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ABSTRACT
This paper proposes the first user-independent inter-keystroke tim-
ing attacks on PINs. Our attack method is based on an inter-
keystroke timing dictionary built from a human cognitive model
whose parameters can be determined by a small amount of training
data on any users. Our attacks can thus be potentially launched in
a large scale in real-world settings. We investigate inter-keystroke
timing attacks in different online attack settings and evaluate their
performance on PINs at different strength levels. Our experimental
results show that the proposed attack performs significantly better
than random guessing attacks. We further demonstrate that our
attacks pose a serious threat to real-world applications and propose
various ways to mitigate the threat.
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1. INTRODUCTION
Inter-keystroke timing attacks, which make use of the leaked
keystroke timing information to infer a user’s PIN, pose a serious
threat to real-world applications, especially for online financial
services whose authentication systems are based on PINs. Such
attacks have triggered increasing interests in recent years due to
the development of many practical approaches to obtaining users’
keystroke timing information via different side channels, including
CPU cache [29, 42, 47, 28, 36], shared event loops [64], I/O
interrupts [19, 35, 76], and SSH [55]. Some approaches do
not even require attackers to be physically close to victims or
install malware on victims’ devices, which significantly lower the
barrier for launching inter-keystroke timing attacks in real-world
scenarios.

Most of the existing inter-keystroke timing attacks on PINs or
passwords are user-dependent. Since the seminal work published
by Dawn Song et al. in 2001 [55], the Hidden Markov Model
(HMM) has been exploited as a major technique to launching
the inter-keystroke timing attacks [76, 32]. However, HMM is
user-specific in a sense that it relies on the distribution of inter-
keystroke times of a specific user typing each possible key pair
(which represents a hidden state in HMM) so as to infer the user’s
PIN from the user’s inter-keystroke timing information about a
PIN entry. In other words, HMM requires that a sufficiently large
amount of time intervals for each possible key pair that can be part
of any PIN be typed by a specific user for model training so as
to make the attacks to that specific user’s PIN entry accurate and
useful. It is usually difficult for an attacker to collect such large
amount of inter-keystroke data about a victim before launching an

effective attack. Even if it is possible, such attacks are not scalable.
If an attacker intends to compromise a new victim, he/she needs
to collect the new victim’s inter-keystroke timing data about all
possible key pairs and retrain his/her HMM for the new victim. In
addition, the success rate of such attacks is too low to be practical in
online attack settings since the number of guesses that is allowed to
launch an online attack is usually restricted to small numbers (e.g.,
3, 10, 100) in common practice.

In this paper, we propose a user-independent approach to exploit
inter-keystroke timing information for PIN inference, which makes
inter-keystroke timing attacks much more scalable and practical.
The model in our attacks is not user specific, which can be trained
from a small amount of training data (e.g., a few key pairs instead
of all possible key pairs) about any users (e.g., attackers themselves
or people recruited by attackers) instead of the target victim. In
addition, our approach can be applied to attack any new victim
without retraining the model. The success rate of our attacks is
significantly higher than random guessing attacks, which poses a
serious threat when applied to users in a large scale, even in online
attack settings.

Our proposed approach leverages a human cognitive model to
capture the common characteristics across all skilled users typing
PINs. The human cognitive model is derived from several PIN typ-
ing behavioral phenomena which we summarize from the cognitive
psychology literature. These PIN typing behavioral phenomena
are universal to all skilled users. The parameters of our cognitive
model can be estimated by a few key pairs from any user such as
the attacker himself. Once the cognitive model is built, it can be
used to attack any user inputting any PIN on a particular keypad
whose geometric measurement is known.

At a high level, our attacks proceed as follows. First, an attacker
builds a timing dictionary including all possible PINs and their
corresponding timing sequences. The timing sequence of each PIN
is derived from our cognitive model. Second, the attacker obtains
the timing sequence of a victim’s PIN entry via various side-
channels (e.g., CPU cache, shared event loops, I/O interrupts, and
SSH). Third, the attacker measures the cosine similarity between
the observed inter-keystroke timing sequence and each entry in the
timing dictionary and ranks all candidate PINs in the dictionary by
their similarity values. Lastly, with a ranked list of candidate PINs,
the attacker may launch online attacks using the PINs successively
from the ranked list until he/she succeeds or the target account is
locked (or the attacker aborts before the account is locked).

Besides the cognitive model that captures the common charac-



teristics across all users typing PINs, another contributing factor
to the user independence of our approach is the way an attacker
measures the differences between a victim’s PIN entry and each
time sequence in the timing dictionary. We adopt cosine similarity
since it is invariant to scaling of input vector. It can thus mitigate
the negative impact of different typing speeds by different users.

We discover that the effectiveness of our attacks is different for
different types of PINs. To examine the effectiveness of our attacks
to different types of PINs, we study the inner structure of the whole
PIN space and partition the PIN space into different strength levels.
In particular, the 6-digit PIN space is partitioned into 5 PIN strength
levels according to the directional density of the inter-keystroke
timing sequences in the timing dictionary, where level 1 is the
weakest and level 5 is the strongest. Our attacks achieve much
better performance on the PINs at the first four levels compared to
the strongest level (i.e., level 5). For example, the attacks with 100
guesses on the PINs at levels 1, 2, 3, 4 are 869, 221, 250 and 42
times more effective than on the PINs at level 5, respectively. The
results suggest that users should choose their PINs at the strongest
strength level for better security in the presence of inter-keystroke
timing attacks.

We seek various ways to improve the success rate of our attacks.
One question is whether we can achieve better performance using
target victims’ data for model training, which is commonly used in
the existing inter-keystroke timing attacks. In this case, we train
the cognitive model using the victim’s own inter-keystroke timing
data and launch our attacks to this victim’s PIN entry. However, the
results show that this way improves the success rate by about 4%
only. Another question is whether an attacker can improve his/her
success rate if he/she observes the victim’s PIN entry for multiple
times. In this case, the attacker can attack based on the average of
the inter-keystroke timing sequences for multiple PIN entries from
the same victim. It achieves around 2% performance improvement
which is not significant either. Our study in these two cases shows
that our approach is user-independent and it does not improve much
using user-dependent data.

We further examine the scenario in which an attacker happens to
know the values of certain digits of the target PIN before launching
inter-keystroke timing attacks. It is reasonable to assume that
an attacker may attain such knowledge about PIN digits due to
the existence of many side-channel attacks (e.g., [18, 75, 54,
37, 65, 59]) and shoulder surfing attacks [60] to the PIN entry.
Unsurprisingly, the success rate of our attacks is significantly
improved due to the shrink of timing dictionary in our attacks.
For example, when the attacker knows 2 digits, the success rate
of attacking the PINs in level 1 within 3 attempts is improved to
34.9% so that one out of every three target users can be successfully
compromised. In this case, our attacks are practical in online attack
settings when applied to a single user or a small number of users.

In general, the success rate of the proposed attacks may not
be sufficiently high to pose imminent danger to an individual
user’s PIN. Our attacks are still practical because they are user-
independent and can be applied to attack any number of users
in a large scale. To show this, we study two cases in practical
settings, where PINs are used as the only credential to protect
users’ accounts and where attackers can collect many users’ inter-
keystroke timing data for PIN entries using malicious JavaScripts.

The first case is an online banking system which has three million

users. If ten percent of its users’ inter-keystroke timing data about
PIN entries were collected, our online attacks can be applied to
all these users’ accounts with 50 tries per account, which do not
lead to any account being locked in practice. Consequently, more
than 12,000 users’ accounts would be compromised on average and
these users’ account balances and other sensitive information such
as usernames and addresses are leaked.

The second case is a mobile payment platform which has more
than 520 million users, where each user’s ID of his/her account
is a mobile phone number. It is not difficult for attackers to obtain
many users’ mobile phone numbers (e.g., from public web pages
or online markets). The login attempts of each user’s account
in this platform is limited to 3. On the average, an attacker
needs to launch online attacks to 83 users’ accounts in order to
compromise one account. In other words, if our attacks were
applied to 1/1000 of users’ accounts, then 6,000 users’ accounts
would be compromised on the average. Our attacks would cause
serious damages since attackers can transfer money from victims’
accounts to other accounts. Both cases show that our attacks pose
a serious threat to real-world applications when applied in large
scale.

To mitigate our attacks, we provide several solutions, including
choosing longer PINs, choosing PINs at the strongest strength
level, proposing a new keypad layout design, and implementing
leakage resilient password systems (LRPSes). For the first coun-
termeasure, the security strength of most existing PIN systems
is determined by the success probability of random guessing
attacks [72]. However, the security strength of PIN systems would
be lowered significantly in the presence of our inter-keystroke
timing attacks. We suggest users to choose 10-digit PINs to
maintain the same security strength under our attacks as that of the
6-digit PINs under random guessing attacks. This solution does not
require any change to the hardware of current PIN systems, though
it requires users to remember longer PINs.

To relax the requirement on PIN length, our second suggestion is
that users should choose PINs at the strongest strength level (i.e.,
level 5 for 6-digits PINs1). Our study on 6-digit PINs shows that the
success rate of attacking PINs at level 5 is around 10 times higher
than random guessing attacks. Therefore, to achieve the similar
security strength of 6-digit PIN under random guessing attacks, we
suggest users choose 7-digit PINs at the strongest strength level.

For the third countermeasure, if changes can be made to the keypad
layout, we propose a novel keypad design secure against our
proposed attack, which is also easy to use. Our new design nullifies
all inter-keystroke timing attacks, which means the success rate of
our attacks would be similar to that of random guessing attacks.
Therefore, users can still use 6-digit PINs as before. For the last
countermeasure, LRPSes have been well studied in the past two
decades. A recent work [72] shows that in order to achieve the same
security strength of current 6-digit PIN systems, LRPSes require
hundreds of seconds to complete an authentication session [30, 4],
which sacrifices their usability.

2. PRELIMINARIES
In this section, we provide the basics about how to collect inter-
keystroke timing information from users, how to model users’
1Level 5 includes 900,000 PINs which account for 90% of the total
6-digit PINs. It is thus relatively easy for a user to obtain a PIN at
level 5 if he/she simply chooses his/her PIN randomly.



typing behavior and what our adversary model is.

2.1 Keystroke Timing Collection
To launch any inter-keystroke timing attacks, an attacker needs
to collect inter-keystroke timing information about users’ inputs.
Several practical approaches have been proposed in recent years on
how to collect inter-keystroke timing information through various
leakage channels, including CPU cache [29, 42, 47, 28, 36], shared
event loops [64], I/O interrupts [19, 35, 76], and SSH [55].

The first leakage channel through which attackers can collect inter-
keystroke timing information is CPU cache [29, 42, 47, 28, 36].
Through CPU cache, an attacker can observe the effects of a user’s
keystroke operations and deduce the timestamp of each keystroke
the user performs on a keyboard. One of these approaches [42]
can be performed from browser sandboxes through remote websites
using JavaScripts instead of installing malware on users’ devices.
Besides users’ keystroke operations originated from hardware
keyboard, other interactive operations, such as tap operations and
swipe operations which are usually triggered on a touch screen, can
also be monitored by an attacker [36]. Therefore, inter-keystroke
timing attacks (including ours) can be applied to both devices with
hardware keyboard and devices with soft keyboard. This keystroke
timing collection approach requires malware installed on victim’s
device to access CPU cache but it does not need any permission.

The second leakage channel through which attackers can collect
inter-keystroke timing information is shared event loops [64].
Through shared event loops in Google Chrome, an attacker can
scan an event-delay trace using JavaScript and deduce the times-
tamp of each keystroke the user performs on a keyboard. This
keystroke timing collection approach requires an attacker to trick
victims to open a malicious website which has the permission of
running JavaScript.

The third leakage channel through which attackers can collect inter-
keystroke timing information is I/O interrupts [19, 35, 76]. An
attacker may continuously acquire timestamps using JavaScript
in a measuring process and monitor differences between subse-
quent timestamps [35]. Significant time differences will occur
whenever the measuring process is interrupted by I/O operations
(i.e., keystroke operations). The exact timestamp where the user
presses a key is clearly visible and can be distinguished from other
events. This keystroke timing collection approach also requires an
attacker to trick victims to open a malicious website which has the
permission of running JavaScript.

The last leakage channel through which attackers can collect inter-
keystroke timing information is SSH [55]. Since every individual
keystroke typed by a user is sent to a remote machine in a separate
IP packet immediately after the key is pressed, precise inter-
keystroke timings of the user’s keystrokes can be learned from
the arrival times of the packets. This keystroke timing collection
approach requires an attacker to monitor the network and collect the
arrival time of SSH packets which does not require any malware to
be installed on victim’s device or any permission from the victim.

The sampling rates of inter-keystroke timing information collected
by different approaches are different (e.g., 40,000Hz for shared
event loops and 100Hz for SSH). In our experiments, we use
JavaScript to record the key code of each keystroke event and
the corresponding timestamp to get the ground truth. We observe
that the timings of key-press events are distributed in clusters with

a gap of 15 or 16 milliseconds; thus, the sampling rate in our
experiments is no higher than 1000/15 ≈ 66.7Hz. Although our
sampling rate is relatively low, our attacks still achieve satisfactory
performance as shown in our experimental results (Section 4.3).
The performance of our attacks may be improved further at higher
sampling rates.

To determine the start and the end of victim’s PIN entry, the
attacker can monitor all the packets sent by the victim by a network
sniffing tool on network packets such as Wireshark and records
the timestamps of all packets whose destination IP is the targeted
sensitive website (e.g., online banking website or Alipay) [33].
Since most of the important websites and applications are secured
via HTTPS, it does not protect the meta data of the traffic such
as destination server’s IP address, which can be used to recognize
the start of a time window for searching the victim’s PIN entry
using various approaches which have been mentioned earlier in this
section. If the victim is entering PIN on an Android application,
Cheng et al. [15] proposed a no-root approach to detect login
activities as they share a common pattern that a login activity
usually consists of two EditText fields for inputting a username,
and a password and the second EditText field sets the attribute
inputType to password-related by developers. In addition, malware
installed in the victims’ phone may make use of accessibility
feature to monitor the timing of any event that is activated by
the victim by the id of the view [49]. Since most developers use
EditText fields with an id of ‘password’ or ‘PIN’ in the layout view,
it is easy for the attacker to know the start time of a victim’s PIN
entry event.

2.2 Human Cognitive Models
2.2.1 History

Human cognitive models have been studied in the field of psy-
chology for decades. They describe one or more specific human
cognitive processes (e.g., memory, perception, attention, reasoning,
and problem-solving) for the purpose of better understanding,
predicting and simulating human behavior [2].

Typing PINs on a numeric keypad is one of the most important
human-computer interactions in our daily life and it involves
complicated interactions of concurrent perceptual, cognitive, and
motoric processes [70]. To model typing behaviors and ex-
plore its underlying mechanisms, cognitive psychologists apply
the knowledge of psychology, human-computer interaction and
neuroscience. Card et al. [13] propose a keystroke-level model
(KLM) to predict the time of a user accomplishing a given task
without errors using a given interactive computer system. For
typing task, KLM gives a rough estimate of the average inter-
keystroke time, which is calculated by dividing the total time
taken in a typing test by the total number of non-error keystrokes.
Rumelhart and Norman [50] build a model of typing and provide
detailed predictions about the movement of fingers and the rela-
tive response time for letters in different contexts. Furthermore,
John [31] proposes a typing performance theory which is built
within the framework of the Model Human Processor (MHP) [14]
and can offer a more precise estimation. These models of cognitive
processing have provided a wealth of information regarding how
humans interact with keyboards.

Cognitive psychologists and HCI researchers have also developed
several software tools for estimating human performance in terms
of time needed by an average skilled user to finish a specific task,
such as Cogulator [20], CogTool [61], SANLab-CM [46]. Such



tools are normally used for modeling and simulating complicated
processes involving both computer and human users, but this paper
focuses on determining the parameters of a specific model of the
typing behavior, so we do not use such tools in our work. In the
following sections, we build a new keystroke model combining
models mentioned above with empirical analysis.

2.2.2 Typing Behavior Phenomena
Typing is a complex procedure involving cognitive activities as
well as body movements, but we can still capture the common
characteristics across all skilled users’ typing behaviors. The
typing procedure usually involves two parts: (1) cognition of the
task and (2) motor of the task. During the cognition process,
the user conducts a memory retrieval process. Specifically in our
scenario, the user recalls his/her PIN from the long-term memory,
stores it into the working memory and mentally prepares for
executing physical actions. During the motoric process, the user
moves his/her hand and fingers to the right key, presses the key,
releases the key and prepares for the next keystroke. The total time
between two keystrokes is the sum of the time for these two parts.

PIN entry behavior is one of the most common typing behaviors
in our daily life. In order to explore PIN entry behavior, we
generalize four typing behavior phenomena. They are based on the
literature (e.g., [52]) which discusses several common phenomena
about typing behaviors across all skilled users.

Phenomenon 1. The rate of typing is dependent on how familiar
the user is with the typed string. According to a statistics report,
46 percent of the U.S. students use credit cards on a regular basis
for everyday purchases [57]. And the average iPhone user tends to
unlock his/her device 80 times in a day [48] while Android users
tend to unlock their smartphones an average 110 times a day [67],
so there is no doubt that people are proficient in typing their PINs.

Phenomenon 2. The variability of inter-keystroke time decreases
with an increase in users’ skill level. The distributions of inter-
keystroke time for the same keystroke in the same context but
across multiple repetitions are similar [51]. This phenomenon
indicates that the typing pattern will stabilize after several practices.

Phenomenon 3. Inter-keystroke time of typing decreases following
the power law of practice. Typing speed of a user will be signif-
icantly improved as the number of inputs increases. According to
the learning curve of the single user in the study of Gentner [25], the
improvement of inter-keystroke time follows exponential growth.
If a skilled user can input PINs smoothly enough, the time of
cognition process may be negligible. One reason is that muscle
memory has been built after frequently typing and it may take little
time for the cognitive processor to make decisions and schedule
actions with the motor processor.

Phenomenon 4. The inter-keystroke time is dependent on the
specific context, especially for the topography of the keyboard. The
specific context here refers to the character before and after the
target character. This topographical effect has been reported by
Gentner [24, 25], Rumelhart and Norman [50], and Shaffer [53].
Intuitively, the latency between two keystrokes has a positive
correlation to their distance on the keypad.

Based on Phenomena 1 and 2, the action of entering a PIN can
be regarded as conducted by a skilled user whose typing pattern is
stable and predictable. Based on Phenomena 2 and 3, we arrange a

Figure 1: The layout of the numeric pad used in our experiments.

practice session before data collection in our experiments in order
to collect skilled users’ data and simulate people entering PINs in
real life. For Phenomenon 4, we estimate the topographical effect
by a function of the finger’s moving distance and the size of target
key using Fitts’s law [21].

2.2.3 Inter-Keystroke Timing Modeling
We incorporate the above typing behavior phenomena to construct
a linear model for predicting the inter-keystroke timings of any key
pair.

For the topographical effect, our model uses Fitts’s law [21] to
make finer predictions. Fitts’s law is a descriptive model of human
movement which can predict the time required to move to a target
area. It is used to model the act of physically touching an object
with a finger or virtually pointing to an object. Striking the numeric
keypad with one finger can be seen as this kind of action. It is
a function of the ratio between the distance to the target (D) and
target width (W ):

T = a+ b ∗ I = a+ b ∗ log2(
D

W
+ 1), (1)

where D is the distance from the start point to the center of the
target, W is the effective width of the target in the direction of the
motion2, I = log2(D/W + 1) is called the index of difficulty, a
and b are parameters varying from context to context.

We use the geometric center of each key to obtain the distance of
each key pair. As for the repeated pressed key like ‘99’, we set
I = 0 so that Tmotor = a. We estimate the values of a and b using
inter-keystroke timing data of real human users. With these inter-
keystroke timing data and the geometric measurement of victim’s
keyboard, an attacker can build his/her own inter-keystroke timing
model.

We also examine other cognitive operations which may affect the
inter-keystroke times, including word-segment effect and word-end
2According to our observations in the experiments, the effective
press area of each key is close to a circle centered on the center of
the key and with a radius equal to the shorter side of the key (which
is 0.5 inches). Therefore, we use 0.5 inches as the effective width
for all keys including 0 and <Enter> keys.



effect. We extend the cognitive model and conduct a significance
testing on all coefficients to validate the model. However, the
results of significance testing show that the impact of word-end
effect and word-segment effects are statistically insignificant (see
Appendix A). We thus decide to consider the topographical effect
only in our cognitive model.

2.3 Adversary Model
2.3.1 Basic Premises

It is usually difficult for a malware to directly record keystrokes
due to the use of keylogger detection technologies [44, 58, 62,
43, 5]. The barrier for launching inter-keystroke timing attacks
in real-world is much lower than directly recording keystrokes.
Recent works (e.g., [29, 42, 47, 28, 36, 64, 19, 35, 76, 55]) have
introduced many practical approaches to attaining user’s keystroke
timing information. While these works focused on how to capture
keystroke timing information, our work focuses on how to make
use of keystroke timing information to recover PINs. Therefore,
our adversary model assumes that an attacker has already obtained
the inter-keystroke timing information about a target user (victim)
typing his/her PIN on a numeric keypad.

The inter-keystroke timing information about a PIN can be ob-
served just once or a number of times via several leakage channels
such as CPU cache, shared event loops, I/O interrupts, SSH as
introduced in Section 2.1. We notice that directly recording
keystrokes requires certain permissions which are usually difficult
to be gained (e.g., most software keyloggers require Windows
hooks); in comparison, it is relatively easier for an attacker to
obtain keystroke timing information. In particular, the shared event
loop approach [64] and the I/O interrupts approach [35] require
that victims’ browsers support JavaScript, which is common for
popular browsers in the default setting. In addition, the CPU cache
approach [36] and the SSH approach [55] require no permission to
obtain keystroke timing information.

It is also assumed that an attacker knows the layout of the keyboard
(including the size of each key and the distance between each key
pair) which the target victim uses in advance. This is a reasonable
assumption since in most cases, the victim inputs his/her PINs on
the number pads of ATMs, POS terminals, or standard keyboards.
The layouts of these keypads are standardized or can be easily
obtained in the public place. Figure 1 shows the layout of a DELL
SK-8115 numeric keypad which is used in our experiments.

For the victim’s PIN typing behavior, it is assumed that one finger
is used to enter the whole PIN followed by an <Enter> key press
to signal the end of a PIN entry process. It is also a reasonable
assumption since according to our observation and the survey3 we
conducted during the experiments, a majority of users (62%) prefer
using a single finger for PIN entry.

2.3.2 Online Attacks
In online attack settings, an attacker consecutively tries a number of
candidate PINs to attack a PIN-protected account until the correct
PIN is found or the account is locked (or the attacker aborts before
the account is locked). The online attack that has been studied in
most previous research on PIN systems [40] is random guessing
attack in which an attacker inputs random PINs. In this paper,
we consider four other online attack settings by assuming that an

3Please refer to the Section 6.4 for the detailed statistical results.

attacker has different knowledge about a victim’s typing behavior
or the target PIN:

(i) General attacks: An attacker collects a small amount of inter-
keystroke timing data from the attacker himself or people
he/she recruits for model training and obtains a single inter-
keystroke timing sequence of a PIN entry made by a victim
for PIN inference.

(ii) Targeted attacks: An attacker collects a small amount of
inter-keystroke timing data about a victim typing known
numerical sequences for model training and obtains a single
inter-keystroke timing sequence of a PIN entry made by the
victim for PIN inference.

(iii) Multi-entry attacks: An attacker collects a small amount
of inter-keystroke timing data from the attacker himself or
people he/she recruits for model training and captures several
inter-keystroke timing sequences about a victim entering the
same PIN. In this case, the attacker may combine all inter-
keystroke timing sequences and obtain an averaged timing
sequence for PIN inference.

(iv) Known digits attacks: An attacker knows certain digits of a
target PIN before launching our general attacks. Such knowl-
edge may be attained from various side-channel attacks [18,
75, 54, 37, 65, 59] or shoulder surfing attacks [60].

Limited number of login attempts. Most PIN systems enforce
suspicious login detection and lockout [23], and thus the number
of PINs an attacker may try in an online attack is limited. A
successful online attack is defined as an attacker hitting the correct
PIN within the number of allowed attempts. The number of login
attempts is normally restricted to 3 for PINs with payment cards.
When a payment card is used on a POS terminal or with a card
reader, entering a PIN wrongly for 3 times may get the card locked.
This limit is usually larger for mobile devices. For example,
an Android device gets locked temporarily for 30 seconds after
every 5 failed attempts, while an iOS device is restored to factory
settings after 10 failed logins. Other cases limit online attackers
to no more than 100 consecutive failed attempts on a single
account according to the digital authentication guidelines [27] and
electronic authentication guidelines [26]. In our experiments, we
demonstrate the success rates of our attacks with various limits on
the number of consecutive login attempts.

2.3.3 Offline Attacks
In offline attack settings, it is assumed that an offline validation
of guessed PINs can be performed. This is a less realistic
scenario since users’ PINs are usually stored in tamper-resistant
hardware security modules on the server side as a common practice.
Therefore, we focus on the online attacks in this paper.

3. ATTACK METHODOLOGY
In this section, we describe the steps of our inter-keystroke timing
attacks in detail. Figure 2 shows an overview of our inter-keystroke
timing attacks, including a learning phase and an attacking phase.
In the learning phase, an attacker trains a cognitive model based
on certain collected data and builds a timing dictionary. In the
attacking phase, the attacker (i) observes one or more entries from
a victim, (ii) calculates the similarity between the timing sequence
of the observed PIN entry and the calculated timing sequence of



Figure 2: Overview of our inter-keystroke timing attacks.

each entry in the timing dictionary, (iii) ranks all candidate PINs
according to the similarity values, and (iv) attempts to login to the
victim’s account using the PINs in the ranked list starting from the
top in an online attack.

3.1 Learning Phase
Data Collection. In the learning phase, an attacker needs to collect
the inter-keystroke timing sequences for a small number of key
pairs for model training. Since our cognitive model consists of
two parameters, it requires that the training data consists of the
inter-keystroke timing sequences for at least two key pairs (1,350
key pairs are used in our experiment). The training data used in
the learning phase can be collected from the attacker himself or
people he/she recruits. The simplest way to collect training data
is to implement a keylogger which records the key code of every
keystroke event and the corresponding timestamp to get the ground
truth.

Cognitive Model Training. With the training data, the attacker can
estimate the coefficients of the linear equation (Equation 4) in our
cognitive model using the standard least squares method.

Timing Dictionary Building. Once the cognitive model is fixed,
the attacker can compute the inter-keystroke timing sequences for
all PINs and then generate a timing dictionary D = {(PINi,

−→
Ti)}

for i = 1, 2, ..., 10l where
−→
Ti = (∆Ti1,∆Ti2, ...,∆Til) and

l is the PIN length. Here, ∆Tij is computed according to
the cognitive model for j-th key pair (Kij ,Ki(j+1)) in the i-th
PIN (Ki1,Ki2, ...,Kil), where j = 1, 2, ..., l and Ki(l+1) =<
Enter >. Table 1 shows a segment in the inter-keystroke timing
dictionary used in our experiments.

3.2 Attacking Phase
Data Collection. In the attacking phase, an attacker needs to obtain
a single inter-keystroke timing sequence

−→
T of a PIN entry made by

a victim for PIN inference. Similar to each timing sequence in the
timing dictionary,

−→
T is an l-dimensional sequence, where l denotes

the length of the target PIN.

Similarity Calculation. Once the attacker has an observed timing
sequence

−→
T of the target PIN (from a victim) and a timing

dictionary D, he/she can measure the similarity between
−→
T and

each timing sequence in D.

There are many similarity metrics the attacker can use. We
test three different metrics (cosine similarity, Euclidean distance
and Pearson product-moment correlation coefficient) and discover
that the cosine similarity gives the best results in most attacks.
The cosine similarity is a measurement of the level of similarity
between two vectors

−→
A and

−→
B that returns the cosine of the angle

between them and is computed as follows:

cos =

−→
A ·
−→
B∥∥∥−→A∥∥∥ · ∥∥∥−→B∥∥∥ =

∑l
i=1 aibi√∑l

i=1 a
2
i ·
√∑l

i=1 b
2
i

, (2)

where ai and bi are the i-th elements of l-dimensional vectors−→
A and

−→
B , respectively. The time complexity for the similarity

calculation is O(n), where n is the number of all possible PINs.
The cosine similarity is scale-free, i.e., the amplitudes of

−→
A and

−→
B

have no impact to the result. This feature improves the robustness
of our attacks against variation of typing speeds between victims
and different users in the training data, which thus contributes to
the user independence of our approach.

Ranking and using PINs in login attempts. The attacker then
ranks all entries in the timing dictionary according to their similar-
ity values so that those entries more similar to

−→
T appear closer

to the top. Here, we use the Quicksort algorithm whose time
complexity is O(n ∗ log(n)) to rank all candidate PINs. Finally,
the attacker attempts to login to the victim’s account using the PINs
starting from the top in the ranked list in an online attack.

4. EXPERIMENTS
An IRB-approved user study is conducted to collect users’ inter-
keystroke timing data about PIN entries on a numeric keypad.
The data collected from participants are kept confidential and
anonymized. To examine the effectiveness of our attacks to
different types of PINs, we study the inner structure of the whole
PIN space and partition the PIN space into different strength levels.
In this section, we present the performance of our attacks in the
general attack setting in which the training data and testing data are
collected from different users.

4.1 User Study
Our user study involves 55 participants, including 24 males and
31 females with ages ranging from 19 to 34. All participants
are students or members of staff at the Singapore Management
University. Each participant is paid 10 Singapore dollars as a
compensation for his/her time and effort. Since 6-digit PINs are
commonly used in many PIN-based authentication systems, we use
6-digit PINs as examples of our attacks. Our user study consists of
two sessions: training session and testing session. In both sessions,
we use JavaScript to record the key code of each keystroke event
and the corresponding timestamp to get the ground truth.

In the training session, 5 participants are asked to enter three 6-
digit PINs (i.e., 146928, 501347, 635210) on a numeric keypad.
The PINs they typed are randomly selected from the whole 6-digit
PIN space. The participants are required to memorize one PIN
intentionally, type the PIN for several times as exercises and type
more times for data collection; then, they are required to forget
the current PIN, and proceed in the experiment with the next PIN.
In our experiments, we observe that exercises for five times are



Table 1: A segment in the inter-keystroke timing dictionary used in our experiments.

PINs K1-K2 K2-K3 K3-K4 K4-K5 K5-K6 K6-< Enter >
504316 232.9502 232.9502 237.2201 231.3787 237.2201 226.0874
504317 232.9502 232.9502 237.2201 231.3787 231.3787 268.5020
504318 232.9502 232.9502 237.2201 231.3787 237.2201 256.9941
504319 232.9502 232.9502 237.2201 231.3787 250.0087 247.2787
504320 232.9502 232.9502 237.2201 199.0121 203.7241 244.2814
504321 232.9502 232.9502 237.2201 199.0121 199.0121 254.0817
504322 232.9502 232.9502 237.2201 199.0121 135.9120 232.9502
504323 232.9502 232.9502 237.2201 199.0121 199.0121 203.7241
504324 232.9502 232.9502 237.2201 199.0121 214.2976 259.6575
504325 232.9502 232.9502 237.2201 199.0121 199.0121 243.2131

Table 2: List of PINs used in our experiments.

Level 1 777777 777333 222233 633333 555553
443333 088886 000553 055333 577773

Level 2 008853 166034 226633 515553 009666
800053 705333 100086 222253 100553

Level 3 911182 590253 537473 086483 084953
331086 410886 547733 537802 199993

Level 4 990872 098046 760973 301509 330117
301246 095653 589107 530271 603294

Level 5 420381 191061 806205 079039 033645
146928 501347 635210 684032 706759

sufficient for a participant to type a 6-digit PIN fluently. Then the
participants type each PIN for 15 times continuously for training
data collection. We ensure that each PIN entry is typed correctly.
If a participant enters incorrect digits and uses the <Delete> or
<Backspace> key to correct an input, he/she is required to retype
the PIN.

In the testing session, we choose 50 PINs with 10 PINs randomly
selected from each of five PIN strength levels as listed in Table 2.
The other 50 participants (except the five in training to make our
attacks user independent) are asked to enter PINs on the same
numeric keypad. Each participant is assigned to type 25 PINs with
5 PINs chosen randomly from the 10 PINs in each PIN strength
level. Similar to the training session, the participants type each PIN
for 5 times as practice and type each PIN for 15 times for testing
data collection. In total, 225 PIN entries are collected for training
and 18,750 PIN entries for testing.

The raw data of each PIN entry we collected consists of the
timestamps of (l+1) keystroke events for l-digit PINs, where the
last keystroke is for pressing the <Enter> key. We define the
inter-keystroke timing between keystrokes Ki and Ki+1 as the
difference between the two consecutive key-down times to cover
both the time of finger movement between the two keys and the
time for pressing the second key:

∆Ti = T ↓Ki+1
− T ↓Ki

. (3)

Therefore, the inter-keystroke timing sequence of each PIN entry
that is used in our experiment is represented by an l-dimensional
sequence

−→
T = (∆T1,∆T2, ...,∆Tl).

4.2 PIN Strength Level
We study the inner structure of the whole PIN space to examine the
effectiveness of our attacks to different PINs. We propose an ap-
proach to partition the whole PIN space into different PIN strength
levels according to the directional density of the inter-keystroke

timing sequences in the timing dictionary. Each inter-keystroke
timing sequence in the timing dictionary can be considered as
an l-dimensional directional vector, where l is the PIN length.
Intuitively, if a PIN vector locates in a dense region according to
the cosine similarity measurement in the vector space, it is more
difficult for an attacker to single it out, that is, infer the PIN. This
implies that such a PIN is more secure against our attacks since
our attacks rank candidate PINs according to the cosine similarity
between each entry in the timing dictionary and the observed timing
sequence of a target PIN as explained in Section 3.2. Based on this
observation, we propose Algorithm 1 to measure the PIN strength
of l-digit PINs.

Algorithm 1 : PIN Strength Measurement

Input: A trained timing dictionary D = {(PINi,
−→
Ti)} for i =

1, 2, ..., 10l where
−→
Ti = (∆Ti1,∆Ti2, ...,∆Til).

Output: The strength measurement
−→
Si for each PINi.

1: for each vector
−→
Ti in D do

2: calculate the cosine similarity between
−→
Ti and all

other vectors in D and obtain a cosine similarity tuple
(cosi1, cosi2, .., cosi(i−1), cosi(i+1), .., cosi(10l−1)) where

cosij =
−→
Ti·
−→
Tj

‖−→Ti‖·‖−→Tj‖
3: rank all cosine similarities in descending order and obtain

a new tuple (cos′i1, cos
′
i2, ..., cos

′
i(10l−1)) where cos′i1 ≥

cos′i2 ≥ ... ≥ cos′i(10l−1)

4:
−→
Si = (G1, G2, ..., Gl) where Gj =
1

9∗10j−1

∑
10j−1≤n≤10j−1 cos

′
n and j = 1, 2, ..., l.

5: end for

Algorithm 1 takes a trained timing dictionary D as the input. For
each timing vector

−→
Ti for PINi in D, the algorithm first calculates

the cosine similarity between
−→
Ti and all other vectors in D. It

then ranks all of the calculated cosine similarities in descending
order and divide them into l groups where the jth group consists of
(10j−1)th to (10j − 1)th cosine similarities. Finally, it calculates
the average value Gj of cosine similarities for group j, where
j = 1, 2, ..., l. The algorithm output an l-dimensional tuple

−→
Si =

(G1, G2, ..., Gl) to represent the PIN strength for each PINi, where
i = 1, 2, ..., 10l. The overall time complexity of our PIN strength
measurement algorithm is O(l ∗ 102l) and its space complexity is
O(l ∗ 10l).

With the strength measurement (G1, G2, ..., Gl) for all PINs, we
partition the whole PIN space into (l-1) levels. First, an indirect
stable sort with multiple keys is performed on all PINs. To be
specific, it first ranks all PINs by key G1, if two PINs have the
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Figure 4: The averaged frequency of each PIN at different strength
levels.

same value for key G1; then it ranks them by key G2; and so
on. As a result, it ranks all 10l PINs according to PIN strength in
ascending order. The first 100 PINs after ranking are categorized
into level 1 which includes the weakest PINs. The 101th to 1000th

PINs are categorized into level 2; the 1001th to 10000th PINs are
categorized into level 3; and so on. In our experiments, we take 6-
digit PINs as examples and divide all 6-digit PINs into 5 categories.
Level 1 to level 5 consist of 100, 900, 9,000, 90,000, 900,000 PINs,
respectively.

We further study the distribution of human-chosen 6-digit PINs
according to our PIN space partition. The human-chosen 6-digit
PINs are extracted from two leaked large-scale password databases
(i.e., Rockyou and CSDN). Figure 3 shows the proportion of
human-chosen PINs at each strength level and Figure 4 shows the
averaged frequency of each PIN at different strength levels. It is
observed that although the PINs at the lowest security level (i.e.,
level 1) account for only 0.01% of the total, more than 2.7% of real
users prefer to select PINs at this level and the averaged frequency
of at this level is significantly higher than other strength levels.
These results show that users tend to select weak PINs more often
than strong PINs. It is thus meaningful to evaluate PIN attacks at
different security levels.

4.3 Performance Evaluation
We evaluate the performance of our attacks in the general attack
setting. First, we use the inter-keystroke timing data from the
training session of our user study to train the cognitive model. The

parameter a and b are 135.91 and 47.73, respectively. Based on
this trained cognitive model, we estimate the timing sequence of
all 106 6-digit PINs and generate a timing dictionary. According to
our experiments, it takes 21.7s to generate a timing dictionary.

Then, we take each PIN entry typed by the participants from the
testing session as an independent attacking case. In total, there
are 18,750 individual cases for 50 PINs. Note that the training
data and the testing data in our user study are collected from
different groups of participants, which make our attacks user-
independent. For each attacking case, we measure the cosine
similarity between the observed timing sequence and each entry in
the timing dictionary and rank all PINs according to their similarity
values in the descending order. Given an observed timing sequence,
it takes around 1s to get the ranking list of all candidate PINs in the
general attack. If the correct PIN ranks x-th in the ranked list, an
attacker needs to login to the target victim’s account for x times
until success.

The performance of such general attacks is shown in Figure 5,
where the x-axis denotes the position of a correct PIN in the ranked
list and the y-axis denotes the success rate of hitting the correct
PIN in an attack. The success rate of our attacks is calculated as the
observed frequency that the correct PIN appears in the top x ranked
PINs across all attacking cases. Note that the success rate of our
attacks is 0 before any successful case is observed. Figure 5 also
shows the success rate of random guessing attacks, assuming that
the correct PIN has an equal probability to appear at any position
between 1 and 106. The success rate of random guessing attacks is(
10l−1
x−1

)
/
(
10l

x

)
for an l-digit PIN where x is the maximum number

of allowed consecutive failures.

A general trend in Figure 5 is that it is more effective to attack PINs
at lower strength levels. Beyond our expectation, the performance
of PINs at level 3 is better than level 2 but the difference between
them is not too significant. Maybe it is because that number of
samples in each levels is small in our user study. This trend
suggests that users should choose their PINs at the strongest
strength level for better security in the presence of inter-keystroke
timing attacks.

Another trend in Figure 5 is that the performance of general attacks
is much better than random guessing attacks. In particular, if the
number of allowed attempts is limited to 100, 10 and 3, our general
attacks improve the success rate by 522, 2247 and 4004 times on
average of all PIN strength levels over the random guessing attacks,
respectively.

Our experimental results imply that the existing PIN-based authen-
tication systems are vulnerable to our attacks, especially when they
are launched at a large scale. When a victim types a PIN at level
1, an attacker can launch a successful attack within 10 consecutive
attempts with a probability about 10%. It has been argued that if
10% of accounts in an authentication system are compromised, an
attacker may access all resources of the system [22].

5. OTHER SPECIFIC ATTACKS
While the general attacks we discussed in the previous section
are user-independent (i.e., the training data and the testing data
are collected from different users), we examine other specific
attacks to improve the success rate of general attacks with different
assumptions on attackers’ capabilities.
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Figure 5: The performance of general attacks.

5.1 Target Attacks
We first examine whether the performance of our attacks can be
improved using target victims’ data for model training which is
also used in HMM-based attacks in the literature [55, 76, 32].
Hence, we propose targeted attacks where an attacker obtains a
small amount of inter-keystroke timing data about a victim typing
known numerical sequences for model training. Although both
targeted attacks and HMM-based attacks train their models based
on a victim’s own data, our approach requires much less training
data. Our approach requires an attacker to know the inter-keystroke
timing data about a few key pairs rather than all key pairs as
required in HMM-based attacks. To collect such training data in
practice, an attacker may trick a victim to install malware on his/her
smartphone and collect inter-keystroke timing data when the victim
dials phone numbers. Another possible way of collecting such data
is to trick a victim to enter insensitive numerical sequences through
phishing websites or phishing phone calls.

The procedure of the experiment of targeted attacks is similar to
that of general attacks except that we use the inter-keystroke timing
data from the testing session of our user study to train a cognitive
model. In particular, to attack any one of the 25 PINs entered
by a participant, we randomly choose 2 other PINs out of the 25
PINs entered by the same participant and use 30 collected inter-
keystroke timing sequences for these 2 PINs for model training. In
comparison, previous HMM-based attacks require that an attacker
should obtain 30-50 inter-keystroke timing sequence for each of
110 key pairs (10 × 10 digit-to-digit key pairs and 10 digit-to-
<Enter> key pairs) from a victim for model training. The same
as the general attacks, we take each PIN entry typed by the
participants from the testing session as an independent attacking
case.

Figure 6 shows that targeted attacks have a similar trend as general
attacks in terms of the effectiveness of attacking PINs at different
PIN strength levels. Compared to general attacks, the success rate
of targeted attacks is improved by about 4% on average for all
levels. Considering that targeted attacks are user dependent, and
they do not improve the success rate significantly over the general
attacks, attackers may still prefer general attacks in practice.
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Figure 6: The performance of targeted attacks.
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Figure 7: The performance of multi-entry attacks.

5.2 Multi-Entry Attacks
We then examine whether an attacker can improve his/her success
rate if he/she observes the victim’s PIN entry for multiple times.
Hence, we propose multi-entry attacks where an attacker captures
the inter-keystroke timing sequences about a victim entering the
same PIN for multiple times. With k inter-keystroke timing
sequences of one PIN, an attacker can calculate an averaged timing
sequence for PIN inference.

First, the attacker normalizes each observed PIN entry’s inter-
keystroke timing sequence so as to attain the same amplitude. The
ratio of Sumi to Sum is considered as the scaling value for the i-
th inter-keystroke timing sequence

−→
Ti = (∆Ti1,∆Ti2, ...,∆Til),

where Sumi =
∑

1≤j≤l ∆Tij , Sum = 1
k

∑
1≤i≤k Sumi, and l is

the PIN length.

Then, the attacker calculates the i-th scaled inter-keystroke timing
sequence

−→
T ′i =

−→
Ti × (Sum/Sumi). Given k scaled timing se-

quences
−→
T ′1 = (∆T ′11,∆T

′
12, ...,∆T

′
1l), ...,

−→
T ′k = (∆T ′k1,∆T

′
k2, ...,



∆T ′kl), the attacker generates an averaged timing sequence (∆T ′1,

∆T ′2, ...,∆T
′
l ) where ∆T ′j = 1

k

∑
1≤i≤k ∆T ′ij .

Similar to the general attacks, the attacker trains a cognitive
model from other users’ inputs and builds a timing dictionary.
The attacker then calculates the similarity between the calculated
averaged timing sequence and each entry in the timing dictionary
and ranks all PINs according to their similarity values. Finally, the
attacker attempts to login to the victim’s account using the PINs
starting from the top in the ranked list in an online attack.

In the experiment of multi-entry attacks, the same cognitive model
and timing dictionary are used as in general attacks. We take
the averaged inter-keystroke timing information of 10 PIN entries
(i.e., k = 10) from each participant as an independent case. The
procedure of the experiment of multi-entry attacks is similar to that
of general attacks except that we take the averaged timing sequence
as the observed timing sequence in each attacking case.

Figure 7 shows that multi-entry attacks have a similar trend as
general attacks in terms of the effectiveness of attacking PINs at
different PIN strength levels. Compared to general attacks, multi-
entry attacks achieves better performance when x ranges from 100
to 106 but achieves worse performance to the PINs at level 2, 4,
5 when x ranges from 1 to 100. One possible reason is that the
number of samples in multi-entry attacks is much less than general
attacks and the observation of finding the position of correct PIN
in the top 100 is based on a large number of samples. In general,
multi-entry attacks outperform general attacks with insignificant
improvement (below 2% on average for all levels).

5.3 Known Digits Attacks
Considering that both targeted attacks and multi-entry attacks bring
little improvement over general attacks, we further propose known
digits attacks which improve the success rate significantly.

In this case, an attacker knows certain digits of a target PIN
before launching inter-keystroke timing attacks (e.g., through other
side channel attacks[18, 75, 54, 37, 65, 59] or shoulder surfing
attacks [60]). Hence, he/she can reduce the size of his/her timing
dictionary. For example, if the first two digits are known to
the attacker which are ‘1’ and ‘2’, the reduced timing dictionary
consists of 104 candidate PINs which range from ‘120000’ to
‘129999’. The attacker measures the similarity between the ob-
served timing sequence and each timing sequences in the reduced
timing dictionary and ranks these 104 candidate PINs according to
their similarity values. Finally, the attacker attempts to login to the
victim’s account using the PINs starting from the top in the ranked
list in an online attack.

In the experiment of known digits attacks, we use the same
cognitive model as in general attacks and generate reduced timing
dictionaries. We evaluate the cases where an attacker obtains
1, 2 or 3 digit(s) of a target PIN. For each attacking case, one
inter-keystroke timing sequence for each PIN entry is used. We
enumerate all cases where the known value(s) are at any position(s)
of the target PIN (i.e., 6 cases for known 1 digit, 15 cases for
known 2 digits and 20 cases for known 3 digits for each PIN entry).
For the similarity calculation, we measure the similarity between
the observed timing sequence and each entry in the corresponding
reduced timing dictionary. When an attacker knows any k digits
of an l-digit PIN, the success rate of random guessing attacks is
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Figure 8: The performance of known digits attacks.

(
10l−k−1

x−1

)
/
(
10l−k

x

)
where x is the maximum number of allowed

consecutive failures.

The results of known digits attacks are shown in Figure 8. It is
clear that the success rate of known digits attacks is significantly
higher than general attacks. For example, the success rates of
inferring a target PIN at level 1 within 3 attempts are 14.2%, 23.3%,
and 34.9% when 1 digit, 2 digits, and 3 digits are known by the
attacker, and they are 1.6, 3.3, 5.4 times higher than general attacks,
respectively. In many cases, the success rate of guessing the correct
PIN is above 10%. The results show that known digits attacks are
more practical than general attacks. Even known digits attacks are
applied to attack a single user or a small number of users, their
success rates are not impractically low. These results also indicate
the effectiveness of our inter-keystroke timing attacks to 3, 4 or 5-
digits PINs and that the attacks pose a greater threat to shorter PINs
as expected.

6. DISCUSSIONS
In this section, we compare our attacks with HMM-based attacks
to show the merits of our approach. Then, we demonstrate
that our attacks pose a serious threat to real-world applications
when applied at large scale. Next, we propose several feasible
countermeasures to mitigate our attacks. Lastly, we discuss the
limitations of our attacks.

6.1 Comparison with HMM-based Attacks
Most keystroke timing attacks in the literature follow a similar at-
tacking framework based on a Hidden Markov Model (HMM) [55,



76, 32]. Compared to HMM-based attacks, our attacks have two
merits.

The first merit is that our general attacks are user-independent. The
cognitive model in our attacks captures the common characteristics
across all skilled users typing PINs so that it can be used to attack
any users. In addition, the use of cosine similarity in our attacks
enables an attacker to rank all candidate PINs similarly for inferring
a target PIN even if different users may type the target PIN with
different speeds. In comparison, the HMM-based attacks relies
on the distribution of inter-keystroke timing for a specific user
typing each possible key pair so as to calculate the probability
of any possible underlying keystroke sequence given an observed
inter-keystroke timing sequence. Because the distribution of inter-
keystroke timing for different users typing any same key pair may
not be similar, the HMM-based attacks are user-dependent. They
require that an HMM be trained with the inter-keystroke timing
data for all possible key pairs collected from a target user, and such
a model is user dependent and has to be retrained from scratch if
the target user changes.

The second merit is that the cognitive model used in our attacks
can be trained based on inter-keystroke time intervals for a small
number of key pairs (minimum two key pairs). To launch an HMM-
based attack, however, an attacker needs to collect a sufficiently
large number of inter-keystroke time intervals for each possible
key pair from a target user before launching the attack. For PIN
inference, an attacker needs to capture 30-50 inter-keystroke time
intervals for each of 110 key pairs (including 10× 10 digit-to-digit
key pairs and 10 digit-to-<Enter> key pairs) from a target user. It
is usually difficult for an attacker to collect such large amount of
data before launching an online attack in practical settings. Under
the adversary model of our attacks, attackers cannot collect enough
training data to support HMM-based attacks.

6.2 Attack Threats to Real-World Applica-
tions

In general, the success rate of the proposed attacks may not be
sufficiently high to pose imminent danger to an individual user’s
PIN if the attacker does not have prior knowledge on any digits of
the target PIN. However, our attacks are practical in online settings
because the attacks are user-independent and thus can be applied
to attack any number of users’ PINs in a large scale. To show
the threats of our attacks to real-world applications, we provide
two examples where PINs are used as the only credential to protect
users’ accounts and where attackers can collect many users’ inter-
keystroke timing data for PIN entries using malicious JavaScripts.

One example is the internet banking system of bank with pseudonym
XYZ, which is the largest bank in a Southeast Asia country. It
has more than three million Internet banking users. To login to an
Internet banking account, a user needs to input a user ID and a 6 to
9-digit PIN as the credential (most users choose 6-digit PINs, which
is the default case). Our tests show that users are not blocked within
50 login attempts. Although certain financial services (e.g., bank
transactions) require a second-factor authentication, much sensitive
information (e.g., account balances, usernames, addresses) can be
leaked merely after PIN authentication. If ten percent of users’
inter-keystroke timing data about PIN entries were collected, our
online attacks can be applied to all these users’ accounts with 50
tries per account, which do not lead to any account being locked in
practice. Consequently, On the average, around 4.16% of users’
accounts would be compromised according to our experimental

results. In other words, more than 12,000 users’ accounts would
be compromised due to our attacks.

The other example is ABCpay (pseudonym) which is the largest
third-party mobile and online payment platform in Asia. It has
more than 520 million users over the world. To make a payment
through its service, a user needs to input his/her mobile phone
number as user ID and a 6-digit PIN as password. It is not difficult
for attackers to obtain many users’ names, mobile phone numbers,
and email addresses by crawling public web pages. The login
attempts of each user’s account in this platform is limited to 3.
On the average, an attacker needs to launch online attacks to 83
users’ accounts in order to compromise one account. In other
words, if our attacks were applied to 1/1000 of users’ accounts, then
6,000 users’ accounts would be compromised on the average. Our
attacks would cause serious damages in this case since attackers
can transfer money from victims’ accounts to other accounts.

Considering that many financial institutions have a large number of
users and that malicious JavaScripts are easy to spread, our attacks
pose a serious threat to real-world applications when applied in
large scale.

6.3 Mitigations
Increasing PIN length. The security strength of the most existing
PIN systems is chosen according to the success probability of
random guessing attacks [72]. For example, the security strength
for 6-digit PINs is considered to be 10−6. However, our study
reveals that the inter-keystroke timing attacks significantly lower
the security strength of PIN systems. A simple approach to
mitigating this threat is to increase the PIN length. Our calculation
suggests that users should increase 6-digit PINs to 10-digit PINs
whose security strength under the inter-keystroke timing attacks is
higher than that of 6-digit PINs under the random guessing attacks
on the average. This mitigation does not require any change to the
hardware of current PIN authentication systems, but at the expense
of requiring users to memorize longer PINs.

PIN selection policy. As shown in Section 4.3, the performance of
our attacks varies significantly when they apply to PINs at different
strength levels. If a user selects a 6-digit PIN at level 5 instead
of level 1 to level 4, the probability of a successful general attack
within 100 attempts can be reduced by 870, 222, 251, and 43 times,
respectively.

We thus suggest adopting a PIN selection policy where a user is
required to choose a PIN at level 5 when the user registers his/her
account. If a user chooses a PIN at level 1 to level 4, his/her
registration would not succeed until the user changes his/her PIN
to level 5. Level 5 consists of 9 ∗ 105 PINs which account for 90%
of all 6-digit PINs. It is thus relatively easy for a user to obtain a
PIN at level 5 if he/she simply chooses his/her PIN randomly.

Considering that the success rate of attacking 6-digit PINs at level
5 is still around 10 times higher than random guessing attacks,
To achieve a similar security strength of 6-digit PINs under the
random guessing attacks, we suggest users choose 7-digit PINs
at the strongest strength level. Note that when the PIN selection
policy is adopted, it is unnecessary for users to choose 10-digit
PINs which has been mentioned earlier.

A new keypad layout. As it is shown in the cognitive model, the
inter-keystroke timing measurement for a user types a key pair on



Figure 9: A new keypad layout.

a keypad is mainly determined by the distance between the two
keys of the key pair on the keypad. Based on this observation,
we design a new keypad for PIN entry to mitigate inter-keystroke
timing attacks. As shown in Figure 9, the keypad is in a circular
shape. All 10 digits (0-9) keys are evenly distributed on a circle. An
<Enter> key is located in the center of the keypad. When a user
types his/her PIN, the user presses<Enter> key after pressing each
digit. When submitting the PIN, the user may press the <Enter>
key twice. During the PIN entry, the user always moves his/her
finger through the same distance for entering any digit, leading to
similar inter-keystroke timing sequence for entering any PINs.

Although a user may take double time for entering his/her PIN on
this new keypad, the security strength of a PIN system is improved
significantly against the inter-keystroke timing attacks. If this new
keypad is adopted, the success rate of inter-keystroke timing attacks
would be similar to that of random guessing attacks. We implement
this keypad on a smartphone where the distances between any digit
key and <Enter> key is 1 inch. It takes around 2.5 seconds for
a user to enter a 6-digit PIN on the new keypad. In comparison,
most existing leakage resilient password systems which have the
same security strength as that of 6-digit PINs require hundreds of
seconds for user authentication (e.g. [30, 4, 68, 34]).

Leakage resilient password systems (LRPSes). LRPSes [3, 30,
4, 68, 34, 10, 69, 73] are user authentication systems which
do not disclose user credentials to observers. Such systems are
by design secure against any side-channel attacks including our
attacks. However, Yan et al. [72] point out that in order to be secure,
LRPSes have remarkably low usability. A secure LRPS usually
takes hundreds of seconds to complete an authentication session,
which may not be practical in many applications [30, 4, 68, 34].

6.4 Limitations
Ecological validity. In our user study, we recruit students and
young staff only from a single university. The performance of
our attacks may vary among different populations. The ecological
validity of our user study is limited, but the qualitative facts in our
research are likely to remain true.

Typing styles. In our experiments, we require all participants to
enter their PINs on a keypad using a single finger. We conducted a
larger scale survey on user’s typing habits through emails and social
networks over three weeks. In total, we received 544 responses.
The participants of the survey mainly came from Singapore, China

and the UK. They were not limited to the students or staffs in
universities. According to the survey results, most participants
reported that they tend to use a single finger when they enter PINs
on numeric keypads in real life. In particular, 344 participants
(63.2%) use one finger, 124 participants (22.8%) use two fingers,
and 76 participants (14.0%) use more than two fingers for PIN
entry. In order to attack users who use multiple fingers when typing
PINs, our cognitive model should be extended to cover different
typing styles.

Typing error. During the process of entering PINs in real-
world scenarios, users may press a wrong digit and then use the
<Delete> or <Backspace> key to cancel the wrong input. We
exclude this situation because it rarely happens in PIN entries. We
plan to address this issue and generalize our attacks for password
inference in the future.

7. RELATED WORK
Besides inter-keystroke timing attacks, many other side-channel
attacks for keystroke inference have been proposed in the literature
recently. We summarize three types of side-channel attacks,
including audio-based attacks, video-based attacks, and sensor-
based attacks.

The first type of side-channel attacks for keystroke inference is
audio-based attack. Asonov et al. [6] and Zhuang et al. [77] demon-
strate that the sounds of hitting different keys are different and thus
propose machine learning algorithms to classify them. However,
their approaches are user-dependent and keyboard-dependent. In
comparison, the cognitive model in our attacks can be built for
attacking any users as long as the geometric measurements of
victims’ keypads are known by attackers.

Different from machine learning based approaches, a training-free
method is proposed by Berger et al. [11]. They observe that
the similarity of two keystroke acoustic signals has a negative
relationship with the distance between the corresponding two
keys. They infer English words typed by a user according to the
relationship patterns of keystroke acoustic signals of all words
in an English dictionary. In contrast, our approach focuses on
PIN inference without making any assumption on the similarity
of keystroke acoustic signals. Another training-free approach [63]
takes full advantage of multiple pairs of microphones to estimate
keystrokes’ physical positions based on the time differences of
keystroke acoustic signals arriving at different microphones. They
require at least two pairs of microphones be placed near the users’
keyboards so as to collect acoustic signals of users’ keystrokes.
In comparison, our attacks make no restriction on how to collect
users’ inter-keystroke timing data.

The second type of side-channel attacks for keystroke inference
is video-based attack. Early works [9, 8] exploit the reflections
of screens on glasses, spoons, eyes of users to recover the users’
inputs. These attacks require attackers to acquire videos directly
capturing users’ screens or screen reflections. Recent works show
that even when keyboards or screens are not visible from the videos,
attackers can still infer users’ inputs via analyzing users’ fingers or
hands movements using advanced computer vision algorithms [75,
74, 54]. Even users’ hands movements are not visible from the
videos, Sun et al. [59] analyze the motion patterns of devices
backsides caused by the users’ keystrokes on different positions of
the screens of the users’ devices and classify them using Support
Vector Machine. All these attacks require attackers to place



cameras near the users.

The third type of side-channel attacks for keystroke inference is
sensor-based attack. A range of studies show that embedded
sensors on mobile devices or wearable devices can reveal sensitive
information about users’ keystroke behaviors. Various embedded
sensors are investigated in this context, including accelerome-
ters [39, 7, 37, 38, 45, 66], gyroscopes [17, 12, 41, 71], ambient-
light sensors [56] and WiFi [1, 33]. All these attacks require
attackers to hack into mobile devices or wearable devices for
accessing sensor data or to place mobile devices near users’
keyboards.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed user-independent inter-keystroke timing
attacks on PINs based on a human cognitive model. The human
cognitive model allows an attacker to build a timing dictionary of
all possible PINs ranked according to the cosine similarity between
the observed timing sequence of a target PIN and each possible
PIN’s predicted timing sequence. We examined the effectiveness
of our attacks to the PINs at different PIN strength levels in
different online attack settings. The results demonstrated that
our attacks achieve satisfactory performance. We also suggested
several countermeasures to mitigate our attacks.

In the future, we plan to extend our attacks to infer users’ pass-
words. A more complicated human cognitive model is to be
developed for such purpose.
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APPENDIX
A. OTHER COGNITIVE OPERATIONS
Apart from the four phenomena described in Section 2.2.2, we
investigate other two cognitive operations which may affect the
inter-keystroke time.

Phenomenon 5. The execution process is slower for the transition
from the last digit to the <Enter> key. People usually check the
PIN before pressing the <Enter> key, which makes the cognition
time between the last digit and the <Enter> key longer than the
cognition time between the two keys in other key pairs.

Phenomenon 6. Each character string can be decomposed either
into syllables or trigrams and bigrams, sometimes even quater-
grams. People memorize words following this decomposition rule.
In the processing of typing a string, a cognitive processor retrieves
each segment of the string and encodes it into an ordered list of
characters. The motor processor moves the finger and presses
the key subsequently. The next segment of the string is then
initiated and executed in the same way. Specifically for PIN
entry, people often break a long numeric code into smaller parts,
and by ‘chunking’ long numbers into several groups, people can
greatly increase the recall accuracy and speed. For instance, it is
common for people to memorize a 6-digit PIN following the ‘xxx-
xxx’ pattern which may lead to a slight pause after the first three
numbers being entered [16]. Sometimes, people use their birthdays
to help define their PINs, so they memorize the PINs following the
‘yymmdd/yyddmm’ or ‘mmddyy/ddmmyy’ pattern. In these cases,
the time between the segment ‘yy’ and ‘mmdd/ddmm’ maybe
longer.

Phenomena 5 and 6 are two cognition operations of the typing task.
In our paper, we call Phenomena 4 and 5 the word-end effect and
the word-segment effect, respectively. We estimate the time of each
operation as a constant parameter from experimental data.

Incorporated with the cognitive time (Phenomena 5 and 6), an
extended linear model is used to predict the inter-keystroke time
for 6-digit PINs:

T = a+ b ∗ I + c ∗ E + d ∗ S1 + e ∗ S2 + f ∗ S3, (4)

where the first two terms a+ b ∗ I represent Fitts’s Law, E denotes
the word-end effect, and S1, S2, S3 denote the word-segment effect
for three mostly-used PIN memorization patterns (‘xx-xxxx’, ‘xxx-
xxx’, ‘xxxx-xx’ for 6-digit PINs), respectively. E,S1, S2 and S3

are binary variables which take the value 1 if the input key pair is
in the corresponding position in the PIN sequence (i.e., for the last
key pair in a PIN sequence, E = 1, otherwise, E = 0; for the
second, third and forth key pair, S1, S2, S3 = (1, 0, 0), (0, 1, 0),
and (0, 0, 1), respectively, otherwise, S1, S2, S3 = (0, 0, 0)). The
coefficients c, d, e, and f denote the added time caused by such
effects when they are present.

To validate this extended model, we conduct a significance testing
on the coefficients of Equation 4. The null hypothesis of each
coefficient is H0 : β = 0 (β refers to c, d, e, f in Equation 4,
respectively). The results are given in Table 3.

The results of significance testing show that the impact of word-end
effect (p = 0.060) and word-segment effects (p = 0.365; 0.429;
0.021) are statistically insignificant while the topographical effect
has a significant positive impact on the inter-keystroke time (p <
0.001). One potential reason for the insignificant parameters (i.e.,

Table 3: The significance testing results of cognitive model’s
parameters. The statistically significant parameters are marked
with F.

Parameter Coefficient p-value
Intercept a = 155.08 < 0.001 F

I b = 31.60 < 0.001 F
E c = 17.63 0.060
S1 d = 8.13 0.365
S2 e = 7.81 0.429
S3 f = 31.80 0.021

word-end and word-segment effects) is that typing a 6-digit PIN is
a simple behavior so that participants may need little cognitive time
for the PIN entry. Considering that the cognitive time is statistically
insignificant, we decide to consider the topographical effect only in
our cognitive model.


