 6 7 8

Tr
ue

V
al

ue

0 50000 0 0 0 0 0 0 0 0
1 0 50000 0 0 0 0 0 0 0
2 4214 0 45786 0 0 0 0 0 0
3 0 9179 0 40771 0 50 0 0 0
4 743 0 12853 0 30050 79 5297 75 903
5 0 2155 9 15393 620 14595 3307 10371 3550
6 193 0 3607 11 14638 3523 9282 8251 10495
7 0 541 7 5106 476 10524 6112 14180 13054
8 41 0 1046 12 5708 3699 8749 12710 18035

TABLE IV
CONFUSION MATRIX USING THE RANDOM FORESTS CLASSIFIER WITH

n` = 8, CONSTRUCTED FROM A GTS WITH IMMEDIATE INVERSE MOVES
DISALLOWED.

Predicted Label
0 1 2 3 4 5 6 7 8

Tr
ue

V
al

ue

0 50000 0 0 0 0 0 0 0 0
1 0 50000 0 0 0 0 0 0 0
2 0 0 50000 0 0 0 0 0 0
3 0 1235 0 48765 0 0 0 0 0
4 113 0 2468 17 46225 223 776 27 151
5 0 281 6 3932 1837 29794 5580 6016 2554
6 14 1 494 64 6335 7855 14758 10186 10293
7 0 40 2 793 710 9182 10443 13608 15222
8 2 0 84 26 1488 4442 10391 14308 19259

of moves. This is due to cancellations between pairs (or more)
of successive moves. To investigate this, the experiments were
re-run using variants on the data-generation method from
Algorithm 1 and Algorithm 2, the unscrambling algorithm,
where the algorithm disallowed the second of a pair of moves
where the second member of the pair was the inverse of the
first. Results are presented in Table VI. Note that many states
generated from a larger number of moves can still be solved
in a simpler number of moves, though the effect is weaker.
Creating problems to test these methods is future work.

Algorithm 2 Unscramble the Rubik’s cube
1: procedure GTSRUBIK(E,ns, np, nn)
2: M = {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
3: Let C be a new cube
4: for i ∈ [0, np) do
5: m = random selection from M
6: C = m(C)
7: end for
8: t = 0
9: for i ∈ [0, nn) do

10: M ′ = shuffle(M)
11: for m ∈M do
12: D = C
13: D = m(D)
14: if E(D) < E(C) then
15: C = D
16: t = t + 1
17: Break
18: end if
19: end for
20: if C == G then
21: return (True, t)
22: end if
23: m = random selection from M
24: C = m(C)
25: end for
26: return (False, t)
27: end procedure

VII. LANDSCAPE ANALYSIS

A conjecture for the superior performance of the LGF over
the naive error metric is that it provides a smoother path from
points in the search space to the global minimum. If the LGF
were able to make perfect predictions, there would be no local
minima: the hillclimber would start at a state that was m moves
away from the target, iterate through possible local moves until
one m − 1 moves away was found, move to that state, and
iterate to the goal state.

A landscape analysis algorithm (Algorithm 3) was im-
plemented. This starts by generating a solved cube C and
scrambling it using np quarter turns; this is added to the empty
list L. All possible moves are tried on this cube, and any that
have an error E (depending on the experiment, LGF error
or mismatch error) less than C are added to the list L. This
process then iterates: each cube from L is popped from the
list, and all possible moves tried. In the end, either a solved
cube is found (return True), or L becomes empty because
all possibilities (including backtracks) have been explored,
meaning that there is no route from the scrambled state to
the solved state by following that error metric.

Results are in Table VII. Each entry in the table is the
result of running Algorithm 3 100 times, reporting the number
of times the algorithm returned a True result, i.e. the error
measure used included a route from the scrambled state to the
solved state. This was run from np = 2 to np = 13 (not 14,
because the LGF experiments used model size np +1 and 14
was the largest model size). These experiments did not use the
variant where inverses are prevented. It is notable that many
more runs of the LGF version had a monotonically decreasing
route to the goal state compared to the mismatch.

Algorithm 3 Landscape Analysis. Parameters/variables have
the same meaning as in Algorithm 2. Model size for the LGF
is np + 1.
1: procedure GTSRUBIK(E,np)
2: M = {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
3: Let C be a new cube
4: for i ∈ [0, np) do
5: m = random selection from M
6: C = m(C)
7: end for
8: Let L be a new list
9: L = [C]

10: while L 6= ∅ do
11: for m ∈M do
12: C = pop(L)
13: D = m(C)
14: if E(D) < E(C) then
15: L = L ∪ {D}
16: end if
17: if D == G then
18: return True
19: end if
20: end for
21: end while
22: return False
23: end procedure



TABLE V
UNSCRAMBLING EXPERIMENTS. Size of Problem INDICATES THE NUMBER OF MOVES USED TO CONSTRUCT THE PROBLEM. Size of Model INDICATES THE
MAXIMUM LABEL SIZE USED TO TRAIN THE LGF; SUCCESS RATES USING THE MISMATCH ERROR METRIC ARE GIVEN IN THE ROW Error. ENTRIES IN (A)

ARE PERCENTAGE OF SUCCESSFUL TRIALS; IN (B), MEAN NUMBER OF MOVES NEEDED TO REACH THE GOAL STATE.

a) Percentage of successful unscrambling trials:
Size of Problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
ze

of
M

od
el

1 98 - - - - - - - - - - - - -
2 100 96 - - - - - - - - - - - -
3 100 100 97 - - - - - - - - - - -
4 100 100 100 99 - - - - - - - - - -
5 100 100 100 100 90 - - - - - - - - -
6 100 100 100 98 83 55 - - - - - - - -
7 100 100 100 94 76 55 39 - - - - - - -
8 100 100 100 94 77 58 31 27 - - - - - -
9 100 100 100 95 80 56 34 23 23 - - - - -
10 100 100 100 92 76 52 36 26 22 11 - - - -
11 100 100 100 97 82 57 36 27 9 12 5 - - -
12 100 100 100 96 75 53 35 29 16 5 7 2 - -
13 100 100 100 98 75 62 45 20 17 11 9 7 0 -
14 100 100 100 98 76 55 36 21 16 10 7 3 3 1
Error 100 62 33 24 10 4 3 2 0 0 0 1 0 0

b) Mean number of moves needed to reach goal state for successful trials:
Size of Problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
ze

of
M

od
el

1 1.592 - - - - - - - - - - - - -
2 1.000 1.958 - - - - - - - - - - - -
3 1.000 1.840 2.670 - - - - - - - - - - -
4 1.000 1.860 2.680 3.697 - - - - - - - - - -
5 1.000 1.740 2.680 3.500 4.467 - - - - - - - - -
6 1.000 1.860 2.660 3.592 4.229 4.291 - - - - - - - -
7 1.000 1.860 2.500 3.638 4.026 4.545 4.846 - - - - - - -
8 1.000 1.880 2.420 3.553 4.091 4.793 4.161 4.667 - - - - - -
9 1.000 1.800 2.720 3.474 3.825 4.643 4.647 4.957 5.087 - - - - -
10 1.000 1.840 2.500 3.413 4.289 4.154 4.333 4.692 5.545 5.455 - - - -
11 1.000 1.780 2.760 3.320 3.878 4.596 4.667 4.741 6.111 4.500 5.400 - - -
12 1.000 1.800 2.600 3.625 3.987 4.679 4.371 5.034 4.875 6.800 5.571 5.000 - -
13 1.000 1.780 2.560 3.286 3.853 4.161 4.511 4.800 5.471 4.909 4.556 4.857 - -
14 1.000 1.780 2.680 3.694 4.079 4.509 4.778 5.238 4.750 6.000 5.286 4.667 5.000 6.000
Error 1.000 2.065 2.152 2.333 2.800 4.500 3.667 2.000 - - - 4.000 - -

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented the idea of LGFs, and demon-
strated on a complex problem how they can learn. This
demonstrates a richer use of training material than traditional
machine learning approaches.

One advantage to this learning method is that learning
happens prior to the application of the model to a specific
problem. Other approaches to this use a goal-directed search
process with mechanisms to avoid local optima. For LGFs, the
means of avoiding the local optima is part of the process of
learning the LGFs, rather than solving a specific problem. This
is in the tradition of ideas such as geometric semantic genetic
programming [19], which re-configure the fitness landscape so
that e.g. hill-climbing can be used.

This work also fits into the ideas explored by Krawiec
and Swan [20], [21] of using complexity measures from
machine learned models as a driver for search. Also similar
is Monte Carlo tree search [22], which uses random forward
explorations from a state as a way of estimating its value.

This work fits into a broad direction in machine learning by
increasing the size of the set of verbs: classification asks “what
is this?”; metric learning “how similar are these two things?”;
clustering “how do these things divide up?”, etc. LGFs add
the new question “how close are we to the goal state?”.

There are a number of algorithm improvements. One is
using backtracking (Section VII) in the search algorithm.
Experimenting with other search processes to avoid local
minima caused by inaccurate assignment of states to grades
is another. Another would be learning qualitative differences
between states: assigning a label from {closer, same, further}
to pairs of states. This could draw on methods from the
literature on learning to rank [23]. Also, connections between
the learning methods used in this paper and metric and simi-
larity learning [11]. Finally, experiments with class-imbalance
correction approaches and feature-selection algorithms.

Code for the experiments:
https://www.cs.kent.ac.uk/people/staff/
cgj/software/IEEE_SSCI_2018/cube.py

REFERENCES

[1] E. Rosch, “Cognitive representations of semantic categories,” Journal of
Experimental Psychology, vol. 104, no. 3, pp. 192–233, 1975.

[2] P. Gärdenfors, The Geometry of Meaning: Semantics Based on Concep-
tual Spaces. MIT Press, 2014.

[3] F. Glover and H. Greenberg, “New approaches for heuristic search:
A bilateral linkage with artificial intelligence,” European Journal of
Operational Research, vol. 39, no. 2, pp. 119–130, 1989.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[5] M. Buro, “The evolution of strong othello programs,” in Entertainment
Computing: Technologies and Application, R. Nakatsu and J. Hoshino,
Eds. Springer US, 2003, pp. 81–88.



TABLE VI
UNSCRAMBLING EXPERIMENTS WHERE THE PROBLEMS WERE CONSTRUCTED AVOIDING TWO SUCCESSIVE MOVES THAT CANCEL EACH OTHER OUT. Size

of Problem INDICATES THE NUMBER OF MOVES USED TO CONSTRUCT THE PROBLEM. Size of Model INDICATES THE MAXIMUM LABEL SIZE USED TO
TRAIN THE LGF; SUCCESS RATES USING THE MISMATCH ERROR METRIC ARE GIVEN IN THE ROW Error. ENTRIES IN (A) ARE PERCENTAGE OF

SUCCESSFUL TRIALS; IN (B), MEAN NUMBER OF MOVES NEEDED TO REACH THE GOAL STATE.

a) Percentage of successful unscrambling trials:
Size of Problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
ze

of
M

od
el

1 96 - - - - - - - - - - - - -
2 100 100 - - - - - - - - - - - -
3 100 100 96 - - - - - - - - - - -
4 100 100 100 99 - - - - - - - - - -
5 100 100 100 99 95 - - - - - - - - -
6 100 100 100 99 92 54 - - - - - - - -
7 100 100 100 98 85 47 14 - - - - - - -
8 100 100 100 97 82 38 16 9 - - - - - -
9 100 100 100 98 82 39 23 11 4 - - - - -
10 100 100 100 97 80 31 18 9 3 6 - - - -
11 100 100 100 99 74 36 20 11 7 3 1 - - -
12 100 100 100 98 81 37 19 8 1 2 0 0 - -
13 100 100 100 100 81 39 19 9 2 1 0 0 1 -
14 100 100 100 96 73 34 13 4 5 1 0 0 0 0
Error 100 54 23 14 3 0 0 0 0 0 0 0 0 0

b) Mean number of moves needed to reach goal state for successful trials:
Size of Problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
ze

of
M

od
el

1 1.146 - - - - - - - - - - - - -
2 1.000 2.200 - - - - - - - - - - - -
3 1.000 2.000 2.875 - - - - - - - - - - -
4 1.000 2.000 2.980 3.960 - - - - - - - - - -
5 1.000 2.000 2.940 3.960 5.126 - - - - - - - - -
6 1.000 2.000 2.980 3.899 4.761 5.667 - - - - - - - -
7 1.000 2.000 2.940 3.898 4.929 5.660 6.143 - - - - - - -
8 1.000 2.000 3.000 3.835 4.780 5.526 5.750 6.667 - - - - - -
9 1.000 2.000 2.960 3.898 4.902 5.641 6.043 6.182 5.000 - - - - -
10 1.000 2.000 2.980 3.918 4.900 5.935 6.111 5.778 5.667 6.000 - - - -
11 1.000 2.000 3.000 3.919 4.730 5.444 6.400 6.000 5.571 6.000 5.000 - - -
12 1.000 2.000 2.980 3.898 4.704 5.622 6.263 5.750 5.000 7.000 - - - -
13 1.000 2.000 2.940 3.960 4.827 5.897 6.684 6.889 9.000 8.000 - - 7.000 -
14 1.000 2.000 2.940 3.979 4.945 5.412 6.385 5.500 7.400 6.000 - - - -
Error 1.000 2.000 4.652 3.286 5.667 - - - - - - - - -

TABLE VII
LANDSCAPE ANALYSIS EXPERIMENTS. ENTRIES INDICATE THE NUMBER

OF TIMES OUT OF 100 RUNS THAT ALGORITHM 3 RETURNED A True
RESULT, I.E. THE ERROR MEASURE USED INCLUDED AT LEAST ONE ROUTE

FROM THE SCRAMBLED STATE TO THE SOLVED STATE.

Size of Problem
2 3 4 5 6 7 8 9 10 11 12 13

LGF 94 100 98 96 82 59 46 33 29 13 15 6
Error 82 78 69 43 39 28 22 12 7 3 2 5

[6] ——, “Statistical feature combination for the evaluation of game posi-
tions,” Journal of Artificial Intelligence Research, vol. 3, pp. 373–382,
1995.

[7] J. Clune, “Heuristic evaluation functions for general game playing,”
in Proceedings of the Twenty-second AAAI Conference on Artificial
Intelligence, R. C. Holte and A. E. Howe, Eds., 2007, pp. 1134–1139.

[8] R. E. Korf, “Finding optimal solutions to rubik’s cube using pattern
databases,” in Proceedings of the Fourteenth Nation Conference on
Artificial Intelligence. AAAI, 1997, pp. 700–705.

[9] K. Nasrollahi and T. B. Moeslund, “Super-resolution: a comprehensive
survey,” Machine Vision and Applications, vol. 25, no. 6, pp. 1423–1468,
2014.

[10] R. Dahl, M. Norouzi, and J. Shlens, “Pixel Recursive Super
Resolution,” ArXiv e-prints, Feb. 2017. [Online]. Available:
https://arxiv.org/abs/1702.00783

[11] B. Kulis, “Metric learning: A survey,” Foundations and Trends® in
Machine Learning, vol. 5, no. 4, pp. 287–364, 2013.

[12] J. Slocum et al., The Cube: The Ultimate Guide to the World’s Best-
Selling Puzzle. Black Dog and Leventhal, 2011.

[13] D. Silver et al., “Mastering the game of go without human knowledge,”

Nature, vol. 550, no. 7676, pp. 354–359, 2017.
[14] D. Singmaster, Notes on Rubik’s Magic Cube. Hillside, NJ: Enslow

Publishing, 1981.
[15] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, Sept 2009.

[16] “scikit-learn: Machine learning in Python.” [Online]. Available:
http://scikit-learn.org/

[17] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016. New York, NY, USA: ACM, 2016, pp. 485–492.

[18] R. S. Olson et al., “Automating biomedical data science through tree-
based pipeline optimization,” in Applications of Evolutionary Com-
putation: 19th European Conference, EvoApplications 2016, Part I,
G. Squillero and P. Burelli, Eds. Springer, 2016, pp. 123–137.

[19] A. Moraglio, K. Krawiec, and C. G. Johnson, “Geometric semantic
genetic programming,” in Parallel Problem Solving from Nature - PPSN
XII: 12th International Conference, Part I, C. A. Coello Coello et al.,
Eds. Springer, 2012, pp. 21–31.

[20] K. Krawiec and J. Swan, “Pattern-guided genetic programming,” in
Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation. New York, NY, USA: ACM, 2013, pp. 949–956.

[21] K. Krawiec, Behavioural Program Synthesis with Genetic Programming.
Springer, 2016.

[22] C. B. Browne et al., “A survey of Monte Carlo tree search methods,”
IEEE Transactions On Computational Intelligence and AI in Games,
vol. 4, no. 1, pp. 1–43, 2012.

[23] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,”
Journal of Artificial Intelligence Research, vol. 10, pp. 243–270, 1999.


