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Chapter 2
Mathematical Background

This Chapter presents some fundamental mathematical knowledge and basic results
which facilitates the analysis and design in the subsequent chapters, and also helps
readers understand the theoretical work presented in this book.

2.1 Lipschitz Function

This section will present the well known Lipschitz condition and the generalised
Lipschitz condition.

2.1.1 Lipschitz Condition

The definition for Lipschitz condition is given as follows:

Definition 2.1. A function f (x) : Rn 7→Rm is said to satisfy the Lipschitz condition
in domain Ω ⊂ Rn if there exists a nonnegative constant L such that the inequality

f (x)− f (x̂)≤ L∥x− x̂∥ (2.1)

holds for any x ∈ Ω and x̂ ∈ Ω . Then L is called the Lipschitz constant and f (x) is
called the Lipschitz function in Ω . If Ω = Rn, then f (x) is said to satisfy the global
Lipschitz condition.

From the definition 2.1, it is clear to see that a Lipschitz function must be contin-
uous. However the converse is not true and a typical example is the scalar function

f (x) = x1/3

in a neighbourhood of the origin x = 0. A Lipschitz function may not be differen-
tiable and a simple example is the scalar function
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28 2 Mathematical Background

f (x) = |x|

at the origin x= 0 in x∈R. Moreover, a differentiable function may not be Lipschitz
on a compact set, for example the function

f (x) =

{
xα sin

1
x
, 0 < x≤ 1

0, x = 0
(2.2)

is not Lipschitz in the compact set x∈ [0, 1] for any constant α satisfying 1<α < 2.
The reason is that the derivative of the function f (x) defined in (2.2) is not bounded
in the interval [0, 1].

Lemma 2.1. [97] Consider a function f (x) : Rn 7→Rm which is differentiable in the
domain Ω . If its’ Jacobian matrix is bounded in Ω , that is, there exists a constant L
such that

∥J f ∥ ≤ L

for any x ∈ Ω , then f (x) satisfies the Lipshitz condition, and the inequality (2.1)
holds.

2.1.2 Generalised Lipschitz condition

The well known Lipschitz condition in Section 2.1.1 will be extended to a more
general case which will be used in the analysis later.

Definition 2.2. A function f (x1,x2,x3) : Ω1 ×Ω2 ×Ω3 7→ Rn is said to satisfy a
generalised Lipschitz condition with respect to (w.r.t.) the variables x1 ∈ Ω1 ⊂ Rn1

and x2 ∈ Ω2 ⊂ Rn2 uniformly for x3 in Ω3 ⊂ Rn3 if there exist nonnegative contin-
uous functions L f 1(·) and L f 2(·) defined in Ω3 such that for any x̂1,x1 ∈ Ω1 and
x̂2,x2 ∈Ω2, the inequality

∥ f (x1,x2,x3)− f (x̂1, x̂2,x3)∥ ≤L f 1(x3)∥x1− x̂1∥+L f 2(x3)∥x2− x̂2∥

holds for any x3 ∈ Ω3. Then, f (·) is called a generalised Lipschitz function, and
L f 1(·) and L f 2(·) are called generalised Lipschitz bounds. Further, if Ω1 =Rn1 and
Ω2 = Rn2 , then, it is said that f (·) satisfies a global generalised Lipschitz condition
w.r.t. x1 and x2 uniformly for x3 in Ω3.

Remark 2.1. The symbols L f 1(·) and L f 2(·) introduced above are usually nonneg-
ative functions instead of constants. This is different from the Lipschitz condition.
Thus, the nonnegative continuous functions L f 1(x3) and L f 2(x3) are called gener-
alised Lipschitz bounds which are corresponding to the Lipschitz constant for the
Lipschitz condition.

Clearly, the generalised Lipschitz condition is more relaxed than the Lipschitz
condition. For example, the function
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f (x1,x2,x3) := x1x2
3 + x2x3

with x1,x2,x3 ∈ R does not satisfy the global Lipschitz condition. However, from
the inequality that for any col(x1,x2,x3) ∈ R3 and col(x̂1, x̂2,x3) ∈ R3

| f (x1,x2,x3)− f (x̂1, x̂2,x3) | ≤ |x1− x̂1|x2
3 + |x2− x̂2| |x3|

it clear to see that f (·) satisfies the global generalised Lipschitz condition w.r.t. x1
and x2, uniformly for x3 ∈ R.

2.2 Comparison Functions

This section will present the definitions and properties of the class K function and
the related functions.

Definition 2.3. (see [97]) A continuous function α : [0,a) 7→ R+ is said to belong
to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞
if a = ∞ and limr→∞ α(r) = ∞.

Definition 2.4. (see [97]) A continuous function β : [0, a)×R+ 7→ R+ is said to
belong to class K L if, for any given s ∈ R+, the mapping β (r,s) belongs to class
K with respect to the variable r, and for any given r ∈ [0, a), the mapping β (r,s)
is decreasing with respect to the variable s and lims→∞ β (r,s) = 0.

Definition 2.5. If a class K function is a C1 function, then it is said to belong to
class K C1. A continuous function β : Rn×R+ 7→ R+ is said to be a class K I
function if for any given x ∈Rn the function β (x,s) is increasing with respect to the
variable s in R+, that is, β (x,s1)≤ β (x,s2) for any 0≤ s1 ≤ s2.

The functions defined in Definitions 2.3 and 2.4 above are directly from [97].
The new concepts of class K C1 function and class K I function are introduced in
Definition 2.5 will be used for analysis later.

The following new concept is introduced, which will be termed a class W S
function and will be used in Section 7.3.

Definition 2.6. A continuous function β (t,x1,x2) : R+×R+×R+ 7→ R+ (R+ is
the set of nonnegative real numbers) with β (t,0,0) = 0 is said to be weak w.r.t the
variable x1 and strong w.r.t. the variable x2 if there exist functions χ1(t,x1,x2) and
χ2(t,x1,x2) such that

β (t,x1,x2) = χ1(t,x1,x2)x1 +χ2(t,x1,x2)x2 (2.3)

where both χ1(·, ·,x2) and χ2(·, ·,x2) are continuous and nondecreasing w.r.t. the
variable x2. Further, the function β (t,x1,x2) is said to be a class W S function w.r.t.
the variables x1 and x2.
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Remark 2.2. It should be noted that if a function β (t,x1,x2) : R+ ×R+ ×R+ 7→
R+ with β (t,0,0) = 0 is smooth enough, then it follows from [3] that there exist
continuous functions β1(·) and β2(·) such that the expression

β (t,x1,x2) = β1(t,x1,x2)x1 +β2(t,x1,x2)x2

holds. Moreover, if β1(t,x1,x2) and β2(t,x1,x2) are nondecreasing w.r.t. x2, then
β (t,x1,x2) is a class W S function w.r.t. x1 and x2.

Lemma 2.2. (see [97]) Assume that α1(·) and α2(·) are class K functions in [0, a),
α3(·) and α4(·) are class K∞ functions, and β (·) is a class K L function defined
in [0, a)×R+. Then, the following results hold:

• the inverse function α−1
1 (·) is a class K function defined in [0, α1(a)).

• the inverse function α−1
3 (·) is a class K∞ function defined in [0, ∞).

• the composite function α1 ◦α2 is a class K function.
• the composite function α3 ◦α4 is a class K∞ function.
• the function σ(r,s) = α1 (β (α2(r),s)) is a class K L function.

Lemma 2.3. The following results hold:

i) If β (x,s) : Rn×R+ 7→ R+ is a class K I function, then β 2(x,s) is a class K I
function.

ii) Suppose that a function ϕ1 : [0,a) 7→ R+ is a C1 function with ϕ1(0) = 0. Then
there exists a continuous function ϕ2(·) in [0,a) such that

ϕ1(s) = ϕ2(s)s, s ∈ [0,a)

Proof: i) Suppose that β (x,s) : Rn×R+ 7→R+ is a class K I function. Then for any
0≤ s1 ≤ s2 and x ∈ Rn,

β (x,s1)≤ β (x,s2)

From β (x,s)≥ 0 for any (x,s) ∈ Rn×R+

β 2(x,s1)−β 2(x,s2)

= (β (x,s1)+β (x,s2))(β (x,s1)−β (x,s2))

≤ 0

This shows that β 2(x,s) is a class K I function
ii) Since the functions ϕ1(·) is a C1 function in [0,a), its derivative dϕ1(s)

ds is con-
tinuous in [0,a). For any s ∈ [0,a), construct a function

ϕ2(s) :=


ϕ1(s)

s
, s ̸= 0

dϕ1(s)
ds

|s=0, s = 0
(2.4)

From the definition of ϕ2(·), it is clear to see that
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1) if s ̸= 0, then ϕ1(s) = ϕ2(s)s;
2) if s = 0, then from ϕ1(0) = 0, ϕ1(s) = ϕ2(s)s.

Therefore, the expression
ϕ1(s) = ϕ2(s)s

holds for s ∈ [0,a). It remains to prove that the function ϕ2(·) defined in (2.4) is
continuous in [0,a).

It is clear that ϕ2(s) is continuous in (0,a). Since ϕ1 is a C1 function in [0,a),
from the continuity of dϕ1(s)

ds at s = 0,

lim
s→0+

ϕ2(s) = lim
s→0+

ϕ1(s)
s

=
dϕ1(s)

ds
|s=0= ϕ2(0)

which implies that ϕ2(·) is continuous at s = 0. Therefore ϕ2(·) is continuous in
[0,a).

Hence the conclusion follows. ∇

2.3 Lyapunov Stability Theorems

The results given in this section are available in [97].
Consider the nonlinear system

ẋ(t) = f (t,x(t)) (2.5)

where the function f : R+×D 7→ Rn is continuous and D ⊂ Rn is a domain which
contains the origin x = 0. It is assumed that

f (t,0) = 0, t ∈ R+

which implies that the origin is an equilibrium point of the system.

Definition 2.7. The equilibrium point x= 0 of system (2.5) is called exponential sta-
ble if there exist positive constants ci for i = 1,2,3 such that for any x(t0) satisfying
∥x(t0)∥ ≤ c1,

∥x(t)∥ ≤ c2∥x(t0)∥e−c3(t−t0) (2.6)

If inequality (2.6) holds for any x(t0) ∈ Rn, then, the equilibrium point x = 0 of
system (2.5) is called globally exponentially stable.

2.3.1 Asymptotic stability

Theorem 2.1. Consider system (2.5). Let V : R+×D 7→ R+ be a continuously dif-
ferentiable function such that
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W1(x)≤V (t,x)≤W2(x)
∂V
∂ t

+
∂V
∂x

f (t,x)≤−W3(x)

for any t ∈ R+ and x ∈ D, where Wi(x) for i = 1,2,3 are continuously positive
definite function in D. Then x = 0 is uniformly asymptotic stable. Further if D =
Rn, and w(x) is radially unbounded, then x = 0 is globally uniformly asymptotical
stable.

2.3.2 Exponential stability

Theorem 2.2. Consider system (2.5). Let V : R+×D 7→ R+ be a continuously dif-
ferentiable function such that for t ∈ R+ and x ∈ D,

k1∥x∥a ≤V (t,x)≤ k2∥x∥a

∂V
∂ t

+
∂V
∂x

f (t,x)≤−k3∥x∥a

where ki for i = 1,2,3 and a are positive constants. Then x = 0 is exponentially
stable. Further if D = Rn, then x = 0 is global exponentially stable.

Comparing Theorems 2.1 and 2.2 above, it is straightforward to see that the ex-
ponential stability implies uniform asymptotic stability.

2.3.3 Converse Lyapunov theorem

The following result is the well known Converse Lyapunov Theorem.

Theorem 2.3. Consider system (2.5) in domain D := Br = {x ∈ Rn | ∥x∥< r}. Let
β (·) be a class K L function and r0 be a positive constant such that

β (r0,0)< r and Br0 := {x | ∥x∥< r0}

Assume that the Jacobian matrix ∂ f
∂x is bounded1 on domain D uniformly for t ∈R+,

and that the trajectory of system (2.5) satisfies

∥x(t)∥ ≤ β (∥x(t0)∥, t− t0), x(t0) ∈Br0 , t ≥ t0 ≥ 0

Then, there exists a continuously differentiable function V : R+×Br0 7→ R+ such
that

1 If the function f (·) in (2.5) is continuously differentiable in the ball Br , then ∂ f
∂x is bounded on

the the domain D = Br .
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α1(∥x∥)≤V (t,x)≤ α2(∥x∥)
∂V
∂ t

+
∂V
∂x

f (t,x)≤−α3(∥x∥)∥∥∥∥∂V
∂x

∥∥∥∥≤ α4(∥x∥)

where αi for i = 1,2,3,4 are class K functions defined on the interval [0,r0]. The
function V (·) can be chosen independent of time t if f (·) in system (2.5) is indepen-
dent of the time t.

2.4 Uniformly Ultimate Boundedness

For a given system (2.5), if asymptotic stability is not possible, uniform ultimate
bounded stability can be considered. This is very useful in practical cases.

Theorem 2.4. Consider system (2.5). Let V : R+×D 7→ R+ be a continuously dif-
ferentiable function such that in t ∈ R+ and x ∈ Rn,

α1(∥x∥)≤V (t,x) ≤ α2(∥x∥)
∂V
∂ t

+
∂V
∂x

f (t,x) ≤ −W3(x), for any ∥x∥ ≥ µ > 0

where α1(·) and α2(·) are class K functions and W3(·) is a continuous positive
definite function in domain D. Then x = 0 is uniformly ultimately bounded2. Further
if D=Rn, and α1(·) belongs to class K∞, then x= 0 is globally uniformly ultimately
bounded.

Proof: See the reference [97] (Theorem 4.18, p. 172). #

From Theorem 2.4, the following result is ready to be presented:

Lemma 2.4. Consider the nonlinear system

ẋ = ω(x) (2.7)

where x ∈ Rn is the system state, and the function ω(·) is continuous in Rn. Let
V : Rn 7→ R+ be a continuously differentiable class K∞ function of ∥x∥ such that

∂V

∂x
ω(x) ≤ −ϑ(∥x∥), x ∈ Rn \Bν (2.8)

where ϑ is a class K function, and µ is a positive constant. Then, the trajectory of
system (2.7) enters into the domain Bµ in finite time.

2 The ultimate bound depends on the parameters µ , which can be estimated using the result given
in Theorem 4.18 in [97].
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Proof: From the condition of Lemma 2.4, there exists a class K∞ function ϑ1(·)
such that

V (x) = ϑ1(∥x∥). (2.9)

Then, from (2.8), (2.9) and using Theorem 2.4, the trajectory of system (2.7) is
driven to the domain Bµ in a finite time, and remains there. That means there exists
t1 such that x ∈Bµ for t ≥ t1.

The aim now is to prove that the trajectory of system (2.7) enters into Bµ in a
finite time. Suppose for a contradiction that this is not the case, then there exists
some time t2 such that the solution x(x0, t) of system (2.7) starting from some point
x0 satisfies x(x0, t) ∈ ∂Bµ after t2. This is equivalent to

∥x(x0, t)∥= µ , t ≥ t2. (2.10)

By (2.9) and (2.10), it follows that

V (x(x0, t)) = ϑ1(∥x(x0, t)∥) = ϑ1(µ), t ≥ t2. (2.11)

where µ is a positive constant. This shows that V̇ |(2.7)≡ 0 after t2, and it contradicts
with (2.8). Hence, the conclusion follows. #

Remark 2.3. Lemma 2.4 demonstrates that the solution enters the open set Bµ in
finite time and remains on Bµ . It does not claim that the solution subsequently
remains in Bµ .

2.5 Razumikhin Theorem

Consider a time-delay system

ẋ(t) = f (t,x(t−d(t)) (2.12)

with an initial condition

x(t) = ϕ(t), t ∈ [−d,0]

where the function vector f : R+×C[−d,0] 7→Rn takes R×(bounded sets of C[−d,0])
into bounded sets in Rn; d(t)> 0 is the time delay and

d := sup
t∈R+
{d(t)}< ∞

which implies that the time delay d(t) has a finite upper bound in t ∈ R+.

Theorem 2.5. (Razumikhin Theorem) If there exist class K∞ functions ζ1(·) and
ζ2(·), a class K function ζ3(·) and a continuous function V1(·) : [−d,∞]×Rn 7→R+

satisfying
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ζ1(∥x∥)≤V1(t,x)≤ ζ2(∥x∥), t ∈ R+, x ∈ Rn

such that the time derivative of V1 along the solution of system (2.12) satisfies

V̇1(t,x)≤−ζ3(∥x∥) if V1(t−d,x(t−d))≤V1(t,x(t)) (2.13)

for any d ∈ [0, d], then the system (2.12) is uniformly stable. If in addition, ζ3(τ)> 0
for τ > 0 and there exists a continuous non-decreasing function ξ (τ)> τ for τ > 0
such that (2.13) is strengthened to

V̇1(t,x)≤−ζ3(∥x∥) if V1(t−d,x(t−d))≤ ξ (V1(t,x(t))) (2.14)

for d ∈ [0, d] , then the system (2.12) is uniformly asymptotic stable.

Proof: See pages 14-15 in [69]. ∇

From Razumikhin Theorem 2.5. the following conclusion can be obtained di-
rectly:

Lemma 2.5. Consider the time delay system (2.12). If there exist constants γ > 0
and ζ > 1 and a function

V2(x(t)) = xT P̃x

with P̃ > 0 such that the time derivative of V2(·) along the solution of system (2.12)
satisfies

V̇2 |(2.12)≤−γ
∥∥∥P̃

1
2 x(t)

∥∥∥2
(2.15)

whenever
∥P̃

1
2 x(t +θ)∥ ≤ ζ∥P̃

1
2 x(t)∥

for any θ ∈ [−d,0], then, system (2.12) is uniformly asymptotic stable.

Proof: From the definition of V2(·) it follows that

λmin(P̃)∥x∥2 ≤V2(t,x(t))≤ λmax(P̃)∥x∥2

and from (2.15)

V̇2 |(2.12)≤−γx(t)T P̃x(t)≤−γλmax(P̃)∥x∥2.

It is clear that the inequality

V2(x(t +θ))≤ ζ 2V2(x(t))

is equivalent to the inequality

∥P̃
1
2 x(t +θ)∥ ≤ ζ∥P̃

1
2 x(t)∥

Then, from Razumikhin Theorem 2.5 and P̃ > 0, the conclusion follows by letting
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γ1(τ) = λmin(P̃)τ2, γ2(τ) = λmax(P̃)τ2

γ3(τ) = γλmin(P̃)τ2, γ4(τ) = ζ 2τ

in Theorem 2.5. #

2.6 Output Sliding Surface Design

In order to form an output feedback sliding mode control scheme, it is usually re-
quired that the designed switching function is a function of system outputs. The
corresponding sliding surface is called an output sliding surface in this book. The
output sliding surface algorithm proposed in [39, 40] is outlined here, and this will
be frequently used in the sequel.

Consider initially a linear system

ẋ = Ax+Bu (2.16)
y = Cx, (2.17)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the states, inputs and outputs respectively and
assume m ≤ p < n. The triple (A,B,C) comprises constant matrices of appropriate
dimensions with B and C both being of full rank.

For system (2.16)-(2.17), it is assumed that

rank(CB) = m

Then, from [39] it can be shown that a coordinate transformation x̃ = T̃ x exists such
that the system triple (A,B,C) with respect to the new coordinate x̃ has the following
structure [

Ã11 Ã12

Ã21 Ã22

]
,

[
0

B2

]
,
[

0 T̆
]

(2.18)

where Ã11 ∈ R(n−m)×(n−m), B2 ∈ Rm×m and T̆ ∈ Rp×p is orthogonal. Further, it is
assumed that the system (Ã11, Ã12,C̃1) with C̃1 defined by

C̃1 =
[

0(p−m)×(n−m) Ip−m
]

(2.19)

is output feedback stabilisable i.e. there exists a matrix K ∈ Rm×(p−m) such that

Ã11− Ã12KC̃1

is stable. It is shown in [39, 40] that a necessary condition for (Ã11, Ã12,C̃1) to be
stabilisable is that the invariant zeros of (A,B,C) lie in the open left half-plane. In
[39, 40] a sliding surface of the form

FCx = 0 (2.20)
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is proposed where
F = F2

[
K Im

]
T̆ τ (2.21)

and F2 ∈ Rm×m is any nonsingular matrix.
If a further coordinate change is introduced based on the nonsingular transfor-

mation z = T̂ x̃ with T̂ defined by

T̂ =

[
In−m 0
KC̃1 Im

]

then in the new coordinates z, system (2.16)–(2.17) has the following form[
A11 A12

A21 A22

]
,

[
0

B2

]
, Ĉ

where A11 = Ã11− Ã12KC̃1 is stable and Ĉ satisfies

FĈ =
[

0 F2
]

with F2 nonsingular. From the analysis above, the following conclusion is obtained
directly:

Lemma 2.6. Consider system (2.16)-(2.17). Suppose that

i) rank(CB) = m;
ii) the invariant zeros of (A,B,C) lie in the open left half-plane;
iii)the matrix triple (Ã11, Ã12,C̃1) is output feedback stabilisable where (Ã11, Ã12)

and C̃1 are defined respectively by (2.18) and (2.19).

Then,

i) there exists a transformation z = T x such that in the new coordinate z system
(2.16)–(2.17) has the following form

ż =

[
A11 A12

A21 A22

]
z+
[

0
B2

]
u (2.22)

y =
[

0 C2
]

z, (2.23)

where A11 ∈ R(n−m)×(n−m) is stable. Both matrices B2 ∈ Rm×m and C2 ∈ Rp×p

are nonsingular;
ii) there exists a matrix F such that FCx = 0 provides a stable sliding motion for

system (2.16)-(2.17) and F
[

0 C2
]
=
[

0 F2
]

where F2 ∈Rm×m is nonsingular.

Proof: All that remains to be shown is that the output distribution matrix has the
form given in (2.23) and that C2 is nonsingular. The output distribution matrix in the
new coordinates is given by
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[
0 T̆

]
T̂−1 =

[
0 T̆

] [ In−m 0
−KC̃1 Im

]

=
[

0 T̆
]  In−p 0 0

0 Ip−m 0
0 −K Im


=
[

0 T̆
]  In−m 0

0
[

Ip−m 0
−K Im

] 

=

[
0 T̆

[
Ip−m 0
−K Im

]]
.

and so by inspection,

C2 = T̆
[

Ip−m 0
−K Im

]
which is nonsingular. Hence the result follows. #

From the analysis above, it is clear to see that the coordinate transformation

z = T x

where T := T̂ T̃ , transfers the system (2.16)-(2.17) to the regular form (2.22)–(2.23).
Choose the sliding surface

S = {x | FCx = 0, x ∈ Rn} (2.24)

Then, the analysis above shows that the sliding motion of system (2.16)-(2.17) cor-
responding to the sliding surface (2.24) is asymptotically stable. The sliding surface
(2.24) can be described by

S = {y | Fy = 0, y ∈ Rp} (2.25)

which is a subspace of the output space. Therefore S in (2.24) or (2.25) denotes
output sliding surfaces.

Remark 2.4. Lemma 2.6 gives a condition for the existence of the output switching
surface (2.20) on which system (2.16) is stable. It should be emphasized that the
sliding surface given by Lemma 2.6 can be obtained from a systematic algorithm
together with any output feedback pole placement algorithm of choice. Details of
appropriate algorithms and how to determine the switching surface (2.20) is de-
scribed in [39, 40] where the necessary and sufficient condition to guarantee the
existence of the matrix F is available in Proposition 5.2 of [40]. If p = m then there
is no design freedom and the sliding motion is governed by the invariant zeros of
(A,B,C).
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2.7 Geometric Structure of Nonlinear System

Consider the nonlinear system

ẋ(t) = F(x(t),u(t)) (2.26)
y(t) = h(x(t)), x0 = x(0) (2.27)

where x ∈ Ω ⊂ Rn (and Ω is a neighbourhood of x0), u = col(u1,u2, . . . ,um) ∈
U ∈Rm, and y = col(y1,y2, . . . ,yp)∈R p are the state variables, inputs and outputs
respectively where U is an admissible control set. F(x,u) is a known smooth vector
field in Ω ×U and the known function h : Ω 7→ R p is smooth. For convenience,
the system (2.26)–(2.27) is also denoted by the pair (F(x,u),h(x)).

Definition 2.8. (See, e.g. [62]) System (2.26)–(2.27) is said to be observable at
(x0,u0) ∈ Ω ×U if there exists a neighbourhood N of (x0,u0) in Ω ×U and a
set of nonnegative integer numbers {r1,r2, · · · ,rp} with ∑p

i=1 ri = n such that

1) for all (x,u) ∈N
∂

∂u j
Lk

F(x,u)hi(x) = 0 (2.28)

for indices i = 1,2, . . . , p, k = 0,1,2, . . . ,ri−1 and j = 1,2, . . . ,m;
2) the p×m matrix M(x,u) := { ∂

∂u j
Lri

F(x,u)hi(x)} has rank p in (x0,u0)

Then, {r1,r2, · · · ,rp} is called the observability index of system (2.26)–(2.27) at
(x0,u0). Further, system (2.26)–(2.27) is said to be uniformly observable in Ω ×U
if for any (x0,u0) ∈ Ω ×U , the system is observable and the observability indices
are fixed.

• Assume the pair (F(x,u),h(x)) has uniform observability index {r1,r2, · · · , rp}
with ∑p

i=1 ri = n in the domain Ω ×U .

Construct a nonlinear transformation T : x 7→ z as follows:

zi1 = hi(x) (2.29)
zi2 = LF(x,u)hi(x) (2.30)

...
ziri = Lri−1

F(x,u)hi(x) (2.31)

where zi := col(zi1,zi2, · · · ,ziri) for i = 1,2, . . . , p and z := col(z1,z2, · · · ,zp).
It follows from Definition 2.8 that M(x,u) has rank p in Ω×U , implying that all

zi are independent of the control u, which combined with the restriction ∑p
i=1 ri = n

means that the corresponding Jacobian matrix of T (x), ∂T
∂x , is nonsingular. There-

fore, (2.29)–(2.31) is a diffeomorphism in the domain Ω , and z = col(z1,z2, . . . ,zp)
forms a new coordinate system which can be obtained by direct computation from
(2.29)–(2.31).
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Since L j
F(x,u)hi(x) is independent of u for all i = 1,2, . . . , p and j = 1,2, . . . ,ri−1,

it follows by direct computation that for i = 1,2, . . . , p

żi1 = ∂hi
∂x F(x,u) = LF(x,u)hi(x) = zi2

żi2 =
∂(LF(x,u)hi(x))

∂x F(x,u) = L2
F(x,u)hi(x) = zi3

...

żiri−1 = Lri−1
F(x,u)hi(x) = ziri

żiri = Lri
F(x,u)hi(x)

Therefore, in the new coordinates z defined by (2.29)–(2.31), system (2.26)–(2.27)
has the following form

ż = Az+BΦ(z,u)

y = Cz

where

A = diag{A1, . . . ,Ap}, B = diag{B1, . . . ,Bp} and C = diag{C1, . . . ,Cp}

where Ai ∈Rri×ri , Bi ∈Rri×1 and Ci ∈R1×ri for i = 1,2, . . . , p are defined by

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

 , Bi =


0
0
...
0
1

 , Ci =
[

1 0 · · · 0
]

(2.32)

and

Φ(z,u) :=


ϕ1(z,u)
ϕ2(z,u)

...
ϕp(z,u)

 :=


Lr1

F(x,u)h1(x)

Lr2
F(x,u)h2(x)

...

Lrp
F(x,u)hp(x)


x=T−1(z)

(2.33)

where ϕi : T (Ω)×U 7→R for i = 1,2, . . . , p.
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2.8 Summary

This chapter has presented the fundamental concepts and results which underpin
the theoretical analysis in this book. Some of the results are from the existing work
and the others are developed by the authors but with rigorous proof provided. The
content covers Lipschitz condition, comparison functions, stability of nonlinear sys-
tems, the converse Lyapunov theorem and uniformly ultimate boundedness. The
well known Razumikhin Theorem has been presented, for readers’ convenience,
which will be employed to deal with time delay throughout the book. Section 2.5
summarises the output sliding surface design approach proposed in [40] which will
be frequently used in the sequel. Finally the geometric structure of nonlinear sys-
tems with uniform observability index has been provided.




