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Abstract

Agile software development allows for software to evolve slowly over time. Decisions

made during the early stages of a program’s lifecycle often come with a cost in the

form of technical debt. Technical debt is the concept that reworking a program that

is implemented in a naive or “easy” way, is often more difficult than changing the

behaviour of a more robust solution. Refactoring is one of the primary ways to reduce

technical debt.

Refactoring is the process of changing the internal structure of a program without

changing its external behaviour. The goal of performing refactorings is to increase

code quality, maintainability, and extensibility of the source program. Performing

refactorings manually is time consuming and error-prone. This makes automated refactoring

tools very useful.

Haskell is a strongly typed, pure functional programming language. Haskell’s rich

type system allows for complex and powerful data models and abstractions. These

abstractions and data models are an important part of Haskell programs. This thesis

argues that these parts of a program accrue technical debt, and that refactoring is an

important technique to reduce this type of technical debt.

Refactorings exist that tackle issues with a program’s data model, however these

refactorings are specific to the object-oriented programming paradigm. This thesis

reports on work done to design and automate refactorings that help Haskell programmers

develop and evolve these abstractions.

This work also discussed the current design and implementation of HaRe (the Haskell
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Refactorer). HaRe now supports the Glasgow Haskell Compiler’s implementation of

the Haskell 2010 standard and its extensions, and uses some of GHC’s internal packages

in its implementation.
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Chapter 1

Introduction

1.1 Functional Programming

Functional programming is a programming paradigm that focuses on data values as

described by expressions which are built from function applications and definitions (Reade

1989). Functions in this case are closely related to the idea of mathematical functions.

What qualifies a programming language as functional is debatable but several concepts

are often included in languages that are described as functional such as immutability

and first class functions.

An immutable language is one where once some value has been created it cannot

be modified. First class functions mean that functions are allowed to be treated like

any other data type. First class functions can be passed to or returned from from

other “higher-order” functions. Iteration is accomplished through recursion rather than

via looping. There is also a heavy emphasis on functions remaining “pure,” that is

without side effects; though functional languages do provide ways to use IO or state, it

is emphasised that functions should remain pure if at all possible. Haskell’s type system

allows for effectful computations to be contained within monadic types.

1
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1 f x y = case x > 0 of
2 True -> x - 1
3 False -> x + 1

Figure 1: A simple function

1.2 Haskell

Haskell is a statically typed, lazily evaluated, pure functional language. Haskell also

supports Hindley-Milner type inference (Hindley (1969); Milner (1978)). Type inference

means that Haskell programs do not need the type of every top level binding to be

explicitly provided by the programmer. Types will be inferred at compilation time so

that every part of a Haskell program’s type is known at that time. Haskell’s type system

also allows users to define and use their own types.

Lazy evaluation, also known as call-by-need (Wadsworth 1971), means that Haskell

expressions are not evaluated when they are passed as a parameter to a function, but

rather when that value is used. For example, in the Haskell function f, in Figure 1,

the parameter y will never be evaluated. Lazy evaluation is more nuanced than call-by-

name style parameter passing. Composite data types will be evaluated only as much as

required to allow the computation to continue. This allows for both partial and infinite

data types, for example [1..] is the list containing all of the natural numbers.

Haskell is also a pure language. Purity is the idea that functions cannot perform

actions in addition to returning values. These additional actions are known as side-

effects. Haskell allows for traditionally side-effect causing operations (IO, state, etc.)

through the use of monads. Monads represent computations, which when run will have

effects as well as producing a result. A principle topic of this thesis is refactoring to

support patterns of computation related to Monads and other related structures.
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1 data Choice = Yes | No

Figure 2: A simple data type that models a yes/no choice.

1 data Choice = Yes String | No

Figure 3: Yes Choices now contain a string as well.

1.2.1 User defined types in Haskell

All high level programming languages come with some predefined set of types and,

typically, some way for users to define new types. In Haskell new types can be introduced

with the data keyword. Figure 2 shows a simple data type, Choice. There are

only two different values a Choice can be, Yes or No, these are the constructors of

Choice.

Data types can also extend existing Haskell types. Returning to the Choice example

maybe we want to be able to store some text along with a Yes to explain why this choice

was made. This modified definition of Choice is shown in Figure 3. Now a call to the

Yes constructor needs to be passed some value of type String to construct a value

of type Choice.

Haskell allows you to take this one step further however. The creator of a type does

not need to specify exactly which types will be stored within the new type, this means

that types can be parameterized. Figure 4 shows a version of Choice where the Yes

choices can contain any type a. This is known as parametric polymorphism (HaskellWiki

2015b). This type of polymorphism allows users to effectively reuse their types again

and again without having to redefine them every time a new “inner” type is needed.

1.2.2 Type classes

Now that we have seen how users of Haskell can define their own data types, and how

types can be defined in a generic way, making the definitions applicable to a whole set
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1 data Choice a = Yes a | No

Figure 4: Yes Choices can now hold any other type.

1 class Eq a where
2 (==) :: a -> a -> Bool
3 (/=) :: a -> a -> Bool
4

5 instance (Eq a) => Eq (Choice a) where
6 Yes x == Yes y = x == y
7 No == No = True
8 _ == _ = False
9

10 c1 /= c2 = not (c1 == c2)

Figure 5: The Eq type class and Choice’s implementation of it.

of arguments. Haskell is a functional language so a natural next question is to wonder

that, if we can define types that are generic in some ways, can the same be said of

functions? The answer is yes, this is what type classes do for Haskell.

A type class allows a user to define a set of functions and/or constant names and

their types. Then definitions of these functions and constants can be given for specific

types. Figure 5 shows the type class for Eq which describes what it means for types

to have a notion of equality. Figure 5 also shows how the definition of Choice from

Figure 4 implements the Eq type class. The “(Eq a) =>” clause in the instance

declaration is a constraint on the type of a. This means that for a Choice to be “Eq-

able” a must be as well.

Haskell gives its users very powerful tools to help construct their own types and

define those types’ properties. These tools allow for many powerful concepts to be

defined abstractly making them reusable. One of the more well known abstract concepts

of the Haskell language are monads which are the subject of the next section.
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1.2.3 Monads

Monads are a type class used to represent “composable computation descriptions”

(HaskellWiki 2015a). Haskell uses monads to augment pure computations with features

that other languages would allow as side effects such as state or I/O. Haskell has a built

in monad type class, whose declaration is shown in Figure 6. Instances of monad need

to implement two functions: return which will create a monadic computation that

will produce its parameter and »= (which is pronounced bind). Bind’s first argument is

some monadic value with a result of type a and its second argument is a function that

takes in a value of type a and returns another monadic value that computes a result of

type b. Bind computes the result of type a from the monadic value it was given in its

first argument and passes that value to the function it received as its second argument.

This description of bind only applies when its first argument is capable of computing

some result or when the monad instance does not need to perform any additional tasks.

This is the great power of monads as an abstraction, because bind can be implemented

in almost any way1 it can act as a way to specify how a particular set of computations

are performed.

The Choice type that was defined in the previous section is really just a copy of

the Maybe type which is commonly used to represent computations that may fail or

return a result. Instead of Yes and No Maybe’s constructors are Just and Nothing

respectively. Maybe is a monad and in its case bind is used to cause a chain of

computations to return Nothing if one of the steps of the computation fail. This

allows for functions that could potentially fail to return a result to be composed without

having to check if their parameter is a null value. Figure 7 shows this in practice.

Each of the f_ functions can be written with the assumption that their parameter exists,

only the top level function, g, needs to check if the chain function has failed.

Monads are a powerful abstraction but it is also useful to further categorise monads

that exhibit different properties. Haskell comes with type classes, that inherit from

1All instances of monad should abide by the three monad laws (Wadler 1995)
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1 class Applicative m => Monad m where
2 return :: a -> m a
3 (>>=) :: forall a b. m a -> (a -> m b) -> m b

Figure 6: The Monad type class declaration

1 chain :: a -> Maybe a
2 chain a = f_1 a >>= f_2 >>= f_3 >>= f_4
3

4 g a = case (chain a) of
5 (Just b) -> putStrLn ("Got value: " ++ (show b))
6 Nothing -> putStrLn "Something went wrong"

Figure 7: A chain of functions composed using bind. Each f_ function is of type a
-> Maybe a

Monad, and that categorise additional features monads can have, such as failure (MonadFail)

or failure and recovery (MonadPlus) (Yorgey 2009b). MonadPlus is a type class

that represents the type of computations that may fail and also provide some way of

choosing between possibly failed computations.

In addition to the type classes that further categorise monads, monads themselves

inherit from other more general types: functors and applicative functors. Functors are

the set of types that can mapped over, in the case of lists the values can be transformed

to another value by mapping some function over the list. Applicative functors are the

set of types that can have sequential actions performed over them. Applicative functors

will be discussed in more detail in Chapter 6.

The Haskell community has built a large system of types around monad for representing

all different sorts of computations. This system of types provides a fertile environment

for data-driven refactorings, the topic of this thesis.
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1.3 Refactoring

Refactoring is the process of changing a program without changing its behaviour. This

is done to improve its internal structure (Fowler 1999). The term refactoring was first

coined in (Griswold 1992) and these ideas expanded to the object-oriented paradigm

in (Opdyke 1992). Martin Fowler’s 1999 book “Refactoring” has become the canonical

reference for object-oriented refactorings (Fowler 1999). People have been performing

refactoring for much longer and it was called “program restructuring” in the literature (Kuck

(1981); Ferrari and Lau (1976)).

Behaviour preservation is what separates refactoring from other types of program

manipulation. This idea of behaviour preservation is that refactoring will not introduce

new bugs or eliminate old ones. To prevent semantic changes after refactoring, many

refactorings have non-trivial preconditions (Mens, Demeyer and Janssens 2002). For

example, the refactoring that renames an item (such as a function or variable) should

check that the new name being introduced does not cause a name clash with a name

already used in the source program.

Manual refactoring can be tedious and error prone because changes to small portions

of code may require system-wide changes. When deleting a parameter from a function,

for example, every call site of that function also needs to be modified, and missing

even a single call site will cause an error. Refactoring by hand depends on high testing

coverage to ensure that functionality is preserved (Fowler 1999). This means that tools

that can automatically perform refactorings and ensure that preconditions are met are

highly desirable.

1.3.1 Refactoring Functional Languages

Refactoring a functional language has a few key differences from refactoring an imperative

language. The higher-order nature of functional languages means that any sub-expression

of a function is a candidate for generalisation whereas in other languages the types of
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parameters and results are limited. This means that functional refactorings can target

much more of the source program’s abstract syntax tree. The semantics of functional

languages also allow for more comprehensive checking of preconditions based on the

static semantics of the language (Thompson and Li 2013).

It is also not unusual for functional refactorings to be substantially different than

their object-oriented (OO) counterparts. For example creating a case statement from

a multi-equation function definition in a functional language versus inlining virtual

methods into a case statement in an OO language require substantially different program

manipulations (Li 2006). The first refactoring, the inlining of a multi-equation function,

involves moving the pattern matches from each of the target function’s equations to the

left hand side patterns of the new case expression. The object oriented refactoring

needs to look up all of the implementations of the virtual method, inline their bodies

into the new target method, and build a case statement that switches depending on

which concrete type the new method is called invoked in. Both of these refactorings are

consolidating some conditional logic into a single function,2 but the syntax elements

that need to traversed and constructed to build the target program are very different.

Additionally there can be refactorings with no OO counterpart, monadification the

introduction of monadic types into otherwise pure code for instance.

1.4 Summary

One of the most widely accepted best practices in software development is the concept

of incremental change, an essential concept of both the extreme programming and

agile software development philosophies (Beck (2000); Fowler and Highsmith (2001)).

Refactoring remains a key step in this incremental development process to preventing

technical debt from causing development to slow to a crawl.

Much of the refactoring literature focuses on changes that need to be made to the

2If we consider methods to be functions that happen to be associated with a particular object.
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structure of programs. The structure of a program is very important and structural

refactorings can maintain the “separation of concerns” by extracting functions from

existing definitions or ensuring that a program’s names reflect what the program currently

does. This thesis argues that it is just as important to maintain the ways that a program

structures and evaluates the data it computes.

This thesis has chosen to use the term “data-driven” to describe the type of refactorings

that are prompted by the data that a program computes. These refactorings can be

prompted by an insufficiently fine-grained data model. For example, the “introduce

type synonym” refactoring which creates a new type synonym that helps separate certain

instances of a type that are used to represent different concepts.

This thesis also takes advantage of Haskell’s call-by-need evaluation strategy which

allows for control flow to be abstracted by the user. The “generalise monad to applicative

refactoring” (see Chapter 6) takes code that was formally monadic and sequentially

evaluated and makes it possible to evaluate it in parallel. The “generalise maybe”

refactorings from Section 4.4 takes a concrete effect and makes it an abstract one that

can be instantiated in multiple ways. Both of these refactorings are applied as either the

programmer’s understanding of the data they are working with becomes more nuanced

or to prepare the program’s data model for enhancement. In this way the data “drives”

these refactorings.

1.5 Thesis Outline

This thesis will proceed as follows:

Chapter 2: Related work

This thesis begins with chapter that discusses the some of the related work that this

thesis builds from and is inspired by.

This chapter covers other refactoring tools for other functional and object-oriented

languages. This chapter also discusses multiple projects that are using refactoring
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in unique and interesting ways such as introducing parallelism, and non-traditional

programming languages. Next the chapter describes work on developing syntactic

sugar for applicative functors. Finally there is a brief discussion of type changing

program transformation systems.

Chapter 3: Background: Refactoring Haskell in HaRe

This chapter covers the history of HaRe (the Haskell Refactorer), the technologies it

depends on, and the current implementation of HaRe. Specifically there is an overview

of the (GHC API 2016), the generic traversal library Scrap Your Boilerplate (Lämmel

and Jones 2003), and ghc-exactprint (Zimmerman and Pickering 2016). This chapter

also describes how the inner workings of HaRe are implemented and the functions that

compose its API. Finally it discuses the design and development process of implementing

refactorings for HaRe.

Chapter 4: Data-Driven Refactorings

Chapter 4 introduces data-driven refactorings. The chapter begins with a discussion

of this type of refactoring for object-oriented languages. The rest of the chapter describes

data-driven refactorings for the Haskell programming language. First there is a description

of the “introduce a type synonym,” the “renaming” refactoring of data-driven refactorings.

The renaming refactoring is the most straightforward refactoring, it simply changes the

name of a variable to one that better suits the real meaning of the variable. Similarly

a type synonym can rename types to better reflect what certain instances of that type

are being used for in a program, and this refactoring supports that transformation. The

other two refactorings covered in this chapter are the “generalising maybe” and “list to

Hughes list” refactorings.

The “generalising maybe” refactoring (Section 4.4) rewrites functions that use the

concrete type of Maybe to use, instead, the operations provided by the type classes

it implements, Monad and/or MonadPlus. The final refactoring described by this

chapter is the “list to Hughes list” refactoring (Section 4.5). Hughes lists (also known

as difference lists) are an alternative implementation for lists that support O(n) time
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appends. This refactoring takes functions that use that standard list implementation and

rewrites the function to use Hughes lists instead. The approach for this refactoring is

applicable between any two types that are “reversibly embeddable” a concept that will

be defined as well.

Chapter 5: Implementing Data-Driven Refactorings in HaRe

This chapter continues from the refactoring designs presented in chapter 4 to describe

HaRe’s implementation of both the “maybe to MonadPlus” and the “list to Hughes

List” refactorings. There is also be a discussion of the API that supports the “list to

Hughes List” refactoring and can be used to define further “reversibly embeddable”

type refactorings. Finally this chapter will describe the enhancements made to HaRe’s

API, specifically the addition of high-level transformation functions.

Chapter 6: Generalising Monadic code to Applicative Functors

This chapter presents another generalisation refactoring. Applicative functors are

a, relatively, new addition to the Haskell environment. Applicative functors are an

interface for sequencing effectful computations. Currently the Haskell community

predominantly uses the monadic interface for effects. This chapter will describe the

design and implementation of a refactoring for taking a monadic do statement and

transforming it to use the Applicative (the Haskell type class for Applicative functors)

interface instead.

This chapter also describes how the Haskell community is currently using the

Applicative interface, based on the results of a survey of Hackage, the Haskell

package archive (GHC 2016). Finally this chapter concludes with a discussion of

possible applications of the refactoring.

Chapter 7: Introducing Monads

Chapter 7 describes the monadification refactoring. Monadification is the process

of introducing monads into pure code. Monads are the standard way for effects to be

used in Haskell and so a refactoring to automatically add them is very useful to the

community. There are many styles of monadification and this chapter describes several
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of them. Finally it discusses the implementation of the monadification refactoring in

HaRe.

Chapter 8: Conclusion

The final chapter summarises the work done for this thesis and the contributions

it has made. There is also a discussion of the current Haskell tooling ecosystem, the

challenges currently facing Haskell tool builders, and how they could be tackled. It

concludes with a discussion of future work that could be performed on HaRe.

1.6 Contributions of this Research

The work in this thesis was carried out in HaRe. This study focused on adding additional

refactorings to HaRe of a new type. Rather than being motivated by the structural

problems of a program, data-driven refactorings seek to resolve issues that are caused

by the data types a program uses. The contributions of this research are:

• Extending the HaRe API to better support data-driven refactorings. These refactorings

are complex and require more information from the abstract syntax of GHC than

prior refactorings in HaRe. The contributions to the API were focused on analysis

of the types of nodes and creating a higher level interface for common small

expression level transformations. These changes are described in Chapter 5.

• The design and implementation of the “generalise maybe” and “list to Hughes

list” refactoring, described in Chapters 4 and 5. The “generalise maybe” refactoring

is a way of taking a concrete effect and turning it into an abstract one so that it can

be instantiated in multiple ways. The “list to Hughes list” refactoring describes

a way to rewrite a program’s data model to use a different type with a similar

interface.

• The design and implementation of the “generalise monads to applicative” refactoring,

Chapter 6. Effects in Haskell are typically handled using monads, a powerful
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abstraction that allows the type system to check the type of the effects that are

being performed by a program. Since the introduction of monads the Haskell

community has developed more fine-grained approaches to effect handling. This

refactoring allows software systems to handle effects using the applicative as

opposed to the monadic interface.

• The implementation of the “monadification” refactoring, see Chapter 7. Monadification

is the process of making a program work over a monadic type rather than a pure

one. This refactoring supports the transformation of pure programs to effectful

ones.



Chapter 2

Related Work

This chapter reviews current work in refactoring and other areas of the literature and

helps to situate the work described in this thesis into a broader landscape. This chapter

begins, in Section 2.1, with a short description of refactoring tools, including the sophisticated

modern IDEs that support object-oriented languages and the refactoring tools that support

functional languages.

Next Sections 2.3 and 2.4 will describe some of the work done to transform programs

so that they are executed in parallel rather than sequentially. The original idea behind

refactoring was to reduce the technical debt of a target program. Technical debt is the

idea that when a system is being implemented there can be quick and messy ways to

implement things, but this implementation will incur “debt” on the project. Much like

financial debt some debt is needed to get a project off the ground but also like financial

debt if debt is allowed to grow unchecked it can grind a project to a halt (Cunningham

1992). Refactoring, was traditionally the process of “paying back” this debt, however

the potential scope of refactorings has been expanded to include, for example, introducing

parallelism rather than just improving code quality.

Section 2.5 covers work done in the program transformation and refactoring fields.

In particular earlier versions of monadification are discussed, such as “Reuse by Program

Transformation” (Lämmel 1999), and “Monadification of Functional Programs”

14
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(Erwig and Ren 2004). Other work that is covered in this section includes work on

refactoring and program transformation that is particularly focused on types.

The final section of this chapter discusses how refactoring tools are implemented.

This section pays special attention to refactoring tools that target languages other than

Haskell, because the focus of Chapter 3 is on building refactoring tools for Haskell.

2.1 Refactoring Tools in Modern IDEs

Refactoring tools have become a standard feature in integrated development environments.

The four most popular IDEs for object-oriented languages, Eclipse1, NetBeans2, IntelliJ3,

and Visual Studio4 all come with refactoring tools for their primary language (Burazin

2014). These refactoring tools support some general refactorings (renaming, method

extraction) and some that are specific to object-oriented languages (pushing/pulling

methods up/down the object hierarchy).

Modern IDEs, however, were not designed with functional programming in mind.

Eclipse, Netbeans, and IntelliJ were all built to support Java and Visual Studio supports

multiple languages most prominently C++ and C#.5 These tools allow community

developed plugins to expand the languages they can support but the plugins can fall

out of date, for example the Haskell Eclipse plugin was stopped being supported in

2015.6 Though modern IDEs are heavily depended on in object-oriented development

functional programming languages have developed their own, mostly independent tooling

ecosystems. This will be the focus of the next section, refactoring tools for functional

programming languages.

1https://www.eclipse.org/
2https://netbeans.org/
3https://www.jetbrains.com/idea/
4https://www.visualstudio.com/
5Visual Studio also includes support for F# out of the box, but this could be considered the exception

that proves the rule.
6See: https://wiki.haskell.org/IDEs#EclipseFP_plugin_for_Eclipse_IDE

https://www.eclipse.org/
https://netbeans.org/
https://www.jetbrains.com/idea/
https://www.visualstudio.com/
https://wiki.haskell.org/IDEs#EclipseFP_plugin_for_Eclipse_IDE
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2.2 Refactoring Tools for functional languages

A reason that often used to be given to explain why functional languages are not in

widespread use in industry is the lack of a robust tooling ecosystem (Wadler 1999).

This is no longer the case as functional language ecosystems have undergone a great

deal of development in recent years and, maybe coincidently, use in industry has gone

up substantially in the last five years. This section will cover some existing refactoring

and code smell tools for functional programming languages.

2.2.1 HLint

HLint is a “code smell” tool for Haskell. Poorly designed code often produces “smells,”

apparently superficial problems that indicate deeper design issues (Fowler 1999). One

of the most common of these smells is duplicated code. Other hints include simplifying

boolean expressions to remove unneeded calls to not (e.g. “not (a == b)” should

become “(a /= b)”), or replacing common types of folds with their prelude defined

names (e.g. sum can replace foldr (+) 0). A code smell tool suggests changes to a

code base such as alternative functions to use, how to simplify code, and redundancies (Mitchell

2014).

Code smell and refactoring tools are very closely related. Simplistically a code

smell tool detects problems in a code base and a refactoring tool fixes them. If a tool

can detect a problem why can’t the same program fix them? HLint has a -refactor

flag that will automatically apply the suggestions. However there can be a problem in

doing this, e.g. a single piece of code could have multiple smells, how would HLint

choose which one to apply? Also once a transformation has been applied other hints

may no longer be applicable. HLint’s behaviour in these cases is not documented.

One of the powerful features of HLint is its customizability. An HLint configuration

file (called hlint.yaml) added to the root of a project will be detected by HLint and

it will suggest both the default hints as well as the custom hints from that file. Hints are
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1 - hint: {lhs: x !! 0, rhs: head x}

Figure 8: A simple hint from (Mitchell 2014)

very simple to write.

Figure 8 contains the definition of a hint that detects the list index operator is being

used to look up the 0th element of a list and suggests using head instead. The lhs tag

is the code HLint will search for. If code matching lhs is found HLint will suggest the

code be replaced with the rhs code. HLint assumes any single character variable is a

substitution parameter. Given the hint from Figure 8 and the following code:

1 f list = list !! 0

HLint produces the following output.

1 Suggestion: Use head

2 Found:

3 list !! 0

4 Why not:

5 head list

6

7 1 hint

A major limitation of HLint is that it is only aware of a single module at a time.

HLint is not aware of what types or names are in scope and code smells that span

multiple modules cannot be discovered.

2.2.2 Haskell Tools Refact

HaRe is not the only refactoring tool for Haskell. In late 2016 Haskell Tools Refact was

announced and is currently at version 0.7 (Haskell-tools 2017a). The Haskell Tools

project is a GHC based developer tool kit for writing transformations (Haskell-tools
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2017b). There are eight refactorings currently supported7.

• Rename

• Generate type signature

• Generate exports

• Extract binding

• Inline binding

• Organize imports

• Float out

• Organize extensions

Haskell Tools has implemented its own abstract syntax tree. The AST of Haskell

Tools is generated using information from all of GHC’s compiler stages. Each node

represents the same language elements; it just includes additional information that is

spread across the different stages of the GHC (Haskell-tools 2017a).

The Haskell Tools refactorer is currently integrated into the Atom editor8 with

Sublime Text9 support planned for the near future (Haskell-tools 2017a)

2.2.3 Wrangler

Wrangler is a refactoring and code inspection tool for Erlang (Li et al. 2006). Erlang

is a functional programming language designed to be massively scalable and highly

fault tolerant (erl 2015). It was originally developed in 1986 by Joe Armstrong, Robert

Virding, and Mike Williams at the Computer Science Laboratory at Ericsson Telecom

AB (Armstrong 2007). Erlang’s core design tenets include lightweight processes, that
7May 2018
8https://atom.io/
9https://www.sublimetext.com

https://atom.io/
https://www.sublimetext.com
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1 ?T("erlang:spawn(Arg@)")
2

3 ?T("erlang:spawn(Arg@@)")

Figure 9: Some Wrangler templates

communicate through message passing. Erlang also boasts a “let it fail" error handling

architecture, when a process fails the error is not handled by the process where it

occurred, but is handled by a separate dedicated part of the program (Armstrong 2003).

Wrangler is accessible from the command line and has been integrated into both

Emacs and Eclipse. It currently supports a large library of refactorings, code smells,

as well as other program analysis tools such as clone detection and automatic API

migration (Li et al. 2006). Additionally Wrangler supports a template-based API and a

domain specific language which allow users to define their own refactorings and script

composite refactorings (Li and Thompson 2011).

The template-based API of Wrangler allows users to define program analyses and

transformations using Erlang concrete syntax. Wrangler templates consist of fragments

of Erlang syntax that may contain meta-variables or meta-atoms that can stand for

any language element. Meta-variables/atoms are variables or atoms that end with the

"@" character; this meta-variable/atom binds a language element to its name so that

that element can be referred to by name in the definition of the refactoring. Meta-

variables/atoms that end with "@@" are list meta-variables/atoms that match a sequence

of language elements as long as they are of same sort (Li and Thompson 2012).10

The first template in Figure 9 matches applications of erlang:spawn when it is

called with one argument whereas the second template will match the same function

with any number of arguments.

Composite refactorings are refactorings that are made up of multiple refactorings

run, in sequence, one after the other. It can be challenging to develop composite

10Things like the arguments to a function or a sequence of expressions in a function body are the same
"sort."
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refactorings if they are not explicitly handled by the refactoring tool. The naive solution

just chains refactorings together with the output from one refactoring in a composite

refactoring becoming the input to the next refactoring. However, what if the second

refactoring fails in a chain of four? Composite refactoring definitions, without tool

support, become filled with error handling code to manage the situation when one of

the component refactorings fail. Wrangler defines a domain specific language that helps

describe the various facets of a composite refactoring.

The Wrangler DSL supports the creation of a composite refactoring through a

variety of features. First, Wrangler extends every primitive refactoring with a refactoring

command generator. A command generator allows the extended refactoring to accept

not just concrete values but also structures that specify how the parameter should be

generated; each parameter of a command generator accepts either a concrete value, a

condition that checks if a value is satisfactory, or a generator for creating the parameter

based on the previous parameters. A refactoring for renaming functions named with

the format camelCase to camel_case would accept three arguments: the target

filename, the name of the target function, and the desired new name. This command

generator’s first parameter is a condition that always returns true because any file is

a valid target for renaming. The second parameter is another condition that checks

if the function name matches is in camel case format (e.g. "aFunName"). The final

parameter is generated by taking the second parameter and modifying it so that the

name is in the corresponding "snake case" format (e.g. "a_fun_name").

The DSL also allows decision making to occur during the execution of a composite

refactoring. Composite refactorings are transactional and can be either atomic or non-

atomic. Atomic composite refactorings require each component refactoring to be successfully

applied before continuing onto the next refactoring. If a single refactoring fails inside

of an atomic composite refactoring, the entire refactoring fails and the program remains

unchanged. When a single refactoring fails inside a non-atomic composite refactoring,

correspondingly, the entire refactoring will not fail and continue by trying the next
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refactoring in the sequence. The Wrangler DSL allows for refactorings to described as

atomic and non-atomic sections at each level.

2.2.4 RefactorErl

Another notable tool for the Erlang language is RefactorErl. RefactorErl started out as

another refactoring tool for Erlang but has since expanded into a source code analysis

and transformation tool (Horpácsi 2013). RefactorErl uses a “semantic program graph”

to represent an Erlang source program, this graph is broken up into three layers (Tóth

and Bozó 2012):

1. Lexical layer: This is where token, spacing, and comment information is kept

about the source program.

2. Syntactic layer: This layer keeps the abstract syntax tree of the source program.

3. Semantic layer: This contains additional calculated semantic information about

the source program, such as module and function references as well as variable

bindings.

Refactoring tools, in general, only require the information contained within these

first two layers, the semantic layer helps RefactorErl implement its static analysis

capabilities. The semantic program graph is constructed after a source program’s

abstract syntax has been obtained from the Erlang language front end. The semantic

layer is built on top of the abstract syntax tree by several different static analysers

that each add a different kind of information to the graph. For example, the function

analyser adds a semantic function node when the first reference to or the definition of

a function is found. Every reference to that function discovered after that points to the

original node (Tóth and Bozó 2012).

The edges in the semantic layer are also labeled so the relationships between nodes

can be captured as well. The function analyser, for instance, labels the edges going from
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the semantic function node to internal references to that function with a funIref label,

and the fundef label connects the semantic node to the function definition it represents.

The semantic layer is critical for the static analysis RefactorErl performs but it is also

quite useful for the refactorings as well. Consider the “move a function” refactoring11,

which moves a function definition from one module to another, every reference in the

target function needs to be checked to ensure that those definitions are available in

the new scope of the function. Without a semantic layer a refactoring tool may have

to traverse the syntax tree multiple times to locate all the references the target function

contains and ensure they are available in the function’s new location. With the semantic

layer, on the other hand, finding all of the references can be done in two steps over the

graph (one step from the reference to the semantic node, the next step following the

semantic node’s “definition” edge, e.g. fundef, fielddef, etc.).

RefactorErl currently supports 24 different refactorings as well as a suite of static

analysis and program comprehension tools.

2.2.5 ROTOR

A newcomer to the refactoring tools for functional language space is ROTOR12 the first

refactoring tool to target OCaml (Rowe and Thompson 2017). Language features of

OCaml provide some unique challenges for a refactoring tool. In OCaml one module

may be included in another so that, for example, when renaming the function f in

module A but A is included in module B then both A.f and B.f will need to be

renamed. ROTOR handles this by decomposing refactorings into a set of textual replacement

operations that can depend on other transformations (Rowe and Thompson 2017). From

the renaming example renaming “A.f” would depend on the “B.f” renaming succeeding

and vice versa.

An opportunity of the ROTOR project is that it has an partner in industry, Jane

11See: http://pnyf.inf.elte.hu/trac/refactorerl/wiki/
RefactoringSteps/MoveFunction

12Reliable OCaml-base Tool for OCaml Refactoring

http://pnyf.inf.elte.hu/trac/refactorerl/wiki/RefactoringSteps/MoveFunction
http://pnyf.inf.elte.hu/trac/refactorerl/wiki/RefactoringSteps/MoveFunction
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1 type Strategy a = a -> Eval a

Figure 10: The strategy type

Street Capital. ROTOR is using the core library13 an "industrial strength" version of

the OCaml standard library as a test bed for testing the refactoring tool.

2.3 Refactoring to introduce parallelism

The reasons to refactor source code have also expanded beyond code quality. This

section will describe two different projects that have developed refactorings to change

the execution of a program from single to multi-threaded. Functional programming

languages are well suited to parallel execution due to immutability by default and in

some languages (such as Erlang) first-class concurrency features. This section will first

describe the “ParaForming” which uses refactoring to introduce parallel abstractions

into Haskell code, then it will describe work done to refactor Erlang code to introduce

algorithmic skeletons.

2.3.1 ParaForming

ParaForming is an approach to construct parallel programs from an existing program

using software refactoring (Brown, Loidl and Hammond 2011). The ParaForming work

targets Glasgow parallel Haskell: “GpH”, an extension to Haskell, and is implemented

in HaRe. Parallelism is added to programs in GpH using strategies (see Figure 10).

A strategy takes its argument and determines how it will be evaluated inside of the

Eval monad. The rpar strategy introduces parallelism by "sparking" its argument.

Sparks are tasks that are collected into a pool which is managed by the runtime. The

spark pool is a source of work that GHC can pull from when there are idle processors.

13https://github.com/janestreet/core

https://github.com/janestreet/core
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1 sumEulerSeq :: Int -> Int
2 sumEulerSeq n = sum (map euler (mkList n))

Figure 11: A sequential calculation that sums the Euler totient function

1 sumEulerPar1 :: Int -> Int
2 sumEulerPar1 n = sum (map euler (mkList n) `using` parList

rdeepseq)

Figure 12: A refactored version of the function from Figure 11

Sparks may be evaluated in parallel or not at all depending on the availability of spare

cores.

The simplest parallel refactoring is to introduce data parallelism. This refactoring

is applied to an expression that works over a list and evaluates each member of that list

in a spark. A sequential function that sums the Euler totient function is in Figure 11

and the refactored program is in Figure 12

This refactoring evaluates the calculation of map euler (mkList n) using14

the parList rdeepseq strategy. The parlist15 function evaluates each element

of a list in parallel according to a given strategy and rdeepseq is the strategy the fully

evaluates its argument.

The refactored program in Figure 12 is highly parallel but not very efficient because

the parallelism is too fine grained. Another refactoring can help in this case instead of

sparking every element of a list another strategy can be introduced, one that separates

the list into "chunks" and each of the chunks of the list is executed in parallel. This

refactoring adds an additional argument to the function that determines how many

chunks the list will be split into, as seen in Figure 13.

These two refactorings are both a way of introducing data parallelism with varying

degrees of granularity. The other form of parallelism is known as task parallelism.

14The (using :: a -> Strategy a -> a) function just evaluates some expression with the
given strategy.

15parlist :: Strategy a -> Strategy [a]
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1 sumEulerChunk :: Int -> Int -> Int
2 sumEulerChunk c n = sum (map euler (mkList n) `using`

parListChunk c rdeepseq)

Figure 13: A "chunked" version of the function from Figure 11

Where data parallelism is focused on computing different parts of a data structure in

parallel (the elements of a list in the previous case), task parallelism instead focuses

on having different “tasks” excecuted in parallel. The work done in Brown, Loidl and

Hammond (2011) outlines a refactoring that can make recursive calls happen in parallel.

2.3.2 Cost-Directed Parallel Refactoring

The previous section touched on one of the big challenges of parallel programming,

determining the correct level of parallelism to achieve maximum performance. Brown

et al. (2014) describes a methodology to introduce algorithmic skeletons into Erlang

programs using the Erlang refactoring tool Wrangler. In addition to introducing a

skeleton this work provides cost models that estimate the performance of the program

after adding each skeleton. This estimate helps a programmer to make an informed

decision about which parallelisation strategy is the best for a particular program.

An algorithmic skeleton is a common parallel pattern. A skeleton is implemented

as a higher-order function that takes in a sequential function and any parameters that

the skeleton requires. Brown et al. (2014) discusses the four most common and useful

skeletons. For example, the map skeleton works by breaking up the target data into

pieces that can be operated on in parallel. Finally the results from the the parallel

computations are combined back into a single image. One of the examples presented

in Brown et al. (2014) is an image processing system that denoises images. Denoising

a section of an image can be done independently from processing the other sections of

the same image. The introducing the map skeleton would break the image into pieces to

be denoised in parallel then the outputted sections can be stitched back together again
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Skeletons are simple to understand in theory but it can be difficult to know which

to apply in practice. This is when the cost models of each skeleton become useful to

help make an informed decision about which skeleton should cause the greatest speed

up and this information can be used to guide the refactoring. In Brown et al. (2014)

an initial benchmark of the program can be used to estimate the speed up that different

skeletons could provide.

Parallelisation can be tedious and difficult to do which makes it a good candidate

for tool assistance. A refactoring tool can guide a programmer through the process of

parallelisation. Much like how the data-driven refactorings have multiple small changes

are required before the entire process can be considered “finished” changing a program

to run in parallel is also a sequence of several smaller changes.

2.4 ApplicativeDo

Haskell is a pure functional programming language. Purity in this context means that

Haskell is side-effect free. This causes some confusion because in most other languages

side-effects are allowed, if not the primary way that programs produce their “result.”

Haskell instead models side-effect causing computations using Monads, which take

effects of computation that are typically implicit and make them an explicit result of

the program instead. Beyond modeling side effect causing operations, monads allow

for computations to be supplemented with additional features (HaskellWiki 2015a).

Haskell supports the writing of monadic code through the “do” syntax sugar, an

example of this syntax can be seen in Figure 14. Monads and their do syntax have

become a commonly accepted pattern for handling effects within the Haskell community.

Applicative functors are another type class that describe computations performed

within some context, but are less powerful than monads. They were first described

by McBride and Paterson (2008), and a fairly recent change to GHC made the
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1 f = do
2 x1 <- A
3 x2 <- B x1
4 x3 <- C
5 return (x2,x3)

Figure 14: A simple monadic function constructed using a do statement.

1 f = A >>=
2 (\x1 -> B x1 >>=
3 (\x2 -> C >>=
4 (\x3 -> return (x2,x3))))

Figure 15: The desugared version of f from Figure 14.

Applicative type class16 a superclass of Monad which means that every instance

of Monad now must also implement the Applicative interface as well.

Compiler changes can’t force a community to change its practices and Applicative

remains under-utilised compared to Monad. This under-utilisation of applicative functors

in Haskell has not gone unnoticed; in Marlow et al. (2016), an implementation of a

language extension for GHC was introduced that changes the way Haskell interprets

do statements so that applicative functors can be supported by the same do syntactic

sugar. Applicative’s offer a key advantage over monads, when applicative functors

are composed the results they calculate remain independent of each other. This means

that values under applicative functors can be evaluated in parallel. Using the familiar

do syntactic sugar to also support Applicative’s means that programs can become

concurrent “for free,” this is the main motivation behind the applicative-do work (Marlow

et al. 2016).

Figure 14 shows a simple function constructed using Haskell’s do notation. The

standard way that this function would be desugared is shown in Figure 15. Finally

Figure 16 shows how the same function would be desugared when the ApplicativeDo

language extension is turned on.

16Applicative is what the GHC calls the type class that implements applicative functors.
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1 f = (\x2 x3 -> (x2, x3))
2 <$> (A >>= (\x1 -> B x1))
3 <*> C

Figure 16: How f will be desugared when applicative do is turned on.

The ApplicativeDo algorithm will attempt to insert as many applies into the expression

as possible. When the implementation of the Applicative instance evaluates the

two arguments of apply in parallel, better performance can be achieved by adding more

applies.

There could be multiple ways to desugar a particular function. The applicativeDo

algorithm first assumes that every expression has an identical time cost, and from

this assumption the algorithm heuristically determines the desugaring with the shortest

execution time.

2.5 Program transformations

Refactoring is a type of program transformation but it does not constitute the whole

field. A major difference between refactoring and other types of program transformations

is that a refactoring must take into account the human readability of its output. Program

transformations typically focus on just the algorithm whereas refactorings must take

into account the broader effects a transformation has on a codebase and the context

that programs exist in. Additionally the target program of a refactoring needs to be

readable, maintainable, and keep proper layout and user comments. Other types of

program transformation don’t typically have these concerns. This section will describe

some of the program transformation work most relevant to this thesis. First it will

describe the type and transform system developed by (Leather et al. 2015). Next there

will be a discussion of the previous methods of monadification found in the literature.
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1 rep :: A -> R
2 abs :: R -> A
3

4 rep . abs = id
5 abs . rep = id

Figure 17: The properties that must hold for the type-and-transform system to work
over types A and R

2.5.1 Type and transform systems

The type-and-transform system described in (Leather et al. 2015) is a system for a

semantics preserving and type changing program transformations over the typed lambda

calculus with let polymorphism. The type-and-transform system is limited to isomorphic

types, there must be a way to convert between the two types and back again as described

in Figure 17.

The type-and-transform system supports type-changing rewrites through typed rewrite

rules that insert conversions between the source and target types as appropriate. To

handle the fact that there are multiple ways to retype a program each rewrite rule is

weighted to maximize the use of the target type, introduce the target type as soon as

possible in the program, and delay the conversion back to the source type as late as

possible.

This work emphasises formalisation and its correctness and the work is done in the

context of the lambda calculus rather than a full programming language. There is a

Haskell implementation of their system but it is only a prototype though they state that

they want to expand this work to work with Haskell however this has not been published

yet.

2.5.2 Automatic Monadification

Monadification is not a new problem and various solutions have been presented in

the literature. In (Lämmel 1999) monadification is performed in two steps. First
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1 f (g x) (h y)
2

3 let x1 = g x in
4 let x2 = h y in
5 f x1 x2

Figure 18: A-normal form converstion

the program is transformed into A-normal form17, which flattens applications into let

expressions. The first line of Figure 18 shows a normal expression and line 3 of the

same Figure shows that expression in A-normal form.

Once the program has been converted into A-normal form, a let expression of the

form:

letx = t1int2

Is transformed into:

t1 >>= λx.t2

If the right hand side of the lambda is not already a monadic type then return will

be introduced, e.g. t1 >>= λx.return t2. The full transformation is given by inference

rules in (Lämmel 1999).

Monadification is developed further by (Erwig and Ren 2004). This work provides

an algorithm for restricted call-by-value monadification as opposed to the semantics

style inference rules defined in (Lämmel 1999). This work targets the lambda calculus

extended with case and let expressions. The algorithm from (Erwig and Ren 2004) is

very similar to the one implemented in HaRe. It has the same precondition that every

call to a monadified function must be fully saturated, which means that every call site

of a target function needs all of its parameters to be named variables, and it produces

the same style of monadification as the implementation provided in HaRe. A prototype

implementation of this method was produced as a part of (Erwig and Ren 2004).

The idea of providing refactoring as a monadification was first discussed in Reinke

17This is also known as sequencing
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et al. (2005). This source provides a comprehensive discussion of the different styles

of monadification. There are several different, equally “correct,” ways to monadify a

function. A refactoring tool, perhaps more than other types of program transformations,

needs to consider what its users intentions and desires are for applying the transformation

so that the most useful output can be produced. This is particularly important for

refactoring tools because its output needs to be directly usable by developers. This

makes the discussion of what monadification style to be very relevant since the monadified

functions need to be easily usable. This issue of style is continued in Chapter 7.

2.5.3 Data Type Transformations

Data types are obviously the focus of data-driven refactorings and a considerable amount

of work has been focused on them in the program transformation and refactoring literature.

In Kort and Lämmel (2003) the authors present a set of transformation primitives

that help modify data types, either through writing scripts or via a GUI in an interactive

mode. This framework can be used to define refactorings but its creators implemented

operators that can be used for behaviour changing transformations as well, which take

the framework’s capabilities beyond refactoring. This framework, for example, supports

the insertion and deletion of constructor components (Kort and Lämmel 2003).

This framework created a set of transformation operators that work over Haskell but

the design of the framework is general enough to be implemented in other langauges

that also support algebraic data types.

2.5.4 Generic Refactorings

The previous subsection discussed a transformation system for data types and one of

the main contributions of that framework is its language agnostic design (Kort and

Lämmel 2003). This section describes another language agnostic system for program

transformation which was reported in “Towards Generic Refactoring” (Lämmel 2002).
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This work asks the question what types of refactorings can be applied to many different

programming languages and even markup languages such as XML.

This paper provides an implementation of the refactoring framework in Haskell but

also provides an interface that can be instantiated for many different languages. This is

possible because, despite syntax differences between different programming languages,

certain refactoring actions have the same purpose regardless of the target language

though the refactorings will need to be pointed towards the correct syntax elements for

the target language. A good example of this is the “extraction” refactoring. It’s better

known as “extract a function” or “extract a method” depending if the target language

is object-oriented or functional. In any language the refactoring will introduce a name

for a previously anonymous section of code. The syntax that the refactoring targets

and what the extracted piece of code is, is what makes up the differences between

languages. In Haskell the refactoring would target expressions and the extracted code

is a function, in Java statements would be made into a new method (Lämmel 2002).

The canonical reference for refactorings, Fowler (1999), is written using Java and

though the author stresses that the refactoring catalogue is useful to other languages, the

descriptions of the refactorings are very specific to object-oriented programming. Lämmel

(2002) helps identify that certain transformations can be applied regardless of languages.

This thesis will expand on this question in Section 4.1 by examining the data driven

refactoring chapters from Fowler (1999) that do not obvious functional equivalents.

2.6 Engineering refactoring tools

Sections 2.1 and 2.2 briefly discussed some refactoring tools and the features they

provide but did not say much about how they are built. This section will look at how

refactoring tools are actually built, with a specific focus on how these tools gain access

to a representation of the target source code and how they work with that representation.

This section will also focus on languages other than Haskell. Refactoring Haskell is,
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of course, the focus of this thesis, and the general implementation of HaRe will be the

focus of Chapter 3.

This section will look in greater detail at implementing refactoring tools for Erlang

and Clojure.

2.6.1 Implementing Wrangler

Wrangler was first mentioned in Section 2.2.3, here we describe in a bit more detail

how Wrangler is implemented, with a particular focus on the internal representation of

the Erlang source code that Wrangler uses and how that representation is transformed.

Erlang comes with its own “front end.” A language front end provides access to

some of the same tools that language compiler and runtime systems are built out of.

Refactoring tools are mostly interested in a language’s lexer, parser, the data type the

language is represented as internally (this usually is an abstract syntax tree), and a

pretty printer for that data type. Many languages do not store all of the information

a refactoring tool requires in its internal representation and Erlang is no different.

Wrangler is dependent on the SyntaxTools library which includes more semantic data

about the target program (Li et al. 2008). In addition to the information SyntaxTools

adds to the AST of an Erlang program the library also makes it possible to add additional

information to the tree as well (Carlsson 2015). Wrangler uses this feature to further

annotate the AST with both syntactic and semantic information (Li et al. 2008).

Once a refactoring tool has parsed the target program into its internal representation

the transformations can begin. However the internal representation of a program for

even moderately sized programs can be quite sizeable. Traversing and modifying

these structures can introduce large amounts of what’s called “boilerplate” code into a

project. In this case, the boilerplate is highly repetitive code that simply walks through a

structure, it is difficult to maintain and hides the relatively small amount of “real” code

that is actually performing the transformations (Lämmel and Jones 2003). Generic

programming is a technique used to eliminate this type of code. Rather than use a
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third-party generic programming library like HaRe does (see Section 3.3) Wrangler

has implemented its own versions of the generic traversals it requires.18 This is feasible

to in Erlang because its weak dynamic type system means that traversals can be defined

in a single function whereas Haskell needs separate functions defined to handle each

type of the abstract syntax tree.

2.6.2 Refactoring LISPs

The LISP family of languages make interesting target languages for refactorings. Lisp’s

support for macros and because Lisp code is structured as lists means that the internal

representation of a Lisp program can be manipulated with the list-processing functionality

that comes built into the language.

Another unique aspect to building refactoring tools for a Lisp is the support that the

Emacs text editor can provide. Implementations of the Emacs text editor normally ship

with their own dialect of Lisp referred to as Emacs Lisp (Free Software Foundation

2015). Refactoring tools are commonly integrated into Emacs, for example both HaRe

and Wrangler provide Emacs extensions in Emacs Lisp. In those cases all the Lisp

code is used for is to define the the user interface and wrapper around the command

line calls to the refactoring tool. If the target language of the refactoring is a Lisp

then Emacs Lisp can be used to define refactorings directly. Consider the Clojure

refactoring tool “clj-refactor.el” (clojure emacs 2018). Clojure is a Lisp that can be

compiled to either Java bytecode for execution on the JVM, or to Javascript for front

end web programming (Hickey 2018). The Clojure refactoring tool uses a separate

analyser to generate an AST independent of which dialect is being targeted. Once that

representation is created Emacs Lisp can actually be used to perform the source code

transformation instead of Clojure.

18See: https://github.com/RefactoringTools/wrangler/blob/master/src/
api_ast_traverse.erl

https://github.com/RefactoringTools/wrangler/blob/master/src/api_ast_traverse.erl
https://github.com/RefactoringTools/wrangler/blob/master/src/api_ast_traverse.erl
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2.7 Summary

This chapter has discussed the literature that relates to and helped build the work that is

described in the rest of this thesis. It began with a discussion of other refactoring tools,

for both functional and object-oriented languages. Next in Section 2.3 was a description

of work that uses refactoring to introduce parallelism into programs. Refactoring’s

original goal was to improve code quality and reduce technical debt, but with this work

refactoring has been expanded to include introducing parallelism. This thesis again

pushes the scope that refactorings can focus on towards data type evolution. Section 2.4

describes an alternative interpretation for the Haskell do syntax. The work described

in Chapter 6 has the same goal as this work, the introduction of applicative rather than

monadic operations. The approach taken in Chapter 6 uses refactoring to explicitely

introduce applicative operations rather than having the compiler do this implicitely.

The program transformation field also has looked at how data types can change and

some of this work was described in Section 2.5.

The final section discussed how refactoring tools were implemented in Erlang and

Clojure. Both Wrangler and clj-refactor deal with similar issues when it comes to

getting an abstract syntax tree of their target programs. Third party libraries help both of

these projects gain access to the abstract syntax tree of the target program with enough

information in them to perform transformations while preserving formatting. Other

refactoring tools perform much of the analysis required to perform transformations

themselves such as RefactorErl and haskell-tools.

By considering how tools are built we can begin to understand the general toolchain

that must be built to implement a program transformation tool. In general program

transformation tools work in three main phases, Figure 19 shows the general toolchain

that a tool will need to build. Table 1 shows the types of libraries and technologies that

are used in each of the phases.

Before any transformation can happen the source program must be read into a

representation that the tool can work with. Many tools use the existing compiler
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Figure 19: A general toolchain for program transformation.

Building Abstract Representation Analysis and Transformation Outputing Results
Parser Generic Programming Library Pretty-printer
Lexer Custom Analysis Token-Stream

Renamer Traversal Schemes IDE Functionality
Typechecker IDE Functionality

IDE Functionality

Table 1: The components used during the different phases of program transformation.

toolchain’s lexer and parser to build an abstract syntax tree, this is what HaRe and

Wrangler do. Additional compiler components, such as the renamer or typechecker, can

be used to decorate the syntax tree with additional information. If a tool is implemented

in a specific IDE, the IDE may provide functionality to work with the target language.

The notable example of this would be clj-refactor which is built into Emacs, since

Emacs is supports its own dialect of Lisp and Lisps place a strong emphasis on metaprogramming

clj-refactor uses built in Emacs functions to move through and transform Clojure source

files (clojure emacs 2018). Emacs uniquely supports Lisp but other IDEs also provide

ways to interact with the abstract structure of the source code files being edited. Intellij

IDEA, for example, provides “PSIFile” a generic interface for representing the contents

of a file as a hierarchy (JetBrains 2016). For a source code file the PSIFile would

represent the abstract syntax of that language, but this model also allows for other types

of languages, such as XML, to be modeled with the same interface.

The second phase of program transformation is the actual analysis and transformation

of the target program’s abstract representation. This phase is where the program works

with and modifies the structure that was constructed during the first phase. In complex

statically typed languages such as Haskell third party generic programming libraries are

required to efficiently traverse and transform the abstract syntax of the source language.

Other tools may perform additional analysis of their own and add that information to the
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abstract program structure. RefactorErl does this with the semantic graph that is built

on top of the syntax tree. Wrangler also does this by augmenting the syntax tree with

additional information after the standard Erlang parser has finished. Finally, an IDE

may contribute its own analysis and transformation functionality, once again Emacs’

support for Emacs Lisp gives the editor powerful tools for transforming other Lisps.

The powerful object oriented focused IDEs offer basic rewriting capabilities but also

powerful plugin environments so tools can depend on analysis and transformation tools

built by community members.

The final phase a program transformation tool needs to perform is outputting the

modified source. If the output needs to be seen by the user this process is handled by

a “pretty-printer.” Pretty printers takes some abstract representation of source code,

typically an abstract syntax tree, and turns it into the code literal that it represents.

Pretty printing can prove quite challenging depending on the abstract structure the tool

is using. Parsers often omit some of the elements of a source file, code comments

and whitespace are often omitted from abstract syntax because they aren’t needed by

the compiler. Tools that want to preserve these aspects of a user’s program need to

either store the formatting and comments in the abstract representation somehow, or

reconstruct them directly from the token stream. Finally, an IDE can provide powerful

abstractions that can perform the pretty printing automatically. Intellij will automatically

display changes made to a section of a PSI file, effectively solving this issue for tool

builders that target Intellij.

The implementation of program transformation tooling, in general, follows the three

stage pipeline of:

1. Constructing an abstract representation of the source program.

2. Analysis and transformation of that representation.

3. Outputting the transformed source code.

The design of these three phases are highly dependent on the source language the
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tool targets. In constructing the first phase of a transformation tool it is common to reuse

lexer and parser of the target language’s runtime if possible which makes the following

phases dependent on the abstract syntax that is used byt the runtime system. What

information is contained in the abstract syntax informs the steps that a tool must take in

the next phase. If information that is required for the transformation isn’t included in

the abstract syntax it will need to be computed at this point. Additionally depending on

the complexity of the abstract syntax tree a generic programming library may need to be

introduced or traversal and transform schemes implemented to work with the abstract

syntax. The final phase of a program transformation tool, printing, is again determined

by the information that is available from the abstract representation. The original format

of the source file may have to be stored separately if the abstract representation does

not contain enough information to preserve the user’s comments and formatting.

This generic transformation tool pipeline is how many program transformation

tools are constructed and HaRe is no exception. This chapter has described other

transformation and refactoring tools. The remainder of this thesis will focus on the

Haskell refactoring tool HaRe. The next chapter will begin by describing how HaRe is

constructed and how refactorings are implemented in it.



Chapter 3

Background: Refactoring Haskell in

HaRe

Work on HaRe was initiated at the University of Kent. HaRe was started by Huiqing Li,

Claus Reinke, and Simon Thompson in early 2003 (Thompson et al. 2010). The first

implementation of HaRe supported the Haskell 98 standard. This first implementation

of HaRe and it’s first catalogue of refactorings were some of the main contributions of

Huiqing Li’s PhD thesis (Li 2006). Chris Brown continued to expand on HaRe with his

PhD thesis “Tool Support for Refactoring Haskell Programs” (Brown 2008). In it he

expanded the number of refactorings HaRe supports, HaRe’s API, and built new code

analysis tools, such as duplicate code elimination and program slicing transformations,

using the infrastructure of HaRe.

The Haskell ecosystem has evolved a great deal since then. Haskell 2010 is now

the formal language standard but the Glasgow Haskell Compiler (GHC) has become

a de facto Haskell standard (Thompson and Li 2013). GHC supports the entire 2010

standard but also includes language extensions that can do everything from changing

the type system to adding new syntax features (HaskellWiki 2017b).

Chris Brown began the working on updating HaRe so that it could support all of

GHC Haskell and not just Haskell 98. Since then development of HaRe has been lead

39
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by Alan Zimmerman; much of HaRe’s current infrastructure is his work (Tools 2017).

He also contributes to several of HaRe’s dependencies including GHC-Mod (Gröber

2017), the current implementation of Strafunski-StrategyLib (Koppel and Alan 2018),

and he started ghc-exactprint (Zimmerman and Pickering 2016).

The contributions of this thesis are built on top of all of the work that has gone

into making HaRe what it is today. This chapter will describe the implementation of

HaRe beginning, in Section 3.1, with a brief discussion of the original implementation

of HaRe, and its dependencies such as Programatica (Hallgren 2003a), a language

frontend for Haskell 98, and Strafunski-StrategyLib (Lämmel and Visser 2002) a generic

programming library. Next the chapter describes the current dependencies of HaRe

beginning with Section 3.2. This section describes the GHC API, the language frontend

that is included with the GHC. HaRe now uses the GHC API for access to the internal

representation of Haskell rather than a third-party library like Programmtica. In addition

to Strafunski-StrategyLib HaRe’s newer code also uses another generic programming

library, Scrap Your Boilerplate (SYB) (Lämmel and Jones 2003). Section 3.3 describes

how HaRe uses SYB to perform abstract syntax tree traversals and transformations.

Section 3.4 describes, ghc-exactprint, the pretty-printer HaRe uses to output the modified

program (Zimmerman and Pickering 2016). Next the chapter concludes with a description

of the current implementation of HaRe in Section 3.5, including a description of HaRe’s

API, how refactorings are currently implemented, and how HaRe makes use of the GHC

API. For the purposes of this thesis the “current” implementation of HaRe is, as of this

writing, version 0.8.4.11.

3.1 The original implementation of HaRe

Implementing an automated refactoring system has several dependencies, including

a frontend for the language that is targeted, a generic programming library or some

1https://github.com/RefactoringTools/HaRe/tree/
4055ef45f0de3c966fd7841986ab0ed2ee814055

https://github.com/RefactoringTools/HaRe/tree/4055ef45f0de3c966fd7841986ab0ed2ee814055
https://github.com/RefactoringTools/HaRe/tree/4055ef45f0de3c966fd7841986ab0ed2ee814055
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means of making generic traversals of abstract syntax trees, and a pretty printer. The

language frontend is required for the refactorer to analyse and modify source code,

the generic programming library assists in traversing the complex abstract syntax tree

of a real-world programming language, and the pretty printer outputs as source the

modified AST in a form recognizable by the author of the original program. The

original implementation of HaRe fulfilled these dependencies with two libraries, Programatica,

which provided the language frontend and pretty printer, and Strafunski-StrategyLib a

generic programming library.

3.1.1 Programatica and Strafunski

Programatica was a project at the OGI School of Science and Engineering to build tool

support for validating Haskell programs (Hallgren 2003b). The Programatica team

open sourced their frontend so that other tools could also use it (Thompson et al.

2010). At the time there was no API to access the internals of GHC, so the HaRe

team chose to use Programatica over other available front ends because it was the

simplest front end that supported the full Haskell 98 standard along with a number

of its extensions (Li 2006). Programatica’s Haskell front end is broken up into multiple

components including a lexer, a parser, an abstract syntax tree data type, a module

system, a type checker, and a pretty printer. Programatica’s frontend allows for the

implementers of HaRe to focus on refactoring only rather than having to build all of

these components as well.

Programatica’s abstract syntax contains 20 data types with 110 data constructors in

total. Working with the abstract syntax tree directly would introduce a large amount

of "boilerplate" code into HaRe that would make maintenance and reusability more

difficult (Li 2006). Instead HaRe used Strafunski-StrategyLib, a combinator library

for generic programming, to traverse the abstract syntax tree (AST) of the source

code (Lämmel and Visser 2002).

Commonly refactoring a program only modifies small sections of the source program’s
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AST. Renaming a function, for example, will only need to modify the name used in the

binding and places where that name is being used; all other sections of the AST remain

unmodified. A commonly used operation in Strafunski takes a function that works

on a particular data type (or types)2 and extends it to work on all types by leaving

all other types unmodified. Strafunski also provides "strategies" that define how that

extended function will be applied to the syntax tree as a traversal of the tree (Lämmel

and Visser 2002)3. These two mechanisms, extending a function to work over all

types and combinators that define how functions will be applied to a tree of values,

are common to many generic programming libraries. A more specific example of using

generic programming libraries is shown in Section 3.3.

These two dependencies allowed the original implementation of HaRe to obtain

the abstract syntax tree of source code to be refactored, traverse and transform that

AST, and output the modified program. All these tasks are things that the current

implementation of HaRe needs to do but the dependencies that it relies on have changed

somewhat. The Haskell standard was updated in 2010 (Marlow et al. 2010) and GHC

continues to expand the number of language extensions it supports. Unfortunately

Programatica has not kept up with these changes and does not support anything beyond

Haskell 98. At the same time GHC’s own API has been defined and matured so

that it can replace Programatica as HaRe’s front end. HaRe now relies on this and

a few other projects for its language frontend. For generic traversals "Scrap Your

Boilerplate" (Lämmel and Jones 2003), has been added as a dependency though Strafunski-

StrategyLib is still used in some of the older parts of HaRe’s code base and when certain

traversal schemes that Strafunski provides are needed.

2In the renaming example this could be the operation that checks if a variable is the one being renamed
and replaces it with the new name.

3E.g. full top-down or full bottom-up.
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3.1.2 HaRe’s original refactorings

HaRe’s original refactorings fall into three categories, structural, module, and data-

oriented refactorings.

3.1.2.1 Structural Refactorings

Structural refactorings principally concern the name and scope of entities defined in a

program (Li 2006). These refactorings target functions, and smaller sections of code.

A traditional example of this is the renaming refactoring. Renaming is the most basic

refactoring. The purpose of renaming is to change the name of a given entity. A

renaming refactoring could target a variable, function name, type, or any other entity

that a programmer can assign a name to. This refactoring allows for the names used in

a program to truly reflect what that program is actually doing.

Though these refactorings target small pieces of code, the changes made to the

code base can affect modules throughout the codebase. The renaming refactoring, for

example, can affect any other module that uses the renamed object.

Other examples of structural refactorings include Deleting a Definition, Duplicating

a Function, and Adding an Argument (Li 2006, p. 15).

3.1.2.2 Module Refactorings

Module refactorings concern the imports and exports of an individual module, or the

relocation of definitions between modules (Li 2006, p. 20). A simple refactoring in this

category would be "clean an import list," which analyses a module’s import list and

removes redundant import declarations. Another example of such a refactoring would

be the "move a definition" refactoring. As its name suggests, move a definition takes a

definition from one module and moves it to another and fixes the imports and exports

of any affected modules. For example if we were moving some function foo from

module A to module B any external dependencies of foo needed to be imported into B

and if those dependencies are no longer used in A then the relevant import statements
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should be removed. If foo is still being used in A then A needs to import B (if it does

not already do so). Finally any other modules that currently depend on foo need to

now import B (if it’s not already imported) and remove the import of A (if none of A’s

other definitions are used).

3.1.2.3 Data Type Based Refactorings

The third category of refactorings are those that are associated with data type definitions (Li

2006, p. 21). "Add field names" is a good example of a data-oriented refactoring. The

add field names refactoring will add field names to a data type. These names can then

be used as selector functions that make extraction of a particular part of a type a simple

function call. The new field names are generated by HaRe but can be renamed by the

user (Li 2006).

These original refactorings were chosen to be basic yet still useful, and for their

ability to give insight into the issues surrounding implementing an automated refactoring

tool (Li 2006). In addition to the refactorings that were implemented by HaRe’s developers,

an API was exposed so that other developers could implement their own refactorings

this is discussed in more detail in Section 3.1.3.

3.1.3 The HaRe API

Early in the development cycle of HaRe, it was restructured to expose an API for

implementing refactorings and general Haskell program transformations (Li, Thompson

and Reinke 2005). The HaRe API contains a collection of functions for program

analysis and transformation of Haskell 98 programs. These functions, along with the

functionality provided by Strafunski and Programatica, form the basis for implementing

basic refactorings (Li, Thompson and Reinke 2005).

The HaRe API exposes the full Programatica abstract syntax for Haskell 98 to the

user but because of generic programming with Strafunski only the to be transformed

parts of the AST have to be explicitly referenced in a refactoring (Li, Thompson and
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Reinke 2005). Another key feature of the API was to hide layout and comment preservation

allowing the programmer to focus on program transformation instead. Each subtree in

the AST is tagged with its absolute location in the source file. Any modifications to

the AST will change the location of all elements that occur after the change. The API

abstracts over this cascade of changes that follows even the simplest of modifications.

The HaRe API transformation functions modify the token stream and the AST simultaneously

which keeps refactoring definitions free of this location bookkeeping (Li, Thompson

and Reinke 2005). The token stream of a program is produced by the lexer, and is a list

of all of that program’s tokens in the order that they appear. The complete format of a

program is only stored in the token stream but the full structure of a program is only

clear when working with the abstract syntax tree. This means that refactoring’s want to

reason about the AST of source program but, to preserve formatting, must make sure

that all modifications made to the program are also reflected in the token stream.

The overall goal of the HaRe API is to help ensure the correctness of new refactorings

by limiting the amount of code required that is not related to program transformation,

and isolating common error sources caused by having to keep the AST and token stream

synced (Li, Thompson and Reinke 2005). This design goal still guides the development

of HaRe, and many of the functions that were provided in the original HaRe API have

been ported to HaRe’s latest implementation.

As was mentioned in Section 3.1.1, HaRe’s dependencies have changed somewhat

in its current implementation. HaRe originally used Programatica as its front end,

now the language front end is composed of several projects, the GHC API (GHC

API 2016), ghc-mod (Gröber 2017), and ghc-exactprint (Zimmerman and Pickering

2016). The following sections will describe these dependencies as well as Scrap Your

Boilerplate (Lämmel and Jones 2003), another generic programming library, and how

HaRe currently uses them.
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Figure 20: GHC Compiler stages.

3.2 The GHC API

Rather than being a monolithic executable, the Glasgow Haskell Compiler (GHC) is

composed of several smaller components that each correspond to a separate compiler

stage. GHC’s executable consists of a lightweight main function that ties together the

smaller components (Marlow and Peyton Jones 2012). These components are exposed

to users and this is what constitutes the GHC API.

3.2.1 Compiler stages of GHC

Some of the major components and the order in which they are used in GHC are shown

in Figure 20 which has been adapted from Marlow and Peyton Jones (2012). This

Figure is not a complete description of all of GHC’s components, just the parts relevant

to HaRe. The full diagram can be found in (Marlow and Peyton Jones 2012). The label

after each compiler stage indicates the type of AST that is produced by that stage.

The top level data type for all of the GHC abstract syntax is HsSyn (Marlow and

Peyton Jones 2012). HsSyn is parameterised by some identifier type; each compiler

stage produces a different type of identifier with the additional information that stage

produces. For example the typechecker takes in an AST parameterised by Name and

returns an AST parameterised by Id which is a Name with additional type information.

3.2.2 GHC’s Name Types

There are five name types that GHC uses, they are:

• OccName is the simplest type of name. It is just a wrapper around a FastString,

which is an array of bytes, and an optional NameSpace. An OccName is
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contained in each of the other four identifier types. A NameSpace is an simple

descriptor of what type of name the OccName comes from such as value, type

constructor, or data constructor.

• RdrName names are produced by GHC’s parser. RdrNames are essentially just

an OccName with optional module information if the source name has been

qualified.

• Names are produced by the renamer, the component that resolves every name’s

scoping and binding. A Name contains an OccName and a Unique that differentiates

Names that have the same OccName. A Unique is just an integer but it is

generated by GHC in such a way that it is guaranteed to be unique. They have

also had their scoping and binding resolved, so each Name contains the source

span where that name was defined and a data type that describes what sort of

Name it is (e.g. a name defined internally in the module or a name from another

module).

• Id & Var are the identifiers produced by the typechecker.4 These identifiers

contain a Name, and a Unique. Finally these names also contain the type of the

variable they represent.

These identifier types change throughout the compilation process but these names

only parameterise the syntax tree, the shape of the tree itself stays the same throughout

compilation.

3.2.3 GHC’s syntax tree

GHC’s abstract syntax is currently made up of over 90 data types. Many of those types

have multiple constructors; the expression data type HsExpr for example has over 40

constructors. This section will briefly introduce the structure of GHC’s abstract syntax

tree.
4Id is just a synonym for Var.
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1

2 type Located e = GenLocated SrcSpan e

Figure 21: The located type.

1 type LHsExpr id = Located (HsExpr id)

Figure 22: The located expression

3.2.3.1 Common syntax types

The most common type in any given piece of GHC abstract syntax would be a Located

as seen in Figure 21.

Located is used to tag syntax elements with their start and end positions in a

source file. The SrcSpan contains the filename from which the span comes and then

the start and end columns and start and end lines that the span covers.5

There are located versions of many of the AST types. For example, HsExpr is the

type that represents expressions, and there is a related type LHsExpr that represents a

located expression whose definition is shown in Figure 22.

The HsExpr type represents much of the Haskell language such as function application,

lambdas, if and case statements. Pattern matches are represented by a

MatchGroup type. Each MatchGroup contains a list of Matches and some typing

information. Consider the case statement in Figure 23. This would be parsed into

the HsCase constructor of HsExpr. This constructor is seen in Figure 24. The first

constructor argument represents the expression that the patterns are matched against

(the tuple (x,y) in this case). The abstract syntax tree of this expression is shown

in Figure 25. The second argument to HsCase represents all of the matches in the

case statement. MatchGroups are used to represent any code that associates some

patterns with a right hand side expression. Function bindings, lambda expression, and

case statements all use MatchGroups.
5GHC has small optimisation where if a span exists entirely on a single line it only stores the single

line number and the start and end column, instead of storing the same line number twice.
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1 case (x, y) of
2 (Just i, Just j) -> Just (i+j)
3 (Just _, Nothing) -> x
4 (Nothing, Just _) -> y
5 (Nothing, Nothing) -> Nothing

Figure 23: A case statement

1 HsCase (LHsExpr id) (MatchGroup id (LHsExpr id))

Figure 24: The HsCase constructor

In the case expression from Figure 23 each of the four pattern matches is a Match

in the expressions MatchGroup. Each Match associates a left hand side pattern with

a right hand side clause.

3.2.3.2 The syntax tree

The previous section gave a brief overview of GHC’s identifiers and its representation

of expressions. This section describes the broader picture, the representation of whole

Haskell programs.

According to GHC a Haskell program is simply a list of modules.6 Inside of GHC

each module is represented by an HsModule. This top level structure keeps track of

everything that the module imports and exports, and a list of all the declarations that

the module defines. Declarations (of type HsDecl) are what represent everything that

can be defined in Haskell.

The HsDecl type is used as a wrapper around other types. Bindings (of functions

and/or values), instance, and type class declaration are differentiated by HsDecl’s

constructors. A few of the more common HsDecl constructors are shown in Figure 26.

HsDecl provides a high level categorisation of what type it is. There is very little

information stored at this level, the inner type is the "payload" of the declaration (e.g.

6This is a very simple view and additional tools are needed to properly represent "projects" which is
the context that most Haskell programs exist inside of. This is discussed further in Section 3.5.1.
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1 (L {case.hs:(3,11)-(7,31)}
2 (HsCase
3 (L {case.hs:3:16-21}
4 (ExplicitTuple
5 [
6 (L {case.hs:3:17}
7 (Present
8 (L {case.hs:3:17}
9 (HsVar
10 (Unqual {OccName: x}))))),
11 (L {case.hs:3:20}
12 (Present
13 (L {case.hs:3:20}
14 (HsVar
15 (Unqual {OccName: y})))))]))

Figure 25: The fragment of parsed abstract syntax representing the expression being
pattern matched in Figure 23.

1 data HsDecl id =
2 TyClD (TyClDecl id)
3 | InstD (InstDecl id)
4 | ValD (HsBind id)

Figure 26: A subset of HsDecl constructors

HsBind or TyClDecl). These payload types are what store the type and expression-

level abstract syntax of Haskell that was described in the previous section.

Some notable payload types are TyClDecl, InstDecl, HsBind, and Sig.

TyClDecl represents a family, type synonym, data, or type class declaration. The

InstDecl is used to represent the instance declarations for type classes, and data or

type families. The real workhorse of the language is HsBind. HsBind represents

functions and pattern bindings (e.g. (x,y) = (1,2)). The HsBind type also has

constructors that are introduced by the type checker such as dictionary binding. Finally

Sig is the data type that represents type signatures.

GHC’s abstract syntax, for the most part, resembles the syntax described in the

Haskell 2010 report. Types in GHC’s syntax may have additional constructors to



CHAPTER 3. BACKGROUND: REFACTORING HASKELL IN HARE 51

support GHC’s language extensions but the broader AST structure stays the same for

most programs. The syntax for language extensions can be quite extensive and can

make the documentation of the GHC API difficult to understand.

3.3 Generic programming

The need for a generic programming library, as previously discussed in Section 3.1.1,

remains the same when using the GHC API’s AST as opposed to Programatica’s.

Currently HaRe still uses Strafunski-StrategyLib as well as another library, Scrap Your

Boilerplate. Scrap Your Boilerplate (SYB) is a generic programming library developed

by Ralf Lämmel and Simon Peyton-Jones (Lämmel and Jones 2003).

SYB is included with GHC and has become the Haskell community’s standard

generic traversal library, however HaRe still uses Strafunski because it provides “stop”

traversals. These traversals (stop-top-down, type preserving, and type unifying) descend

the tree until the strategy “succeeds” (that is, the type of the transforming function’s

parameter is found) and then stops. Essentially it cuts a line across the abstract syntax

tree where everything below the line is unvisited. This traversal is useful when refactoring

because of how the ASTs types are nested within each other. For example, when a

refactoring modifies the body of a function the stop traversals ensure that when the

transformation is applied, it is applied with the expression representing the whole

binding rather than sub-expressions.

3.3.1 Generic Traversals

The Stratego/XT library was one of first systems for programming tree transformations

in a systematic way (Visser 2004). Stratego developed the idea of a transformation

strategy. A strategy is the combination of a term rewriting function and a traversal

function that describes how that rewriting function should be applied to a tree of terms.

Stratego provides combinators that help construct term rewriting functions and tree
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1 type Name = String
2

3 data Expr =
4 Value Int
5 | Var Name
6 | Add Expr Expr
7 | Assign Name Expr
8 deriving(Data,Typeable)

Figure 27: A simple expression type.

traversal functions (Visser 2004).

Stratego is an untyped transformation system and so was difficult to transform

statically typed Haskell in a way that respects its types. Strafunski was “largely inspired”

by Stratego, but for a statically typed context (Lämmel and Visser 2002).

3.3.2 Scrap Your Boilerplate

Scrap Your Boilerplate (SYB) is a generic traversal library for Haskell that was inspired

by Strafunski (Lämmel and Jones 2003). SYB comes with GHC and has become the

most used generic programming library in the Haskell community.7

Suppose there was a simple expression language that contained integers, integer

addition, assignment, and variables. This language is represented by the type defined

in Figure 27 and a function that works over this type to rename a variable "x" to "a" is

defined in Figure 28.

There are four cases to the renameXVar function. The first case matches when

renameXVar is called with a (Var "x") value. This is one of the cases that the

function will replace the "x" name with an "a" name. The second case matches an

assignment and is the other case when actual “work” happens. In this case the function

needs to check if the variable being assigned is an "x" or not, if it is then the name being

assigned is replaced with "a" otherwise the name remains the same. Then there is a

7According to http://packdeps.haskellers.com/reverse

http://packdeps.haskellers.com/reverse
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1 renameXVar :: Expr -> Expr
2 renameXVar (Var "x") = Var "a"
3 renameXVar (Assign c e) =
4 | c == "x" = Assign "a" (renameXVar e)
5 | otherwise = Assign c (renameXVar e)
6 renameXVar (Add e1 e2) = Add (renameXVar e1) (renameXVar e2)
7 renameXVar v = v

Figure 28: A function to rename the "x" variable.

recursive call replace the name in the right hand side of the assignment. The other two

cases will not directly modify an expression. In the Add case there is a recursive call

to perform replacements in its sub-expressions. The final case is a catch-all term that

returns its parameter. This will be called when renameXVar is called with a Value

or a Var that is not "x".

This is fairly straightforward and doesn’t take much time to write. However, if

subtraction was added to the definition of expression renameXVar would need to be

updated as well to include a recursive call very similar to the addition case. These

duplicated recursive calls are just boilerplate code (Lämmel and Jones 2003). In this

small example having a few of these types of cases is not an issue. However, as

the expression type begins to approach the size of an actual programming language

writing traversals like renameXVar would become much more time-consuming and

a nightmare to maintain.

The reduction of boilerplate code like this is the point of SYB. SYB allows us to

rewrite renameXVar as shown in Figure 29.

This example nicely illustrates the four key components of an SYB traversal (Lämmel

and Jones 2003).

• The function that performs the "interesting" part of the traversal

• A type extension for that function

• A generic traversal combinator
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1 import Data.Generics
2

3 rename :: Name -> Name
4 rename "x" = "a"
5 rename n = n
6

7 renameXVar :: Expr -> Expr
8 renameXVar = everywhere (mkT rename)

Figure 29: renameXVar written using SYB

• The data type to be traversed must be an instance of the Typeable and Data

classes (as explained below)

From the earlier example the "interesting" part of this traversal is the rename function,

because this function contains the code that actually changes the name "x" to the name

"a." The mkT function extends the type of the rename function to Typeable a =

> a -> a.

Type extension allows for the rename function to work over any members of the

Typeable class rather than just Names. The extended version of rename will work

as expected when provided with an argument of type Name, and if an argument of any

other type is provided the traversal will continue to descend the tree by moving onto

the argument’s children, if it has any, and returns the argument unchanged if it doesn’t.

The everywhere function is this traversal’s generic combinator. everywhere

will apply a generic function to every node in a tree in a bottom-up manner, as long

as that tree is of type Data and Typeable. A member of the Typeable class has

defined a generic representation of itself and members of the Data class implement

generic folding operations. As you can see that the Expr data type, from Figure 27,

derives both the Typeable and Data classes so it can be traversed by everywhere.
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1 bVars :: Expr -> [Name]
2 bVars e = everything (++) ([] `mkQ` f) e
3 where f (Assign nm _) = [nm]
4 f _ = []

Figure 30: A generic function that collects all bound variables from an expression.

3.3.2.1 Types of Generic Algorithms

SYB defines three types of generic algorithms: transformations, queries, and monadic

transformations. The rename example from the previous section is an example of a

transformation. Transformations preserve the type of the structure that is traversed.

Queries, on the other hand, are "type unifying" algorithms. Queries are good for

summarizing information contained in a data structure. A query would be used, for

example, to traverse an expression and collect all of its bound variables. Using the

same expression type (Figure 27) from the previous section, the following function

extracts all bound variables from a given expression.

everything, as seen in the bVars function from the previous listing, is the

generic query combinator that queries all nodes, top down from left to right (SYB

Package 2014). The first argument to everything is the function it uses to combine

separate results from the query. In this case, the lists of names will be appended

together. The “interesting” function f that actually returns a singleton list of type Name

when applied to a variable binding, and an empty list otherwise. f has been extended

with the mkQ function; mkQ will apply f when possible, otherwise it will just return a

default value, in this case the empty list.

It is also useful to perform monadic transformations. A simple example of this

would be to rewrite the finding bound variables example from previously but instead

the list of found results is stored as a piece of state.

An advantage of monadic traversals is that both querying and transformations can

happen in a single pass. The example in Figure 32 renames every Name in an expression

by adding "_old" as a suffix and stores the original names in a list.
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1 type TransformState = State [Name]
2

3 bVars :: Expr -> [Name]
4 bVars e = execState findVars []
5 where findVars = everywhereM (mkM f) e
6 f :: Expr -> TransformState Expr
7 f e@(Assign n _ ) = do
8 modify (\lst -> n:lst)
9 return e
10 f e = return e

Figure 31: Finding bound variables using the state monad

1 renameVars :: Expr -> TransformState Expr
2 renameVars e = everywhereM (mkM f) e
3 where f :: Expr -> TransformState Expr
4 f (Assign n e) = do
5 modify (\lst -> n:lst)
6 return (Assign (n++"_old") e)
7 f (Var n) = return (Var (n++"_old"))
8 f e = return e

Figure 32: Changing every found name and storing the old names in a list.

This type of generic traversal is very common in HaRe because traversals often

need to make use of a refactoring’s stored state or run something from the GHC API

which needs the features provided by an instance of GhcMonad, all while modifying

the abstract syntax. The GHC API’s operations all work within the GhcMonad that

provides the features GHC needs to compile a single Haskell source file such as IO,

logging warning, exception handling, and keeping track of the compilation session (GHC

API 2016).

3.4 ghc-exactprint

After transforming the abstract syntax tree with generic programming, that abstract

syntax needs to be printed. A challenging part of building a refactoring tool is that a user
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1 f a = (a+ 1 )

Figure 33: A definition with strange spacing.

will not want non-refactored parts of their code to change at all. A source program’s

layout and comments need to be preserved after refactoring.

Prior to GHC version 7.10.1, the location of certain keywords and punctuation (such

as do and let) and user comments were lost after parsing. This made parsing and

then printing an exact copy of a GHC Haskell source file impossible from the AST

alone. GHC’s 7.10.1 release added annotations for the "lost" syntax elements that had

previously not been represented in the parsed abstract syntax (Zimmerman 2015).

The parsed source now includes a map that associates each “lost” keyword with the

source span that the keyword can be found in, and that keyword’s exact location. This

approach was taken to avoid littering the existing AST with functionally meaningless

keyword data (Zimmerman 2015).

Even with the position of every syntax element being recorded, printing a module

after the AST has been modified is not easy. Many AST elements are "located" with

a source span that indicates that element’s exact position in the file. This means that

any change to the AST will require updating the location of all the syntax elements that

occur later in the line at least for single line changes and, in the case of changes that

modify entire lines, every element after that change will need its location to be updated.

Ghc-exactprint simplifies this immensely by allowing us to position elements relative

to their neighbours rather than absolutely (Zimmerman and Pickering 2016). After

parsing a source file, HaRe takes the annotations GHC returns with the parsed abstract

syntax and relativises them using ghc-exactprint. For each syntax element ghc-exactprint

creates a new data type called an "Annotation" which contains an offset that indicates

where this element should be positioned compared to the previous element.

Take for example the definition in Figure 33. The absolute position of the plus sign

is row one column nine (GHC’s locations are one-based) but using ghc-exactprint we
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1 type Name = String
2

3 −−a comment
4 f i = i + 1

Figure 34: The comment is “attached” to the AST of the function f.

instead can think of the position of the plus sign using the offset (0,0) because there

is no space between it and the previous element (the variable a). Using this system

the number literal following the plus sign has an offset of (0,1) because of the single

column of space before it.

The Annotations are stored in a map that is keyed on the parsed location of a

syntax element and the string representation of the AST constructor. In the previous

example the right hand side of the definition is located at the source span (1,7)-(1,13)

which stands for “row one columns, seven through thirteen” and GHC represents this

expression with the HsPar constructor for the HsExpr type. The source span and the

constructor together can be combined to retrieve the annotation data associated with

this fragment of the AST. This syntax tree has two elements associated with it, the

opening and closing parenthesis. Each of these keywords is given its own offset, which

in this case is (0,0) for the opening parenthesis8 and (0,1) for the closing parentheses.

We could infer from the use of the HsPar constructor that this tree is wrapped in

parentheses however the user’s specific spacing would be lost without the annotations.

Comments are another element of a source file that prior to GHC 7.10.1 were "lost"

after parsing. Using ghc-exactprint comments are stored in the annotations associated

with the next piece of syntax. In the code snippet in Figure 34 the comment on line

three is added to the annotations associated with the declaration of the function f along

with a delta position that indicates the comment is a single line before this declaration

starts.
8The offset in this case is (0,0) and not (0,1) as you might expect because the space between the equals

sign and the opening parenthesis is represented in the offset for the entire right hand side expression.
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Figure 35: A diagram of the components of HaRe and their dependencies.

3.5 The current implementation of HaRe

We have just discussed the major components on which HaRe depends. The ghc-api

gives access to the internal representation of Haskell syntax, the generic programming

libraries Scrap Your Boilerplate and Strafunski-StrategyLib allow HaRe to work more

easily with that internal representation, and ghc-exactprint is how HaRe preserves the

source files spacing when writing the output file. The relationship between the dependencies

and HaRe’s components is shown in Figure 35. From this foundation the focus of HaRe

can be on refactoring rather than solving these more generic problems.

Very little, if any, of the code from the original implementation of HaRe is used

today. Development of HaRe has been coordinated through GitHub9 since 2011. When

I began working on HaRe in 2013, Alan Zimmerman had upgraded much of the internal

structure of HaRe to use the GHC API.

The internal structure of HaRe is mostly the work of Alan, however a description

of the current implementation has not appeared in the literature yet and so it has been

described in some detail in this section. My contributions to HaRe are in the development

of the refactorings described throughout this thesis and in the creation of a high level

API for program analysis, synthesis, and transformation which is described in Section 5.3.

9https://github.com/RefactoringTools/HaRe

https://github.com/RefactoringTools/HaRe
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1 newtype RefactGhc a = RefactGhc
2 { unRefactGhc :: GM.GhcModT (StateT RefactState IO) a}

Figure 36: HaRe’s Monad RefactGhc

3.5.1 The Internal Structure of HaRe

The GHC API exposes the functionality needed to compile a set of Haskell source

files. In reality Haskell programs consist of more than just single source files without

dependencies. Projects are organised using build tools such as Cabal (Jones and Coutts

2016) or Stack (Stack contributors 2017) that handle acquiring dependencies with the

correct versions, running tests, compilation, and packaging binary code into an executable

for the programmer. HaRe needs to be aware of the context that these tools provide

because refactorings may change multiple modules or modify modules that import

modules from external dependencies. In HaRe’s case, ghc-mod provides a monadic

context that handles these build environments and compiler setup (Gröber 2017). Within

ghc-mod’s context, HaRe keeps track of the state of the refactoring session.

Figure 36 shows the definition of HaRe’s monad that each refactoring runs in.

RefactState is an algebraic data type that keeps track of all the settings for the

refactoring session, the abstract syntax trees of the current target file, and filepath for

refactoring a single file.

Even though the GHC API produces a separate version of AST for each compilation

stage (parsing, renaming, and type checking), the annotations are only included in the

parsed AST. Once a refactoring has finished, all of its changes need to be reflected in

the parsed abstract syntax tree and its annotations because this is the structure that ghc-

exactprint works over. HaRe’s state still contains all three of the syntax trees because

the renamed and typed sources are useful for the additional type and scope information

they contain about a source file.
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3.5.2 HaRe’s API

Modifying and reasoning about GHC’s abstract syntax and maintaining the associated

annotations is still a complex task, even with help from HaRe’s dependencies. HaRe

defines its own API to help fill this gap between its dependencies and its refactorings.

In addition to the obvious functions that are required for running a refactoring within

the RefactGhc monad, the API also includes helper functions that make working

with the state easier.

HaRe also defines a large collection of program analysis and transformation functions.

For example, pulling the binding of a top level variable from a module’s abstract syntax

tree is a task that many refactorings have to do, so this functionality is part of HaRe’s

API. There are also small program transformations that are not in and of themselves

refactorings but common low-level modifications that are useful to several refactorings,

such as adding a new import declaration or making a function infix by wrapping it in

back quotes (the ‘ character).

Additionally there are several transformations that do not affect the abstract syntax,

but which change the annotations that format ghc-exactprint’s output. Adding new lines

before a syntax element doesn’t change the meaning of a program but is important for

a refactoring’s output to be well formatted and easy to read.

HaRe’s dependencies help abstract away the low-level10 details of a language back-

end, build tools, and pretty printing. HaRe’s API tries to close the gap still left between

the dependencies and the refactorings themselves. In the next section we will take a

look at how HaRe’s refactorings are implemented.

3.5.3 Implementing Refactorings in HaRe

HaRe does not enforce any particular structure onto a refactoring implementation. A

refactoring implementation in HaRe needs to do a few things:

10Low level from the perspective of a refactoring at least.
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1. A refactoring must run inside the RefactGhc monad whose state is where the

abstract syntax of a target module is stored.

2. A refactoring is also expected to return a list of "ApplyRefacResults" which

contains an updated parsed AST and annotations, together with the filepath the

AST originated from; this updated AST is what HaRe writes out as the result of

the refactoring.

Beyond those two features, refactorings are free to be implemented however the

programmer chooses. However, certain conventions have been adopted within many of

HaRe’s refactorings. When describing a refactoring one would imagine that checking

preconditions would be the first thing the implementation of that refactoring computes.

A more efficient implementation checks preconditions throughout computation alongside

the AST transformation. For example, the renaming refactoring doesn’t check for name

clashes in client modules until after the source module has been modified. If a name

clash is found in a client module then an error is thrown at that point and the whole

refactoring is rolled back. Though this slows down the time to failure somewhat, it

saves HaRe from traversing every client module twice, once for preconditions and a

second time for rewriting.

Merging precondition checking with transformation saves the refactoring from traversing

parts of the AST multiple times. For example, the renaming refactoring checks for

name conflicts while it descends the AST, replacing the old name with the new one.

Obviously this strategy only works for certain preconditions: the only precondition

for deleting a definition is that the target definition is not used. The transformation

only affects the syntax tree of the definition to be deleted so the implementation of the

refactoring has to do a separate scan of the rest of the target module and any of its client

modules to determine if the target definition is used or not.
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3.5.4 Using GHC’s Abstract Syntax Trees

Each stage of the compiler takes the previous stage’s output and creates its own version

of the tree decorated with some additional information. This provides a challenge when

writing refactorings because all of the changes made to the source needs to be reflected

in the parsed syntax tree. In general the parsed syntax contains enough information

to perform a refactoring. Since the parsed AST is also where changes must be made

for ghc-exactprint to output the modifications, most of the refactorings only look at the

parsed AST. If information is required from one of the other compilation stages it is

either pre-collected at the start of the refactoring, or the SrcSpans that decorate all

of the syntax trees can be used to navigate to the equivalent points in different syntax

trees.

In the same way that a refactoring can be sped up through careful consideration of

how much re-traversing of the abstract syntax tree is absolutely necessary, it is also

important to be mindful of when it is absolutely necessary to traverse through the

other stages’ trees. For the most part HaRe’s refactorings can avoid having to look

up information in either the renamed or typechecked trees. The renaming refactoring,

for example, uses a NameMap which associates every RdrName in the parsed source

with its Name from the renamed source. This allows the refactoring to ensure that the

instance of a variable it is going to rename is actually the targeted variable and not

just a variable with the same name in a different scope. This map is calculated at the

start of the refactoring, so the renamed syntax tree only needs to be traversed once

rather than multiple times to check if each instance of a name that matches the target

variable’s name actually refers to the target variable or if the same name is used again

in a different scope.

Collecting any required information from the other syntax trees up front, is a good

way to limit the amount that these trees are traversed, but often traversing these trees

can be entirely avoided. For example, the “generalising Maybe” refactoring described

in Chapter 4 works on replacing the Maybe type with a more generic type if possible.



CHAPTER 3. BACKGROUND: REFACTORING HASKELL IN HARE 64

Maybe a is a type that represents a computation that may return a value of type a or

fail in some way, this case is represented by a Nothing constructor. One tricky part

about Haskell is that imports can be “qualified,” that is certain modules can force the

values from another module be referred to with a prefix, then variables with the same

name as an imported value can be used without name clashes. This means that it is not

safe to just assume that any constructor named Just or Nothing is actually of type

Maybe. The generalising Maybe refactoring, does not check the type of all the Justs

and Nothings encountered in the target program, instead the refactoring begins by

checking the imports of the target module to see if the Data.Maybe module has been

given a qualification and takes into account that the target module will refer to Maybe’s

constructors with a qualified name. After that check, since Maybe is included in the

prelude it is safe to assume that any Justs and Nothings in the target program are

of type Maybe.

One refactoring that does need to reference the typed syntax tree fairly heavily is

the List to Hughes List refactoring described in Section 4.5. This refactoring needs to

change the type of entire subtrees, so it references the typed syntax tree to see what the

type of the current node is during the transformation. This is fairly straightforward

due to the source being tagged with SrcSpans that are consistent throughout the

compilation process. This means that a piece of typed abstract syntax is the same as a

particular parsed syntax subtree if their SrcSpans are the same. Searching through the

later compilation stage’s trees is as simple as doing a full traversal of the tree searching

for the appropriate SrcSpan.

3.6 Summary

The work done for this thesis was fortunate enough to be built upon the contributions

of others who made HaRe and its dependencies. The focus of this chapter has been the
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current implementation of HaRe11 and some of its notable dependencies.

The next chapter will begin to describe the major contribution of this thesis: the

design and implementation of data-driven refactorings. The next chapter will begin the

discussion of what is a data-driven refactoring and some simple refactoring designs.

11Which for the purpose of this thesis is release v0.8.4.1 on GitHub: https://github.com/
RefactoringTools/HaRe/tree/4055ef45f0de3c966fd7841986ab0ed2ee814055

https://github.com/RefactoringTools/HaRe/tree/4055ef45f0de3c966fd7841986ab0ed2ee814055
https://github.com/RefactoringTools/HaRe/tree/4055ef45f0de3c966fd7841986ab0ed2ee814055


Chapter 4

Data-driven refactorings

Some refactorings focus on rewriting the structure of a program (e.g. refactoring an if

to case statement), but a data-driven refactoring focuses on the data that a program

works over and how that program manipulates that data. Any changes that a data-driven

refactoring makes to the structure of the program are driven by the data types of that

program rather than being the main motivation of performing the refactoring.

Consider the introducing a type synonym refactoring (that is described in more

detail in Section 4.3), this refactoring adds a type synonym, i.e. a user chosen name, for

some type. The motivation behind this is to ensure that the names of types correspond

to the types that they represent. For example, if some strings are used to represent

customer names in a program, introducing a synonym for strings called Name helps

clarify what kind of data certain strings are supposed to represent. In this way the

refactoring’s changes to the source program are motivated by the data in that program

and the desire for the program’s types to better communicate the nature of that data.

This chapter covers, more specifically, what is meant by data-driven refactorings

by example. It begins with a discussion of data-driven refactorings for imperative

and object-oriented languages in Section 4.1. Imperative programs are written as a

sequence of steps that modify values to a desired output state. Types in an object-

oriented program exist in a strict hierarchy, every type is a sub-type of a top type

66
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commonly known as “Object.” These two factors mean that object-oriented data-

driven refactorings modify the hierarchy, by moving methods between related classes

or extracting new child or parent classes, while leaving the structure of the code mostly

unchanged. The rest of this chapter will describe data-driven refactorings for functional

programs.

In comparison to imperative programs, functional programs describe the relationship

between the input and output data. Functional programming languages also tend to

offer a much richer type system than object-oriented languages where data types are

typically either classes or a non-user expandable set of primitive types. These two facts

mean that the structure of a functional program can be determined by the types it works

over to a much greater degree than in imperative languages.

Section 4.3 describes the “introducing a type synonym” refactoring. This is the

renaming of data-driven refactorings: neither the structure nor the type of the target

program changes, just how the program refers to the types it works over. Next, Section 4.4

describes a generalisation refactoring. This thesis outlines two generalisations, one

(described in Section 4.4) makes code of a specific type (Maybe) work over a type

class (MonadPlus or Monad) instead. The other generalises code using the functions

defined in a particular type class to instead use the functions of it’s superclass (covered

in Chapter 6). Finally Section 4.5 describes a refactoring that tranforms programs that

work over lists to instead use an alternate implementation of lists. The refactoring

method described in this chapter could be applied to refactor between any types that

can be “projected” onto another type. A type “A” can be projected onto some type “B”

when all of the information stored in an instance of A can be transformed to be of type

B instead.



CHAPTER 4. DATA-DRIVEN REFACTORINGS 68

4.1 Object-Oriented Data Refactorings

The origins of refactoring are deeply rooted in the object-oriented world (Griswold

(1992); Opdyke (1992)), though its origins can be found in work on transforming

Algol (Burstall and Darlington 1977). The canonical catalogue of refactorings remains

Martin Fowler’s Refactoring: Improving the Design of Existing Code (Fowler 1999).

Fowler’s catalogue of refactorings are all written in Java though he purposefully avoided

using any features that were unique to Java, so that the refactorings could be applied in

many different object-oriented programming languages.

As a functional programmer going through this catalogue there seem to be three

types of refactorings.

• Refactorings that are directly applicable in a functional language

• Refactorings that could be adapted for use in a functional language

• Refactorings not applicable to a functional language

That first type of refactorings are typically structural refactorings and their usefulness

to a functional program is easily understood. Refactorings like renaming or adding a

parameter don’t depend on object-oriented features existing in the target language.

The third type of refactorings are so dependent on features associated with object-

oriented languages that they are impossible to implement or have no equivalent in a

functional language. The "remove setting method" refactoring depends on the common

OO pattern of each field of a class having "getter" and "setter" methods that retrieve

or modify that field respectively. This pattern, on the other hand, is not as common in

functional languages because most do not support objects, and immutability makes a

"setter" function irrelevant. OCaml would be a notable exception to this rule: OCaml

supports objects and allows the programmer to mark variables as mutable, and so getter

and setter methods are possible.
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1 let mInt init_i = object
2 val mutable i = init_i
3

4 method get_i = i
5 method set_i new_i =
6 i <- new_i
7 end

Figure 37: An OCaml object with getter and setter methods.

The OCaml object from Figure 37 would be a valid target for this refactoring.

However these methods are not as common as they are in imperative object-oriented

languages with mutable data as the default, so a refactoring to remove a setter method

is of limited applicability even for OCaml.

The refactorings that could be adapted from Fowler (1999) are much more interesting

to a functional programmer. The specifics of these refactorings are not directly applicable

to functional programs but the underlying motivations are relevant to any programming

paradigm.

For example, the motivation for the "Replace Data Value with Object" refactoring

in (Fowler 1999, pg. 175) reads as:

Often in early stages of development you make decisions about representing

simple facts as simple data items. As development proceeds you realize

that those simple items aren’t so simple anymore. A telephone number

may be represented as a string for a while, but later you realize that the

telephone needs special behavior for formatting, extracting the area code,

and the like. For one or two items you may put methods in the owning

object, but quickly the code smells of duplication and feature envy1. When

the smell begins, turn the data value into an object.

This refactoring extracts a field that was some primitive type into an object. The
1Feature envy is when the methods of one class are more concerned with the features of another

object than the one it is in. In this phone number as strings example feature envy would be seen when
objects are doing the area code and formatting calculations for the object that contains the phone number.
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1 class Order {
2 public Order (String customer) {
3 _customer = customer;
4 }
5

6 public String getCustomer() {
7 return _customer;
8 }
9

10 public void setCustomer(String arg){
11 _customer = arg;
12 }
13

14 private String _customer;
15 }

Figure 38: The Order class

example from (Fowler 1999) works over an order class with a string that represents the

customer that placed an order.

The refactoring creates a new customer class that has a string field with a getter

method as seen in Figure 39. The customer class doesn’t add any additional features

but the extra layer of abstraction that has been added sets up the code base for further

development. The customer object could have fields added that represent contact info or

further demographic information without polluting the order class with order-irrelevant

data.

Functional programmers have to make similar data representation decisions to those

the object-oriented programmer make. At the start of a project representing a customer

by their name could be reasonable. As the project develops this can become a serious

limitation and a more robust abstraction could be required.

This section introduced how object-oriented refactorings help build up the data

model over the lifetime of a project. These sorts of refactorings for a language with

a rich type system like Haskell offer many more choices for evolving the data model of

a system. Though a Haskell programmer can take inspiration or directly reimplement
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1 class Order {
2 public Order (String customer) {
3 _customer = new Customer(customer);
4 }
5

6 public String getCustomer() {
7 return _customer.getName();
8 }
9

10 public void setCustomer(String arg){
11 _customer = new Customer(arg);
12 }
13

14 private Customer _customer;
15 }
16

17 class Customer {
18 public Customer(String name){
19 _name = name;
20 }
21

22 public String getName() {
23 return _name;
24 }
25

26 private final String _name;
27 }

Figure 39: The result of the Replace Data Value with Object refactoring when applied
to the customer field of the order class.

several of the canonical Fowler refactorings there may be additional refactorings that

are completely functional with no OO counterparts, like monadification (Chapter 7) or

abstraction of expressions into a local where or let clause. The rest of this chapter

will describe refactorings for Haskell that support data model evolution.
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4.2 Data-Driven Refactorings in Haskell

Haskell offers a rich environment for data representation. The Haskell 2010 standard

defines several types that are included in the prelude, including tuples, lists, characters,

strings (which are just lists of characters), several types of numbers, and the function

type. GHC also provides more types than the standard requires and programmers can

construct new algebraic and abstract data types or rename existing types with type

synonyms. Type classes support overloading as well. The standard library of GHC

comes with many type classes that can help produce powerful abstractions (Yorgey

2009b). Contrast this with how most object-oriented type systems are either unified,

where every type is a subclass of some top level Object class, (e.g. C# or Ruby) or

there are a fixed set of predefined primitive types as well as the object hierarchy (e.g.

C++ and Java’s type systems).

These two different approaches to type systems both have pros and cons, which

have sparked a vigorous (and quite protracted) debate. The goal of this thesis is not

to add to this debate, instead it is to build from a number of general principles that

transcend the debate.

• Data representation is a language independent problem that must be answered in

every project.

• The way a project manages and represents its data is very likely to evolve over a

project’s lifetime and this is indeed desirable.

• Refactoring is a structured way to support this evolution.

• Refactorings for a language like Haskell need to take a different approach than

those for object-oriented languages, particularly when refactorings are data-driven

rather than “structural.”

• Data representation in a rich type system like Haskell’s, in some sense, determines

the structure of the program.
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1 type Foo = (String, Int)
2

3 f :: Foo -> Foo
4 f x@(_, 0) = x
5 f (str, i) = (tail str, i-1)

Figure 40: A simple type synonym.

1 data Order = Order {customer :: String}
2

3 numberOfOrdersFor :: [Order] -> String -> Int
4 numberOfOrdersFor orders name = length (filter (\ord -> name

== (customer ord)) orders)

Figure 41: Using an algebraic data type for order.

4.3 Introducing a Type Synonym

Type synonyms in Haskell, as mentioned previously, are a way to name an existing

type. A simple example can be seen in Figure 40.

Any place that where the Foo synonym is in scope the new name can be used

to refer to any value of type (String, Int). In fact "Foos" and "(String,

Int)s" are completely interchangeable. Introducing a synonym is a good way to

quickly and simply name types to suggest their specific use in the current application.

Returning to the example, used in Section 4.1, of an order type that keeps track

of the customer who placed the order used in, from Fowler (1999), Figure 41 shows

a Haskell implementation of this type and a function that counts how many orders a

particular customer has placed in a list of orders.

The initial representation of a customer as just a String is underdeveloped. This

representation of a customer only allows the system to store a single “field” of information

per customer, as the system becomes more developed it will want to associate more

information with a particular customer and this representation will need to change.

Introducing a customer synonym is a simple step that sets up the code base for

further development. The synonym will clearly mark which strings in the program
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1 type Customer = String

Figure 42: The customer synonym

1 printThankYou :: String -> Order -> IO ()
2 printThankYou businessName order = do
3 putStrLn ("Thank you " ++ (customer order) ++ " for your

order.")
4 putStrLn (businessName ++ " hopes to see you again soon!")

Figure 43: The printThankYou function

stand for customers and which do not.

The “introducing a type synonym” refactoring works by taking a type and a valid

synonym name (as per the Haskell 2010 standard (Marlow et al. 2010)) and creates

a new synonym. In this case the type is String and the synonym name should be

something like "Customer." The (only) precondition of the refactoring is that the

new synonym’s name cannot cause a name clash with any other types. Also if the

synonym is exported to any client modules that define something with the same name,

these modules will need to qualify the import of the synonym.

After this, the next part of the refactoring involves replacing the appropriate uses of

the type with the new synonym. This part of the refactoring is difficult to automate and

needs to be interactive, which is not a feature of HaRe yet. The current implementation

of this refactoring takes in a flag as an argument that determines if the refactoring will

replace all instances of the type with the newly introduced synonym. This is not the

ideal implementation of the refactoring, but there is no way to infer which instances

of String (in the case of this example) should be replaced with the Customer

synonym. The code from listing 41 can have all of the string instances replaced by

Customer because all the strings are being used to represent a customer. However,

consider the printThankYou function in Figure 43 which has type String ->

Order -> IO () and prints out a customized “thank you” message to the customer

for their order.
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1 type Customer = String
2

3 data Order = Order {customer :: Customer}
4

5 numberOfOrdersFor :: [Order] -> Customer -> Int
6 numberOfOrdersFor orders name = length (filter (\ord -> name

== (customer ord)) orders)
7

8 printThankYou :: String -> Order -> IO ()
9 printThankYou businessName order = do
10 putStrLn ("Thank you " ++ (customer order) ++ " for your

order.")
11 putStrLn (businessName ++ " hopes to see you again soon!")

Figure 44: The program after adding a synonym for String.

Though the first argument to printThankYou is a String it does not represent

a customer therefore should not be replaced by the new synonym. The implicit meaning

of the first argument hasn’t been encoded in the type system so the programmer has to

make a decision during the refactoring to make their intention for each instance of

String clear. The final result of the refactoring can be seen in Figure 44.

This transformation might seem like too small of a step. Wouldn’t it be preferable

to introduce a more powerful abstraction such as an algebraic data type? One of the

principles of the Agile Manifesto is "simplicity" which is described as "maximizing the

amount of work not done is essential" (Fowler and Highsmith 2001). The work not done

in this case is the introduction of a more complex customer representation. This small

step does clearly differentiate the strings that represent customers from other strings

that represent other types of data.

Small refactorings are also a good practice for tool builders. Creating multiple small

composable steps that can be used in multiple ways is much more flexible than large

“monolithic” style refactorings.
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1 f :: Num a => a -> a -> a
2 f x y = x + y
3

4 f_ref :: Num a => (a -> a -> a) -> a -> a -> a
5 f_ref op x y = x `op` y

Figure 45: Generalising the + operator from the function f.

4.4 Generalisation

A common type of refactoring is generalisation. A generalising refactoring that is

structural would be the “generalise a definition” refactoring from (Li 2006). This

refactoring takes an expression from inside of a function and refactors it so that expression

is passed as a parameter instead. Figure 45 shows two functions, f and f_ref, where

f_ref is the function f after the generalise a definition refactoring is performed on it.

The refactored function has become more general because instead of only being used

for summing two numbers, it can be reused for any binary operations on numbers.

In an object oriented language generalisation refactorings deal mostly with either

“moving methods around a hierarchy of inheritance,” or creating new classes that change

the hierarchy (Fowler 1999). Examples of generalising refactorings for OO languages

as described in (Fowler 1999) are pull up method, push down method, extract subclass,

and extract interface. Interestingly about half of the generalisation refactorings described

by Fowler are better described as specialisations, such as push down method, because

they make general code more specific by moving it further down the object hierarchy.

In object oriented languages, moving elements “up” the hierarchy (as in from subclass

to superclass) is a generalisation, and doing the opposite is specialisation. This should

make intuitive sense; there are more fruits than just oranges, so moving a method from

the orange class up to its superclass, the fruit class, makes that code more general

because it can now be applied to all subclasses of fruit, not just the orange class.

Code in functional languages doesn’t inhabit the rigid hierarchy of objects that

exists in OO languages, so generalisation can take on more forms. The core effect that
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a generalisation refactoring has is taking something specific (such as a sub-expression,

or an instance of a particular type) and makes it more general in some way. A sub-

expression may be extracted into a parameter which makes the target function more

general because the behaviour that was previously set by the extracted sub-expression

is now determined by the expression passed in via the new parameter. Specific instances

of types are generalised by being replaced with a type class. The purpose of type classes

is to provide a generic interface for some behaviour, so replacing a specific type with a

type class means that the target code is more general because now it can be applied to

the set of types that implement that type class, not just a single type.

This section describes refactoring functions that use the concrete Maybe type to

instead use one of the type classes it is an instance of, either Monad or MonadPlus.

These refactorings will take a function of type a -> Maybe b and rewrite it to

become either Monad m => a -> m b or MonadPlus m => a -> m b. These

refactored types are a generalisation of the original function because instead of only

being applicable to a single type (Maybe in this case) the refactored function can now

be used with data of type Monad or MonadPlus.

4.4.1 Generalising Maybe

This section describes a refactoring that rewrites programs of type Maybe a to use

the MonadPlus type class or, if possible, the Monad type class. Maybe is a data

type whose declaration is shown in Figure 46. Maybe represents a computation that

can fail or return a value of type a. When a computation has failed Maybe represents

this “result” with the Nothing constructor. When a calculation succeeds then Maybe

returns the result wrapped with the Just constructor. Maybe is a commonly used type

in Haskell programs, it also implements many common type classes including Monad

and MonadPlus.

The definition of Maybe as well as its instance declarations for the Monad and

MonadPlus type classes are shown in Figures 46 and 47. The declaration of the
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1 data Maybe a = Nothing
2 | Just a

Figure 46: The Maybe data type declaration.

1 instance Monad Maybe where
2 return = Just
3

4 (Just a) >>= f = f a
5 Nothing >>= _ = Nothing

Figure 47: Maybe’s monad instance definition

MonadPlus type class as well as Maybe’s definition of it are shown in Figure 48.

4.4.2 Refactoring Maybe to MonadPlus

MonadPlus is the obvious generalisation of Maybe. Maybe encodes failure using the

Nothing constructor and its definition of mplus chooses to discard failed computations

on the left in exchange for a possibly successful one. This behaviour is exactly what

MonadPlus is designed to encapsulate. This section describes a refactoring for rewriting

functions that use Maybe to use the MonadPlus type class instead.

The function showNat takes a pure value and returns a Maybe, instead of taking in

a Maybe and returning another Maybe as in the previous example. The more general

version of showNat needs to be able to express the idea of failure that MonadPlus

encodes with the mzero operation.

Figure 50 shows the refactored version of showNat. In this case the refactoring can

simply replace the Maybe-specific calls with more general ones. This is very similar to

the way that the expression that made up the anonymous function from Figure 54 was

constructed by changing calls to Just to return and calls to Nothing to mzero.

Due to the return operator of Monad being equivalent to Just and mzero being

supplied by MonadPlus, both of Maybe’s constructors can be replaced with more

general operations. Between these two type classes all of the functionality of Maybe



CHAPTER 4. DATA-DRIVEN REFACTORINGS 79

1 class Monad m => MonadPlus m where
2 mzero :: m a
3 mplus :: m a -> m a -> m a
4

5 instance MonadPlus Maybe where
6 mzero = Nothing
7 Nothing `mplus` r = r
8 l `mplus` _ = l

Figure 48: The Maybe MonadPlus instance declaration, and the MonadPlus class
definition.

1 showNat :: Int -> Maybe String
2 showNat i =
3 if (i >= 0)
4 then (Just (show i))
5 else Nothing

Figure 49: showNat

can be replaced in functions that build Maybes. However if a function deconstructs

a Maybe type through pattern matching it may not be generalisable. Consider the

function printResult in Figure 51. printResult performs a pattern match over

the Maybe type constructors rather than only in right hand side expressions; there is no

way to generalise pattern matching on Just.

4.4.3 Refactoring Maybe to Monad

In some cases it is possible to generalise a Maybe type to become Monad instead.

When functions duplicate the work that is done by Maybe’s implementation of bind

then that function can be generalised to use the monadic interface instead.

The function inc from Figure 52 can be rewritten to use the monadic operations

bind (»=) and return instead, this is because the definition of inc matches the

definition of bind in the instance declaration of Maybe as a monad. Figure 53 has

another version inc in which that relationship is clearer.
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1 showNat :: (MonadPlus m) => Int -> m String
2 showNat i =
3 if (i >= 0)
4 then (return (show i))
5 else mzero

Figure 50: showNat refactored

1 printResult :: (Show a) => Maybe a -> IO ()
2 printResult m =
3 case m of
4 Nothing -> putStrLn "Something went wrong"
5 (Just i) -> putStrLn $ "The result is: " ++ (show i)

Figure 51: printResult

The new version of inc has been written using infix notation, to more closely

match Maybe’s definition of bind. Also like Maybe’s bind when inc’s first argument

is Nothing it just returns Nothing. Finally the right hand side of inc’s second case

was lifted into a separate function and is passed to the new inc as an argument, just

like bind.

In practice the refactoring will, by default, create an anonymous function from the

right hand side of the Just case with calls to Just and Nothing replaced with

return and mzero respectively. The final refactored version of inc is in Figure 54.

It is worth saying that if the right hand side of the Just case from the original

implementation of inc contained calls to Nothing then this function could not be

generalised to Monad. This is because Monads do not have a built in concept that can

represent Nothing. The refactored function could be generalised to MonadPlus by

replacing the Nothings with mzeros.

Generalisation is a very common type of refactoring because it helps prevent repetition.

A function with some specific behaviour can be generalised by extracting a sub-expression

and passing that expression as a parameter instead. After the refactoring the target

function’s behaviour can be changed and applied in more places without having to
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1 inc :: Maybe Int -> Maybe Int
2 inc Nothing = Nothing
3 inc (Just i) = (Just (i + 1))

Figure 52: inc

1 inc :: Maybe Int -> Maybe Int
2 inc x = new_inc x f
3

4 new_inc :: Maybe Int -> (Int -> Maybe Int) -> Maybe Int
5 Nothing `new_inc` _ = Nothing
6 (Just i) `new_inc` f = f i
7

8 f i = Just (i + 1)

Figure 53: inc rewritten to look more like bind

repeat the implementation over again to change the extracted sub-expression. This

section has discussed a refactoring to generalise a specific type, Maybe, to one of its

type classes, MonadPlus or Monad. Doing this generalises the target functions so

that they can be applied to different values, rather than needing to implement separate

functions for each specific type.

4.5 “List to Hughes List” Refactoring

The previous section discussed a refactoring that is most useful in the early stages of

development when the details of data representation are in their infancy. As a project

develops more and more decisions must be made about how data is represented and

processed. Mid-development it may become necessary to change which data structures

the program uses in order to facilitate adding additional features or for performance

reasons.

This section covers a refactoring for automatically replacing a type by projecting

that type into another (Erné et al. 1993). The two types (the original and new type)

don’t necessarily have an explicit relationship from the compiler’s point of view (e.g.
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1 inc :: (Monad m) => m Int -> m Int
2 inc mi = mi >>= (\i -> (return (i+1)))

Figure 54: Final output from generalising inc

1 (++) :: [a] -> [a] -> [a]
2 [] ++ ys = ys
3 (x:xs) ++ ys = x:(xs ++ ys)

Figure 55: The standard definition of append

both implement the same type class) but instead present a semantically similar interface.

For example, a binary search tree and a list support the same basic operations, such as

add, remove, and delete. Though the implementation details of lists and trees are very

different, from the user’s perspective all they need to know is what operations their

chosen structure supports. The refactoring described in this section replaces one data

type for another that supports similar operations.

4.5.1 Hughes Lists

Appending two lists into a single list is a fundamental operation over lists. The standard

implementation of append is shown in Figure 55.

If the first argument to append is the empty list then append can just return the

second argument. In the other case append traverses the first list popping off the

head of the first list and recursively appending the tail of the first list and the second

argument. The performance of append is therefore proportional to the length of its

first argument. This has the unfortunate side effect that if a program builds a list

by repeatedly appending a single element the end of a list, the program will spend

significant amounts of time traversing the beginning of the list repeatedly. In total the

performance of this function ends up being O(n2) where n is the length of the final list.

An example of a function that exhibits this behaviour is countdown, which is

defined in Figure 56. countdown constructs a string that lists the numbers starting
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1 countdown :: Int -> String
2 countdown i = f i ""
3 where f 0 s = s ++ "0"
4 f i s = let newS = s ++ (show i) ++ ", " in
5 f (i-1) newS

Figure 56: The countdown function runs in O(n2) time.

1 > let lst = ([1,2,3] ++) . ([4,5,6] ++)
2 > :t lst
3 lst :: Num a => [a] -> [a]
4 > lst []
5 [1,2,3,4,5,6]

Figure 57: Building and deconstructing difference lists.

at the argument i down to zero. During each recursive call the previously computed

result is traversed, but this parameter gets larger each time.

The poor performance of countdown quickly becomes noticable with

(countdown 10000) taking around six seconds to run.2

Fortunately there is an alternative representative of lists that allows O(n) time for

such nested appends. This alternative representation was first described by John Hughes

in (Hughes 1986) (hence “Hughes-lists”), they are also known as difference lists

(O’Sullivan, Goerzen and Stewart 2008); and this is the nomenclature used in Hackage (Stewart

and Leather 2017). In Hughes lists elements are stored as partial applications of the

append function, these partial applications can then be composed using function composition

(the (.) operator in Haskell) to append the two lists together.

Difference lists store the values [1,2,3] as ([1,2,3] ++) which is of type

Num a => [a] -> [a]. Appending [4,5,6] to ([1,2,3] ++) first involves

converting it to a difference lists (([4,5,6] ++) in this case) then these two difference

lists can be appended with function composition which results in:

([1,2,3] ++) . ([4,5,6] ++).
2On an Intel i5 4690k processor with 16 GB of RAM
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1 newtype DList a = DL {
2 unDL :: [a] -> [a]
3 }
4

5 fromList :: [a] -> DList a
6 fromList xs = DL (xs ++)
7

8 toList :: DList a -> [a]
9 toList (DL xs) = xs []
10

11 append :: DList a -> DList a -> DList a
12 append xs ys = DL (unDL xs . unDL ys)

Figure 58: The definition of DList taken from (O’Sullivan, Goerzen and Stewart
2008)

As seen in Figure 57, once it comes time to retrieve the normal list, the difference

list is applied to an empty list. Function composition is applied from right to left so

this keeps the left operand of (++) small. Internally difference lists are just a wrapper

around a function from lists to lists. Figure 58 shows the definition of the DList new

type which contains the partial application. The unDL function simply removes the DL

constructor.

While difference lists support fast appends there is no such thing as a free lunch:

speedups for certain functions are paid for by slowdowns in other places. Getting the

head and tail of a normal list are both constant time operations but become linear time

for difference lists because the difference lists will have to be converted back to normal

lists.

4.5.2 Embeddable Types

This refactoring takes the view that a type consists of some structure and a set of

functions that operate on that structure.

This refactoring requires that a source type is “reversibly embeddable” into the

target type. If the source type is some type A and the target type is some type B then for
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abs.pro j = idA (1)

apply empty singleton
cons snoc append
concat replicate list
head tail unfoldr
foldr map

Table 2: The DList API

A to be reversibly embeddable into B, two functions must exist: the projection function

pro j :: A→ B and the abstraction function abs :: B→ A, as shown in Figure 59. The

property in equation 1 must hold for A to be embeddable in B. However, the reverse

compositions of pro j.abs is not necessarily idB.

Figure 59: The relationship between the source type A and target type B and the
respective projection and abstraction functions.

Intuitively this means that it needs to be possible to retrieve the A type from a B

exactly as it was when it was projected into the new type. The reverse does not need

to be true because any values of type B were introduced by the refactoring so any

information lost converting a B back into an A wasn’t in the original program and so

does not need to be preserved to preserve behaviour.

In the "list to Hughes list" case the projection function is fromList (because

it embeds lists into the new type DList) and the abstraction function is toList.

How to define the set of pairs is an interesting problem with multiple solutions. The

Data.DList module exports the functions shown in Table 2 (Stewart and Leather

2017).

From this list the two bold functions are the only functions without normal list

counterparts. In the case of snoc, which appends a single element to the end of a
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1 list :: b -> (a -> DList a -> b) -> DList a -> b
2 list nill consit dl =
3 case toList dl of
4 [] -> nill
5 (x : xs) -> consit x (fromList xs)

Figure 60: The definition of list from (Stewart and Leather 2017)

DList, a normal list equivalent is not provided by the prelude because of the linear

time performance of this operation. The list function, shown in Figure 60, makes up

for the lack of pattern matching over DLists. The first two arguments to list are

values that handle the two standard pattern match cases over lists, an empty list, and

when the list contains at least a single element. The third argument to list, “dl”, is

the difference list that pattern matching should be performed on. If dl is empty than

list’s first argument “nill” is returned. In the other case list will pass the head

and the tail of dl to it’s second argument a function that performs the computation

when the list is non-empty.

The rest of the DList API could be paired with equivalent list functions. However,

it’s not necessarily a good idea for every normal list function to be refactored to its

DList equivalent. As was mentioned earlier, certain DList functions are less efficient

than the corresponding normal function, so the primary purpose of this refactoring is

defeated if the refactored code runs slower than the original source.

Fortunately different versions of the refactoring can be made by defining separate

sets depending on the behaviour that is desired. For example one set could only include

the DList constant time operations (append, empty, and cons) and another set

could include all possible pairings of operations in Table 2.

Which functions should be changed is highly dependent on the relationship between

the source and target types, the motivation for the refactoring, and how the source

program is constructed. The list to Hughes replacement is motivated for performance

reasons so limiting the replacements to only operations that run in constant time makes
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sense. If the refactoring is being used to completely upgrade a system from using one

type to another then the programmer will want to make sure that every function used

by the source type can be replaced. The implementation of this refactoring in HaRe is

as adaptable as possible so that users can customize it to meet their specific needs (see

Chapter 5).

4.5.3 Refactoring functions to use Hughes lists

For functional programmers, lists are a very familiar and versatile data structure. However,

if an application requires repeated appends as described at the start of this section

their performance becomes an issue. Difference lists provide a similar interface to

lists but without this troublesome behaviour and provide projection (fromList) and

abstraction (toList) functions between themselves and normal lists. This section will

describe a refactoring to convert programs written using normal lists to use difference

lists instead.

The refactoring is different depending on which types of the target function are lists.

There are three different cases:

1. A list is the type of parameters only

2. A list is the result type

3. Both the result type and at least one parameter are lists

Each of these cases differs in the way that the Hughes list type is introduced to the

function. In the first case the type changes begin at the leaves and the refactoring needs

to fix any type errors from the bottom towards the top of the tree. When the result type

is the only list instance in the type signature the opposite process must happen, the new

type needs to be “pushed” down the AST from the root. In the final case the refactoring

will attempt to convert the entire AST to use Hughes lists.
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1 insComma :: String -> String -> String
2 insComma s1 s2 = s1 ++ "," ++ s2

Figure 61: insComma

1 insComma_1 :: DList Char -> DList Char -> DList Char
2 insComma_1 s1 s2 = s1 `append` fromList (",") `append` s2
3

4 insComma_2 :: DList Char -> DList Char -> DList Char
5 insComma_2 s1 s2 = fromList ((toList s1) ++ (",") ++ (toList

s2))

Figure 62: Two possible refactorings for insComma

Though the general scheme the refactoring takes to transform the target function

is simple to understand, how the refactoring actually goes about transforming is more

challenging. This is because for any given function there are multiple possible “correct"

definitions the refactoring could produce. Take for example the function insComma

in Figure 61.

When refactoring both of the arguments and the result type of insComma to become

DList Char there are multiple ways to refactor this function. Figure 62 shows two

possibilities; which one should the refactoring produce and why?

To make this decision, the refactoring is designed to reflect the assumption that

because this function is being refactored to use the new type, the user wants the new

type to be used in as many places as possible. This makes the first definition preferable

to the second one because it only converts a single item using fromList and replaces

the appends, whereas the second example converts the two arguments into lists, appends

everything together and then converts the result back into a DList. The refactoring

prioritises minimising the number of conversion introduced into the refactored program.
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1 mean :: Fractional a => [a] -> a
2 mean lst = foldr (+) 0 lst / length lst

Figure 63: Calculating the mean of a list.

1 mean :: Fractional a => DList a -> a
2 mean lst = foldr (+) 0 (DL.toList lst) / length (DL.toList lst

)

Figure 64: mean refactored

4.5.4 Modifying the Type of an Input

The simplest case of this refactoring is modifying the type of a parameter. Consider the

example in Figure 63 that calculates the mean of list of numbers.

Refactoring means’ first argument to become a Hughes list is fairly straight forward

matter of wrapping the, now of type DList, parameter lst with the abstraction

function toList. The refactored version of mean is in Figure 64. The functions from

the DList library have been prefaced with the “DL” qualifier, to differentiate which

functions come from which API. This convention will be used through the remainder

of the section. You’ll also notice that toList lst is calculated twice; this is a good

candidate for further refactoring by extracting this expression into a let or a where

clause.

This example is one of the cases where there are multiple possible refactorings.

Figure 65 shows a different version of a refactored mean. Because foldr is defined

both for difference lists and normal lists, the abstraction function could be added around

that expression instead. Which version should the refactoring produce?

In this case, where the refactoring targets a parameter and the result is a type other

than a Hughes list, the refactoring assumes that the programmer wants the Hughes list

converted as soon as possible in the function so the fromList conversions will be

wrapped around the parameters.
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1 mean :: Fractional a => DList a -> a
2 mean lst = (DL.foldr (+) 0 lst) / length (DL.toList lst)

Figure 65: mean refactored another way.

1 data Tree a = Leaf
2 | Node (Tree a) a (Tree a)
3

4 enumerate :: Tree a -> [a]
5 enumerate Leaf = []
6 enumerate (Node left x right) = (enumerate left) ++ [x] ++ (

enumerate right)
7

8 printEnumTree :: (Show a) => Tree a -> IO ()
9 printEnumTree tree = let lst = enumerate tree in
10 print lst

Figure 66: Definition of enumerate

4.5.5 Modifying the Result Type

The second example covers the case where the result type of a function is changed to

DList instead of list. Figure 66 contains the definition of a simple algebraic data type

of a tree, a function (enumerate) that returns an in-order list of all the tree’s elements,

and a function that prints a tree’s enumeration to standard output.

This time the refactoring will affect the result type of the function. As opposed to

the previous example where changes occurred at the leaves of the abstract syntax tree

this case of the refactoring changes the type of the AST’s root.

Changing the type of the AST’s root requires the refactoring to traverse the tree top

down from left to right. This is because the result type of any syntax tree is determined

by the function (or value in the case of tree with only a single node) in the leftmost

child.

enumerate’s first case is simple enough to refactor. There is only a single value

in the tree the empty list literal. This node’s current type is [a] and it needs to become

DList a. When the refactoring reaches the [] value it searches to see if it is paired
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with some difference list operation in the set of pairs. The empty list literal is paired

with the difference list operation empty, the refactoring sees this and replaces the

empty list with DL.empty :: DList a.

After the replacement of [], enumerate’s first case is successfully refactored.

The second case of enumerate is more complex than the first. Figure 67 shows the

syntax tree for enumerate’s second case.

Figure 67: A simplified syntax tree of enumerate’s second case.

The refactoring begins the traversal at the top of the syntax tree with the goal of

modifying the entire tree to have a result type of DList a. The root node of the

tree is the operator application of the left-hand append operation. The result type of

this instance of append is the type that determines the whole tree’s result type. The

standard append operation is paired with the difference list DL.append operation.

The refactoring checks to ensure that the difference list append has the correct result

type and, because it does, makes the replacement.3 After replacing ++with DL.append,

the result type is correct but the function will no longer type check because ++ and
3The refactoring will automatically make DL.append infix by surrounding the call with backtick

characters since this replacement is modifying an operator application.
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DL.append’s arguments are not the same types.

The refactoring then must recurse down both the left and right subtrees to change

their types from [a] (the type of (++)’s arguments) to DList a (the type append’s

arguments).

Figure 68: The left subtree of enumerate’s second case.

The left subtree of the root node is shown in Figure 68. The refactoring can descend

through the parentheses (represented by the HsPar constructor); the refactoring continues

down the left side of the function application (HsApp). When the refactoring encounters

the call to enumerate it recognises that this is the recursive call and even though the

type of enumerate stored in the syntax tree is Tree a -> [a] after the refactoring

its type will be Tree a -> DList awhich is the correct result type for this subtree.

The refactoring can now confirm that the left subtree is of type DList a without

checking the right side of the application because the refactoring didn’t change the type

of enumerate’s arguments.
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Figure 69: The right subtree of enumerate’s second case.

1 enumerate :: Tree a -> DList a
2 enumerate Leaf = empty
3 enumerate (Node left x right) = (enumerate left) `append` (

singleton x) `append` (enumerate right)

Figure 70: The refactored definition of enumerate

After refactoring the left subtree, the right subtree needs to be modified to be of

type DList a as well. Shown in Figure 69, the right subtree’s root is a second call to

(++). Once again the refactoring replaces ++ with DL.append because append’s

result type is also DList a. Doing this replacement sets off additional traversals that

are designed to ensure that the two arguments to the root node become typed DList a

as well. This is possible because the original program is well-typed and the arguments

to append are of type list so at the very least the arguments can be converted to DLists

with fromList. The right argument to the root of this subtree is the (enumerate

right) expression which is handled in the same way the (enumerate left)

call was handled. The left subtree of Figure 69 is the list literal [x]. This can be

replaced with a call to (DL.singleton :: a -> DList a) the equivalent

difference list function. At this point the refactoring is finished modifying the definition

of enumerate and the result can be seen in listing 70.
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1 data Tree a = Leaf
2 | Node (Tree a) a (Tree a)
3

4 enumerate :: Tree a -> DList a
5 enumerate Leaf = empty
6 enumerate (Node left x right) = (enumerate left) `append` (

singleton x) `append` (enumerate right)
7

8 printEnumTree :: (Show a) => Tree a -> IO ()
9 printEnumTree tree = let lst = toList (enumerate tree) in
10 print lst

Figure 71: The final product of the refactoring

The refactoring is not finished yet, however. The original definition contained in

Figure 66 had another function printEnumTree that depended on enumerate.

The final modification that needs to happen to this example is to wrap all calls to

enumerate in non-refactored definitions with the abstraction function to convert the

result back to a list. The final product of the refactoring can be seen in Figure 71.

4.5.6 Modifying Parameter and Result Types

The final case of this refactoring involves modifying both the result type and one (or

more) of the parameters of the target function. This example will use the explode

function from Figure 73 and will refactor both its argument and result type to become

DList a. explode is a silly function that replicates each of its elements a number

of times equal to the length of the list, for example, explode [1,2,3] returns

[1,1,1,2,2,2,3,3,3]. This is an odd function but it has two characteristics we

are interested in, (a), both its parameter and result type are of type list and, (b), it uses

the map higher ordered function which is an interesting case for this refactoring. The

abstract syntax tree of explode is in Figure 73.

Much like the previous case where just the result type was modified, the refactoring

will start working on the syntax tree in a top-down manner modifying the function
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1 explode :: [a] -> [a]
2 explode lst = concat (map (\x -> replicate (length lst) x) lst

)

Figure 72: The initial definition of explode

definition to have the correct result type. This case could also be implemented in

a bottom-up manner but the top-down method allows for more code reuse from the

implementation of the case when the result type is modified.

The refactoring starts on the left subtree with the call to:

concat :: Foldable t => t [a] -> [a].

The equivalent difference list function is:

DL.concat :: Foldable t => t (DList a) -> DList a

Since the result type of this version of DL.concat is DList a the refactoring

performs the switch between the two functions.

After the change on the left subtree, the refactoring needs to modify the right

subtree so that it is of type Foldable t => t (DList a) rather than its current

type of Foldable t => t [a]. The leftmost child of the right subtree is the call

to map :: (a -> b) -> [a] -> [b]. The difference list equivalent map is

appropriately typed DL.map :: (a -> b) -> DList a -> DList b. Should

the refactoring change this node to the difference list version? And if so what changes

will be need to made to other subtrees?

The refactoring will swap this node out if Foldable t => t (DList a) (the

type of DL.concat’s parameter) can be the same type as DList b (DL.map’s result

type); since DList is a member of the Foldable type class, the swap can happen as

long as the b type variable in map’s type is equal to DList a. This node’s type after

the swap and filling in the known type variables is:

DL.map :: (a -> DList b) -> DList a -> DList (DList b)

This new type’s arguments’ types are both different from the original types so the

refactoring will need to check both of these subtrees as well.
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Figure 73: A simplified representation of explodes’s syntax tree

Starting with the lambda expression (the syntax tree in Figure 74) the refactoring
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Figure 74: The syntax tree of the lambda expression in explode.

needs to modify this expression’s type to become a -> DList b4. The current type

of the lambda expression is a -> [a] so the refactoring only needs to modify its

result type. The refactoring can then proceed to the left-most child of this expression,

the call to replicate :: Int -> a -> [a]. The refactoring swaps this call

for the difference list version of DL.replicate :: Int -> a -> DList a.

If this refactoring were only modifying the result type of explode, the refactoring

would be done working with the lambda expression because the type change affects the

syntax tree in a top down manner. In this case, however, because the type of explode’s

argument was also changed, so leaves of the syntax tree can also have changed type.

This means that every subtree needs to be checked to ensure that it still type checks.

4a and b could be the same type.
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1 (\x -> DL.replicate (length (DL.toList lst)) x)

Figure 75: The refactored lambda expression.

The untouched sections of this expression’s syntax tree are replicate’s arguments.

The second argument is just the variable x which hasn’t changed type. The first

argument on the other hand is the expression (length lst) and lst is the argument

of explode that is now a difference list rather than a normal list. Ideally the refactoring

would rewrite this expression by replacing the normal list functions (length in this

case) with difference list equivalents. Unfortunately there is no difference list version

of length so the refactoring will have to introduce the abstraction function to convert

back to a normal list to calculate its length.

The lambda expression has now been successfully refactored. The rewritten lambda

expression is in Figure 75.5

Once refactoring the lambda expression is finished there is only a single node

of explode that the refactoring hasn’t touched yet, the use of lst as the second

argument of map. When the refactoring swapped map for its difference list version

it was able to determine the new type of both its arguments, (a -> DList b) for

the first argument (the lambda expression) and DList a (lst). Fortunately because

lst is a target of the refactoring, its new type is DList a so this node can remain

unchanged.

The final result of this case of the Hughes list refactoring is in listing 76.

4.6 Summary

This chapter has introduced the concept of data-driven refactorings for the object-

oriented programming paradigm and described three of the data-driven refactorings

developed for this thesis. The first, “introducing a type signature”, creates an additional

5To help clarify which functions are for lists and which are the difference list versions, all difference
list functions have been qualified with the DL identifier.
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1 import qualified Data.DList as DL
2 import Data.DList (DList)
3

4 explode :: DList a -> DList a
5 explode lst = DL.concat
6 (DL.map
7 (\x -> DL.replicate (length (DL.toList lst)) x)
8 lst)

Figure 76: The final refactored result of explode.

abstraction to better describe what types are representing. “Generalising Maybe” takes

code written for a specific type and generalises it so that it is applicable to more types.

Finally the “list to Hughes list” refactoring replaces one type with another equivalent

type. This refactoring allows a project to be retyped mid-development because it is not

always clear at the beginning of a project what the correct data representation should

be.

The following chapters will expand on some of these ideas. The next chapter will

describe another form of generalisation that rewrites monadic code into its equivalent

applicative functor code. The applicative code can be much cleaner and descriptive in

certain cases. It can also allow programmers to take advantage of a different way of

executing their programs. Chapter 7 discusses introducing effectful abstractions into

pure code. This process helps to add additional features to a code base, such as shared

state, mid-development.



Chapter 5

Implementing Data-Driven

Refactorings in HaRe

The previous chapter described three refactorings, “introducing a type synonym,” “generalising

Maybe,” and the “list to Hughes list refactorings”. This chapter will describe how

refactorings are implemented in HaRe. This chapter is organised in a similar way to the

previous one. Beginning with Section 5.1 which describes the implementation of the

generalising Maybe refactoring that was discussed in Section 4.4. Section 5.2 covers

the implementation of the “list to Hughes list” refactoring (see Section 4.5) and the

embeddable type refactoring system that it is made with. In addition to discussing

the implementation of the refactorings from Chapter 4 this chapter also covers the

enhancements that HaRe’s API has undergone while developing the refactorings discussed

in this thesis. Section 5.3 discusses the enhancements I made to HaRe’s API.

5.1 Implementation of the “Generalising Maybe" refactoring

The design of the generalising Maybe refactoring was discussed in the previous chapter

(see Section 4.4). This section will describe its implementation in the HaRe refactoring

tool.

100
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This refactoring tries to generalise something of type Maybe to become either

of type Monad or MonadPlus. The implementation of this refactoring attempts to

produce the “most general" version of the source program. This means that when

possible the refactoring will replace the targetted Maybe type with a value of type

Monad; if this is not possible the value will be of type MonadPlus, and finally if that

also is not possible the refactoring cannot continue and the source and target programs

of the refactoring are identical.

The implementation of the “Generalising Maybe” refactoring in HaRe attempts to

convert the Maybe types in a function to the “most general” type class possible. This

means that if the Maybe type can be replaced with Monad it will be, otherwise the

function will be rewritten using MonadPlus instead. First the refactoring will replace

all of the Maybe constructors in right hand side expressions with the corresponding

MonadPlus operation (Just becomes return and Nothing becomes mempty).

At this point the refactoring checks if the target function’s computations were done

entirely inside of Maybe, that is the function receives a Maybe value as a parameter,

returns a value of type Maybe, and handles the Nothing constructor by just returning

Nothing; when all of these things are true the target function is really just replicating

the functionality of Maybe’s bind instance. In this case the refactoring rewrites the

function body to use bind instead. Finally depending on how generalisable the target

function was, the refactoring will update the type signature by replacing the Maybes

with “m” type variables that are bound the appropriate type class, either MonadPlus

or Monad.

This refactoring, at the top level (defined in Figure 77), determines which type the

target program can be generalised to. This is determined by whether the target function

contains a “Nothing to Nothing" case. When this is true then the function can be

rewritten with the Monad interface. This check is defined in the containsNothingToNothing

function, which traverses the AST of the target function searching for a case where the

Pat on the left hand side pattern is only Nothing and the HsExpr on the right
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1 doMaybeToPlus :: FilePath -> SimpPos -> String -> Int ->
RefactGhc ()

2 doMaybeToPlus fileName pos@(row,col) funNm argNum = do
3 parsed <- getRefactParsed
4 let mBind = getHsBind pos parsed
5 case mBind of
6 Nothing -> error "Function bind not found"
7 Just funBind -> do
8 hasNtoN <- containsNothingToNothing funNm argNum pos

funBind
9 case hasNtoN of

10 True -> do
11 doRewriteAsBind fileName pos funNm
12 False -> do
13 canReplaceConstructors <- isOutputType funNm argNum

pos funBind
14 case canReplaceConstructors of
15 True -> do
16 logm $ "Can replace constructors"
17 replaceConstructors pos funNm argNum
18 False -> return ()
19 return ()

Figure 77: The top level function of the generalising Maybe refactoring.

hand side of the match is only Nothing. If this is true for the target function then

doRewriteAsBind modifies the other case(s) of the function.

The other case has the refactoring checking if its possible to replace all of Maybe’s

constructors with the equivalent MonadPlus values. This is checked in isOutputType

which checks whether the target type of the refactoring is also the result type of the

function. When this is the case MonadPlus’ constructors can be substituted for

Maybe’s Nothing and Just. This is done by the replaceConstructors function.

The rest of this section will discuss the two functions that modify the source function,

doRewriteAsBind and replaceConstructors. There will also be a brief

section on enhancements that can be made to this implementation of the generalise

Maybe refactoring to make it more robust.
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1 doRewriteAsBind :: FilePath -> SimpPos -> String -> RefactGhc
()

2 doRewriteAsBind fileName pos funNm = do
3 parsed <- getRefactParsed
4 let bind = gfromJust "doRewriteAsBind" $ getHsBind pos parsed
5 matches = GHC.mg_alts . GHC.fun_matches $ bind
6 if (length matches) > 1
7 then error "Multiple matches not supported"
8 else do
9 let (GHC.L _ match) = head matches

10 (varPat, rhs) <- getPatAndRHS match
11 (newPat, _) <- liftT $ cloneT varPat
12 (newRhs, _) <- liftT $ cloneT rhs
13 let rhs = justToReturn newRhs
14 lam <- wrapInLambda newPat rhs
15 let newNm = case newPat of
16 (GHC.L _ (GHC.VarPat nm)) -> mkNewNm nm
17 _ -> mkRdrName $ "m_value_" ++ funNm
18 new_rhs <- createBindGRHS newNm lam
19 replaceGRHS funNm new_rhs newNm
20 fixType funNm
21 where mkNewNm rdr = let str = GHC.occNameString $ GHC.

rdrNameOcc rdr in
22 GHC.Unqual $ GHC.mkVarOcc ("m_" ++ str)

Figure 78: The implementation of doRewriteAsBind. The function that generalises
Maybe to Monad

5.1.1 Generalising to Monad

Figure 78 shows the implementation of doRewriteAsBind the function that rewrites

a function of type Maybe to use the monadic bind interface instead. The first three lines

of doRewriteAsBind (lines 3-6 in Figure 78) extract the list of matches that make

up every Haskell function. A match consists of the left hand side pattern binding and

the right hand side expression. For example, in Figure 79, the last function’s AST

representation consists of three matches, one for each function body, whereas the AST

of doRewriteAsBind only has one match because its definition contains only a

single body.

Once the target function’s list of matches is retrieved doRewriteAsBind can
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1 last :: [a] -> Maybe a
2 last [] = Nothing
3 last [x] = Just x
4 last (x:xs) = last xs

Figure 79: The AST of the last function contains three matches.

then perform the appropriate refactoring for a target function with a single match or

multiple matches1. Currently this implementation does not support multiple matches

but the refactoring could be expanded to automatially wrap the target function’s pattern

matches in a case statement. Another way to allow HaRe to support this case is to

create a separate refactoring that rewrites functions with multiple bindings to use a

case statement instead, which would allow the refactoring to proceed.

After checking that there is only a single match in the AST of the target function,

doRewriteAsBind can start modifying that function. The rest of doRewriteAsBind

(from line 10 in Figure 78) constructs a lambda expression and variable to make up the

new right hand side of the target function.

This is done by taking the right hand side expression from the target function’s

match and replacing any calls to Just with return. This generalised version of the

right hand side expression can then be wrapped in a lamdba expression with the original

pattern being the binding for this expression (line 14’s call to wrapInLambda). This

new lambda expression can be bound to the newly created variable newNm. This new

variable keeps the name given to the original pattern if it was just a simple name (e.g.

“x”) and appends “m_” to this name to prevent a naming conflict with the variable

inside of the lambda expression. In the case that the pattern was more complex, like

when matching a data type constructor (e.g. Just x) or a list (x:xs), then a generic

variable name is created using the target function’s name.2

1It’s important to note that containsNothingToNothing, the function that checks if the target
function has a Nothing to Nothing case, also removes this case from the AST. This means that the
matches list excludes this case.

2The user of the refactoring will most likely want to apply the renaming refactoring to this variable
to give it a more appropriate name.
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The new name is then bound to the lambda expression (line 18) and the target

function’s body is replaced with this bind expression. The step of the rewriting generalises

the type signature to be use the Monad type class in the place of Maybe.

5.1.2 Generalising to MonadPlus

When the target function cannot be generalised to Monad because it does not contain

the Nothing to Nothing case, it may be possible to generalise it to use the MonadPlus

type class instead. This section will cover how this case of the refactoring is implemented

in HaRe.

An instance of MonadPlus is a Monad with a monoidal structure. This structure

is defined by an associative operator mplus and its identity value mzero (Yorgey

2009b). In Maybe’s case mzero is defined as Nothing and Maybe’s other constructor,

Just, is the value of Maybe’s definition return. This case of the refactoring just

replaces instances of Just with return and Nothing with mzero.

Figure 80 shows the top level function replaceConstructors that modifies

a target function to replace the Maybe specific values with mzero and return.

This function primarily consists of two traversal patterns, the “stop top down traversal”

(stop_tdTP) in applyInGRHSs and the everywhereM in runGRHSFun. The

only parts of the function that need to be changed are in the right hand side of the target

function; the first traversal (from applyInGRHSs) descends to this level and then

stops when the guarded right hand side type is found. From there the other traversal

continues down the tree replacing the instances Just and Nothing.

After the right hand side binding has been rewritten, the target function’s original

binding is replaced with the new binding in the call to replaceBind on line six

of Figure 80. Replacing the original binding of a function with a refactoring one is

a common operation that many refactorings need to perform. Due to its re-usability

replaceBind is a function from HaRe’s API and will be discussed in section 5.3.

The final step of this refactoring changes the type signature of the target function.
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1 replaceConstructors :: SimpPos -> String -> Int -> RefactGhc
()

2 replaceConstructors pos funNm argNum = do
3 parsed <- getRefactParsed
4 let (Just bind) = getHsBind pos parsed
5 newBind <- applyInGRHSs bind replaceNothingAndJust
6 replaceBind pos newBind
7 fixType' funNm argNum
8 where applyInGRHSs :: (Data a) => UnlocParsedHsBind -> (a

-> RefactGhc a) -> RefactGhc UnlocParsedHsBind
9 applyInGRHSs parsed fun = applyTP (stop_tdTP (failTP `

adhocTP` (runGRHSFun fun))) parsed
10 runGRHSFun :: (Data a) => (a -> RefactGhc a) ->

ParsedGRHSs -> RefactGhc ParsedGRHSs
11 runGRHSFun fun grhss@(GHC.GRHSs _ _) = SYB.everywhereM

(SYB.mkM fun) grhss
12 mzeroOcc = GHC.mkVarOcc "mzero"
13 nothingOcc = GHC.mkVarOcc "Nothing"
14 returnOcc = GHC.mkVarOcc "return"
15 justOcc = GHC.mkVarOcc "Just"
16 replaceNothingAndJust :: GHC.OccName -> RefactGhc GHC.

OccName
17 replaceNothingAndJust nm
18 | (GHC.occNameString nm) == "Nothing" = do
19 logm "Replacing nothing"
20 return mzeroOcc
21 | (GHC.occNameString nm) == "Just" = do
22 logm "Replace just"
23 return returnOcc
24 | otherwise = return nm

Figure 80: The replaceConstructors function replaces Maybe’s constructors
with more general values.

The instances of Maybe in the type signature need to be replaced with a type variable

that is bound to the MonadPlus typeclass. The fixType’ function performs this

rewriting. The definition of fixType’ is shown in Figure 81.

The definition of fixType’ is shown in Figure 81, this functions follows the

following steps:

• Line 5: Retrieve the signature from the parsed abstract syntax
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1 fixType' :: String -> Int -> RefactGhc ()
2 fixType' funNm argPos = do
3 logm "Fixing type"
4 parsed <- getRefactParsed
5 let m_sig = getSigD funNm parsed
6 (GHC.L sigL (GHC.SigD sig)) = gfromJust "fixType'" m_sig
7 fixedClass <- fixTypeClass sig
8 replacedMaybe <- replaceMaybeWithVariable fixedClass
9 newSig <- locate (GHC.SigD replacedMaybe)

10 addNewKeyword ((G GHC.AnnDcolon), DP (0,1)) newSig
11 synthesizeAnns newSig
12 addNewLines 2 newSig
13 newParsed <- replaceAtLocation sigL newSig
14 anns <- liftT getAnnsT
15 putRefactParsed newParsed anns

Figure 81: fixType’ is a function that fixes the type signature of a function that is
being generalised from Maybe to MonadPlus.

• Line 7: Insert the binding of the variable “m” to the MonadPlus typeclass

• Line 8: Replace the instances of Maybe with the “m” type variable

• Lines 9 - 12: Create the appropriate annotations for the new syntax elements

• Line 13: Replaces the old type signature in the parsed source

• Line 15: Updates the refactoring state with the modified parsed source

The fixTypeClass and replaceMaybeWithVariable functions transform

the abstract syntax of the type signature, and the rest of fixType’ creates and modifies

the associated annotations so that all of its elements appear in the target program and

are well formatted. For example, the call to addNewKeyword on line 10 of Figure 81

associates the AnnDcolon annotation with the new type signature. This annotation

represents the “::” operator that is otherwise not represented explicitly in the abstract

syntax tree. These annotations are what is used by ghc-exactprint to determine where

syntax elements that are not located by the abstract syntax are and how the target

module should be formatted. This was discussed in more detail in section 3.4.



CHAPTER 5. IMPLEMENTING DATA-DRIVEN REFACTORINGS IN HARE 108

This section has covered the implementation of the generalising Maybe refactoring.

This is a fairly straightforward refactoring implementation, the preconditions are checked

up front and depending on the structure of the target function the correct transformation

is chosen. The next section will describe the implementation of the “list to Hughes list”

refactoring. This refactoring must descend the entire syntax tree of each target function

and transformations may occur based on the type of the AST’s subtrees.

5.2 Implementation of the “List to Hughes List" refactoring

The “list to Hughes list” refactoring was first described in section 4.5. This section will

describe the implementation of that refactoring in HaRe. Section 4.5 also introduced the

concept of a type that can be “embedded” into another. This means that the source type,

which in this particular case is [a], can be transformed into the target type (DList

a) and the original value of the object can be retrieved from the target type.

Though “list to Hughes list” is the specific refactoring outlined in this thesis and

implemented in HaRe, this sort of refactoring can be applied to any pair of types that

hold the properties described in section 4.5. HaRe’s implementation of the “list to

Hughes list” refactoring keeps this in mind and efforts were made to build reusable

components so that similar refactorings can be easily implemented for different types.

The doHughesList function shown in Figure 82 is main function that performs

the “list to Hughes list” refactoring. This function performs four primary tasks, adding

the import declaration for the difference list library, transforming the function definition,

replacing the existing function definition, and wrapping the call points of the target

function with the abstraction function.

The most interesting part of this refactoring is the transformation of the function

definition. The other steps are handled by HaRe’s API which is discussed in section 5.3.

The transformation occurs on lines 16 and 17 of Figure 82. The transformation runs

within its own state and line 16 creates the initial value of this state while line 17
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1 doHughesList :: FilePath -> String -> SimpPos -> Int ->
EmbFuncStrings -> RefactGhc ()

2 doHughesList fileName funNm pos argNum fStrs = do
3 let mqual = Just "DList"
4 addSimpleImportDecl "Data.DList" mqual
5 ty <- getDListTy mqual
6 parsed <- getRefactParsed
7 let
8 (Just lrdr) = locToRdrName pos parsed
9 rdr = GHC.unLoc lrdr
10 dlistCon = getTyCon ty
11 newFType = resultTypeToDList dlistCon
12 (Just funBind) = getHsBind rdr parsed
13 (Just tySig) = getTypeSig pos funNm parsed
14 newResTy = getResultType ty
15 iDecl <- dlistImportDecl mqual
16 iSt <- getInitState iDecl fStrs "toList" "fromList" mqual

newResTy
17 bind' <- embRefact argNum mqual rdr ty iSt funBind
18 replaceFunBind pos bind'
19 newTySig <- fixTypeSig argNum tySig
20 replaceTypeSig pos newTySig
21 let modQual = case mqual of
22 (Just s) -> s ++ "."
23 Nothing -> ""
24 fixClientFunctions modQual (numTypesOfBind funBind) argNum

rdr
25 addConstructorImport

Figure 82: doHughesList is the top level function of the Hughes list refactoring.

actually runs the stateful computation. The state’s type is shown in Figure 83.

The state consists of three fields, funcs keeps track of the functions that operate

over the source type and their equivalent functions that operate on the target type, and

the names of the projection and abstraction functions. The typeStack field is a stack

that keeps track of what changes need to be made further down the abstract syntax

tree. The type stack is described in more detail in section 5.2.1 below. Finally, the

insertAbs field keeps track of when the abstraction function needs to be applied to

certain values.
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1 data EmbRefactState = EmbState {
2 funcs :: EmbeddableFuncs,
3 typeStack :: [Maybe GHC.Type],
4 insertAbs :: Bool
5 }
6

7 data EmbeddableFuncs = IF {
8 projFun :: GHC.RdrName,
9 absFun :: GHC.RdrName,

10 eqFuns :: M.Map String (GHC.RdrName, GHC.Type)
11 }

Figure 83: The type of the state that the refactoring runs in.
.

1 [("[]","empty"),(":","cons"),("++","append"),("concat", "
concat"),("replicate","replicate"), ("head","head"),("tail"
,"tail"),("foldr","foldr"),("map","map"), ("unfoldr", "
unfoldr")]

Figure 84: The list of associated function pairs for the “list to Hughes list” refactoring

The call to getInitState on line 16 of Figure 82 takes in the import declaration

of the target type, a list of pairs of strings that represent the equivalent functions over

the source and target types, the names of the projection and abstraction functions, the

target type’s import qualifier if it exists, and the final result type of the target function.

In the “list to Hughes list” case the import declaration is “import Data.DList

qualified as DList.” Because many of the Hughes list functions have the same

names as their normal list counterparts a qualifier is required so DList is chosen.

The list of pairs associates the normal list functions with the appropriate Hughes

list functions. A single pair in this list contains, first, the normal list function name

followed by the Hughes list function that performs the same operation. For example,

“(:)” is paired with its Hughes list equivalent “cons” because both functions add a

single element to the beginning of a list. The full list of pairs for the “list to Hughes

list” refactoring is shown in Figure 84.

The projection and abstraction functions are “toList” and “fromList” respectively
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1 embRefact :: Int -> Maybe String -> GHC.RdrName -> GHC.Type ->
EmbRefactState -> ParsedBind -> RefactGhc ParsedBind

2 embRefact _ mqual funNm newFTy iST bnd = modMGAltsRHS (\e ->
runEmbRefact (doEmbRefact e) iST) bnd

Figure 85: The definition of embRefact

1 doEmbRefact :: ParsedLExpr -> EmbRefact ParsedLExpr
2 doEmbRefact expr = do
3 b1 <- embDone
4 b2 <- skipCurrent
5 if b1 || b2
6 then do
7 lift $ logm "Skipping this expr: "
8 lift $ logm (SYB.showData SYB.Parser 3 expr)
9 return expr

10 else doEmbRefact' expr
11 where doEmbRefact' :: ParsedLExpr -> EmbRefact ParsedLExpr
12 doEmbRefact' = ...

Figure 86: doEmbRefact is the function that transforms a given expression to use the
target type.

in the “list to Hughes list” case. The final result type of the target function depends on

the result type of the source function. If the result type of the source function is [Int]

then the result type of the target function will be DList Int, if the source function’s

result type is [a] then the target function’s result type will be DList a.

Once the initial state has been created the transformation is performed in a top

down, left to right manner with the call to embRefact on line 17 of Figure 82.

As seen in Figure 85 the definition of embRefact simply calls the API function

modMGAltsRHS which applies a function that modifies an expression to each of

the right hand side values of the given function binding. The “real” work of the

transformation occurs in doEmbRefact which is defined in Figure 86.

The top level, doEmbRefact, function controls when the traversal stops, the

helper function doEmbRefact’ is what actually transforms the given expression

based on its constructor. The two stop conditions, b1 and b2 from Figure 86 lines
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1 data Tree a = Leaf
2 | Node (Tree a) a (Tree a)
3

4 enumerate :: Tree a -> [a]
5 enumerate Leaf = []
6 enumerate (Node left x right) = (enumerate left) ++ [x] ++ (

enumerate right)

Figure 87: Definition of enumerate

three and four, are determined by the state of the “type stack”.

5.2.1 The goal type stack

The type stack is part of the refactoring’s state and is of type [Maybe GHC.Type].

Each element on the stack represents the type that a sub tree must be changed to. The

stack will be initialised with a single value “Just (DList a)” where a is the type

of list from the source function this is because the result type of the entire syntax tree

needs to be changed to Just (DList a). The stack keeps track the “goal types” of

each sub-tree.

Consider the enumerate example from section 4.5.5, which is shown here again

in Figure 87.

When refactoring the result type of enumerate to become DList a the refactoring

begins at the root of enumerate’s abstract syntax tree and the goal type stack is

initialised as [Just (DList a)]. At the start of this refactoring the goal type stack

holds the single type that the root node needs to become. The initial state of the stack

and the abstract syntax tree is shown in Figure 88.

In this case the root node of the AST can be replaced with a call to DList.append

because this functions result type matches the goal type for the node and DList.append

is paired with ++ the current value of the node. Once the root node is replaced with

the call to DList.append the current value of the stack is popped off and Just

(DList a) is pushed onto the stack twice. This is because (++) takes in two
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1 typeStack = [Just (DList a)1]

Figure 88: The initial state of the AST and goal type stack

arguments both of type [a] whereas DList.append’s two arguments need to be

of type DList a. The refactoring continues by changing the root node’s left child

first. The goal type of this subtree is DList a and so the refactoring traverses down

to the leftmost child of this subtree. The state of the refactoring at this point in shown

in Figure 89.

When the refactoring reaches the call to enumerate, it realises that this is a

recursive call so the result type is already DList a so no change needs to be made and

the top of the goal type stack can be popped off. Also since enumerate’s argument

is not a target of the refactoring, those subtrees will not need to be traversed. This is

indicated by pushing Nothing onto the stack (see Figure 90). This means that the

entire left child of the root node is correct after the change to the root node and the

refactoring can begin working on the right child of the root node.

The first node that the refactoring encounters when traversing the right child of the

root node is another application of ++. This is handled in the same that its parent node



CHAPTER 5. IMPLEMENTING DATA-DRIVEN REFACTORINGS IN HARE 114

1 typeStack = [Just (DList a)1, Just (DList a)2]

Figure 89: After replacing the root node the refactoring must resolve the types of its
subtrees.

was, with DList.append replacing ++ and the new types of its subtrees (DList a

in this case) pushed onto the stack. In the same way that the root node was handled,

the refactoring begins by traversing the left subtree. The state of the refactoring at this

point is shown in Figure 91.

The node that the refactoring is at is a singleton list expression and according to

the goal type stack it must be re-typed to DList a. Fortunately the DList library

provides a singleton function that produces a Hughes list of length one from a

single parameter. The explicit list can be replaced with a call to DList.singleton

and this subtree is now correctly typed and the top of the goal type stack can be popped

(see Figure 92).

The only part of the AST that hasn’t been refactored is the right most expression

“(enumerate right)”. This expression will be handled in the same way that the

first recursive call to enumerate was. The refactoring will descend to the call to
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1 typeStack = [Nothing1, Just (DList a)2]

Figure 90: The Nothing on top of the type stack means that the right hand side of the
application of enumerate doesn’t need to be checked. The Nothing can be popped
off the type stack and the traversal continues upwards.

enumerate, pop the top of the goal type stack and push Nothing onto the stack

because none of the arguments need to change. The refactoring will ascend to the

HsApp node and pop off the Nothing value, and therefore not descend to check the

subtree constisting only of the right variable. At this point the goal type stack is

empty so the refactoring is finished and can return the modified AST.

This section has given a concrete example of how an abstract syntax tree is traversed

and how the goal type stack is used. The next section will go through the code that

handles each of the different types of expressions.

5.2.2 doEmbRefact’: Traversing an expression

Though the top level doEmbRefact function determines if a subtree should be changed

at all, doEmbRefact’ determines how the transformation traverses the subtree and
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1 typeStack = [Just (DList a)1, Just (DList a)2]

Figure 91: Traversing the left child again to fix the calls to the newly inserted
DList.append.

the changes that occur based on the constructor of the current abstract syntax node.

This section discusses each of the cases of doEmbRefact’.

The way that function applications are transformed is shown in Figure 93. The

refactoring will transform the left hand side of the application first, then it checks if the

entire application needs to be wrapped with a call to the projection function because the

leftmost child of the subtree does not have an equivalent function over the target type.

After that the right sub tree is refactored and this refactored expression is applied to the

refactored left hand expression.

If the projection function needs to be introduced at this layer then another application

is wrapped around the already modified syntax tree. Otherwise the application with its

modified sub trees can just be returned.

The next case, operator application, is handled much like function application is:

whether or not the operator can be replaced by a target type equivalent determines if the
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1 typeStack = [Just (DList a)1]

Figure 92: The subtree representing the explicit list has been replaced with a call to
DList.singleton.

projection function needs to be added. Otherwise the left- and right-hand expressions

can be refactored.

The new operator may not be allowed in an infix position and in this case backquotes

(‘) are added, which in Haskell makes a prefix function into an infix version of that

function. A good example of this is DList.append. DList.append is paired with

(++)which is an operator whereas DList.append is a prefix function, therefore the

refactoring of “leftList ++ rightList” is “leftListRef ‘DList.append‘

rightListRef” where leftListRef and rightListRef are the refactored

parameters to the append function.

The major changes that the refactoring makes are performed when doEmbRefact’

encounters a variable. This logic is shown in Figure 95. The first six lines of this case

(lines 2 through 7 in Figure 95) retrieve the type of the current variable from the typed

abstract syntax.

Next (line 10 of Figure 95) the refactoring checks if there is a possible replacement

function. If a replacement is not available then the transformation can pop the top

element from the stack and any parameters that are applied to this value don’t have to
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1 doEmbRefact' (GHC.L l (GHC.HsApp le re)) = do
2 le' <- doEmbRefact le
3 wrapWithProj <- shouldInsertProj
4 re' <- doEmbRefact re
5 lift $ logm "POST RHS REFACT IN APP CASE"
6 let newApp = (GHC.L l (GHC.HsApp le' re'))
7 if wrapWithProj
8 then do
9 projRdr <- getProjFun
10 let var = GHC.HsVar projRdr
11 pApp <- lift $ wrapInPars newApp
12 lVar <- lift $ locate var
13 lift $ addAnnVal lVar
14 let fullApp = GHC.HsApp lVar pApp
15 lift $ locate fullApp
16 else return newApp

Figure 93: The case of doEmbRefact’ that handles function applications.

1 doEmbRefact' (GHC.L l (GHC.OpApp le op rn re)) = do
2 op' <- doEmbRefact op
3 wrapWithProj <- shouldInsertProj
4 lift $ addBackquotes op'
5 le' <- doEmbRefact le
6 re' <- doEmbRefact re
7 let newOp = (GHC.L l (GHC.OpApp le' op' rn re'))
8 wrapProjIfNeeded wrapWithProj newOp

Figure 94: The case of doEmbRefact’ that handles operator applications

be searched. This is done through the call to dontSearchSubTrees which puts

Nothing values onto the type stack. For example, if the current variable was “f ::

a -> b -> c” and there was no possible replacement for f, then

dontSearchSubTrees would push two Nothings onto the type stack so that the

subtrees of type a and b aren’t modified. Finally in this case the boolean “insertProj”

in the refactoring state is flipped, which informs the refactoring that higher up the tree

the application of this value needs to be wrapped with the projection function.

When a possible replacement for the current value is found (this case begins on line
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1 doEmbRefact' var@(GHC.L l (GHC.HsVar rdr)) = do
2 st <- get
3 let ts = typeStack st
4 fs = funcs st
5 typed <- lift getRefactTyped
6 mId <- lift (getIdFromVar var)
7 let id = gfromJust ("Tried to get id for: " ++ SYB.

showData SYB.Parser 3 rdr) mId
8 currTy = GHC.idType id
9 keyOcc = GHC.rdrNameOcc rdr
10 mVal = (GHC.occNameString keyOcc) `M.lookup` (eqFuns

fs)
11 case mVal of
12 Nothing -> do
13 popTS
14 dontSearchSubTrees currTy
15 lift $ logm "Nothing case of mVal"
16 printStack
17 insertProjToT
18 return var
19 (Just (oNm, ty)) -> do
20 let changedTypes = typeDifference ty currTy
21 newE = (GHC.L l (GHC.HsVar oNm))
22 oldAnns <- lift fetchAnnsFinal
23 case M.lookup (mkAnnKey var) oldAnns of
24 Nothing -> lift (mergeRefactAnns $ copyAnn var

newE oldAnns)
25 Just v -> do
26 let dp = annEntryDelta v
27 lift $ addAnnValWithDP newE dp
28 popTS
29 addToTS changedTypes
30 return newE

Figure 95: The case of doEmbRefact’ that handles variables

19 of Figure 95), the refactoring first calculates which parameters of the new function

have different types from the original function which is stored in the changedTypes

variable. This variable is a list of Maybe GHC.Types where the Nothing values

mean that the type of that parameter has not changed and “Just _” values indicate

the new type that the parameter must become. This list represents each parameter of
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1 doEmbRefact' eLst@(GHC.L l (GHC.ExplicitList ty mSyn lst
)) = do

2 if (length lst) == 1
3 then do
4 st <- get
5 let fs = funcs st
6 singletonRdr = mkQualifiedRdrName (GHC.

mkModuleName "DList") "singleton"
7 singletonVar = (GHC.HsVar singletonRdr)
8 lVar <- lift $ locate singletonVar
9 lift $ addAnnVal lVar
10 lift $ zeroDP lVar
11 let rhs = head lst
12 lift $ setDP (DP (0,1)) rhs
13 lApp <- lift $ locate (GHC.HsApp lVar rhs)
14 parApp <- lift $ wrapInPars lApp
15 return parApp
16 else do
17 st <- get
18 let fs = funcs st
19 projRdr = projFun fs
20 lVar <- lift $ locate (GHC.HsVar projRdr)
21 lApp <- lift $ locate (GHC.HsApp lVar eLst)
22 lift $ wrapInPars lApp
23 return lApp

Figure 96: The case that handles explicit list syntax

the variable from left to right order. This list of type changes that need to be handled is

pushed onto the type stack in line 29 of Figure 95 after the current goal type is popped

from the stack.

The rest of this case constructs the new expression and copies over the annotation

from the old piece of abstract syntax so that any formatting associated with the original

call is preserved in the new source code. Finally the new expression can be returned.

One of the goals that influenced the design of this system was to produce a reusable

system so that more embeddable type refactorings could easily be created. A tricky

situation arises with Haskell’s support for explicit list syntax (e.g. “[1,2,3]”). Because

lists are the source type of the “list to Hughes list” refactoring, the explicit list syntax
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1 doEmbRefact' ex = gmapM (SYB.mkM doEmbRefact) ex

Figure 97: The catch all case of doEmbRefact’

may need to be transformed during the refactoring, so this type-specific bit of code

remains in the otherwise generic function. Ideally this function could remain completely

type agnostic but because the “list to hughes list” refactoring works over the list type it

needs to descend into this type specific constructor of the abstract syntax tree.

The case that handles explicit lists is shown in Figure 96 and is simple enough.

If the explicit list is just a single element long (e.g. “[3]”) then that value will be

passed to the difference list’s singleton function, otherwise the projection function

is wrapped around longer lists.

Finally doEmbRefact’ has a simple catch-all case that handles all the other

constructors of HsExpr. This case shown in Figure 97 uses the gmapM generic

combinator to recursively call doEmbRefact on all of the given expression’s children.

5.3 Other enhancements made to HaRe

Another contribution made in the process of creating the refactorings described in this

thesis was many enhancements to HaRe’s API. With the switch to the GHC API and the

introduction of ghc-exactprint, a large part of HaRe’s original API was reimplemented

but the functionality it provided was designed for aiding the development of refactorings

that used Programatica’s abstract syntax tree instead of GHC’s. Additionally ghc-

exactprint has a very different way of formatting source code and the current API did

not help refactoring developers use this library. This section will describe contributions

I made to the HaRe’s API that help working with both GHC’s abstract syntax and ghc-

exactprint.

These contributions took two forms “queries” and “transformations.” Queries extract

parts or determine properties of an AST, whereas transformations are small modifications
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1 getHsBind :: (Data a) => GHC.RdrName -> a -> Maybe (GHC.HsBind
GHC.RdrName)

2 getHsBind nm a = SYB.something (Nothing `SYB.mkQ` isBind) a
3 where
4 #if __GLASGOW_HASKELL__ <= 710
5 isBind ((bnd@(GHC.FunBind (GHC.L _ name) _ _ _ _ _)) ::

GHC.HsBind GHC.RdrName)
6 #else
7 isBind ((bnd@(GHC.FunBind (GHC.L _ name) _ _ _ _)) ::

GHC.HsBind GHC.RdrName)
8 #endif
9 | name == nm = (Just bnd)
10 isBind _ = Nothing

Figure 98: This function retrieves the function binding of the given name from the
provided syntax tree.

to source code that are useful to many refactorings. This section will briefly describe

some of the functionality provided by HaRe’s API that I implemented while developing

the refactorings described in this thesis.

5.3.1 The Query module

One thing that many refactorings have in common is the need to extract the same AST

elements. In an effort to reduce the amount of duplicated code, the Query module was

created to hold functions that extract or check properties of syntax elements.

Common queries do things like retrieve the function binding based on function

name, as seen in Figure 98. Many refactorings have function names as a input argument

so getHsBind is useful for retrieving the appropriate binding.

Currently the Query module defines the following functions:

• getVarAndRHS retrieves the pattern and right-hand side expression from a

function match

• getHsBind
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• getFunName takes in a string representation of a function name and gets the

Name of that function

• getTypedHsBind given an OccName retrieves the typed syntax tree for a

function binding

• getTypeSig gets the type signature of a function based on the location of the

function binding and its name

• isHsVar given a string and an expression this function checks if the expression

is a variable with the same name as the value of the string

• astCompare does a rough estimate of whether two abstract syntax trees are the

same. This is done by checking that the trees are the same shape and have the

same constructors, and that any names that appear in the trees are the same

• lookupByLoc retrieves the syntax element at a given location

• getIdFromVar takes in a parsed expression that uses the HsVar constructor

and retrieves the typed Id of that variable

5.3.2 The Transform module

The other major contribution made to HaRe’s API is the addition of the Transform

module. This module collects small changes to the syntax tree and annotations that

are not specific to any particular refactoring and need to be performed by multiple

refactorings.

Abstract syntax changes like adding a import declaration to the target module, or

replacing the original binding of a function with another one are small changes to source

programs that many refactorings need to do. The other type of transformations that

refactorings all perform do not affect the abstract syntax tree but change the formatting

of the program. In HaRe this formatting work is done by modifying the annotations

associated with the syntax elements.
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The Transform module defines the following functions:

• addSimpleImportDecl adds a new import to the current module based on a

string module name and an optional qualifier.

• wrapInLambda creates a lambda expression from a pattern and right-hand side

expression and also creates all the necessary annotations so that the expression

displays correctly.

• wrapInParsWithDPs wraps the given expression in parentheses and offsets

the new expression based on the given “DPs” (delta position).

• wrapInPars is similar to wrapInParsWithDPs but defaults to a single

column offset between the new expression and the syntax element that comes

before it.

• removePars removes parentheses from an expression and makes sure that the

new expression is offset one column from the previous syntax element.

• addNewLines adds newlines before the given syntax element.

• replaceTypeSig replaces the existing type signature of a function with the

given one.

• replaceFunBind replaces the source binding of a function with the given

one.

• addBackquotes adds backquote characters around an expression.

• constructHsVar constructs an HsVar expression from a name.

• constructLHsTy constructs a type variable from a name.

• insertNewDecl inserts a new declaration into the current module from a

given string that represents that declaration.

• rmFun removes a function from the current module based on a name.
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5.4 Summary

This chapter has described how the generalising Maybe and the list to Hughes list

refactorings have been implemented in HaRe. In addition to the specific implementations

of these two refactorings this chapter also described the additions to HaRe’s API that

were made to support the refactorings developed for this thesis. In addition to the

enhancements made to HaRe’s general API for refactoring, this chapter also covers the

API that supports reversibly embeddable type refactorings such as the list to Hughes

list refactoring.

Now that the the basic design and implementation of data-driven refactorings have

been introduced the thesis will proceed by looking at two more refactorings, generalising

monadic code to applicative functors (Chapter 6) and the monadification of pure code

(Chapter 7).



Chapter 6

Generalising Monadic Code to

Applicative Functors

The previous chapter introduced the concept of a functional data refactoring and gave

three examples of data driven refactorings: introducing a type synonym, generalising

Maybe, and list to Hughes lists. This chapter will cover another generalising refactoring,

generalising monadic functions to use applicative functors if certain conditions are met.

6.1 Applicative Functors

In their 2008 functional pearl “Applicative Programming with Effects, (McBride and

Paterson 2008)” Conor McBride and Ross Paterson introduced a new type class that

they called Idioms but are more commonly known as Applicative Functors. Applicative

functors, like monads, provide a way to run computations within some context, and

collect their results. Applicative functors are more expressive than functors but more

general than monads.

Applicative functors are implemented in GHC as the type class Applicative.

Interestingly, even though McBride and Paterson proved that all monads are also applicative

functors in their original functional pearl (McBride and Paterson 2008), GHC did

126
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1 class Functor f where
2 fmap :: (a -> b) -> f a -> f b

Figure 99: The Functor type class

not actually require instances of Monad to also be instances of Applicative until

GHC’s 7.10.1 release (GHC 2015). Now that every monad must also be an applicative

functor there is now a large body of code which could potentially be rewritten using the

applicative operators rather than the monadic ones.

This chapter will discuss the design and implementation of a refactoring which

automatically refactors code written in a monadic style to use the applicative operators

instead given it meets certain conditions that we will spell out. Section 6.2 is a brief

overview of the operations of the Applicative typeclass, Section 6.3 discusses the

applicative programming style and, in general, how programs are constructed using

the applicative operators. Next, Section 6.4 describes how the Haskell community

uses the applicative typeclass, and Section 6.5 describes in detail the refactoring and

its preconditions. Section 6.6 discusses the refactoring’s implementation in HaRe and

some additional refactorings that can be used to transform the code to meet the preconditions.

Finally some applications that are good candidates for this refactoring are discussed in

Section 6.7.

6.2 The Applicative Type Class

This section is a short introduction to the Applicative type class and some related

functions that are commonly used to write functions in an applicative style. To discuss

applicative functors we first have to cover functors. Functors originate from category

theory and are a natural generalisation of maps over lists. The definition of GHC’s

Functor type class is shown in Figure 99. The Functor type class defines a single

function that must be implemented: fmap.



CHAPTER 6. GENERALISING MONADS TO APPLICATIVE 128

1 g :: a -> b -> c
2 x :: f a
3 y :: f b

Figure 100: A function and two functors.

1 class Functor f => Applicative f where
2 pure :: a -> f a
3 (<*>) :: f (a -> b) -> f a -> f b

Figure 101: Applicative’s minimal complete definition

fmap allows for a pure function to be applied to the values inside the functor f.

Essentially fmap as a function that runs other functions within the Functor’s context.

Functors do have a serious limitation, consider Figure 100 which shows the types of

the function g and two values x and y, which are some functor f that contains values

of type a and b respectively. With these three values the obvious goal would be to

compute a value of type f c. When g is mapped over x, a value of type f (b ->

c) is returned.

Unfortunately there is no way to either extract the function of type (b -> c)

from the fuctor or apply f (b -> c) to the values in y using the Functor type

class alone. Sequencing commands in this way requires a more powerful abstraction.

Applicative functors allow for this sort of sequencing of commands within a context (O’Sullivan,

Goerzen and Stewart 2008).

In Haskell applicative functors are implemented by the Applicative type class.

Applicative declares two functions, pure and (<*>), the types of these two

functions are shown in Figure 101.

The pure function is the same type as monad’s return: it simply lifts a value

into the applicative context. The other function (<*>), which is typically pronounced

"applied over" or just "apply", takes in two arguments, both of which are applicative

values1. The first argument is a function, from types a to b, within the applicative

1That is these values are of a type that is an instance of applicative.
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1 (*>) :: Applicative f => f a -> f b -> f b
2 a1 *> a2 = (id <$ a1) <*> a2
3

4 (<*) :: Applicative f => f a -> f b -> f a
5 (<*) = liftA2 const
6

7 (<$) :: Functor f => a -> f b -> f a
8 (<$) = fmap . const
9

10 liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
11 liftA2 f x = (<*>) (fmap f x)

Figure 102: Variations on apply.

context, and the second argument is an Applicative over type a. Apply will return

an Applicative over b.

6.2.1 Other useful functions

Though pure and apply are the only functions that are required to be defined to declare

an instance of Applicative there are several other useful functions that can either

be derived from these two functions or come from other type classes which will be

briefly covered here. First, there are two special cases of apply, whose definitions are

shown in Figure 102 along with the definitions of some helper functions.2

These functions sequence actions and still perform the contextual effects of both

of their arguments but discard the value of the first and second argument respectively.

These functions are used when an operation affects the applicative context but their

result will not affect the overall result of the applicative expression.

The function f, from Figure 103, looks up a customer data type from the IO

context and logs all of the customer ids that are looked up. We don’t really care

what writeToLog returns but we do want the effects that it causes (writing a log

2liftA2 and (<$) are used in these definitions for performance reasons. The reasoning behind
these decisions is described in the comments in the declaration of the Applicative type class, which
can be found here: http://hackage.haskell.org/package/base-4.11.1.0/docs/
src/GHC.Base.html#Applicative

http://hackage.haskell.org/package/base-4.11.1.0/docs/src/GHC.Base.html#Applicative
http://hackage.haskell.org/package/base-4.11.1.0/docs/src/GHC.Base.html#Applicative
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1 f :: Int -> IO Customer
2 f id = writeToLog id *> getCustomerById id

Figure 103: A function that logs its argument before returning the result.

1 f <$> x = pure f <*> x

Figure 104: All Applicatives have this property.

file) so we compose the calls to writeToLog and getCustomerById with the *>

operator to cause both of the functions’ effects to happen but only return the value of

getCustomerById.

Another useful function is the infix version of fmap, (<$>). A consequence of

the applicative laws is that the functor instance of every Applicative will satisfy

the equation in Figure 104 (McBride and Paterson 2016). This means that instead

of explicitly lifting a pure function, the infix version of fmap can be used instead.

The next section will cover how these functions can be used in an applicative style of

programming.

6.3 The Applicative Programming Style

McBride and Paterson proved that any expression built from the applicative combinators

can take the canonical form in Figure 105 (McBride and Paterson 2008):3 The is’s in

Figure 105 are computations within the applicative context. These computations are

the arguments of some pure function “f” that has been lifted into the context with the

pure function.

Context-free parsing is a good “use case” of the applicative style and many examples

in this chapter are taken from parsers defined using the parsec library (Leijen and

Martini 2006). The first example of the applicative programming style is a function,

3This notation is taken from (McBride and Paterson 2008) where applicatives were called "idioms",
hence the use of "is".
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1 pure f <*> is_1 <*> ... <*> is_n

Figure 105: The applicative functor in canonical form.

1 data Currency = Dollar
2 | Pound
3 | Euro
4

5 data Money = M Currency Integer Integer
6

7 parseMoney :: CharParser () Money
8 parseMoney = M <$> parseCurrency <*> readWhole <*> readDecimal

Figure 106: Parsing Money

from Figure 106, that parses money amounts of the form:

<currency symbol><whole currency amount>.<decimal amount>

This parser would recognise "$4.59" or "£64.56" and parse it into the Money data

type as defined in Figure 106. The parseMoney function is in the canonical form as

defined by McBride and Paterson. The pure function M is lifted into the CharParser

context and its three arguments are provided by three smaller parsers that handle the

currency symbol, the whole amount, and the decimal amount respectively.

The only difference between the readWhole and readDecimal is that

readDecimal has to consume the decimal point before reading the number. Instead

of duplicating that number code, a small refactoring that lifts the parsing of the decimal

into the parseMoney function will allow us to reuse the readWhole function, as

seen in Figure 107. In this definition of parseMoney the parsed decimal character is

discarded because of the use of <* rather than the normal apply.

All of the variations of apply4 are left associative so that the definition of parseMoney

in Figure 108 causes a type error. This error can be corrected by parenthesising the

subexpression:

char '.' *> readWhole
4As in (<*>), (<*), and (*>).
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1 parseMoney :: CharParser () Money
2 parseMoney = M <$> parseCurrency <*> readWhole <* char '.' <*>

readWhole

Figure 107: An alternate parseMoney definition.

1 parseMoney :: CharParser () Money
2 parseMoney = M <$> parseCurrency <*> readWhole <*> char '.' *>

readWhole

Figure 108: A non-well typed definition of parseMoney.

The canonical style of applicative functions, as defined by (McBride and Paterson

2008), may not be the most idiomatic way to define things. The function from Figure 109

parses strings surrounded by double quotes. parseStr does not match the canonical

form because no lifted pure function is applied to the rest of the applicative chain. This

function could be transformed to canonical form by prepending "id <$>", this does

not change the behaviour of the function but it shows that any expression constructed

using the applicative operators can be transformed to the canonical form.

The examples covered in this section give a basic introduction to programming in

an applicative style. Next we will discuss how the Haskell community has begun to use

Applicatives in practice.

6.4 Applicative in practice

It is helpful to understand how the Haskell community has adopted and uses the applicative

interface to help inform the development of the refactorings in this chapter. If the

Haskell community has fully embraced the addition of applicative functors and use

them regularly, then a refactoring that rewrites the monadic operations to use applicative

ones is not as useful.5

The simplest question we wanted to answer was how many projects are actually

5It could still be useful for updating a legacy code base.
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1 parseStr :: CharParser () String
2 parseStr = char '"' *> (many1 (noneOf "\"")) <* char '"'

Figure 109: A parser for string literals.

1 pure = return
2 (<*>) = ap

Figure 110: The suggested implementation of Applicative

taking advantage of the Applicative interface versus using the suggested implementation.

When Applicative was made a superclass of Monad an implementation of the

Applicative interface was suggested (Luposchainsky 2014). This implementation

allowed programmers to get their existing Monad instances to re-compile successfully

with minimum effort. We are interested in how many instances use this suggested

implementation, which is defined in Figure 110.

6.4.1 Methodology

Hackage is the main package repository for open source Haskell code (GHC 2016).

The code in Hackage is broken up into 12,601 packages6 and within these packages

there are 144,413 Haskell source files, of which 133,246 (about 92% of the total) were

successfully parsed and searched.

Parsing failures were caused by two main reasons. First ghc-exactprint cannot parse

C or C++ code so any files with embedded C/C++ code blocks were not searched. The

second major reason for failure was modules not including language pragmas at the top

of each file. A feature of the Cabal build system allows turning on language extensions

at the package level rather than the module level: since we are parsing individual files

rather than entire projects the parser does not realise that certain language extensions

may be turned on. Parsing failures only happened about in about 8% of the files so

there was no great need to modify ghc-exactprint to handle these cases.

6As of 14 May 2018.
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Within each package every ".hs" file was parsed using the ghc-exactprint library.7

Once we had the abstract syntax tree we could use generic traversal combinators provided

by Scrap Your Boilerplate (SYB) to search the parsed files for implementations of the

Monad and Applicative type classes. From the successfully parsed files a total of

2,376 Applicative and 2,126 Monad instance declarations were found.

6.4.2 Search Results

Once all the Applicative instances were discovered it was much easier to search

through them to try and understand how the Haskell community has been using this type

class. The Applicative type class is an interesting case of programming language

design and management. A language feature, in this case Monads, was accepted

and even celebrated by the language’s community. Then, twenty-five years into the

language’s life, to continue use this popular feature users have to modify their code.

The question that this search is trying to answer is: how has the Haskell community

adapted to having to write Applicative instances for every Monad instance? Are

programmers taking advantage of what the new type class can offer?

So, how has the Haskell community adapted to the forced introduction to applicative

functors? The reaction seems to be mixed. Of those 2,376 Applicative instances

the search discovered 841 directly defined apply as: (<*>) = ap. This is the suggested

implementation for apply.

Beyond the instances of Applicative that simply define apply to be ap there

are several other instances that essentially copy the definition of ap. For example,

Figure 111 shows the Applicative definition of Sink from the Sousit library. This

definition is an exact duplicate of the definition of ap. There are other ways that this

functionality can be duplicated, for example, the applicative instance in Figure 112

shows another pattern that several packages used.

There could be other Monad and Applicative instances that this search couldn’t
7Unfortunately ghc-exactprint cannot parse literate Haskell (".lhs") files so they were excluded
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1 instance Monad m => Applicative (Sink i m) where
2 pure = return
3 af <*> s = do
4 f <- af
5 v <- s
6 return (f v)

Figure 111: The applicative instance of Sink from Sousit version 0.4.

1 instance Applicative TypeCheckMonad where
2 pure x = TCM $ \_ _ _ -> Right x
3 mf <*> mx = mf >>= \f -> fmap f mx

Figure 112: The applicative instance of TypeCheckMonad from Hakaru version
0.6.0.

pick up. With the GeneralizedNewtypeDeriving language extension Applicative

and Monad instances can be automatically derived by the compiler with their most

obvious implementations (Bajt 2014). Though it is unclear how often this extension is

used, as there seems to be some community pushback about using it because it could

cause unsafe type coercions (Philip 2012).

One interesting thing that the search discovered is that only 697 instances of

Applicative defined pure as return. This is fewer than the number of instances

that define apply as ap. It is surprising that implementers take the time to define a

pure instance but then define apply as ap. Though it’s impossible to know exactly why

people are doing this, it maybe has to do with the Haskell community’s understanding

and comfort with how to define pure for their types versus apply.

In total this search discovered 868 instances of Applicative where either apply

was directly defined to be ap or ap’s definition was replicated in some way. This

means that roughly 35% of the Applicative definitions simply use the suggested

implementation. The following subsection will look at some other common patterns

that go beyond the most basic Applicative implementation.
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1 instance Applicative Pair where
2 pure a = Pair (a, a)
3 (<*>) (Pair (fa, fb)) (Pair (a, b)) = Pair (fa a, fb b)

Figure 113: The applicative instance from SGplus version 1.1

1 instance Applicative m => Applicative (DockerT m) where
2 pure a = DockerT $ pure a
3 (<*>) (DockerT f) (DockerT v) = DockerT $ f <*> v

Figure 114: Applicative instance from Docker version 0.3.0.0

6.4.3 Common Implementation Patterns

In addition to searching how many instances use the standard implementation, the

search also was used to discover the different ways Applicative instances were

being implemented. Are there any general patterns that emerge?

Finding general patterns like this is a much more complex task than just searching

for calls to ap in the definition of apply. All of the Applicative implementations were

written into a report and the report was manually analysed for implementation patterns

that cropped up multiple times.

The first common implementation pattern simply pattern matches on the type’s

constructor to unwrap inner values and apply them to each other. The Applicative

instance definition in Figure 113 is an example of this approach.

Another pattern that was used several times constrains an inner type to be

Applicative as well and just passes off the work to that inner Applicative

instance. The example in Figure 114 shows how this can be defined.

6.4.4 Conclusions

The search results are inconclusive. It is hard to make firm judgements about people’s

familiarity with a complex type class just from the implementation of the type class

alone. However taken in combination with other results, such as the work done in Marlow
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1 parseStr :: CharParser () String
2 parseStr = do
3 char '"'
4 str <- many1 (noneOf "\"")
5 char '"'
6 return str

Figure 115: A string literal parser.

et al. (2016), which takes the approach that a single universal notation is easier to use,

and the long history of people having trouble understanding monads (Yorgey 2009a),

it appears that programmers do struggle with type classes like monads and applicative

functors. Additionally, the popularity of the default Applicative definition could

suggest that the Haskell community has not completely adjusted to the type class.

At the same time it is possible that most monad instances are more monadic than

applicative and so spending time defining unique applicative instances may only be

useful for a few types. The rest of this chapter will describe this refactoring, its

implementation, preconditions, and some related refactorings that transforms code so

that it may be able to pass the preconditions. The next section will describe the design

of this refactoring.

6.5 Refactoring Monadic Programs to use Applicative

This section will describe how the refactoring of monadic code to the applicative style

works via a series of examples. Many of these examples are taken from case studies of

the parser for money amounts and a JSON parser.8

The first example will refactor a parser for string literals, which is defined in Figure 115.

This parser first consumes a double quote character(char '"') then parses one or

more characters that are not double quotes and assigns those characters to the variable

8The full source code for these parsers can be found at https://goo.gl/mrCdFh and https:
//goo.gl/ysWmSS

https://goo.gl/mrCdFh
https://goo.gl/ysWmSS
https://goo.gl/ysWmSS
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1 parseStr :: CharParser () String
2 parseStr = char '"' *> (many1 (noneOf "\"")) <* char '"'

Figure 116: The refactored string literal parser

1

2 parseMoney :: CharParser () Money
3 parseMoney = do
4 currency <- parseCurrency
5 whole <- many1 digit
6 decimal <- (option "0" (do {
7 char '.';
8 d <- many1 digit;
9 return d}))
10 return $ M currency (read whole) (read decimal)

Figure 117: parseMoney version 2.

named str9. Finally the closing quote is consumed and str is returned. The refactored

version of the function is shown in Figure 116.

The refactoring in this case is relatively simple. Since the third and fifth lines of

the original function are not bound to a variable, we know that the values returned by

those functions will be ignored, hence the use of the *> and <* operators. This way

the double quote characters will still be parsed but the values returned by those parsers

will be discarded. The original function returns the variable str, without calling any

pure functions on it. There will therefore be no pure function application to the left of

the effectful functions.

This is a straightforward function to convert to applicative style. The next example

is a little more complex. The function in Figure 117 is a slight modification of the

money parser from Section 6.3 as well. This version of the parser makes the decimal

amount optional, so it will recognize both "£10.35" and "C4".

9This line is composed of two parser combinators, many1, and noneOf. many1 takes another
parser as its argument and applies it one or more times returning a list of the results. noneOf takes in
a list of characters and succeeds if the current character is not in the provided list; that character is then
returned.
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1 parseMoney :: CharParser () Money
2 parseMoney = M <$> parseCurrency
3 <*> (read <$> many1 digit)
4 <*> (read <$> option "0" (do {
5 char '.';
6 d <- many1 digit;
7 return d}))

Figure 118: The first attempt at refactoring parseMoney.

1 parseMoney :: CharParser () Money
2 parseMoney =
3 M <$> parseCurrency
4 <*> (read <$> many1 digit)
5 <*> (read <$> option "0" (char '.' *> many1 digit))

Figure 119: parseMoney after inner do refactoring.

The parseMoney function parses text into the Money data type from Section 6.3.

The option parser allows for the decimial to become optional. The option combinator

will first attempt to apply the parser which is given as its second argument. If this parser

fails then option returns the value it was given in its first argument.

The return statement in the monadic definition of parseMoney calls the constructor

M with the three values that come from the monadic context. Since M is a pure function,

it is placed at the front of the chain of applicative operations, composed with (<$>).

The whole and decimal variables are passed as arguments to read, a pure function,

so these values will be composed with read using the (<$>) operator. The refactored

definition of parseMoney is defined in Figure 118.

The inner do block that is passed as the second argument to option is also a valid

target of this refactoring. The result from applying this refactoring to this do block is

shown in Figure 119.
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1 objEntry = (,)
2 <$> (spaces *> parseStr <* spaces <* char ':')
3 <*> (spaces *> parseJVal <* spaces)

Figure 120: A JSON object parser.

6.5.1 Splitting the Applicative Chain

As chains of applicative computations can get more complicated it is useful or indeed

mandatory to parenthesize parts of the function. The objEntry function in Figure 140

parses a single entry from a JSON object. Each entry consists of a string key and a value

which can be any valid JSON value, separated by a colon, and stores the key and value

in a tuple.

When the applicative chain has a number of functions composed with the (*>) or

(<*) operators, there are often multiple valid ways to add parentheses to the function.

For example, the two definitions of objEntry in Figure 121 are equivalent.

The refactoring will produce the first version of this function, and in general will

group each of the value-producing expressions (parseStr and parseJVal in this

case) with the closest non-value producing statements. Every group contains a single

value producing expression and zero or more non-value producing expressions on either

side of the value producing expression. Each of these groups will then be surrounded

by parentheses if it contains non-value producing statements, and the groups will be

composed using the <*> operator. A more formal description of this is provided in

Section 6.6.

6.5.2 Preconditions

This refactoring has two (simple) preconditions: first, the target function must be

definable with the applicative interface (which will be explained below) and secondly,

the order that variables are bound in the do block must correspond to the order in which

they are used in the return statement.
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1 objEntry = (,)
2 <$> (spaces *> parseStr <* spaces <* char ':')
3 <*> (spaces *> parseJVal <* spaces)
4

5 objEntry = (,)
6 <$> (spaces *> parseStr)
7 <*> (spaces *> char ':' *> spaces *> parseJVal <* spaces

)

Figure 121: Different ways to separate the applicative chain.

1 (<*>) :: Applicative f =>
2 f (a -> b) -> f a -> f b
3

4 (>>=) :: Monad m =>
5 m a -> (a -> m b) -> m b

Figure 122: The types of apply and bind

What does this first condition actually mean? Where is the line between applicative

functors and monads? Let’s start by comparing the type signatures of the bind and apply

functions, they are shown in Figure 122. One thing to keep in mind is that these two

functions’ arguments are in opposite order where the function type is the first argument

to apply whereas the second argument to bind is a function. The difference between

bind and apply is in the type of this function argument. The second argument of bind

is a function that takes in a value of type a and returns an m b whereas apply receives

an applicative functor that contains a function from a to b. This means that within a

monadic context bind allows access to the pure value returned by a computation in the

monad, while all of the arguments to apply are fully within the applicative context.

What does this mean in practice? Take for example the function f from Figure 123.

The function f first parses a number n then parses n “things.” This function is not

definable using applicative functors because n is an argument to parseNThings as a

pure value. The implementation of the first precondition checks that any values bound

in the do statement are not used in a right hand side expression before the return
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1 f = do
2 n <- parseN
3 xs <- parseNThings n
4 return xs

Figure 123: A context dependent parser.

1 g :: Monad m => m (A,B)
2 g = do
3 b <- getB
4 a <- getA
5 return (a,b)

Figure 124: A function with out of order bindings

statement.

The second precondition is a bit more intuitive to grasp. Consider the function g in

Figure 124. The naive implementation of the refactoring is in Figure 125. This version

of the refactoring maintains the order of statements from the do block but this causes

a type error. Instead, if the refactoring swaps the order of the statements (Figure 126)

the order that the contextual effects are performed changes, and the meaning of the

refactored program is no longer the same as the source program so the refactoring is

not valid.

These preconditions enforce subtly different things. The first precondition, that

the target function needs to be expressible with the Applicative interface, is the

obvious requirement that the target function needs to meet for the refactoring to be

able to be performed successfully. The entire premise of this refactoring is to convert

programs using the monadic interface to instead use the more general applicative one,

so the target function must be expressible using that interface.

The second precondition, especially when described as naively as it has been in this

section, seems to also be mandatory for the refactoring to not change the behaviour of

the target function. However, an additional transformation could be applied to g that

would allow the generalisation refactoring to continue without type errors and preserve
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1 g :: Applicative a => a (A,B)
2 g = (,) <*> getB <*> getA

Figure 125: This attempt at refactoring causes a type error.

1 g :: Applicative a => a (A,B)
2 g = (,) <*> getA <*> getB

Figure 126: This refactoring changes the order the effects happen in.

the ordering of effects, the introduction of a lambda expression into the return statement.

The details of this transformation are described in Section 6.5.3.3.

The next section will discuss further refactorings that help modify potential target

functions so that they can meet the preconditions discussed in this chapter. The second

precondition can always be “avoided” if the programmer so chooses by applying an

additional refactoring that wraps the expression that is applied to return in a lambda

expression. The first precondition on the other hand cannot be simply avoided. The next

section will discuss refactorings that can help maximise the amount of code that can be

refactored, but code that does not pass the first precondition cannot be refactored.

6.5.3 Additional Refactorings

The preconditions described in the previous section, and the second one in particular,

may seem overly strict and needlessly limit the scope of code to which the refactoring

could be applied. Instead of developing a single monolithic refactoring that contains

many separate cases, the approach that HaRe takes is to develop multiple small refactorings

that can be composed together. Composing refactorings together in this way is known

as a composite refactoring (Li and Thompson 2011).

This section will describe a number of refactorings that will help transform (or

“prefactor”) code so that it is capable of passing the preconditions for the generalising

applicative refactoring.
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1 f = do
2 x <- getX
3 b <- getB
4 y <- if b then getY1 else getY2
5 log y
6 return (x,y)

Figure 127: The function f, lines three through five can be extracted.

1 f = do
2 x <- getX
3 y <- g
4 return (x,y)
5

6 g = do
7 b <- getB
8 y <- if b then getY1 else getY2
9 log y

10 return y

Figure 128: g was extracted from the original function f in Figure 127
.

6.5.3.1 Extract monadic code

The f function in Figure 127 will not pass the preconditions because both b and y are

extracted from the monadic context and used in a right hand side expression. However,

lines three through five do not really affect the rest of the function so they could be

refactored to their own function. The result of extracting these lines into their own

function, g, is shown in Figure 128. Now f is a valid target for generalising to the

Applicative interface, the final version of this function is in Figure 129.

The extraction of monadic code does not have to create a top level variable; if the

developer preferred the extracted definition could be in a let or where clause instead.
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1 f = (,) <$> getX <*> g
2

3 g = do
4 b <- getB
5 y <- if b then getY1 else getY2
6 log y
7 return y

Figure 129: The final result of the refactoring with f rewritten using the
Applicative interface.

1 f = do
2 x <- result1
3 y <- result2
4 z <- result3
5 log z
6 return (x,y)

Figure 130: Lines four and five can be merged into a single do block.

6.5.3.2 Inline do blocks

Instead of extracting an entire function as in the previous section, a developer may

prefer just to inline a do block. This is useful if the monadic section of code is small.

Consider the function in Figure 130, normally the variable z being used again in

line five would prevent the function from being refactored. Merging lines four and

five into an inline do block would allow this function pass the preconditions as seen

in Figure 131. Now the entire function can be refactored to the version shown in

Figure 132. Additional refactoring can then take place with the inner do block also

undergoing refactoring, see Figure 133

6.5.3.3 Introduce lambdas to reorder statements

The other precondition to the “generalise applicative” refactoring is the condition that

all bound variables need to be extracted from the monadic context in the order they

appear in the return statement. Reconsider the example given at the end of Section 6.5.2



CHAPTER 6. GENERALISING MONADS TO APPLICATIVE 146

1 f = do
2 x <- result1
3 y <- result2
4 do{z <- result3; log z}
5 return (x,y)

Figure 131: f with two lines merged into an inline do block.

1 f = (,)
2 <$> result1
3 <*> (result2 <* do{z <- result3; log z})

Figure 132: The inline do allows the function to be rewritten with the applicative
operators.

(repeated in Figure 134).

Since a appears before b in the return statement but b is bound before a this

function would not pass the ordering precondition. If this return statement was refactored

to include a lambda that flipped the arguments it could pass this precondition. The result

of applying this refactoring to the function from Figure 134 can be seen in Figure 135.

Finally the function f, after applying the lambda reordering refactoring, can be

fully rewritten using the Applicative interface. The final result of this chain of

refactorings can be seen in Figure 136.

The previous three refactorings are designed to help expand the scope over which

the “generalising applicative” refactoring would work. As we said at the beginning of

this section, we feel that the composite refactoring approach is better than for generalise

applicative automatically to apply the refactorings described in this section. In many

cases, though technically correct, the refactorings in this section can produce verbose

and complicated code: for example, a lambda expression with many more arguments

than two, or an inlined complex do expression. Producing less readable code defeats

the purpose of refactoring in the first place. By taking this composite approach, a

software engineer is required to be involved in each step of the refactoring, and so to be

in control of the output at each step, too.
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1 f = (,)
2 <$> result1
3 <*> (result2 <* (log <*> result3))

Figure 133: The inline do block can also be refactored to use the applicative interface.

1

2 f = do
3 b <- getB
4 a <- getA
5 return (a,b)

Figure 134: The order that a and b are bound fails the precondition

The composite approach also makes it much easier for the refactoring to be extended

by others. If there are other similar refactorings than we discussed here it is much

simpler for another programmer to implement their own stand-alone refactoring than

Figure out where in our implementation of the generalise applicative refactoring their

code should be inserted.

6.6 Implementation of the Refactoring

The previous section informally discussed the “generalise monad to applicative” refactoring.

In practice there are quite a few options that implementers will make when writing

this refactoring, including how parentheses are inserted, for example. This section will

discuss in more detail how HaRe implements the “generalise to applicative” refactoring.

The refactoring takes two arguments: the filepath of the file to be refactored, and

the row and column in the file of the start of the function to be refactored. The rest of

this section will go through the checking of preconditions and building the applicative

expression more thoroughly. The syntax of the target function is defined in Figure 137.
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1 f = do
2 b <- getB
3 a <- getA
4 return (\ b a -> (a,b)) b a

Figure 135: The lambda expression in the return statement allows this function to
pass the preconditions.

1 f = (\ b a -> (a,b)) <$> getB <*> getA

Figure 136: The final Applicative implementation of f.

6.6.1 Checking the Preconditions

The two arguments that the refactoring takes are enough to identify and extract the

target function so that precondition checking can begin. These preconditions are defined

in Figure 138.

The first precondition, checking whether any of the variables bound within the do

block is used in another statement, is fairly straightforward to verify: the refactoring

recurses through the list of statements and checks the right hand side of each statement

to see whether a bound variable is used in it. If one of the bound variables is found

in a right hand side expression then the entire do expression is not context-free and so

cannot be rewritten using the applicative interface alone.

The second precondition is checked using a similar method. First we construct a

list of the variables in the order that they are used in the return statement. Then we

search through the do statements in order and whenever a binding statement is found

we check that the variable being bound is the leftmost variable in the return statement

that has not already been processed.

6.6.2 Constructing the Effectful Expression

Once the preconditions have passed we can start constructing the “applicative chain”

that will make up the right hand side of the refactored function. This expression is
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Expressions
e ∈ Expr ::= v Variable

| e1e2

| λ p→ e
| (e1, . . . ,en) n≥ 2
| do l e
| . . .

Patterns
p ∈ Pat ::= v

| (p1, . . . , pn) n≥ 2
| . . .

Statement Sequences
l ∈ Stmts ::= {s1, . . . ,sn} n≥ 1

Statements
s ∈ Stmt ::= p← e

| e

Figure 137: Input syntax for the refactoring

composed of two different types of subexpressions, binding expressions that contribute

to the returned value of the function and effectful expressions that are just used for their

effects on the applicative context. The code that constructs this effectful part of the

applicative chain is given in Figure 139.

In the objEntry parser in Figure 140 only lines four and eight contribute to the

final result. The other expressions just consume input and the returned values of those

combinators are discarded. The first step in constructing the applicative chain involves

building clusters of statements where each cluster contains a single binding statement

(those matching (p← e) :: Stmt) and its nearest effectful statements (those matching

e :: Stmt). In the example we would create two clusters, the first cluster consists of lines

three through six and the second of lines seven through nine.10

Within each cluster we then decide which applicative operator goes between each

10When there are an odd number of effectful expressions between binding expressions the extra
expression is added to the leftmost cluster.
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let s1, . . . ,sn be the do block to refactor
sn is the return statement.
This block must pass the following preconditions

Bound Variables are only used in return statement
∀x.1≤ x < n.

bv sx∩ f v{sy| y ∈ {1, . . . ,n−1},y 6= x}= /0

The order variables are bound in
and appear in the return statement are the same
let rv1, . . . ,rvm be the variables bound in s as they appear

f rom le f t to right in the return statement in
∀i.1≤ i≤ m.

{bNum rvi < bNum rv j | j ∈ {i+1, . . . ,m}}

bNum returns the index of the statement
in which a variable is bound
bNum v {s1, . . . ,sn}= y

where v ∈ bv sy

bv {s1, . . . ,sn} = the bound variables o f {s1, . . . ,sn}
f v {s1, . . . ,sn} = the f ree variables o f {s1, . . . ,sn}

Figure 138: Preconditions

expression. Since there is only one binding statement per cluster we know that the only

options are (*>) or (<*). We simply go through the list and if a statement occurs

before the binding statement we know that it will be followed by a (*>) operator and

once the binding statement occurs all the remaining expressions are composed with

the (<*) operator. The first cluster from the objEntry example is: (spaces *>

parseStr <* spaces <* char ’:’)

Once every cluster has been refactored separately all of the clusters are wrapped in

parentheses and then composed with the full apply operator (<*>), as seen in Figure 141,
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buildE f f ects :: Stmts→ Expr
buildE f f ects stmts = (e1 < ∗> e2 < ∗> .. .em)

where {e1, . . . ,em}= map buildSingleExpr clusters
clusters = clusterStmts stmts

−−BuildSingleExpr takes in Stmts that contains a single
−−bind Stmt and makes an applicative expression
buildSingleExpr :: Stmts−> Expr
buildSingleExpr{b f1, . . . ,b fn,(p← e),a f1, . . . ,a fm}=

(b f1∗> .. .∗> b fn∗> e < ∗a f1 < ∗ . . . < ∗a fm)

−−clusterStmts segments statements into multiple sets o f
−−statements each set contains one bind statement
−−and its surrounding statements
clusterStmts :: Stmts→{Stmts}
clusterStmts {s1, . . . ,sn}= map (λ is→ map (λ i→ si)) cs

where
indices = {i|si ∈ {s1, . . . ,sn},si = (p← e)}
cs = cluster indices n 0
cluster {i} l c = {{c, . . . ,(l−1)}}
cluster {i1, i2, . . .} l c = let b = i1 +((i2− i1) ‘div‘ 2) in
{c, . . . ,b} : (cluster {i2, . . .} l (b+1))

Figure 139: Building the effects

6.6.3 Building the Pure Expression

Now that the effectful part of the chain has been constructed we must build the pure

expression that will be attached to the front of the applicative chain. The definition in

Figure 142 builds this pure expression.

In the running example the returned values are wrapped in a tuple, which is a special

case, and the pair constructor ((,)) will be added to the front of the chain with the infix

fmap operator (<$>).

If the pure expression is a function call such as in zipperM from Figure 143, then
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1 objEntry :: CharParser () (String, String)
2 objEntry = do
3 spaces
4 str <- parseStr
5 spaces
6 char ':'
7 spaces
8 i <- many1 digit
9 spaces

10 return (str, i)

Figure 140: The objEntry parser

1 (spaces *> parseStr <* spaces <* char ':')
2 <*> (spaces *> many1 digit <* spaces)

Figure 141: The effectful expressions for the refactored definition of objEntry

the pure part of the expression is built by extracting the expression being returned and

removing all of the bound variables from this expression. In the zipperM example

this is zip lst after removing the lst2 which was bound in the do block. Finally

this expression is added to the front of the chain.

Once the pure expression has been added to the front of the applicative chain the

new function definition can replace the right hand side of the source function. The

refactored versions of both examples used in this section are shown in Figure 144.

6.7 Case Studies

There are two things that make a particular application a good candidate for this refactoring.

First, and most obviously, the application must be able to be defined using the applicative

interface. Secondly, a good candidate will have a large corpus of code that is already

written in the monadic style. If a particular library is already defined using applicative

functors rather than monads then there is little work for the refactoring to do. This

section will discuss some libraries where this refactoring could be useful.
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−−T his takes the expression being returned
−−originally and the statements and returns the expression
−−to go on the f ront o f the applicative chain
buildPureExpr :: Expr→ Stmts→Maybe Expr
buildPureExpr (e1, . . . ,en) _ = Just (,n )
buildPureExpr e stmts = removeBoundVars e (bv stmts)

removeBoundVars :: Expr→Variable→Maybe Expr
removeBoundVars v vars =
| v ∈ vars = Nothing
| otherwise = Just v

removeBoundVars (e v) vars =
| v ∈ vars = removeBoundVars e vars >>=

(λ e′→ Just e′)
| otherwise = removeBoundVars e vars >>=

(λ e′→ Just (e′ v))
removeBoundVars (e1 e2) vars = do

e′1← removeBoundVars e1 vars
e′2← removeBoundVars e2 vars
return (e′1 e′2)

removeBoundVars (λ p→ e) vars =
| ( f v e)∩ vars 6= /0 = Nothing
| otherwise = Just (λ p→ e)

removeBoundVars (do l e) vars =
| ( f v l)∩ vars 6= /0 = Nothing
| ( f v e)∩ vars 6= /0 = Nothing
| otherwise = Just (do l e)

removeBoundVars _ _ = Nothing

Figure 142: Building the pure expression

6.7.1 Parsing

Many of the examples in this paper are parsers using parser combinator libraries. This

has been a classic domain of applicative functors. The first examples of applicative-like
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1 zipperM :: [a] -> IO [(a, b)]
2 zipperM lst = do
3 lst2 <- getOtherList
4 return $ zip lst lst2

Figure 143: The zipperM function

1 objEntry :: CharParser () (String, String)
2 objEntry = (,) <$>
3 (spaces *> parseStr <* spaces <* char ':')
4 <*> (spaces *> many1 digit <* spaces)
5

6 zipperM :: [a] -> IO [(a, b)]
7 zipperM lst = zip lst <$> getOtherList

Figure 144: The refactored functions from the two examples in this section

developments come from papers on parsing (Röjemo 1995; Swierstra and Duponcheel

1996).

Indeed, when looking through projects on Hackage that are labeled as parsers,

examples of where our refactoring could be applied are numerous. Html-tokenizer is a

project that tokenizes HTML code to provide a base for HTML parsers (Volkov 2016).

Within it there were several functions that are can be generalised. These functions look

very much like what we have already seen before. Take the example of matching an

opening tag: the original definition is in Figure 145 and the same function after it has

been refactored is shown in Figure 146.

Another parser that has several functions that can be refactored is the implementation

of pi-forall, a simple dependently typed language created by Stephanie Weirich (Weirich

2016). The function that parses a module definition and its refactored equivalent are

shown in Figures 147 and 148.
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1 openingTag :: Parser OpeningTag
2 openingTag =
3 do
4 char '<'
5 skipSpace
6 theIdentifier <- identifier
7 attributes <- many $ space *> skipSpace *> attribute
8 skipSpace
9 closed <- convert <$> optional (char '/')
10 char '>'
11 return (theIdentifier, attributes, closed)

Figure 145: The openingTag function.

1 openingTag :: Parser OpeningTag
2 openingTag = (,,)
3 <$> (char '<' *> skipSpace *> identifier)
4 <*> ((many $ space *> skipSpace *> attribute) <* skipSpace)
5 <*> ((convert <$> optional (char '/')) <* char '>')

Figure 146: openingTag refactored

6.7.2 Data Store Access

One of the main motivations behind adopting the applicative interface rather than using

the monadic interface is that the applicative operators are not inherently sequential: the

left and right hand sides of a call to apply could be evaluated in parallel.

Facebook’s Haxl project simplifies accessing remote data stores such as databases

and web-services (Marlow et al. 2014). In the background when requests to the data

store are composed with the (<*>) operator, concurrency is implicit (Marlow et al.

2014). With the generalise applicative refactoring programmers will be able to write

their data queries in the do notation that they are familiar with and then refactor their

code to gain the concurrency benefits. Haxl is the motivating behind the applicativeDo

project (Marlow et al. 2016), as discussed earlier in Chapter 2.
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1 moduleDef :: LParser Module
2 moduleDef = do
3 reserved "module"
4 modName <- identifier
5 reserved "where"
6 imports <- layout importDef (return ())
7 decls <- layout decl (return ())
8 cnames <- get
9 return $ Module modName imports decls cnames

Figure 147: pi-forall’s module definition parser.

1 moduleDef :: LParser Module
2 moduleDef = Module
3 <$> (reserved "module" *> identifier <* reserved "where")
4 <*> layout importDef (return ())
5 <*> layout decl (return ())
6 <*> get

Figure 148: The refactored module definition parser

6.7.3 Yesod

Another possible application of this refactoring is to parts of the code used to define

Yesod webservers (Snoyman 2016). The preferred way to handle the creation and

processing of web forms uses the applicative interface (Snoyman 2012). Yesod doesn’t

force forms to be handled applicatively because a monad instance is provided as well

but it is the idiomatic way to handle web forms. This refactoring would allow people to

write in the more familiar do notation and then refactor their code to fit the community

standard.

6.8 Summary

This refactoring is another example of a generalisation refactoring that rewrites code to

work with a type class. The previous examples of this type of refactoring, the Maybe

to MonadPlus or the Maybe to Monad refactorings generalised a concrete type to one
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of its type classes. This refactoring is different, it does not generalise a program so that

additional concrete types can be applied to it. This refactoring generalises the way that

the target program can be evaluated. Though monads can be constructed to support

parallel evaluation (Marlow, Newton and Peyton Jones 2011), this functionality needs

to be explicitally added to a program. Applicative programs can be made implicitly

parallel depending on the definition of the applicative instance (Marlow et al. 2014).

Additionally there are cases where the applicative versions of functions are easier

to read. Parsers in particular can become very descriptive in the applicative style with

function calls being read from left to right in the same order as the syntax elements they

are parsing appear in the input.

In both of these cases the type of data the program is processing will drive the

desire to refactor. The first case the parts of a program’s result are computed under or

extracted from a monadic context but these parts are independently computed and don’t

depend on the result of one part to compute other parts. This opens the opportunity for

parallelism by switching from the strictly sequential monadic interface to the applicative

one. With some changes to how apply is evaluated, each of its arguments can be

computed in parallel if the applicative instance is defined to take advantage of this

fact (Marlow et al. 2014). The other case, the actual format of the data can inspire the

refactoring. Haskell’s do syntax has strict formatting requirements. Every statement of

a do block must begin on the same column in the source file. The applicative operators

are not as strict and would allow for parsing code to be formatted in unique ways to

increase readability.

Improving readability is a valid reason to refactor code, but when is refactoring

preferable over a compiler optimization? The ApplicativeDo desugarer from Marlow

et al. (2016) (see Section 2.4) automatically introduces applicative operators into a do

statement, why would a refactoring be preferable to just letting the compiler optimize

your program for you? Programmers may prefer their program’s semantics to be

explicitly written rather than trusting the compiler to make the correct decisions.



Chapter 7

Introducing Monads

Up to this point the data refactorings that have been discussed are making changes to

abstractions that already exist in the source code. This chapter explores refactorings

that introduce effectful abstractions into pure code. In particular this chapter focuses

on monadification, the process of adding monads to pure code.

Monadification of a Haskell program is a common transformation that must be

performed when a program is explicitly effectful, such as using Maybe to handle

failure or passing the state of a computation as a parameter. The Haskell Community’s

guidelines also advise that monadic and pure code should be separated if possible, so

that Haskell programs should be written as pure code until it is clear that monads are

required (HaskellWiki 2015c). This makes the process of monadification a common

transformation that Haskell programmers undertake, making it a compelling refactoring

target.

This chapter describes a monadification refactoring. First there is a brief review of

the Monad type class from Haskel (section 7.1). There are multiple styles of monadification,

as described in (Reinke et al. 2005), and Section 7.2 will describe these styles and

discuss their relative merits and usefulness to Haskell programmers. Finally the implementation

of the monadification refactoring within HaRe is described in section 7.3.

158



CHAPTER 7. INTRODUCING MONADS 159

1 class Functor f where
2 fmap :: (a -> b) -> f a -> f b
3

4 class Functor f => Applicative f where
5 pure :: a -> f a
6

7 (<*>) :: f (a -> b) -> f a -> f b
8

9 class Applicative m => Monad m where
10 (>>=) :: m a -> (a -> m b) -> m b
11

12 (>>) :: m a -> m b -> m b
13 m >> k = m >>= \_ -> k
14

15 return :: a -> m a
16 return = pure
17

18 fail :: String -> m a
19 fail s = errorWithoutStackTrace s

Figure 149: The monad type class

7.1 The Monad type class

The monad type class is defined in Figure 149 along with the Functor and

Applicative type classes for reference. The two canonical monad functions are

return and “(»=)” which is pronounced bind. return is the function that brings

some pure value into the monadic context; the default definition is the function pure

from the Applicative instance of the type. Bind allows for computation to occur

within the monadic context.

The other two functions are part of the Haskell language standard for the Monad

type class. The (») operator allows for sequential composition, when the second

operation is not dependent on the outcome of the first. fail is called when a pattern

match failure occurs inside of a do statement. In Figure 150 fail would be called if

the function f returns Nothing rather than (Just n) for some n.

Haskell has identified monads as the standard framework for building I/O and stateful
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1 do{
2 (Just n) <- f;
3 return (n+1)
4 }

Figure 150: A do statement with a possible call to fail on line 2.

computations. This section has described the monad type class. Despite the number of

tutorials written about how to understand it, the monad type class only consists of the

return and (»=) operations. The following section will discuss the different ways

that monadic programs can be constructed.

7.2 Styles of Monadification

Up to this point this thesis has not gone into detail about what monadification is, beyond

the process of introducing monads into a previously pure type. Monadifying a single

type changes it from type a to type Monad m => m a. Monadifying a function will

always change the result type of a target function because there is no way to extract

values out of any monadic context. Monadification can also affect any combination of

parameters. Which parameters are affected depends on the style of monadification.

The different styles of monadification can change how a function is evaluated.

In Reinke et al. (2005) five different styles of monadification are described as part of a

survey of the Haskell community’s use of monads. The monadification styles are:

• Full Call-by-Value

• Full Call-by-Name

• Restricted Call-by-Name

• Data-Directed

• Restricted Call-by Value (This is the style implemented in HaRe)
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1 mergesort :: (Ord a) => [a] -> [a]
2 mergesort lst = let (l,r) = splitAt ((length lst) `div` 2) lst

in
3 merge (mergesort l) (mergesort r)
4

5 merge :: (Ord a) => [a] -> [a] -> [a]
6 merge [] r = r
7 merge l [] = l
8 merge (x:xs) (y:ys) =
9 case (x < y) of

10 True -> x:(merge xs (y:ys))
11 False -> y:(merge (x:xs) ys)

Figure 151: Mergesort

The rest of this section will describe each of these monadification styles in more

detail. There are two examples used: one is an implementation of merge sort that

was developed for this thesis, and the other is an expression evaluator which is taken

from Reinke et al. (2005).

7.2.1 Full Call-by-Value Monadification

A call-by-value monadification of a function will ensure that all arguments are evaluated

before being passed to a function and the function will also be evaluated before having

arguments passed to it. Consider the definition of mergesort in Figure 151.

The full call-by-value monadification, when applied to mergesort, is defined in

Figure 152

7.2.2 Full Call-by-Name Monadification

The full call-by-name monadification of a function ensures arguments are unevaluated

when they are passed to the function. The full call-by-name version of mergesort is

defined in Figure 153.

The two "full" monadification styles monadify not only the arguments to a function
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1

2 mergesort :: (Ord a, Monad m) => m ([a] -> m [a])
3 mergesort = return (\ lst -> case lst of
4 [] -> return []
5 [x] -> return [x]
6 _ -> do
7 let (l,r) = splitAt ((length lst) `div` 2) lst
8 mm1 <- mergesort
9 v1 <- mm1 l

10 mm2 <- mergesort
11 v2 <- mm2 r
12 return (merge v1 v2))

Figure 152: Full call-by-value monadification of mergesort

1 mergesort :: (Ord a, Monad m) => m (m [a] -> m [a])
2 mergesort = return (\ mlst -> do
3 lst <- mlst
4 res <- case lst of
5 [] -> return []
6 [x] -> return [x]
7 _ -> do
8 let (l,r) = splitAt ((length lst) `div` 2) lst
9 mm1 <- mergesort

10 v1 <- mm1 (return l)
11 mm2 <- mergesort
12 v2 <- mm2 (return r)
13 return (merge v1 v2)
14 return res)

Figure 153: Full call-by-name monadification of mergesort

but also the function itself. That is the refactored functions return a monadic value

that computes another function with, depending on the style, parameters that may be

monadic.

The full monadification styles are a bit “too monadified” to be broadly useful.

Consider the full call-by-value monadification of mergesort in Figure 152, to sort

a list, first the function needs to be extracted via the monadic context then it can be

applied to the list. The full call-by-name version of the function takes an additional step
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1 > let lst = [3,2,1]
2 > fcbvMergesort >>= (\f -> f lst)
3 [1,2,3]
4 > fcbnMergesort >>= (\f -> f (return lst))
5 [1,2,3]

Figure 154: Using the monadified versions of mergsort. fcbvMergsort is defined
in Figure 152 and fcbnMergesort is defined in Figure 153.

1 mergesort :: (Ord a, Monad m) => m [a] -> m [a]
2 mergesort ml = do
3 lst <- ml
4 res <- case lst of
5 [] -> return []
6 [x] -> return [x]
7 _ -> do
8 let (l,r) = splitAt ((length lst) `div` 2) lst
9 v1 <- mergesort (return l)

10 v2 <- mergesort (return r)
11 return (merge v1 v2)
12 return res

Figure 155: The restricted call-by-name monadification of mergesort.

to use, this time the list value needs to be lifted into the monadic context before it can

be passed to the extracted function. Examples of how to use these full monadifications

are shown in Figure 154.

The remaining monadification styles are “restricted” versions of the two full monadification

styles. All of these styles do not wrap the function inside of the monadic context, they

differ in which of the target function’s parameters are monadified.

7.2.3 Restricted Call-by-Name Monadification

This style of monadification is where every argument is contained within the monad.

Using the mergesort example again, Figure 155 shows the restricted call-by-name monadification.

The argument passed to mergesort in Figure 155 is within the monad so it will

not be evaluated until it is extracted from the monadic context on line 3 of Figure 155.
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1 data Expr = Lit Int
2 | Bin Op Op Expr Expr
3

4 data Op = Add | Div
5

6 eval :: Expr -> Int
7 eval (Lit n) = n
8 eval (BinOp op e1 e2)
9 = evalOp op (eval e1) (eval e2)
10

11 evalOp :: Op -> Int -> Int -> Int
12 evalOp Add v1 v2 = v1 + v2
13 evalOp Div v1 v2 = v1 `div` v2

Figure 156: The pure interpreter implementation

This gives the refactored function its call-by-name “flavour” as Reinke et al. (2005)

describes it.

7.2.4 Data-Directed Monadification

This style refactors a certain type to be replaced by a monadic computation over that

type. This example becomes clearer when working with functions that have more than

a single argument like the mergesort example. This style will be explained using

the example from Lämmel (1999). The example is a simple arithmetic expression

interpreter as seen in Figure 156.

With this particular example the programmer wants the expressions to be evaluated

within a monad to add effects. Since Int represents the result of an expression in this

program this type is monadified as seen in Figure 157. Importantly this refactoring

makes the type of evalOp change to Monad m => Op -> m Int -> m Int

-> m Int in addition to monadifying the result type of eval.

Some arguments are passed unevaluated- those of monadic type- whereas arguments

of other types are non-monadic. Therefore this style is a mixture of the call-by-name

and call-by-value styles (Reinke et al. 2005).
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1 eval :: Monad m => Expr -> m Int
2 eval (Lit n) = return n
3 eval (BinOp op e1 e2)
4 = evalOp op (eval e1) (eval e2)
5

6 evalOp :: Monad m => Op -> m Int -> m Int -> m Int
7 evalOp Add v1 v2 = do
8 l <- v1
9 r <- v2
10 return (l + r)
11 evalOp Div v1 v2 = do
12 l <- v1
13 r <- v2
14 return (l `div` r)

Figure 157: A data-directed monadification of the interpreter.

Data-directed monadification is useful if a particular type can always represent

the result of a computation that should be effectful. This makes it a difficult style

of monadification to implement, because there is not enough information in the type

system to always determine which parameters are targets of the refacoring. In the

interpreter case, Int is always the result of an evaluation. Even in the only call to

evalOp the second and third arguments are computed from recursive calls to eval

so those Int types also represent expression evaluation. This style of monadification

would pair well with the “introduce a type synonym” refactoring to differentiate instances

of types that should be monadified.

7.2.5 Restricted Call-by-Value Monadification

The final monadification style monadifies the result type of the target function(s). This

is the style of monadification that is produced by the algorithm described in Erwig and

Ren (2004) and that is implemented in HaRe as part of this thesis work.

Returning to the mergesort example that was used earlier in this section, the restricted

call-by-value monadification implementation of this can be seen in Figure 158.
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1 mergesort :: (Ord a, Monad m) => [a] -> m [a]
2 mergesort lst = do
3 let (l,r) = splitAt ((length lst) `div` 2) lst
4 v1 <- mergesort l
5 v2 <- mergesort r
6 merge v1 v2
7

8 merge :: (Ord a, Monad m) => [a] -> [a] -> m [a]
9 merge [] r = return r

10 merge l [] = return l
11 merge (x:xs) (y:ys) =
12 case (x < y) of
13 True -> do
14 rst <- (merge xs (y:ys))
15 return (x:rst)
16 False -> do
17 rst <- (merge (x:xs) ys)
18 return (y:rst)

Figure 158: Restricted call-by-value monadification

This style of monadification meshes nicely with the bind operator which expects

functions whose arguments are pure values and returns a monadic type. This style of

monadification has been implemented in HaRe and the next section will go into greater

detail about the implementation of this refactoring.

This section has been a summary of the different ways that monadic programs can

be written. These styles were first identified by Lämmel (1999), Erwig and Ren (2004),

and Reinke et al. (2005). This thesis provides an implementation of the restricted call-

by-value monadification. This style fits well with how the passed to bind is a pure

value and it returns a monadic value. This style is also the obvious way to make a

non-effectful computation effectful. The other styles assume that there is an already

existing monadic context that either produces the arguments that are passed to the target

function, in the call-by-name cases, or to extract the function into, as in the “full”

monadification styles. The restricted call-by-value style of monadification fits easily

into an otherwise pure program, which is what the refactoring is targeting.
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7.3 Implementation of the Monadification Refactoring

The implementation of Monadification in HaRe is a top down transformation. The

monadification refactoring takes a list of target functions as input. In practice the

refactoring receives a list of positions in a file and these positions indicate which

functions should be targeted by the refactoring.

The monadification refactoring works over sets of functions simultaneously. Figure 159

defines two functions f and g and the two possible monadifications (“*_m1” and

“*_m2”). The f_m1 function is how f would be rewritten if it was the sole target

of the refactoring, and f_m2 and g_m2 are the definitions if both functions were a

target of the refactoring.

When only making f effectful the refactoring can simply lift its original definition

into the monad using the return function. Since g is a pure function it can still be

used in the body of f_m1 without any changes. When both of the functions are targets

of the refactoring g, because it is not dependent on any other monadic functions, can

just be handled in the same way f_m1 was by lifting its definition into the monadic

context using return. However, f is dependent on the now effectful g so the expression

“(g x) + 1” will now throw a type error because (g x) is of type “m Int” not a

number which was it’s previous type. Instead the call to g_m2 needs to be bound to the

rest of f_m2’s definition so that its result can be extracted from the monadic context.

It’s important to note that g alone is not a valid target of the refactoring. This is

because f is dependent on g, if g becomes effectful then it can no longer be used the

pure function f.

7.3.1 Preconditions

There are two preconditions that must be met before this refactoring can be applied.

First, all of call points of the target functions must be “fully-saturated.” This means that

every call point will have a named variable passed to the target function. This allows
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1 f :: Int -> Int
2 f x = (g x) + 1
3

4 g :: Int -> Int
5 g y = y * 2
6

7 f_m1 :: (Monad m) => Int -> m Int
8 f_m1 x = return ((g x) + 1)
9

10 f_m2 :: (Monad m) => Int -> m Int
11 f_m2 x = g_m2 x >>= (\v1 -> return (v1 + 1))
12

13 g_m2 :: (Monad m) => Int -> m Int
14 g_m2 y = return (y * 2)

Figure 159: Possible monadification refactorings for the f and g functions.

1 f :: Int -> String -> String
2 f n str = (take n str, drop n str)
3

4

5 stringHandler :: Maybe Int -> String -> (String, String)
6 stringHandler mi s =
7 let g = case mi of
8 Nothing -> f ((length s) `div` 2)
9 (Just i) -> f i
10 in g s

Figure 160: The stringHandler function will be rejected by the monadification
refactoring.

the refactoring to assume that the type of a subtree whose leftmost child is a monadified

function is a monadic value and not something of type Monad m => a -> m a.

Like the many of the preconditions for the “generalise monad to applicative” refactoring,

other refactorings can help transform programs to pass the preconditions. The stringHandler

in Figure 160 has calls to f that are not fully saturated. Fortunately η-expansion can be

used to fully saturate the calls to f (see Figure 161) allowing stringHandler and f

to be monadified.1 This expansion involves introducing abstraction over a function so

1The original definition of stringHandler could be monadified alone.
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1 stringHandler :: Maybe Int -> String -> (String, String)
2 stringHandler mi s =
3 let g = case mi of
4 Nothing -> (\x -> f ((length s) `div` 2) x)
5 (Just i) -> (\x -> f i x)
6 in g s

Figure 161: The new version of stringHandler can be monadified.

given some function: f :: a -> b -> c which is used in the expression: f x,

this can be η-expanded to: (\y -> f x y) so now all of f’s parameters at this call

site are named variables.

The second precondition of this refactoring is that the target functions cannot be

called outside the scope of the refactoring. Once a function has been monadified it’s

result cannot be used within a pure function any longer because there is no way to

retrieve the result of a monadic computation from the monadic context.

In the stringHandler example from Figure 161, stringHandler alone and

stringHandler and f are valid target sets of the refactoring, but trying to monadify

f alone is not because it is used outside the scope of the refactoring.

7.3.2 The Transformation

The simplest case of this refactoring is when the target function is defined using only

pure functions then the refactored version of the function is simply return applied to

the original body of the function. Otherwise the refactoring works over the body of a

target function in four steps:

1. The refactoring begins by extracting any sub-expressions that are calls to a target

function. The extraction happens in a top-down left to right manner, when a sub-

expression is found that is a call to one of the refactoring’s target functions it is

replaced with a variable, so (f x = f (g x)) would become (f v1).



CHAPTER 7. INTRODUCING MONADS 170

1 f x y = f (h x) (g y)

Figure 162: A simple target function for monadification

2. Next a bind expression needs to be constructed from the extracted monadic sub-

expressions and the expressions they were extracted from. The extracted sub-

expressions become the first argument to bind and a newly constructed lambda

expression makes up the second argument. The lambda expression is made from

the expression that had the monadic expression replaced with some variable, the

only argument of the lambda expression is that variable. From the example

in the previous step: (g x) is the extracted monadic sub-expression and (f

v1) is the expression it was replaced with the v1 variable. In this example the

constructed bind expression is defined as (g x) »= (\v1 -> f v1).

3. If the right hand side expressions of one of the lambda expressions is not a

monadic value then return will have to be applied to this expression. In the

example from the previous step, if f is a target of the refactoring then the bind

statement does not need to be modified further. If f is not one of the target

functions then the bind expression needs to be rewritten to: (g x) »= (\v1

-> return (f v1)).

4. Finally the body of the target function can be replaced with the constructed bind

expression. This target function has now been successfully refactored. These

four steps need to be performed over the body of each of the target functions.

A more concrete example is shown in Figure 162. The functions f, g, and h are all

targets of the refactoring.

The syntax tree of the right hand side of f is shown in Figure 163. The first step of

the refactoring begins by extracting all the monadic sub-expressions of the body of f

and replacing them with variables. This step works in a top down left to right manner so

the call to h is discovered first, the relevant sub-tree is outlined in Figure 163. Next the



CHAPTER 7. INTRODUCING MONADS 171

Figure 163: The syntax tree of f from Figure 162

call to g will also be extracted. The implementation of the refactoring contains a queue

that keeps track of the monadic expressions and the variables that replaced them. At

this point in the refactoring, after step one, the queue contains two elements: [(v1,(h

x)), (v2,(g y))] and the body of f has become: f v1 v2.

Next in step two the bind expression will be constructed from the contents of the

queue and the rewritten body of f. The refactoring begins by popping each expression

off of the queue, composing it with bind and creating a lambda expression from the

corresponding variable name. This process has been illustrated in Figure 164.

Once the bind expression has been produced as shown in line 9 of Figure 164 the

third step of the refactoring checks if its innermost expression needs to be lifted into the

monadic context with return. In this particular case since the innermost expression is

a call to a target function so this step does not affect the final product of the refactoring.

Not the binding of f can be replaced with the bind expression. The final result of

refactoring f is shown in Figure 165. After rewriting f the refactoring would continue

by refactoring the bodies of g and h
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1 −− Initial state of the queue: [(v1 ,( h x) ) , (v2 ,( g y) )]
2 −− Begin by popping (v1, (h x) ) off
3 (h x) >>= (\ v1 -> ...)
4 −− The right hand side of the lambda is constructed from what remains in the queue
5 −− Pop (v2, (g y) ) off
6 (h x) >>= (\ v1 -> (g y) >>= (\ v2 -> ...))
7 −− The queue is now empty so the top level expression is inserted here
8 −− The final result of step 2:
9 (h x) >>= (\ v1 -> (g y) >>= (\ v2 -> f v1 v2))

Figure 164: Working through the queue of monadic expressions.

1 f x y = (h x) >>= (\ v1 -> (g y) >>= (\v2 -> f v1 v2))

Figure 165: The final refactored version of f

At this point the refactoring is capable of transforming simple function application.

Haskell, obviously, has more expressive expressions beyond just function applications.

The next section will describe how this implementation handles let expressions.

7.4 Let Expressions

The previous section details how the refactoring works over simple function applications.

This section will describe how a function with a let expression is refactored. This

section will use the expression evaluator in Figure 166 as a motivating example.

The idea is that at this point in the project the explicit passing of the state is

unwanted so refactoring eval to become monadic so that the Env can be passed

around using the State monad instead. The first two cases that handle the Var and N

constructors can simply be wrapped with return because no recursive calls to eval

happen in those cases. The three other cases contain let bindings that all call (the now

monadic) eval.

In those cases the local bindings can be used as the variables inside of a lambda

expression. This seems simple enough, there is a question of the order in which the
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1 data Expr = Var Char
2 | N Int
3 | Add Expr Expr
4 | Sub Expr Expr
5 | Assign Char Expr
6 deriving Show
7

8 type Env = [(Char,Int)]
9

10 eval :: Expr -> Env -> (Int,Env)
11

12 eval (Var v) env = (head [val | (x,val) <- env, x==v], env)
13

14 eval (N n) env = (n,env)
15

16 eval (Add e1 e2) env = let (v1,env1) = eval e1 env
17 (v2,env2) = eval e2 env1
18 in (v1+v2,env2)
19 eval (Sub e1 e2) env = let (v1,env1) = eval e1 env
20 (v2,env2) = eval e2 env1
21 in (v1-v2,env2)
22 eval (Assign x e) env = let (v,env1) = eval e env
23 in (v, (x,v):env1)

Figure 166: An expression evaluator.

1 let v2 = g v1
2 v1 = f x
3 in ...

Figure 167: An interesting let binding

bindings should be processed? Consider the let binding in Figure 167, assuming that the

f and x variables are in scope. Due to lazy evaluation this is a valid Haskell let binding

despite v1 being referenced on line one before it is defined on line two. However if

the let bindings are processed in the obvious way from top to bottom2 v1 will not be in

scope when it is passed to g.

Fortunately GHC offers a solution: the renamer of GHC, which checks for lexical

2In this case: g v1 »= (\v2 -> f x »= (\v1 -> ...))
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1 eval :: Monad m => Expr -> Env -> m (Int,Env)
2

3 eval (Var v) env = return (head [val | (x,val) <- env, x==v],
env)

4

5 eval (N n) env = return (n,env)
6

7 eval (Add e1 e2) env = eval e1 env >>=
8 (\(v1,env1) -> eval e2 env1 >>=
9 (\(v2,env2) -> return (v1+v2,env2)))
10

11 eval (Sub e1 e2) env = eval e1 env >>=
12 (\(v1,env1) -> eval e2 env1 >>=
13 (\(v2,env2) -> return (v1-v2,env2)))
14

15 eval (Assign x e) env = eval e env >>=
16 (\(v,env1) -> return (v, (x,v):env1)))

Figure 168: The monadified expression evaluator.

errors, also performs dependency analysis on local bindings and orders them so that

later bindings may depend on earlier ones but not vice versa when there are no mutually

recursive bindings (GHC API 2016). This renamed ordering is used to lookup the

parsed bindings in dependency analysed order.

Returning to the evaluator example the monadified version is shown in Figure 168.3

The let bindings in eval can be processed from top to bottom. In the Add case this

means that the expression bound on line 16 in Figure 166 makes up the outermost call

to bind and the pattern it was originally bound to becomes the pattern that matches the

argument passed to the first lambda expression.

If there were pure expressions on the right hand side of the let binding those bindings

will remain in a let expression. For example the function starting on line one in

Figure 169 contains two let bindings pureF is a pure function and so it remains inside

a let expression whereas monF is a target of the refactoring and it is lifted from the let

3Line breaks have been added to aid readability in this setting but the refactoring would not actually
do this.
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1 f x = let y = pureF x
2 z = monF y
3 in z+x
4

5 f_m x = let y = pureF x in
6 monF y >>= (\z -> return z+x)

Figure 169: A function with a mixture of pure and monadic function calls in a let
expression.

and passed to bind.

With this section the refactoring supports the transformation of the core of Haskell,

the the typed lambda calculus with polymorphic let expressions. However, this refactoring

outputs monadic code composed with the bind operator, which is probably not the most

popular way to write monadic code. To better support monadic programming Haskell

gives monads their own syntactic structure known as do-syntax. The next section will

discuss a separate refactoring for introducing this syntax into the target function.

7.5 Adding Syntactic Sugar

The refactored program from Figure 168 is rewritten in a restricted call-by-value monadification

style. However, idiomatic monadic Haskell is not often written in this style. Haskell

also supports a piece of syntactic sugar called do notation. This notation allows for a

series of bind computations to be written in a more compact and easier to read style.

Figure 170 shows how the bind expression on line one can be sugared into the do

statement on lines four through six.

do notation is highly used when writing monadic Haskell programs and some texts

even introduce it before explaining what monads are (O’Sullivan, Goerzen and Stewart

(2008); Thompson (2011); Lipovača (2012)). Supporting this syntax is an important

feature for a monadification refactoring to be practical.

The sugaring of bind syntax into do syntax is a separate refactoring in HaRe. This
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1 m_expr >>= (\x -> return (f x))
2 −−Sugars to
3

4 do
5 x <- m_expr
6 return (f x)

Figure 170: An example of how binds can sugar to do notation.

1 eval :: Monad m => Expr -> Env -> m (Int,Env)
2

3 eval (Var v) env = return (head [val | (x,val) <- env, x==v],
env)

4

5 eval (N n) env = return (n,env)
6

7 eval (Add e1 e2) env = do
8 (v1,env1) <- eval e1 env
9 (v2,env2) <- eval e2 env1

10 return (v1+v2,env2)
11

12 eval (Sub e1 e2) env = do
13 (v1,env1) <- eval e1 env
14 (v2,env2) <- eval e2 env1
15 return (v1-v2,env2)
16

17 eval (Assign x e) env = do
18 (v,env1) <- eval e env
19 return (v, (x,v):env1))

Figure 171: The sugared evaluator.

allows for the programmer to choose exactly which functions should be written with

do syntax and when functions are clearer remaining as binds. The refactoring takes

in a single parameter, the position where the target function is declared. The sugared

version of eval from Figure 168 is shown in Figure 171. The first two cases weren’t

bind expressions so they remain just calls to return. The three other cases have been

refactored into the equivalent do statements.

Introducing the do syntactic sugar into the target program is the final step of this
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two-step composite refactoring. Do syntax has become synonymous with monads in the

Haskell language and a refactoring that supports them should also support this syntax

as well.

7.6 Summary

Monads are a challenging and characteristic feature of Haskell and, anecdotally at least,

infamous amongst those trying to learn the language. Monadification is an important

and common transformation that Haskell code undergoes. This chapter has described

two refactorings that automate this transformation. The monadification refactoring

transforms a set of functions into restricted call-by-value monad style, where only the

result type of a function is made monadic. The second refactoring sugars the binds

produced by the monadification into do notation, a common structure for monadic

Haskell functions.

Unlike the other refactorings developed for this thesis this transformation has a long

history in the Haskell programming community. The design space for this refactoring

had already been extensively covered in (Lämmel (1999); Erwig and Ren (2004); Renke

(2005)). Rather than producing an additional style of monadification the contribution

of this chapter is the implementation of a practical monadification refactoring based on

the styles of monadification, from Renke (2005), and algorithms for introducing them

provided by Lämmel (1999) and Erwig and Ren (2004).



Chapter 8

Conclusion

This thesis has explored a new category of refactoring for functional programming

languages. Data-driven refactorings are transformations that are driven by the data

types a program uses. The generalisation refactorings, for example, are motivated by

a desire to allow code to be re-used in more places (e.g. the “Maybe to MonadPlus”

refactoring) or even to generalise the way a program is evaluated as in the “monad to

applicative” refactoring where the Applicative type class does not force sequential

evaluation of the arguments to apply (<*>) like bind (»=), the monad operation, does.

These refactorings are all designed to help programmers redesign the data their

programs use and manipulate. It has been shown in the literature that as programmers

make structural decisions the implementation of their programs technical debt can build

up, and this debt can only be paid through rewriting and/or refactoring (Cunningham

(1992); Fowler (1999)). The core idea behind this thesis is that the data representation

decisions that are also made during program development also accrue debt, and that

refactoring is a valid and simple way to pay off this type of technical debt.
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8.1 Summary of Contributions

The primary artifacts of this thesis are my contributions to HaRe and its API. In particular

the following contributions have been made:

• The design and implementation of a set of data-driven refactorings in HaRe.

These refactorings are:

– Introduce a Type Synonym, Section 4.3

– Generalise Maybe to MonadPlus/Monad, Section 4.4.2 and Chapter 5

– List to Hughes List, Section 4.5 and chapter 5

– Generalise Monad to Applicative, Chapter 6

• The implementation of Monadification, Chapter 7

• An API for the creation of embeddable types refactorings, chapter 5

• Enhancements and additions to HaRe’s API, see Chapter 5. The API was extended

while developing the refactorings mentioned above.

– Functions that perform high level, common transformations, that many refactorings

must do (e.g. wrapping a syntax element in parentheses)

– Functions for retrieving particular syntax elements from the abstract syntax

tree of an entire module such as getting the body of a function based on a

position.

– Functions that aid in working with ghc-exactprint and the parsed GHC

abstract syntax tree’s annotations. These functions provide functionality

such as changing the location of a syntax element relative to the prior syntax

element or adding new annotations to a syntax element.
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8.2 The GHC Tooling Ecosystem

The focus of the refactorings described in this theis are the changes they make to

the data that the target programs use; any structural changes that occur during the

transformation are incidental. Despite not being the focus of this thesis, a great deal

of effort had to go into understanding the state of the GHC tooling ecosystem and how

to rewrite GHC Haskell to produce it. This section will summarize my experience with

the current state of the program transformation ecosystem of GHC.

I began working on HaRe when the latest version of GHC was 7.6 (At the time

of writing it is 8.4.3). At this point all comments, whitespace information, and the

positioning of many special characters were completely eliminated from the parsed

abstract syntax. To preserve the layout of source files HaRe had to generate a separate

tree structure that contained all the tokens that were not represented by the AST and

some whitespace information. When it came time to print the modified source the AST

and this token tree needed to be combined for the output to be formatted correctly.

A major addition to the utility of the GHC API came with the release of GHC

7.10. With this release the GHC parser would now return the location of all comments

and tokens that had been previously discarded, in a separate structure as part of the

the parsed syntax tree. This implementation allowed compiler stages that depended

on the parsed AST to remain unchanged because the new structure could be ignored.

This addition to the GHC also coincided with the release of ghc-exactprint,1 which

was described in Section 3.4. This library made transforming Haskell code much

easier because it allowed the formatting to be done with relative positioning instead

of absolute locations. Ghc-exactprint also greatly simplified the development of the

common transformation library that was added to HaRe as a part of this thesis work.

In the short time that I have been a part of the Haskell tooling community it has

grown and changed a great deal. The GHC has been changed specifically to better

1This is not coincidental. Alan Zimmerman is the programmer behind both the modification to the
GHC and the ghc-exactprint library.
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support tool builders, notable examples of this are Zimmerman (2015) and Najd and

Jones (2017). There is also an initiative to create a pluginable editor interface for

Haskell, haskell-ide-engine2 so that a Haskell environment can be easily incorporated

into many different editors and IDEs and tool developers only have to target the ide

engine plugin system. The future of Haskell tooling is looking very bright! And in

particular this makes adding HaRe to other IDEs that much easier.

8.2.1 Challenges of Working with the GHC API

Working with the GHC API is not without its challenges however. The structure of the

abstract syntax is very complex and spread across several modules. The core types

of the tree are represented by many constructors, the expression type for example,

HsExpr, contains 51 different constructors as of GHC 8. This amount of complexity

makes a generic programming library a mandatory prerequisite for working with the

abstract syntax tree.

Fortunately for tool builders the number of types and constructors that represent the

vast majority of “standard” Haskell code is much more limited. However, determining

which constructors you need to target for any given transformation can be very tedious:

in the author’s experience this process involves looking at numerous printouts of abstract

syntax trees.

This situation could be improved by centralising information for GHC tool builders.

Currently the Haskell wiki hosts a single page “GHC/As a library” that gives a few

examples of how to run the various stages over a single file (HaskellWiki 2017a). This

is a fine general introduction to working with the GHC API but it does not contain

many details about working with the abstract syntax or projects. The GHC developer

wiki3 does contain a great deal of detail about the inner workings of but it is not well

organised or easy to find, and a lot of the material there is not directly relevent to tool

2https://github.com/haskell/haskell-ide-engine
3https://ghc.haskell.org/trac/ghc/

https://github.com/haskell/haskell-ide-engine
https://ghc.haskell.org/trac/ghc/
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builders. A centeralised source of Haskell tool building information would help guide

people new to the field greatly.

8.3 Future Work

This work and HaRe can be extended in multiple ways. Development on HaRe is

ongoing and will continue for the foreseeable future.

Reimplement Refactorings - When HaRe was updated to work with GHC the

original implementations of the refactorings were no longer valid using the new back-

end. An important task in the near future will be to go back an reimplement the

refactorings that are currently not supported in HaRe.

Template language for refactoring - A powerful feature of Wrangler is its template

language (Li and Thompson 2012). This allows for Wrangler refactorings to be defined

using concrete Erlang syntax rather than the abstract syntax, lowering the difficulty in

implementing refactorings significantly for programmers not familiar with the Erlang

backend. A similar feature for HaRe would allow refactorings to be written without

having to understand the syntax tree of GHC. Template Haskell is a template language

for Haskell and is built into the GHC. A significant amount of time while developing

this thesis was spent exploring if Template Haskell and its related feature, Quasiquotation

(Mainland 2007), could be used to develop a template language for refactoring Haskell.

Unfortunately Template Haskell uses its own abstract syntax for Haskell code which

makes it difficult to use for refactoring GHC Haskell. However, there is a plan to

change this though it is not finished yet (GHC Developer Wiki 2017).

Data-Driven refactorings for other languages - The data-driven refactorings presented

in this thesis lean heavily on the types that Haskell provides and how they are used by

the Haskell community. Data-driven refactorings for other programming languages

would be very different from the refactorings presented in this thesis. The refactorings

related to Applicative Functors and Monads are much less useful for other langauges as



CHAPTER 8. CONCLUSION 183

they are a fairly unique feature of Haskell.4 Data-driven refactorings for other statically

typed functional languages such as OCaml or Scala would be an interesting topic to

explore further because of how different these langauges are from Haskell.

Interactive refactorings - Many of the more complex refactorings would benefit

from becoming more interactive. For example after the “introduce type synonym”

refactoring completes HaRe could highlight instances of the target type and the user

could indicate if each instance should be replaced by the newly introduced synonym.

Another possible interactive feature of a refactoring would be to offer to refactor some

code if it failed the preconditions for another refactoring. For example, if when trying

to refactor a do block to use applicative operations the block fails the precondition

requiring that all left hand side variables not be used in a right hand side expression,

HaRe could suggest extracting the monadic code into its own function and then performing

the original refactoring on the modified function.

The feature also deals with one of the major challenges that refactoring tools deal

with when they try and attract users; a refactoring tool is unable to produce the exact

target code that the user is looking for. Potential users may dismiss a tool that produces

code that is 90% of what they want because getting the outputted code the way they

want it may take just as much work as refactoring the code manually. If a refactoring

tool can automatically produce most of the target code then ask the right questions to

produce the rest of the code the tool becomes much more usable.

4Haskell’s purity requires some way to handle effects and monads are the primary way this is handled
in Haskell. However, nothing prevents monads from being adopted in any language that supports
parameterised types they are just less useful in an effectful language.
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